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We study the stochastic processes of markovization and demarkovization in chaotic signals of human electroen-
cephalograms (EEGs) at epilepsy using various measures of demarkovization and markovization, namely, the
statistical spectrum of a non-Markovity parameter, power spectra of the time correlation function and memory
functions of junior orders, and local relaxation and kinetic parameters. The results demonstrate the superiority
of the new measures in comparison to the traditional nonlinear measures. We conclude that the applied mea-
sures are more appropriate for the quantification of markovization and demarkovization in EEG data and the

prediction of epilepsy seizure.
PACS: 87.10.4e, 05.45.Tp, 87.19.Xx

1. INTRODUCTION

We develop a new approach that could provide us
with a powerful means of discrete time series analysis
and processing. The subject of our study is human
electroencephalogram {EEG) records, because we ad-
dress our work to those who are interested in signal
processing in live complex systems. In studying the
natural complex systems, very little is usually know
about their internal structure and the relationship be-
tween their components. The time series describing
the dynamics of one or several parameters are typically
used for obtaininng diagnostic information. The re-
ceived information is not adequate for the description
of all the degrees of freedom of this system. Quanti-
tative and qualitative methods proposed recently allow
constructing the framework for the description of nat-
ural complex systems. It allows diagnosing diseases
without going into the detail of the internal structure
underlying the natural complex systems. A similar ap-
proach can be used to describe and investigate the di-
versified complex systems as they are related only to
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the concepts of this framework. Here, we present the
results of applying the new framework involving ideas
of the discrete non-Markovian stochastic processes to
the analysis of electric potentials of brain. It turns out
that discussing the results in terms of demarkovization
and markovization is the best way to uncover seizure
dynamics features.

The brain cells communicate by producing tiny elec-
trical impulses. In an EEG, electrodes are placed on
the scalp over multiple areas of the brain to detect
and record the electrical pulses within the brain. The
EEG is used to help diagnose the presence and type
of seizure disorders, confusion, head injuries, brain tu-
mors, infections, degenerative diseases, and metabolic
disturbances that affect the brain.

It is well known that epilepsy is one of the most
serious diseases of human brain [1,2]. The dynamics of
the electric signals accompanying it belongs to a class
of nonlinear, nonstationary and nonergodic processes
of complex systems of a live nature [3,4].

The discrete and non-Markovian properties of time
variation of the signals and the sudden alternation of
the behavior regimes must be taken account in ana-
lyzing the electric activity of brain potentials. To-
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gether with the fast change of chaotic and regular
modes in the behavior of the system, this creates se-
rious problems for the diagnosis and treatment of pa-
tients with epilepsy seizure. This is why traditional
methods of nonlinear dynamics such as the Lyapunov
exponent, the Kolmogorov—-Sinai entropy, and correla-
tion and fractal dimensions are not sufficiently sensitive
for the purpose of distinction between different chaotic
regimes in epilepsy.

2. BASIC THEORY

Qur approach is based on the recent theory for
stationary [5] and nonstationary cases [6] £ discrete
ren-2damesiem stochastic processes in complex sys-
tems. We analyze the stochastic process on the basis of
the chain of the coupled non-Markovian discrete equa-
tions for the initial discrete time correlation function
(TCF) a(t) (t = mT),

m—1
AZ(tt) — /\la(t) — TA] fi—; JMl(jT)a(t —jT)7
m—l
A]Z;(t) = A M (t)~TA, jgo Moy (jm)My(t—jT), (1)
m—1
A - daMa(t)—rs ;0 My (7) My (t=i),

where A, is the eigenvalue spectrum of the Liouville
operator ¢L and A,, are the general relaxation parame-
ters,
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The kinetic nonlinear finite-difference equations (1) is
analogous to the well-known chain of kinetic equations
of the Zwanzig-Mori (ZM) type. These ZM equations
play a fundamental role in the modern statistical me-
chanics of nonequilibrium phenomena with continuous
time. Kinetic equations (1) can be considered as a
discrete-difference analogy of hydrodynamic equations
for physical phenomena with discrete time. By anal-
ogy with [5-7], we define the generalized nonlinear non-
Markovity parameter in the frequency-dependent case

as
) 1/2

where ¢ = 1,2,... and p;(w) is the power spectrum
of the i-th memory function. It is convenient to use

this parameter for quantitative description of long-
range memory effects in the system considered together
with memory functions defined above. The values of
€;(w) allow us to obtain a quantitative estimate of non-
Markovity effects and the statistical collective memory
in the chaotic changes of the experimentally measured
EEG data. The parameters ¢;{w) allow classifying all
the observed processes into three important types [5].
A Markov process corresponds to the situation where
the non-Markovity parameter takes indefinitely large
value €;(w) = o0, and the quasi-Markov processes cor-
respond to the case where ¢;(w)> 1. The limit case
g;(w) = 1 describes non-Markov processes. In this case,
the time scale of memory processes and the correla-
tion dynamics (or the nearest junior and senior memory
function) coincide with each other.

3. EXPERIMENTAL DATA

We quantitatively demonstrate the stochastic de-
scription of the time-frequency peculiarities of epilepsy.
We use experimental data [8] on human EEGs. These
files show tonic-clonic seizures of two subjects recorded
with a scalp right central (C4) electrode (linked ear-
lobes reference). It contains a total of 3 minutes with
about 1 min pre-seizure, the seizure, and some post-
seizure activity. The sampling rate is 102.4 Hz (see the
papers cited in [8] for more details).

4. NUMERICAL CALCULATIONS

We consider a discrete time series of the electric
activity as a one-point stochastic process

X ={e(T),z(T +1),z(T +27),...,
(T +kr),...,.e(T+TN-1)}. (3)
It is convenient to introduce the normalized time corre-

lation function for the quantitative description of time
series,

1
a(t) = —~————(N > X
N—-1-m
X Z 0x(T + jr)ox(T + (j + mr)), (4)
=0

where ¢? is the variance, N is the number of mea-
surements, and 7 is a finite discretization time. The
key element of the theory consists in transition from
continuum values, variables, and equations to discrete
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ones. We then obtain a Liouville-like equation of mo-
tion for multidimensional state vectors. We can use the
method of projection operators in a finite-dimensional
vector space. This allows splitting the Liouville-like
discrete equation of motion into two mutually orthog-
onal subspaces, one of which is relevant and the other
is irrelevant to discrete time correlations. We have also
developed the method for obtaining the set of dynamic
orthogonal variables by the Gram—Schmidt orthogonal-
ization procedure.

Dynamical orthogonal variables were calculated
from initial time series (3) by the formulas (see [5, 6])
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where the parameters \; and A; were calculated us-
ing (2). Simple, but cumbersome calculations show
that the first short-memory function m,,(t) represents
a normalized TCF of the first dynamic variable W,,,

(Wn(0)Wa(?))
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We then obtain a chain of finite-difference discrete
non-Markov kinetic equations for the initial time cor-
relation function and memory functions of various or-
ders. We note that all the involved kinetic and relax-
ation parameters, the time correlation function, and
the memory functions can easily be found and calcu-
lated directly from the experimental time series. The
spectra of memory functions were calculated using fast
Fourier transform.

5. NON-MARKOV PROPERTIES OF EEGs

We have analyzed the time and frequency evolution
of the signals during tonic-clonic seizure by means of
the time-window technique. We find that the memo-
ry function spectra and the statistical spectrum of the
non-Markovity parameter are valuable for the quan-
titative and qualitative analysis of epileptic seizures.
Numerical parameters based on the theory of discrete
non-Markov processes provide quantitative information
about the state of brain before, during, and after the
seizure.

Fig.1. The time record of the first four orthogonal
variables Wy (a), W1 (), W (c), and W3 (d) of the
sampling of electric activity at the tonic-clonic seizure
under study. The difference in the dimensions of the
four variables must be taken into account in analyzing
the scales. The general form of all signals has definite
similarity. Simultaneously, some differences in time be-
havior W;(t) are made evident especially for the states
before and after the seizure. We emphasize that the
whimsical entanglement of regular and chaotic compo-
nents is omnipresent in the window time recording of all
the signals. We also note that the difference between
the raw EEG data before, during, and after the seizure
is sufficiently dramatic. But simple registration of this
fact does not allow us to reveal such subtle features of
EEG spectra as the presence or absence of the chaotic
or regular components in the signal

Non-Markov properties are known to play an essen-
tial role in the time dynamics of complex systems. On
the basis of our theory [5,6], we can calculate mem-
ory functions M;(t), ¢ = 0,1,2,3, directly from exper-
imental data by Egs. (2.41)—(2.46) in [6]. We analyze
the properties of memory functions by calculating their
power frequency spectra. For a quantitative estima-
tion of the non-Markovity degree, we use the frequency-
dependent generalized non-Markovity parameter €;{w)
introduced by us previously [5]. From the theory
in [5,6] we can also calculate the quantitative values
of the kinetic and relaxation parameters A;, Az, Az,
Ay, and Ay that give additional information about the
properties of the complex system under study.

For the observed EEG spectra, we divide the en-
tire time evolution data into nonoverlapping epochs of
1024 data points each. The dynamics of the first four



R. M. Yulmetyev, P. Hinggi. F. M. Gafarov

XMIT®D, rom 123, BHim. 2, 2003

Fig. 2. The window-time behavior of the power spectra
wi(w), 1 =0 (a), 1 {d), 2 (¢}, 3 (d), for the considered
sampling with the tonic-clonic seizure from the short-
time window dynamics of the human brain electric ac-
tivity. The sharp reduction (by almost one order) of
intensity of the low-frequency components of the spec-
tra (in the region of & and ¥ rhythms) attracted our
attention at the transition from ug to p1, po, and us.
The spectra u;(w), ¢ = 1,2,3, contain rather strong
noises distributed at regular intervals in the entire fre-
quency region. The intensity in the region of 4 and ¢
rhythms sharply decreases in the first half of the seizure
(the Tth, 8th, 9th and, in part, the 10th windows) in
all pi, 1 =0,1,2,3. The sharp increase of the intensity
in the low-frequency region of the spectrum by almost
100 times (in the regions of 4 and ¢ rhythms) is ob-
served in the second half of the seizure (the 11th, 12th,
and 13th windows)

dynamical orthogonal variables Wy, Wi, W, and W3
of the entire data set is presented in Fig. 1. For each
epoch, we have calculated the power spectra of the first
four memory functions pg(w), pu1(w), pe(w), p3(w) and
the three first points of statistical spectra of the non-
Markovity parameter &1 (w), €2(w), £3(w) [5]. The time
evolution of the spectra is shown in three-dimensional
diagrams (Figs. 2 and 3). The time evolution of the
numerical parameters Ay, As, A3, Aj, As is presented
in Fig. 4.

We emphasize that strong demarkovization of the
stochastic changes of brain electric potentials with de-
creasing numerical values ¢; to the point of a unit
is exhibited at the tonic-clonic seizure. The chaotic
regime of the system is then replaced by the steady
non-Markov state regime.

Fig.3. The window-time behavior of the first three
points of the non-Markovity parameter ¢;(w), ¢ = 1
(a}, 2 (8), 3 (c), for the long sampling including the
tonic-clonic seizure at epilepsy. For the state before
the seizure, the quasi-Markovian behavior (1 ~ 10} of
the first point e1(w) in the low-frequency region (with
d and « rhythms) is obvious. The beginning of the
seizure (the 7th, 8th, 9th, and 10th windows) exhibits
a strong non-Markovity (1 ~ 1) on all frequencies
of the full spectrum. A weak non-Markovity in the
region of § and ¥ rhythms (¢ — 4) is found during
the seizure. A strong non-Markovity on alf frequen-
cies is established immediately after the termination
of the seizure (the 14th window). Frequency beha-
vior of e3(w) is characterized by steady non-Markovity
(g3 — 1) in all the windows and in the entire frequency
region. A weak quasi-Markov noise (in the region of «
and 3 rhythms) appears before the seizure (the 2nd
and the 5th windows) and at the end of the seizure (in
the 12th, 13th, and 14th windows). The behavior of
the parameter £5(w) is rather peculiar. A strong non-
Markovity (€2 ~ 1) appears long before the seizure (in
the 3rd, 4th, 5th, and 6th windows). Further develop-
ment of the seizure is accompanied by a slight noise in
g2(w) in the region of o and 3 rhythms. The termi-
nation of the seizure results in a strong non-Markovity
{¢2 ~ 1) in the 13th window. Noisiness in the en-
tire frequency range of the 14th window then occurs.
The steady non-Markovity (e ~ 1) is appreciable in
the 15th, 16th, and 17th windows, appearing after the
termination of the seizure. The low-frequency (in the
region of & rhythms with ¢ ~ 1) and high-frequency
(in the top border of the y-spectrum with £2 ~ 3) sites
of the spectrum are intensively noisy
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Fig.4. The window-time behavior of the kinetic (A1 (&), A2 (b) and A3 (c)) and relaxation (A1 (d), A2 (e)) parameters for

the time sampling at epilepsy with the tonic-clonic seizure. The kinetic parameters Ay, A2, and )3 are always negative and

increase with seizure. The relaxation parameters A; and A; change sharply with the sign change with the beginning of the
seizure. The most dramatic changes in the behavior of A; and A2 occur during the seizure in the opposite directions

It can be seen from Figs. la-d that the time
evolution of the dynamic orthogonal variables W;,
t =0,1,2,3, can be smoothed. Therefore, the scales
of these variables before and during the seizure are
practically idential. The beginning of the seizure (see
Figs. 2a-d) is characterized by a sharp recession of low-
frequency peaks in the spectrum po(w) (7-10th win-
dows); these peaks in po(w) rise sharply at the end
of the seizure and immediately after the seizure. The
spectra of p;(w), 7 = 1,2,3, differ by white noise and
low-frequency bursts on the tail of the seizure. These
bursts are most appreciable in the behavior of the spec-
tra po(w) and pg(w).

The behavior of the first three points in the statis-
tical spectrum of the non-Markovity parameter ¢;(w),
i =1,2,3 (see Figs. 3), turn out to be most indicative

and demonstrative. The state before the seizure can be
considered a quasi-Markov one in the 1-6th windows
for the first level in the low-frequency region (here,
€1{w) reaches the value 10) and in the 1st and 2nd
windows for the second level (eg(w) ~ 1.5). The begin-
ning of the seizure (the 7th and 8th windows) is accom-
panied by the strong non-Markovity of the first level
(e;(w) ~ 1). The increase of the low-frequency non-
Markovity on the first (e; ~ 3.8), second (g3 ~ 1.5),
and the third (¢35 ~ 1,5) relaxation levels is visible at
the end of the seizure (10-13th windows). The beha-
vior on the third level with the value ¢3 &~ 1 can be
considered a non-Markov one.

Non-Markov relaxation behavior on the second level
is noteworthy (see Fig. 38). The strong non-Markovity
(€2 &~ 1) in the entire frequency region appears long
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before the seizure in the range from the 3rd to the 6th
windows. The weak noise on the mean frequencies is
appreciable during the seizure (10-12th windows). The
ending of the seizure coincides with non-Markov 13th
and quasi-Markov 14th windows. The appearance of a
strongly pronounced non-Markov state on the second
level with the value g2 & 1 is therefore a clear precursor
of the seizure. It is significant that a similar precursor
is absent in other non-Markov markers.

The relaxation (A1, A2, and A3) and kinetic (A,
and A;) parameters calculated with the formulas of
the theory (see Fig. 4) are very sensitive to approa-
ching the seizure. All the parameters X;, ¢ = 1,2,3,
always remain negative and change within wide lim-
its: (~0.97 < A\ £ ~-0.15, —1.03 < Ay £ —0.74, and
~1.03 < A3 < —0.89) in the units of 7~!. The pa-
rameters A; and Ay change the sign at the time of the
seizure. This corresponds to the alternation of the type
of solution of the discrete nonlinear kinetic stochastic
equation (see Eqs. (2.56)—(2.58) in [6]). All the above
parameters are sensitive to approaching the seizure. A
sharp decrease of the values and the sign alternation
of A; and A; can also be considered as a quantitative
precursor of the seizure.

Therefore, the increase of the parameters ¢;(w) can
be considered as a markovization of the stochastic pro-
cess. It may signify the increase of the chaotic compo-
nents of EEG signals. Simultaneously, the decrease of
g;(w) up to a unit is related to demarkovization of the
process under study and to the increase of the regular
components of the signals. It is obvious from Figs. 1-4
that the specific alternations, fast and sudden changes
of chaotic and regular regimes, are inherent features of
the stochastic variation of electric potentials at epilep-
tic seizure.

6. CONCLUSIONS

We have clearly demonstrated that the set of ki-
netic, relaxation, dynamic, and spectral parameters
and characteristics of a discrete non=iESisv stochastic
process are valuable for quantification of stochastic pro-
cesses of markovization and demarkovization in EEG
data and for prediction and precursor of the epileptic
seizure. Because a similar situation is typical of the ma-
jority of the phenomena in live systems, our conclusions

~iimposigmid-for life sciences.
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