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Paradoxical motion of a single Brownian particle: Absolute negative mobility
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We consider a single, classical Brownian particle in a spatially symmetric periodic system far from thermal
equilibrium, which can be readily realized experimentally. Upon application of an external statid={citoe
average particle velocity is negative fBi>0 and positive fol-<0 (absolute negative mobility The various
physical mechanisms responsible for such a paradoxical effect are identified, leading to analytical approxima-
tions that are in good agreement with numerical simulations.
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[. INTRODUCTION The common denominator of the different models that we
will treat in the present work is their spatial periodicity and
When a system at rest is perturbed by a static force, wénversion symmetry. Furthermore, upon application of an ex-
expect that it responds by moving into the direction of thatternal static “load” forceF, these models respond with an
force. The rather surprising opposite behavior in the form ofaverage particle current that always runs into the direction
a permanent average motion againgnat too large static ~ oppositeto that of F (providedF is not too large in modu-
force of any direction is calle@bsolute negative mobility Ius). Especially, no average current arises when0O due to
(ANM). If the unperturbed system is at thermal equilibrium, the spatial symmetry. In other words, the current-load curve
then ANM is impossible since it could be exploited to con-exhibits a passage through the origin with a negative slope as
struct aperpetuum mobilef the second kind. Familiar to its most prominent feature, which, in fact, constitutes the
everyone, but rather complex nonequilibrium systems that ddefining property of ANM.
exhibit ANM are donkeyg1]. In contrast to ANM, the so-called ratchet eff¢80—34 is
Much simpler and better controlled nonequilibrium sys-characterized by an average particle current that is nonzero
tems in which ANM has been experimentally and theoreti-for F=0 and does not change its direction within an entire
cally studied under the label afbsolute negative conduc- neighborhood of=0. This effect thus inevitably involves
tance or resistanceare different kinds of semiconductor some kind of asymmetrgfor F=0). Moreover, the response
devices[2-12], photovoltaic effects in ruby crystald3—  of a ratchet system to an applied load foFeeesults usually
16], tunnel junctions between superconductors with unequah a change of the current in accordance with the sign of that
energy gap$17-19, and a simplified theoretical model for force, i.e. the current-load curve passes thro&ghO not
certain ionized gas mixturd20—22. In all these cases, the only with a finite offset but also with a positive slope. The
physical roots for the appearance of ANM are genwjnan- latter property, in fact, holds true for all existing ratchet sys-
tum mechanicakffects that do not survive in the limit to- tems we are presently aware[88]. There is in principle no
wards a classical description. reason, however, that this has to be always so, and counter-
A second class of nonequilibrium systems exhibitingexamples can actually be constructed by straightforward
ANM consists of various theoretical models iofteracting  asymmetric modifications of our present models.
Brownian particles[23—27]. In this case, the underlying Put differently, the salient difference between the ratchet
physical mechanisms are of purely classical character, bugffect and ANM is as follows: In an equilibrium system, the
now collective effectare an indispensable ingredient for the second law of thermodynamics forces the current-load curve
manifestation of ANM. While in most of these studies, theto pass through the origin with a nonnegative slope. In a
main focus is on systems with a large number of interactingatchet system, the main nonequilibrium effect is a vertical
particles, a toy model that requires as few as three particleshift of that curve, while ANM exploits the disequilibrium to
has been put forward in Rdfl1]. Yet, a further reduction to turn the slope negative without a concomitant offset.
one single particle exhibiting ANM was commonly assumed Also note that ANM is distinct from so-calledifferential
to be impossible among those practitioners. negative mobility(or resistance[35—39 which is typified
With our present paper we continue and provide the deby a negative slope of the current-load cuawgayfrom the
tails of our brief accounf28] on the existence of ANM in origin F=0. It characterizes a current that is oriented in the
purely classical, single-particle models that can be readildirection of the bias but decreases with increastngn con-
realized experimentally. An independent, closely related, butrast to ANM or the ratchet effect, differential negative mo-
complementary investigation has been recently published ibility can also occur in equilibrium systems if subjected to an
Ref.[29]. While the effect of ANM is the same, the proposed external static bia37].
models therein are completely different from ours and may The present paper is organized as follows: In Sec. Il, we
not be so straightforward to realize in an experiment. introduce our model and the basic quantity of interest,
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PX(1) == AV (X(1),y (1)) + (1), (18
ny(t)=—a,V(xX(1),y(1)+ (1) +F. (1b)

In comparison to the usual Newtonian equation, the inertia
termsmx(t) andmy(t) are omitted, since in typical experi-
mental systems these inertial effects are negligibly small. In
Eqg. (1), » denotes the viscous friction coefficieM(x,y) is

the hard-wall potential from Fig. 1, arfélis a static “tilting
force.” Further, the thermal fluctuations are modeled by un-
biased Gaussian white noigg(t) with correlations

(&x(1)éx(s))=27kgT &(t—s), 2

wherekg denotes Boltzmann’s constarit,the temperature,
and(-) indicates the ensemble average over many indepen-
dent realizations in Eq1).

Aiming at nonequilibrium effects,(t) cannot be simply
a second thermal white noise, but rather must include appro-
priate time-dependent forcéwith zero meapto drive the
system out of thermal equilibrium. From a theoretical view-
point, the simplest such source of disequilibrium isyam-
metric dichotomous noise that switches randomly at a rate
between two states A. The respective distribution of so-
journ times then reads

N SRas

p(7)=vye " [dichotomous noisé,(t)]. 3

Another choice foif,(t) (which we will not pursue in detail
FIG. 1. Hard-wall potential/(x,y), defined as zero in the white in this paper would be, e.g., colored Gaussian noigghich
regions and infinity in the black regions. The particle moves insidedoes not satisfy a generalized fluctuation-dissipation theorem
this corridor of widthB, the white regions outside are of no interest. of the second kind40]). While conceptually appealing due
The symmetrically and periodicalljwith periodL) arranged ob-  to their simplicity, such models faf,(t) without a thermal
stacles are characterized by the parameteasid 6. Note thatb noise component are hard to realize experimentally.
>B/2. One possible experimental realization we have in mind is
based on the techniques used in RpM44.—55. Micrometer-
namely, the average particle current. Additionally, a formalsized beads in a dilute colloidal suspension at room tempera-
definition of ANM is given. Section Il is devoted to a de- ture serve as practically noninteracting Brownian particles.
tailed analysis of the physical mechanisms that are resporFhe potential landscape of Fig. (br one of the general-
sible for the occurrence of ANM in our model under periodicizations introduced in Sec. )Vcan be built by means
nonequilibrium perturbations. Based on an intuitive underof light forces [43,47,52-54,56,97 electric fields
standing of these mechanisms at work, we develop a simplgt2,43,45,46,49,55 or morphologically via lithographic
theory that is in good agreement with numerical simulationsetching methodg41,51]. The external forces can be realized,
In Sec. IV, various generalizations of the original model aree.g., by electri¢41,51] or magnetid 50] fields or by making
introduced and discussed. Finally, the summary and discustse of gravitation. Indeed, an experimental realization of our
sion of our findings are presented in Sec. V. model along these lines is currently being constructed by
Bechinger and co-workers.
A realistic choice for the noise sourdg(t) in such an
Il. MODEL experiment is composed of a symmetric periodic fof¢g
] ] ) ) ) ] that switches betweert A with period 2r and, in addition,
We consider a Brownian particle in a two-dimensional gnother thermal white noisgq(t) like &(t) in Eq. (2) but

hard—wall “corridor” vyith obstacles the}t are arrgngqaeri— statistically independent, i.6/&,(t) &x(s))=0 for all t,s,
odically and symmetrically under spatial inversipmender-
ing a straightforward passing of the “corridor” impossible, gy(t) = &n(t) +1(1). (4)

as in Fig. 1. The particle is subjected to both random thermal
fluctuations and externally applied forces acting along the Our central observable is the mean particle current
“corridor.” Taking the “corridor axis” as they direction of  through the corridor
our coordinate system, the dynamical behavior of the particle

is modeled by the coupled two-dimensional overdamped <y>::<|
Langevin equation, t
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In an equilibrium systenil), the current(5) always runs
into the direction of the static force, because ANM is for-
bidden at thermal equilibrium. If this was not so, we readily
could construct gerpetuum mobilef the second kind: Un-
der a periodically switching external loadF, the particle
would (on averaggcyclically move back and forth, thereby
performing useful workagainst this bias. Consequently,

d(y)/dF|r_o>0 in thermal equilibrium. For continuity rea-

sons,d(y)/dF|g_, still remains positive for small deviations
from equilibrium, implying that model1) cannot exhibit
ANM close to thermal equilibrium. Turning to situations far
away from thermal equilibrium, however, permanent motion
opposite to the external force is no longer ruled aydriori.

In fact, ANM occurs[28] in our system(1) for sufficiently
strong nonequilibrium driving4), as depicted with Fig. 2.

The physical origin for the occurrence of ANM in Ed), as
well as a theoretical description of this phenomenon, will be
the subject of the following sections.

FIG. 2. Current-load characteristi¢sr load curve for Eq. (1)
with the potentialV(x,y) of Fig. 1, the periodic nonequilibrium
noise source(4), and parameter values=4 um, B=3 um, b
=1.2um, §=70°, T=293 K, A=0.2 pN, 7=1 s[henceAl um
~50kgT and 7~57_ for F;;,;=0.2 pN, wherer = 7L/F, is the

mean time the particle needs to cover a petioby free drift; see . e S
Eq. (16)]. Dots with error bars represent numerical simulations of Out of the various possibilities for the nonequilibrium

Eq. (1). Solid lines represent analytic approximatid®) with Eqs.  N0iS€ source(t) mentioned in the preceding section, let us
(12) and(13). The Brownian particle is assumed as spherical withfirst focus on the case that may be understood most readily,
radiusrzo_sﬂm and as Subjected to Stokes fr|c’[|0ﬁ: 6’7TVT', the Comb|nat|0n Of thel’mal ﬂUCtuanons W|th determInIStIC

where v is the viscosity of water. The finite particle radinshas ~ periodic driving, as given in Ed4).

been approximately accounted for by replacBigpy B—2r in Eq. We can adopt the following simplified picture of our
(12). The choice of the above parameter values has been made withodel (1). The particle moves in the potential landscape of
the experimental realization described above @}in mind. Fig. 1 under the influence of thermal fluctuations and, in
addition, is subjected to thetal external force

Fioti=F = A, 9)

IIl. ANM FOR PERIODIC DRIVING

Due to the long-time limit—oe, the right-hand side of Eg.
(5) becomes independent of the initial conditiofs and
y(tg). Moreover, due to self-averagin@r ergodicity rea-
sons, the ensemble average may be omitted ag @@lli.e.,
we may recast Eq5) as

acting in they direction along the corridor. The total for¢®)
switches periodically betweelr+ A and F—A with period

27 and average valuE.
In each of the two stateB*+ A of Eq. (9) with sojourn

) Cy(b) time 7, the par'ticle travels on average a distanod 7, F o0
(y)= “mT' (6)  along the corridor. The net particle currei) thus follows
t—ee as

_Ay(r,A+F)—Ay(r,A—F)

27 (10

The current-load characteristi¢sr load curveé that dis- .
plays the current5) as a function of the static loa (cf. %
Fig. 2 exhibits an odd symmetry with respectRalue to the
y symmetry of the potential landscape in Fig. 1 and of theFor later convenience, we have writtenAy(7,A—F) in-
nonequilibrium drivingZ,(t): <y>_>_<y> for F>—F. In  stead of+Ay(7,F—A) for the second term in the numera-
particular, we have tor, thereby exploiting the odgsymmetry of our syster(t).

. Due to this symmetry, we furthermore can restrict ourselves
(y)=0 for F=0. (7)  without loss of generality t?A>0 andF=0 in the follow-
ing.

As already mentioned at the end of the preceding section,
ANM cannot occur in Eq(1) close to thermal equilibrium,

i.e., for smallA or small r. This is a consequence of linear
response theory for stochastic processes at high frequency
[58]. However, simply making\ large is not sufficient either

to create ANM. IfA<F, the total force(9) points perma-
nently into the direction of, and the average particle cur-
together with property7). For large values of the bids the  rent (5) thus adopts the same orientation as the static load,
current(5) will in general again adopt the direction Bf this ~ even if we are far away from thermal equilibrium. For ANM,
regime, however, is not at the focus of our present work. we thus have to focus at least on the regifyreF. Then, the

ANM is characterized by a curre() that runs(at least for
sufficiently smallF) oppositeto F, independent of whethér
is positive or negative. Formally, ANM is thus defined as

d(y)
aGF - <0, (8)

0
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FIG. 3. (a) Typical traveling routes of the particle fé,>0 together with their probabilitiexi¢=1— p). (b) Traveling routes for a large
positive forceF,=F + A (left) and a small negative forde,,=F— A (right). For the large force, the traveling speegis large and the
particle has only a little time to thermally diffuse along tkelirection, as indicated by a narrof@@pproximately Gaussian profile. The
particle thus typically ends up by being trapped, and the probapility avoiding a trap is very small. For the small force, the drift velocity
vy is smaller. Consequently, the available time for diffusive “broadening” is lafgpeoader Gaussian profjlgesulting in a noticeable
probability p of avoiding the trap. The respective valuespadre indicated by the filled parts of the Gaussian profiles. The dashed paths do
not contribute to ANM. See also the main te¢d) Typical traveling routes for fast nonequilibrium driving with sojourn timejsist smaller
than 35L/2(A—|F|) [see also Eq(14)]. Before the particle can cover the “basic distanceé’/3 but after it has traveled at least one period
L, the external forcé, switches fromF—A<O0 to F+A>0, indicated by the turning point of the particle route. The solid path showing
immediate trapping after reversal of the force is at the origin of ANM. The dashed path yields no net motion. Both routes occur with an
approximate probability of 1/2.

two statesF+ A of the total force(9) are of different sign, sion proceeds not too fast, the particle in Figa)3first
and the currentl0) constitutes the net result from the differ- closely follows the right “corridor wall,” not being hindered
ent average distances the particle travels in the opposite dby the neighboring obstacle to the left. It then hits the next
rections. obstacle(at the right corridor wajland “slides down on the
The above conditions imposed @nandF imply thatA  back” of that obstacle until it “falls off” to perform a “free
+F>A—-F. In view of Eq.(10), we can thus infer that a fall”in the positive y direction. Because the lateral extension
current(5) opposite to the static forde, and therefore ANM,  of the obstacled exceeds half the corridor widtB/2, the
may emerge only if statistical paths dominate where thgarticle then hits with a high probability, the next obstacle
mean traveling distancay(7,Fy) is smaller for larger  on jts way and ends up being trapped in the corresponding

forcesF q. corner between that obstacle and the left corridor wall. In
order to avoid this trap, the particle must thermally diffuse at
A. Moderately fast driving least over a distancb—(B—b)=2b—B in the positivex

The system parameters in Fig. 2, in particular the Characghrectlon during its free fall in thg direction. With increas-

teristic time scaler of Eq. (4), are chosen such that the ing total force(9), “free traveling speed’(11) increases, im-
P . g. (%), : ' eplying that the available time and therefore the probability
nonequilibrium noise source operates in the regime of rath pr)-—l—q of such a diffusive displacement decreases, see Fig
high frequency 1(2), i'e." th_e particle_ can travel at mpst a 3(b). Consequently, the particle travels on averawm,arter .
few penpdsL by .free drift within the“tlmer. The phyflca}l distance along thg axis during the timer for larger forces
mechanism leading to ANM for this “moderately fast” driv- F.. As discussed above, see below EED), it is this ver
ing can be understood as follows. Consider a particle bein%tg(;hanism that implies tr,we occurrence of’ ANM y
located in one of the “corners” between the right “corridor b '

wall” and any of the adjacent obstaclgsee Fig. 8] at the Iatén tﬁ;dgﬂta?aqZa;gf\yeltir:]eszigtl;e:]lgg/t(lvelzﬂr:)dlfnogisl,zwi gglcu-
beginning of the time intervat with constant,,>0. Due 9 9 " o tot=

o this external force, a drift with velocity the current(5) then folloyvs a_ccording to Eq.10). _To this
end, we start by approximating the above mentioned prob-

vy=Fiot/ 7 (11 ability p of avoiding a trap. After drifting for a timé along

they axis with speed, from Eq.(11), the thermal diffusion

in the positivey direction is induced, additional to the diffu- along thex axis is approximately capturefbr not too large

sive motion stemming from the thermal environment. If thet) by a Gaussian distribution with varianc®® For a par-
ambient thermal noise is not too strong, and hence the diffuticle that closely passes by the leftmost edge of an obstacle
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attached to the right corridor wallor F,,>0), the probabil-  ticle can then get trapped with considerable probability al-
ity p is determined by this part of the Gaussian distributionready by the very first obstaclgo the lefy due to lateral
which lies beyond the rightmost edge of the next “trapping” diffusion away from the corridor wall.

obstacle[see Fig. 8)]. By use of Einstein's relatiorD While these conditionéi)—(iv) basically refer to the geo-
=kgT/ 7 and observing that neighboring obstacles have afhetrical properties of the corridor, the derivation of our the-

overlapb— (B—b)=2b—B (in x direction and an approxi- Oretical results, in particular the result in B4, is more-
mate distanceé./2 (in y direction), we obtain over based on further assumptions that involve the time scale

7 of the nonequilibrium force4):

1 B (v) The expressioiil3) is only valid if the particle covers

P(Fo) =5 effC(\/2:\/ﬁot> for F,>0, (12  at least the “basic distance”l32 during the timer, i.e., if
LkgT vy7=Fioerl 7> 3L12.

5 (vi) We have completely neglected the possibility that a
where erfck) =27 Y2[7e""du is the complementary er- trapped particle may escape from its trap due to the ambient
ror function. With probabilityp, a particle thus covers in thermal noise. This is only justified as long asis much
addition to the “basic distance” of approximately- 2 from  smaller than the mean escape time(F ) out of a trap. In
one of the(right) corners up to the first “trapping” obstacle passing we note that under such an assumption the particle
another period. [see Fig. 8a)]. It then avoids the second mostly lingers in one of the “sticky corners” before a switch
trap on its way with approximately the sarfrelative) prob-  of F,,, occurs; this is consistent with our approach to take
ability p as in Eq.(12), i.e., a second periodl is covered these corners as initial positions for the motion of the particle
with (absolutg probability p?, etc. [see Fig. 8)]. If the  within a time intervalr.
maximal traveling distanc@voiding all trapgis of the form The latter two requirements are fulfilled for both forces
(3/2+N)L with NeN, the average traveling distance F,=F= A and the sojourn time contributing in Eq(10) if
Ay(7,Fo) thus follows asL[3/2+p+p?+---+pN]. Ne-  they hold for thesmallerforce A—F, i.e., if
glecting the fact that the free traveling spegdis slightly

reduced when the particle “slides down on the back” of an 3L
obstacle, we obtain (3/2N)L=v7; hence, in virtue of Eq. A TS Tesd A—F), (14
(11), we find ( )

1 1-[p(Fyp]Fer (712
AY(rFo)=Li5+ -

. (13 whereA>0 andF=0 have been tacitly assumed. This rela-
1-p(Fio tion defines our “moderately fast” driving regime in quanti-
tative terms. For intermediate~ roscand larger> 7,5, ANM

This expression can also be used as a decent interpolatiGubsists, whereas for smaller driving intervaldNM even-
even ifv, 7 does not precisely equal (3fN)L. tually disappears. These latter driving regimes will be dis-

With the average traveling distan¢&3), current(5) is  cussed in detail in the following sections.
finally obtained from Eq(10). As can be inferred from Fig.
2, the agreement of this analytic prediction with the simula-
tions is remarkably good despite the various approximations
underlying our theoretical estimates in E¢t2) and (13): For shorter half periods<3#L/2(A—F), ANM is found

(i) The thermal nois&,(t) from Eq.(4) which couplesto to vanish in numerical simulations of E¢l). Before this
they component of Eq(1), has been neglected, thereby tac-disappearance occurs, we observe—much to our own
itly assuming that corresponding corrections to E¢8 and  surprise—anenhancementdf ANM, see in Fig. 4. This re-
(13) are small. markable feature is rooted in a completely different mecha-

(if) In order to obtain Eq(12), we have assumed that the nism, illustrated in Fig. &): Suppose, we are just beyond the
probability distribution resulting from the lateral diffusion of driving-regime characterized in Eq14), i.e., the sojourn
the particle during its free fall possesses a Gaussian shapme r with constanf ,=F — A (the small forcgis too short
and we have thus neglected effects of the corridor walls. to cover the “basic distance” 13/2 with the “free traveling

(iii) The drift distance in the direction between subse- speed”(11), but still sufficiently large to advance at least by
quent obstacles has been supposed to efil which is  one period.. Then, the external forcing switches to the state
justified as long ag<<90° is not too small, see in Fig. 1. In F,,=F+A (the large forcg during the free fall of the par-
fact, for very smallg, neighboring obstacles have an overlapticle towards the first trap, see Fig(c3 Drifting now into
in they direction. Then the probabilitp for avoiding a trap  the opposite direction, the particle either gets trapped by the
becomes exactly zero, independentgf;, implying that the  obstacle it just has passed by, or else, it avoids this trap to
crucial mechanism for ANM cannot occur at all. Fér finally end up(with high probability in its original starting
=90°, ANM is found to disappear as well in numerical corner. In the latter case, no net motion has occurred,
simulations of Eq(1). whereas in the former case a periodhas been covered into

(iv) We have used the assumption that the particle firsthe directionoppositeto the static force, i.e., we again find
closely follows the(right) corridor wall up to the next ob- ANM. The respective probability for getting trapped is close
stacle attached to this wall, see Figa3 This approximation to 1/2, and therefore much larger than the typical probability
becomes doubtful fokgT/F > (B—b)?/L because the par- p for avoiding a trap in the moderately fast-driving mecha-

B. Fast driving: Bursting and disappearance of ANM
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FIG. 4. Enhancement of ANM for fast driving. Shown as dots is
the slope of the current-load curve & =0 as it depends on the
characteristic time scaleof the nonequilibrium noise sourdéd). It

FIG. 5. Current-load characteristics for Efj) with the potential
V(x,y) of Fig. 1, periodic driving(4), and the same parameter
is obtained from numerical simulations of mod@) with the po- ~ values as in Fig. 2 except far=25s. Dots with error bars show
tential of Fig. 1 and periodic drivingd). The dimensionful param- r?umerlcal _S|mulat|ons of Eq). Solid lines: analytic approxima-
eter values are chosen as in Fig. 2. The lines interconnecting thi#en (10 with Egs.(17) and(19).
dots serve as a guide to the eye. For even larg@rot shown, a

very small, negative asymptotic value is approached from below For smallF >0, the effect of the traps is small and the
(cf. Fig. 5). first term in the denominator of E¢17) dominates. Hence,

Ay increasesin the expected linear response manner with
nism as detailed above. Consequently, also the resultingicreasing o As Fio becomes larger, 2p approaches 1,
ANM is more pronounced, thereby explaining the observedf. Eq.(12), and the escape timeg;increases very fast, cf.

bursting of ANM in Fig. 4. Eqg. (19 below. This increasing “stickiness” or “depth” of
the traps with increasingy [2,4,5,35—38,59,60mplies the
C. Slow driving existence of a maximum and a subsequidayof Ay. As a

. L . . . consequence we recover once again ANM in for
The slow-driving regime is characterized by sojourn times d g B

2 . sufficiently largeA, based on the mechanism that the particle
7 of the nonequilibrium sourced), which are much longer 565 on averagshorterdistances fotarger applied forces
than the mean escape time out of a trap for the forces corg  This prediction of ANM is confirmed by the numerical
tributing in Eq. (10). In view of es{ A+F)>7es{f A=F),  gimulations shown in Fig. 5. Moreover, the agreement of the
see Eq(19) below, this implies that simulations with Eq.(10) and Eqgs.(17) and (19) below is

> Tl A+F). (15) satisfactory.
To approximate the mean escape timg. the two-

To determine the average traveling distaog(7,F,,) for ~ dimensional geometrical trap is reduced to a one-
such larger values, we start by calculating the time to ad- dimensional potential system according to the following pro-
vance by one period. along they axis for F>0: With cedure: Out of the entire corridor we consider only a small
probability p approximately given in Eq(12), the particle Part consisting of one corndi.e., a segment of theleft)
avoids the trap within such a period; its traveling time tocorridor wall with an obstacle attached tg, iand a particle

cover the period_ is then approximately given by being trapped in this corner by the external fofeg>0.
Neglecting the effect of the wall, the motion of the particle
L Ly decouples into a component parallel to the obstacle and a
TL‘:v_y: (S (16) component perpendicular to it. We thus may consider only

the one-dimensional motion along the auxiliary coordinate

wherein we have exploited E¢L1) for the second equality. X=X/sind parallel to the obstacle, which is governed by
With probability 1-p, the particle gets trapped and has tothermal fluctuations and b_y the exte_rnal f_orce component
reescape from the trap in order to cover the petipthis in ~ Ft€080. The corresponding one-dimensional Langevin
turn yields an increase of the traveling time by, on the ~€quation reads

average. The average time to advance by one pdridsl

thereforep L/vy+[1—p][L/vy+ 7es{ Fop 1. With Eq. (16), PX(t) = — F o080+ &x(t), (18
the resulting average traveling distance during (laege
time 7> 7s{Fyoy) then takes the form where &(t) represents the thermal Gaussian fluctuations

L with the properties specified in E¢R). This dynamics cor-
T . @17 rectly reproduces the equilibrium distribution as well as the
(L7/Fio) +[1—p(Fio) ] Tesd Fror) limiting case of zero temperatufB=0. One can then ap-

Ay(7,Fio) =
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by taking into account the distributiogi.s{(t) of escape
04 | times out of the traps. This distribution can be approximated
by
7 ||f | Vesdt)= —e~ Ve 0
E ;"::,: E e Tesc .
N 2
R - 3 Similar in spirit as for the derivation of the mean time, a
'\?0 ) § "" | particle needs to cover a peridd[see above Eq17)]; we
“ - now obtain a distribution/(t) of traveling times(for F
>0). When the trap within such a period is avoided, this
04 time is given byr_ from Eq. (16). In contrast, when the
, , particle’s motion is held up by the trap, the traveling time is
-0.2 -0.1 0 0.1 0.2 distributed according tg/.o{t) with an additional “time off-
F [pN] set” 7, that represents the drift across this period. The re-

FIG. 6. Current-load characteristics for Edj) with the potential (s:[)ze)ct_llyhe eg]%?zb:,l\l,tele%g nd 1~p are approximated by Eq.

V(x,y) of Fig. 1, periodic driving(4), and the same parameter

values as in Fig. 2 except far=5 s. Dots with error bars: numeri- p()=p S(t—7)+(1—p) O(t— 7)) hesdt— 7), (21)

cal simulations of Eq(1). Solid lines show analytic approximation

by adding up Egs(13) and (17) and then evaluating EJ10).  \yhere@(t) is the Heaviside function and the argumeéig,

Dashed lines Sho.w anglytic apprOXi.maﬂon bas?d on €, (22), has been omitted ip and 7.s.. This result is based on our

and(24) as described in more detail in the main text, assumption that the particle always closely passes by the
) . ) leftmost edge of any obstacle attached to the right corridor

proximate 7es{Fio) by the mean first passage time frot 4| whenF >0, as indicated in Fig.(d). Furthermore, we

=0 to X=b/sing with a reflecting boundary placed &  paye again neglected the fact that the “free traveling speed”

=0 [40] to obtain (11) slightly decreases when the particle “slides down on the
b2y e g1 back” of an obstacle. As an important consequence of these

Tesd Fro) = o - - two approximations, the traveling times across any pekiod
kT a2sirg are governed by one and the same probability distribution

(19 (1) given by Eq.(21), independent of the particle’s past

a:=b Fiycoto/kgT. history (Markov property, and independent of the concrete

partition of the “corridor” along they direction into seg-
D. Driving with arbitrary period ments of period..

_— s L In this way, the original two-dimensional systéf) (with
The upshot of our present findings in this section is WO~ o potential of Fig. Lis approximately reduced to a one-
fold. On the ane ha_nq,we showed that_ANM occurs_fqr bOthﬁdimensional, unidirectional random walk characterized by
(moderately fast driving and(asymptotically slow driving (1), Eqg. (22). Provided that the random walk advances in
as chargctenzec_i byL4). a}nd (15). On the .other haf!d’ .the discrete step&'hopping process), such problems have been
respective physical origins of ANM, being quantitatively analyzed in detail in the context of renewal the®6yl,62.
gaﬁpture? l?y Etfﬂls(l'o;) atng (17) turne_d out tto be:_omtpleftely Extending these methods to our case of continuous motion
ierent 1n the fast-driving regime, - transient, - force- (see the Appendijx we obtain for the Laplace transformed

dependent “first-trapping events” after each jump Bf; ] ~ w —t
provide the crucial mechanism for ANM, while in the slow- dé?S[]alacementAy(s,Ftot) =JodtAy(t,F)e™™ the result

driving regime “reescape events” out of the traps are respon

sible for ANM. These escape events are negligible for fast L Ws) ens—1

driving, while for slow driving the transient behavior is irrel- AY(S,Fro) = — ——

evant. In other words, the pivotal mechanism creating ANM S 1—(s)

in one case is completely negligible for the other case and

vice versa. Thus, our modél) (with the potential of Fig. 1 ~ where

reveals the remarkable feature that two completely different,

“complementary” physical mechanisms both support one Tp(s)ze*STL“— PSTesc 23

and the same phenomenon. On the basis of this physical 1+ STesc

insight, we may naively expect that ANM will be present as

a result of a “superposition” of both effects in the interme- is the Laplace transform aof(t) from Egs.(20) and (21).

diate driving regime as well. An educated guess is thus tdhe expression(22) differs from standard renewal theory

add Egs.(13) and (17) and then evaluate Eq10). These [61,62 by the last factor on the right hand side, which ac-

predictions are nicely confirmed by Fig. 6. counts for the fact that the particle proceeds continuously
For a more sophisticated and systematic analysis of gemather than in discrete jumps of length After an inverse

eral driving, we start by extending our approach of Sec. Ill CLaplace transformation of E¢22), a final transformation,

TLS ' (22)
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vyT if 7<3L/2v,, bhasic bphysicail n:]echanisnlws for ANM, an(?j for ﬂuantifying g
. them by simple theoretical concepts. Based on the so-gaine
Ay(r=3L/2vy,Fio) +3L/2 if 7=3L/2vy,  physical insight, we expect that ANM subsists for various
(24) generalizations and modifications of our original model,
hereby providing a whole collection of systems containing
oninteracting classical Brownian particles that are capable
f exhibiting ANM. In the following, we discuss several such
generalizations, mainly with respect to the form of the po-

m;o aﬁﬁolém(tzg)chg(bZZ)ﬁnLh? ?lstélnctlc;n”b\t/avtvyeoe: i:hivtwct) tential landscape and/or the nonequilibrium perturbation. Re-
cases 4 an be erstood as follows. ©n Its way Ostricting ourselves to a more qualitative level in these discus-
the first trap, the particle proceeds with approximately the

ee traveling speed, from Eq. (10, I thus can cover the - S0 e, Shall present corresponding simuaton restis of
“basic distance” 3./2 only if 7 is sufficiently large, namely,

7=3L/2v,; for smaller, the particle advances by the dis- A. Dichotomous noise

tancev,7. With the average traveling distances finally ob- ) i .
tained from Eg.(24), current(5) follows according to Eq. . As already allyded to in Sec. I, the S|mplest _noneq_umb-
(10). A typical result is depicted in Fig. 6, being in good Mum modelZy(t) in Eq. (1) is, from a theoretical viewpoint,
agreement with the numerical simulations. Moreover, it pre-2 Symmetric dichotomous noise that switches randomly be-

sents a notable improvement in comparison to the naive firdV€en two states: A with a switching ratey. This case of a
guess discussed above. nonequilibrium perturbation can be understood along the

While a numerical evaluation of the inverse LaplaceS@me quali_tative arguments as a!ready developed for periodic
transformation is necessary in general, the special cases 8fiving (4) in the preceding section. We therefore conclude
moderately fast and slow driving detailed in Secs. Ill A andthat ANM occurs due to the same physical mechanisms at
Il C can be treated analytically. The basic assumption foM/Ork [28]. However, the curren(5) now results from the
fast driving that a trapped particle does not escape from it§ontribution of all sojourn times: of the total forcing states
trap corresponds to the limit,s— in Eq. (20); the prob- F.t=F = A according to the distributiop(r) from Eq. (3).
ability for escaping from the trap within any finite timés ~ Consequently, the current formu(z0) generalizes to

Ay(7,Fio)—

is required, because the “basic distance” of approximatel)}
3L/2, which the particle covers before encountering the firsg
trap [see Fig. 3 and below E@12) below], is not yet taken

then zero. In this limit, Eq(23) simplifies top e °t. Then, o

the transformation to original time in E¢R2) is straightfor- f drp(7)[Ay(7,A+F)—Ay(1,A—F)]

ward, and, by additionally taking into account the final trans- <y>: 0 . (28
formation (24), one recovers the previoymoderately fast > f * drp(7) 7

driving result(13), provided thatr/ 7 —3/2e N (for details, 0 P

see the Appendix Slow driving is characterized bgvery) ) ) ) )
large sojourn times with constant total for@, see Eq(15).  Wherein the average traveling distandg/(7,F) has, in
We expect that such an asymptotic long-time limitiof is ~ general, to be calculated from E¢2) and(24). To deter-

related to the smak-behavior ofAy, for which we find mine the mean escape timese requ_ired in Eq.(22), one .
must take into account that the dichotomous perturbation

~ L ¢y(t) does not contain a thermal noise part. The thermal bath
Ay(s,Fio) = 2t (-p)re ass—0. (25  thus only couples to th& component of mode(l). As a
st ese consequence, the relevant effective temperature of the ther-

This guess is mathematically rigorously corroborated by amal noiseéy(t) in Eq. (18) is given byTeg=Tsir’, result-

) : ) ing in a similar replacemeri— T sir?d in Eq. (19).
SKO called Tauberian theoref61,64: If for constantsJ and Instead of the generally valid formul@2) for the travel-

ing distanceAy, we may, in some special cases of the dis-
_ J K tribution p(7), employ in Eq. (28) the high- or low-
h(s)=—+-+0(1) ass—0 (26)  frequency resultg13) or (17), respectively. If, e.g., large
IS S . R . -
sojournst dominate, then the average traveling distange
~ ) may be approximated by Eql7). As a consequence,
for the Laplace transform(s) of a functionh(7), then Ay(r,F)! 7 becomes independent of and thus Eq(28)
h(r)=Jr+K+0(1) asr—o=. (27)  resimplifies to Eq(10). On the other hand, for large enough
ratesy in Eq. (3) (small sojourn timesr predominatg the
In Eq. (26), O(1) denotes a function of which is bounded average traveling distanceSy(,F ) [which noticeably
ass—0, wherea®(1) in Eq.(27) denotes a function of  contribute in Eq.(28)], may be well captured by the fast-
tending to zero as— . In view of this theorem and expan- driving result(13). A typical example of such a theoretical

sion (25), we herewith recover our previous res(if7). estimate is depicted with Fig. 7, in good agreement with the
numerical simulations.
IV. GENERALIZATIONS It is quite clear that the above discussion and especially

Eq. (28) with Egs.(22) and(24) is not restricted to dichoto-
The model(1), (4) together with the potential landscape mous noise,(t), but can be taken over without any change
of Fig. 1 is particularly suitable for elucidating the different for arbitrary random as well as deterministic procesi§g)
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(2)

001 |

(9)

-0.01 f

10

FIG. 7. Current-load characteristics for Efy) with the potential
V(x,y) of Fig. 1, dichotomous noisg), and dimensionless param-
eter valuesL=1, B=1, b=0.55, 6=45°, kgT=0.1, =1, A
=10, y=0.4. Dots with error bars show numerical simulations of
Eq. (1). The solid line shows analytic approximati@s) with Eqgs.
(12) and(13).
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FIG. 8. Hard-wall potentiaV/(x,y) like in Fig. 1 but now peri-
odically continued along the axis, resulting in a two-dimensional
array of obstacle¢‘sieve”). For symmetry reasons, thecompo-
nent of the Brownian motior(1) is completely independent of
whether the gray shaded “corridor” is endowed with perfectly re-
flecting “sidewalls” (Fig. 1) or not.

ing to the very same mechanism as discussed in Sec. Il C.
Under (moderately fast nonequilibrium perturbations, how-
ever, the potential landscapes from Fig. 9 behave quite dif-

switching between* A according to some switching time ferent from those of Figs. 1 and 8. In the corridor of Fig.

d?stribution p(7). Returning _finally to the special case of a 9(a), the particle gets trapped by “falling into a depression”
dichotomous procesg,(t) with Eq. (3) one sees that the \yhen “sliding down the ramps.” Due to the additional dif-
numerator in Eq.(28) can be evaluated in terms of the f,sjve motion, this trapping occurs with higher probability
Laplace transform\y(s,F,). Taking into account the trans-
formation(24), one then obtains the explicit analytical result

(a) (b) (c)
] F L 67(3/2)77I l_;zfr(,y)ey'r: l/
=572 7 1= ()
—(312)yr, 1 _ 77— v,
e L1 e’
R e (29 j
gl 1-4(y)
where the superscripts refer to the total force®=F. In
Eq. (29), 7, follows from Eq. (16) and ¥ (y) from Eq.
(23); the required probabilityp is obtained according to Eq.
(12) and the modified mean escape timg.according to Eq.
(19), with T—T sir6.
)
B. Alternative potential landscapes ) I\
The most immediate geometrical modification of the po-
tential from Fig. 1 is shown in Fig. 8, where the corridor of - =
Fig. 1 is periodically continued along thxedirection. Due to T

obvious symmetry properties of the dynamits the current
(5) through this sieve remains exactly the same as in Fig. ]Iha
but the parallelization now admits to simultaneously trans

port many more particles. This “sieve” is reminiscent of the ., vy—0: the black walls are defined to have infinite potential,
two-dimensional arrays of obstacles theoretically considered hese corridors are periodishown are two periodsand sym-

in Refs.[65-67. We emphasize, however, that the physicalmetric with respect to inversion of theaxis. (a) The vertical parts
phenomena studied there are completely different from oursss the corridor act as traps. The particle “falls into” them when
in particular ANM has not been addressed in those works. “sjiding down the diagonal ramps.th) The traps are represented

Yet alternative corridors are depicted in Fig. 9. They allpy the attached “fins” and are entered by lateral diffusion along the
do not possess obstacles, but provide traps with increasingdirection while “falling” along the central “backbone.{c) The
stickiness as the bias forc&aong they axis) increase. Con- particle is trapped in the “corners” with a probability that is prac-
sequently, ANM is found in the slow-driving regime accord- tically 1, independent of the strength of the foieg; .

FIG. 9. Alternative geometries for hard-wall corridors with traps
t may represent the potenti&x,y) in Eg. (1) to yield ANM. In
‘each case, the particle is confined to the inner white regions where
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the faster the “free fall” with velocityv, from Eq.(11) pro-  network consisting of randomly distributed traps which is
ceeds, and thus the larger the total external f@fges. As  used in trapping electrophoresis for DNA-protein complexes
discussed in Sec. Il A, such a force-dependent trappin§59,60Q.
probability of the particle implies ANM fofmoderately fast Experimental implementations of the ANM effect can be
driving. The potential landscape of Fig(h, does not sup-  realized with mechanical microsystems of the type discussed
port this mechanism. Here, faster drift along thelirection  herein. Likewise, other potential realizations involve the
even decreasesthe trapping probability. Similarly, fast- Brownian motion of colloidal particles in light-guided tracks
driving ANM based on force-dependent trapping processegy the motion of atoms and molecules in appropriately de-
cannot occur with Fig. @), since the trapping probabiliin  gjgned optical latticef68]. Extensions of our basic ideas to
the cornersis practically 1, independent of the external force Coulomb blockade systeni69,70 represent promising ap-
strength. plications.
Apart from the phenomenon of absolute negative mobility
V. CONCLUSIONS itself, other future challenges involve the problem of optimi-

In this paper, we have demonstrated that a single, classicRtion of ANM as a function of the parameters that charac-
Brownian partic|e ina periodic] symmetri(;’ two-dimensiona|terize the nonequilibrium situation. Moreover, a Single real-
potential landscape can exhibit the paradoxical arnicha ization exhibits mobility fluctuations that depend on the
facie quite astonishing phenomenon of absolute negative modiffusive properties of the driven Brownian motion process.
bility under suitable far from equilibrium conditions. This The diffusion of the displacements present yet another objec-
constitutes a substantial simplification and extension in comtive that is worthwhile to be addressed in the future in greater
parison to the physical systems hitherto known to exhibitdetail.

ANM, where either quantum mechanical effedd—12]
or else particle-particle interaction23-27 are clearly in- ACKNOWLEDGMENTS
dispensable for the emergence of ANM.

The qualitative and quantitative analysis of the ANM phe- We gratefully acknowledge stimulating discussions with
nomenon in such classical, one-particle systems has bed&lemens Bechinger, Chris Van den Broeck, and Heiner
exemplified in detail for periodic nonequilibrium perturba- Linke. This work has been supported by the DFG under
tions (4) in Eq. (1) and the potential landscape from Fig. 1. Sachbeihilfe Grant Nos. HA1517/13-4, SFB 613, and the
The main analytical result is the Laplace-transformed averGraduiertenkolleg Grant No. GRK283.
age traveling distance E¢R2) from which the particle cur-
rent is obtainedafter an inverse Laplace transformatiat- APPENDIX: CONTINUOUS UNI-DIRECTIONAL
cording to (10). The occurrence of ANM is found to be RANDOM WALK
robust against various modifications of the potential land- ) ) )
scape and the nonequilibrium noise source. In general, it is _Interpreting the motion of the particle for the moment
simultaneously supported by completely different physicaiVithin a coarse grained approximation yft) by multiples
mechanisms that dominate in the distinct driving regimef L @s @ hopping process characterized by some waiting
These different mechanisms have in common that they aliransform Ay(s,F,,) of the average traveling distance
exploit the existence of “patrticle traps,” which is, in fact, the Ay(t,F,,) according to the usual renewal thedi§1,62:
characteristic feature of the potential landscapes considerethe probabilityP(n,t) to maken steps within the time is
herein. Put differentlyany potential landscape that provides given by the sum over the probabilities of all possible real-
traps with increasing stickiness as the external forcézations of the random walk, namely, a first step at time
strengths increase is expected to exhibit ANM, at least fot; (0<t,<t), a second step at timg+t, (t;+t,<t and
adiabatically slow nonequilibrium perturbatiofg,4,5. A t,>0),etc., and the (+1)" step at timet;+--- +t,,
well-known system of this kind is the two-dimensional gel later thant [62],

t t—ty t—ty—-—th_q ®
P(n,t)=f0dt1 h(ty) fo dtai(ty) - - f dtni(ty) t dtn 1 ¢(tnea). (A1)

0 t—ty— o —ty

OnceP(n,t) is known,Ay(t,F,,) readily follows according After a Laplace transformation, one obtains the well-known
to result[61,62

- 3 L
Ay(t,Ftot)angO n P(n,t). (A2) Ay(s,Fo) =5 % (A3)
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where(s) is the Laplace transform af(t). Ys (t)=06(t— 7 IK), (A5b)
However, this discrete approximation clearly does not
capture the continuous motion of the particle properly. Nev- irapoL (1) =po(t— 7 /K)

ertheless, we can describe all periodsthat the particle
passesompletelyduring the timet by such a hopping pro- F(1=p)O(t= 7 [K) Presdt = 7 IK),
cess, since the dynamical details within these periods are of (A5c)

no interestthey are fully incorporated in the waiting time . L .
[they y b g wheres{t) is the distribution of escape times out of a trap.

distribution ¢(t)]. Only within the “final period” (which : . .
- : ; As in Eq. (21), Eqg. (A5a) represents the traveling times
will not be passed completelyhe continuous motion of thedthrough any (full) period L. The distributions(ASb) and

particle has to be taken into account explicitly. To this end, ) . o :
we approximate that continuous motion by a hopping pro—(A5C) describe the motion within a period, where E45c)

cess with step sizéL :=L/K, whereK e N (K large is the accounts for the single step that passes by the trap contained

: in this period. Note that both these distributioi#sb) and
number of steps to cover the peribccompletely. The coor- In . ;
dinatey is thus discretized according to (A5c) depend on the step sizk., sincer, /K=6L/v,. The
Laplace transforms of the distributioa5) read

y=nL+kéL, (A4) ~ . ~
p(s)=e >Hp+(1-p)iesdS)], (A6a)

wheren e Ny is the number of complete periods contained in 3
y andk=0,1, ... K—1 represents the position within the Y5 (s)=e SL/K (A6b)
periodn+ 1. Finally, afterAy(s,F,) for this coarse grained _ ~
approximation has been calculated, we perform the Init Yrap s (8) =LK (s), (ABC)
— (implying 6L—0) to regain a genuine continuous mo- .
tion. with ¢.s{S) denoting the Laplace transform gf(t).

Due to this approach, we can still apply renewal theoretic In order to calculate the average traveling distance
methods. The particle motion is now characterized by théd¥(t.,Fw) Via its Laplace-transformed counterpart

following three waiting time distributionfcf. Eq. (21)] AY(s,Fy), We now consider the probabilit(n,k,t) to
cover n periodsL completely and to additionally makie
Y(t)=ps(t—7)+(1—p)O(t— 1) hosdt— 1), steps in the “final period’h+ 1 during the total time. Simi-

(A5a) larly as in Eq.(Al), it is given by

t t—tqg t—ty— - —th_q
P(n,k,t)=fodtlt/f(t1)fo dtzt//(tz)“-fo dtah(tn) POKt—t;— - —tp). (A7)
In comparison to Eq(A1), the last integral has been replaced by the probat#{@®k,t—t,;— - - - —t,) to advance b steps
of size L during the remaining timé—t,;— ... —t,. This probability is given by
J; dt1¢trap,5L(t1) for k=0,
P(O,k,t): t t—ty t—tg— - —te_q 0
J'Odtl‘/’trap,ﬁL(tl) fo dtyifs (to) - - fo dty ¢5L(tk)f : dty 195 (tgrq)  for k>0.
-

(A8)

Here, we have exploited the possibility to freely choose the The traveling distancay(t,F,.) is obtained by averag-
partition of the corridor into periods of length as discussed ing [cf. (A2)],

in Sec. Il D. We take a period to start just before a trap and

to end just before the next trap which is consistent with the

initial “basic distance” captured by the final transformation » K-1

(24), see also Fig. 3. Consequently, we have to take into Ay(t,Fo)=> >, (nL+kSL)P(nkt). (A9)
account the trap in thérst small step k=1) by using the n=0 k=0

distribution (A5c). Then, the right-hand sides of EGA8)

follow according to the same line of reasoning that has led us

to Eq. (Al). Using the Laplace transform of the probabil®fn,k,t),

066132-11



RALF EICHHORN, PETER REIMANN, AND PETER HAGGI PHYSICAL REVIEW E66, 066132 (2002

1 -
g[’p(s)]n[l_ PrapsL(S)] for k=0

P(nks)=4 | (A10)
S[ ) rrap ([P (9)] T [1=Ps(9)]  for k>0,

and taking into account Eq§A6b) and (A6c), a somewhat by the theorem of residues, whexemust be chosen such
tedious but straightforward calculation yields for the that all poles of the integrand in the complex planesa@ire
Laplace-transformed average traveling distarjcé Eq. located to the left of the integration path. With the definition

(A3)], N:=[t/ 7 ]ie (Where[ - ]; denotes the largest integer smaller
_ than the enclosed expressjpthe first sum terminates &
~ L ¥(s) e’—1 +1, the second at/, and we obtain
Ay(s,Fio=¢g = - (ALY
S 1-4(s) K(et™"~1)
. . . . 1-pV*tt
Taking the continuous-space linkt— o, we obtain[63] our AY(t,Fio)=— 1+ ——— +pMN Yt/ — N).
final result[cf. Eq. (22)] 1-p
(A16)
~ L %(s) ens—1
AV(s,Fio) =5 —= : A2 -
1—y¢(s) 7S Finally, inserting N'=[t/ 7 ]ine=[Fott/ 7L line [cf. EqQ. (16)]

and taking into account the transformatiq@4) (for t
As already mentioned in Sec. Il D, the inverse Laplace>3|_/zvy), we end up with the result

transformation of Eq(A12) has to be performed, in general,
numerically. However, for the specific for20) of the es-

cape time distribution/.{t), an analytical backtransforma- Avit =L E+ 1—[p(Fgp) J[Frot/ (7 1) = 1/2lint

tion is feasible in the limitr,sc— >, which corresponds to the Y(t,Fiod) = 2 1—p(Fyp)

fast-driving regime discussed in Sec. Il A. For this limit, the FtlnL)— 1721

Laplace transforng23) of the waiting time distribution(t) FIP(Fiop ] ” int

simplifies to ( Fod 3) ]
~ —=| mod1;, (A17)
P(s)=pe . (A13) nL 2

Observing  that (s)/[1~ ¢(s)]=2n:1[¢(s)]”, the where mod is the usual modulo operator. The first two terms
Laplace-transformed average traveling distaité@2) for  ohresent the average number of periddsthat the particle
this case reads can cover completely within the timeincluding the “basic
1 distance” 3./2[see also Eq.13)]. The last term accounts for
> ple st (A14)  the situation where the particle passes throlgh[t/7
LS n=1 —3/2];: periods without being trapped, afterwards it also
avoids the next tragwith absolute probabilitypN*?') and
proceeds further for the remaining tinte- (3/2+N)L/v,, .
1 This latter possibility has been neglected in the derivation of
ds—e "L (es—1) our moderately fast-driving resull3) in Sec. Ill A. Conse-
2 quently, Eqs(13) and (A17) are identical only ift/ 7, —3/2
e N. Otherwise, Eqs(13) and(A17) constitute two different
possibilities for a “smooth interpolation,” where obviously
Eq. (A17) is the physically correct one. However, for all the
cases considered in this pap€igs. 2, 6, and ), the differ-
—(t=n7)O(t—n7)} (A15)  ences between Eq&l3) and (A17) are extremely small.

TLS_

AY(s,Fo) =5

The inverse Laplace transform is

+io+\

L < p"
Ay(t,Fo)= 5= 2

2i n=1 TLJ —iw+\

) %{[t—(n—l)a]@[t—(n—1>TL]
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