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Paradoxical motion of a single Brownian particle: Absolute negative mobility
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We consider a single, classical Brownian particle in a spatially symmetric periodic system far from thermal
equilibrium, which can be readily realized experimentally. Upon application of an external static forceF, the
average particle velocity is negative forF.0 and positive forF,0 ~absolute negative mobility!. The various
physical mechanisms responsible for such a paradoxical effect are identified, leading to analytical approxima-
tions that are in good agreement with numerical simulations.
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I. INTRODUCTION

When a system at rest is perturbed by a static force,
expect that it responds by moving into the direction of th
force. The rather surprising opposite behavior in the form
a permanent average motion against a~not too large! static
force of any direction is calledabsolute negative mobility
~ANM !. If the unperturbed system is at thermal equilibriu
then ANM is impossible since it could be exploited to co
struct aperpetuum mobileof the second kind. Familiar to
everyone, but rather complex nonequilibrium systems tha
exhibit ANM are donkeys@1#.

Much simpler and better controlled nonequilibrium sy
tems in which ANM has been experimentally and theore
cally studied under the label ofabsolute negative conduc
tance or resistanceare different kinds of semiconducto
devices@2–12#, photovoltaic effects in ruby crystals@13–
16#, tunnel junctions between superconductors with uneq
energy gaps@17–19#, and a simplified theoretical model fo
certain ionized gas mixtures@20–22#. In all these cases, th
physical roots for the appearance of ANM are genuinequan-
tum mechanicaleffects that do not survive in the limit to
wards a classical description.

A second class of nonequilibrium systems exhibiti
ANM consists of various theoretical models ofinteracting
Brownian particles@23–27#. In this case, the underlying
physical mechanisms are of purely classical character,
now collective effectsare an indispensable ingredient for th
manifestation of ANM. While in most of these studies, t
main focus is on systems with a large number of interact
particles, a toy model that requires as few as three parti
has been put forward in Ref.@1#. Yet, a further reduction to
one single particle exhibiting ANM was commonly assum
to be impossible among those practitioners.

With our present paper we continue and provide the
tails of our brief account@28# on the existence of ANM in
purely classical, single-particle models that can be rea
realized experimentally. An independent, closely related,
complementary investigation has been recently publishe
Ref. @29#. While the effect of ANM is the same, the propos
models therein are completely different from ours and m
not be so straightforward to realize in an experiment.
1063-651X/2002/66~6!/066132~14!/$20.00 66 0661
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The common denominator of the different models that
will treat in the present work is their spatial periodicity an
inversion symmetry. Furthermore, upon application of an
ternal static ‘‘load’’ forceF, these models respond with a
average particle current that always runs into the direct
oppositeto that of F ~providedF is not too large in modu-
lus!. Especially, no average current arises whenF50 due to
the spatial symmetry. In other words, the current-load cu
exhibits a passage through the origin with a negative slop
its most prominent feature, which, in fact, constitutes t
defining property of ANM.

In contrast to ANM, the so-called ratchet effect@30–34# is
characterized by an average particle current that is non
for F50 and does not change its direction within an ent
neighborhood ofF50. This effect thus inevitably involves
some kind of asymmetry~for F50). Moreover, the respons
of a ratchet system to an applied load forceF results usually
in a change of the current in accordance with the sign of t
force, i.e. the current-load curve passes throughF50 not
only with a finite offset but also with a positive slope. Th
latter property, in fact, holds true for all existing ratchet sy
tems we are presently aware of@33#. There is in principle no
reason, however, that this has to be always so, and cou
examples can actually be constructed by straightforw
asymmetric modifications of our present models.

Put differently, the salient difference between the ratc
effect and ANM is as follows: In an equilibrium system, th
second law of thermodynamics forces the current-load cu
to pass through the origin with a nonnegative slope. In
ratchet system, the main nonequilibrium effect is a verti
shift of that curve, while ANM exploits the disequilibrium t
turn the slope negative without a concomitant offset.

Also note that ANM is distinct from so-calleddifferential
negative mobility~or resistance! @35–39# which is typified
by a negative slope of the current-load curveaway from the
origin F50. It characterizes a current that is oriented in t
direction of the bias but decreases with increasingF. In con-
trast to ANM or the ratchet effect, differential negative m
bility can also occur in equilibrium systems if subjected to
external static bias@37#.

The present paper is organized as follows: In Sec. II,
introduce our model and the basic quantity of intere
©2002 The American Physical Society32-1
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namely, the average particle current. Additionally, a form
definition of ANM is given. Section III is devoted to a de
tailed analysis of the physical mechanisms that are resp
sible for the occurrence of ANM in our model under period
nonequilibrium perturbations. Based on an intuitive und
standing of these mechanisms at work, we develop a sim
theory that is in good agreement with numerical simulatio
In Sec. IV, various generalizations of the original model a
introduced and discussed. Finally, the summary and dis
sion of our findings are presented in Sec. V.

II. MODEL

We consider a Brownian particle in a two-dimension
hard-wall ‘‘corridor’’ with obstacles that are arrangedperi-
odically and symmetrically under spatial inversion, render-
ing a straightforward passing of the ‘‘corridor’’ impossibl
as in Fig. 1. The particle is subjected to both random ther
fluctuations and externally applied forces acting along
‘‘corridor.’’ Taking the ‘‘corridor axis’’ as they direction of
our coordinate system, the dynamical behavior of the part
is modeled by the coupled two-dimensional overdamp
Langevin equation,

FIG. 1. Hard-wall potentialV(x,y), defined as zero in the white
regions and infinity in the black regions. The particle moves ins
this corridor of widthB, the white regions outside are of no intere
The symmetrically and periodically~with period L) arranged ob-
stacles are characterized by the parametersb and u. Note thatb
.B/2.
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h ẋ~ t !52]xV„x~ t !,y~ t !…1jx~ t !, ~1a!

h ẏ~ t !52]yV„x~ t !,y~ t !…1zy~ t !1F. ~1b!

In comparison to the usual Newtonian equation, the ine
termsmẍ(t) andmÿ(t) are omitted, since in typical experi
mental systems these inertial effects are negligibly small
Eq. ~1!, h denotes the viscous friction coefficient,V(x,y) is
the hard-wall potential from Fig. 1, andF is a static ‘‘tilting
force.’’ Further, the thermal fluctuations are modeled by u
biased Gaussian white noisejx(t) with correlations

^jx~ t !jx~s!&52hkBT d~ t2s!, ~2!

wherekB denotes Boltzmann’s constant,T the temperature,
and ^•& indicates the ensemble average over many indep
dent realizations in Eq.~1!.

Aiming at nonequilibrium effects,zy(t) cannot be simply
a second thermal white noise, but rather must include ap
priate time-dependent forces~with zero mean! to drive the
system out of thermal equilibrium. From a theoretical vie
point, the simplest such source of disequilibrium is asym-
metricdichotomous noise that switches randomly at a ratg
between two states6A. The respective distribution of so
journ times then reads

r~t!5ge2gt @dichotomous noisezy~ t !#. ~3!

Another choice forzy(t) ~which we will not pursue in detail
in this paper! would be, e.g., colored Gaussian noise~which
does not satisfy a generalized fluctuation-dissipation theo
of the second kind@40#!. While conceptually appealing du
to their simplicity, such models forzy(t) without a thermal
noise component are hard to realize experimentally.

One possible experimental realization we have in mind
based on the techniques used in Refs.@41–55#. Micrometer-
sized beads in a dilute colloidal suspension at room temp
ture serve as practically noninteracting Brownian particl
The potential landscape of Fig. 1~or one of the general-
izations introduced in Sec. IV! can be built by means
of light forces @43,47,52–54,56,57#, electric fields
@42,43,45,46,49,55# or morphologically via lithographic
etching methods@41,51#. The external forces can be realize
e.g., by electric@41,51# or magnetic@50# fields or by making
use of gravitation. Indeed, an experimental realization of
model along these lines is currently being constructed
Bechinger and co-workers.

A realistic choice for the noise sourcezy(t) in such an
experiment is composed of a symmetric periodic forcef (t)
that switches between6A with period 2t and, in addition,
another thermal white noisej th(t) like jx(t) in Eq. ~2! but
statistically independent, i.e.,^jx(t)j th(s)&50 for all t,s,

zy~ t !5j th~ t !1 f ~ t !. ~4!

Our central observable is the mean particle curr
through the corridor

^ ẏ&ªK lim
t→`

y~ t !2y~ t0!

t2t0
L . ~5!

e

2-2
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Due to the long-time limitt→`, the right-hand side of Eq
~5! becomes independent of the initial conditionst0 and
y(t0). Moreover, due to self-averaging~or ergodicity! rea-
sons, the ensemble average may be omitted as well@33#, i.e.,
we may recast Eq.~5! as

^ ẏ&5 lim
t→`

y~ t !

t
. ~6!

The current-load characteristics~or load curve! that dis-
plays the current~5! as a function of the static loadF ~cf.
Fig. 2! exhibits an odd symmetry with respect toF due to the
y symmetry of the potential landscape in Fig. 1 and of
nonequilibrium drivingzy(t): ^ ẏ&→2^ ẏ& for F→2F. In
particular, we have

^ ẏ&50 for F50. ~7!

ANM is characterized by a current~5! that runs~at least for
sufficiently smallF) oppositeto F, independent of whetherF
is positive or negative. Formally, ANM is thus defined as

d^ ẏ&
dF

U
F50

,0, ~8!

together with property~7!. For large values of the biasF, the
current~5! will in general again adopt the direction ofF; this
regime, however, is not at the focus of our present work

FIG. 2. Current-load characteristics~or load curve! for Eq. ~1!
with the potentialV(x,y) of Fig. 1, the periodic nonequilibrium
noise source~4!, and parameter valuesL54 mm, B53 mm, b
51.2mm, u570°, T5293 K, A50.2 pN, t51 s @henceA1 mm
'50kBT and t'5tL for F tot50.2 pN, wheretL5hL/F tot is the
mean time the particle needs to cover a periodL by free drift; see
Eq. ~16!#. Dots with error bars represent numerical simulations
Eq. ~1!. Solid lines represent analytic approximation~10! with Eqs.
~12! and ~13!. The Brownian particle is assumed as spherical w
radius r 50.5mm and as subjected to Stokes frictionh56pnr ,
wheren is the viscosity of water. The finite particle radiusr has
been approximately accounted for by replacingB by B22r in Eq.
~12!. The choice of the above parameter values has been made
the experimental realization described above Eq.~4! in mind.
06613
e

In an equilibrium system~1!, the current~5! always runs
into the direction of the static forceF, because ANM is for-
bidden at thermal equilibrium. If this was not so, we read
could construct aperpetuum mobileof the second kind: Un-
der a periodically switching external load6F, the particle
would ~on average! cyclically move back and forth, thereb
performing useful workagainst this bias. Consequently
d^ ẏ&/dFuF50.0 in thermal equilibrium. For continuity rea
sons,d^ ẏ&/dFuF50 still remains positive for small deviation
from equilibrium, implying that model~1! cannot exhibit
ANM close to thermal equilibrium. Turning to situations fa
away from thermal equilibrium, however, permanent moti
opposite to the external force is no longer ruled outa priori.
In fact, ANM occurs@28# in our system~1! for sufficiently
strong nonequilibrium driving~4!, as depicted with Fig. 2.
The physical origin for the occurrence of ANM in Eq.~1!, as
well as a theoretical description of this phenomenon, will
the subject of the following sections.

III. ANM FOR PERIODIC DRIVING

Out of the various possibilities for the nonequilibriu
noise sourcezy(t) mentioned in the preceding section, let
first focus on the case that may be understood most rea
the combination of thermal fluctuations with determinis
periodic driving, as given in Eq.~4!.

We can adopt the following simplified picture of ou
model ~1!. The particle moves in the potential landscape
Fig. 1 under the influence of thermal fluctuations and,
addition, is subjected to thetotal external force

F totªF6A, ~9!

acting in they direction along the corridor. The total force~9!
switches periodically betweenF1A and F2A with period
2t and average valueF.

In each of the two statesF6A of Eq. ~9! with sojourn
time t, the particle travels on average a distanceDy(t,F tot)
along the corridor. The net particle current~5! thus follows
as

^ ẏ&5
Dy~t,A1F !2Dy~t,A2F !

2t
. ~10!

For later convenience, we have written2Dy(t,A2F) in-
stead of1Dy(t,F2A) for the second term in the numera
tor, thereby exploiting the oddy symmetry of our system~1!.
Due to this symmetry, we furthermore can restrict oursel
without loss of generality toA.0 andF>0 in the follow-
ing.

As already mentioned at the end of the preceding sect
ANM cannot occur in Eq.~1! close to thermal equilibrium,
i.e., for smallA or smallt. This is a consequence of linea
response theory for stochastic processes at high frequ
@58#. However, simply makingA large is not sufficient either
to create ANM. If A,F, the total force~9! points perma-
nently into the direction ofF, and the average particle cu
rent ~5! thus adopts the same orientation as the static lo
even if we are far away from thermal equilibrium. For ANM
we thus have to focus at least on the regimeA.F. Then, the
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FIG. 3. ~a! Typical traveling routes of the particle forF tot.0 together with their probabilities (qª12p). ~b! Traveling routes for a large
positive forceF tot5F1A ~left! and a small negative forceF tot5F2A ~right!. For the large force, the traveling speedvy is large and the
particle has only a little time to thermally diffuse along thex direction, as indicated by a narrow~approximately! Gaussian profile. The
particle thus typically ends up by being trapped, and the probabilityp for avoiding a trap is very small. For the small force, the drift veloc
vy is smaller. Consequently, the available time for diffusive ‘‘broadening’’ is larger~broader Gaussian profile! resulting in a noticeable
probability p of avoiding the trap. The respective values ofp are indicated by the filled parts of the Gaussian profiles. The dashed pat
not contribute to ANM. See also the main text.~c! Typical traveling routes for fast nonequilibrium driving with sojourn timest just smaller
than 3hL/2(A2uFu) @see also Eq.~14!#. Before the particle can cover the ‘‘basic distance’’ 3L/2 but after it has traveled at least one peri
L, the external forceF tot switches fromF2A,0 to F1A.0, indicated by the turning point of the particle route. The solid path show
immediate trapping after reversal of the force is at the origin of ANM. The dashed path yields no net motion. Both routes occur
approximate probability of 1/2.
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two statesF6A of the total force~9! are of different sign,
and the current~10! constitutes the net result from the diffe
ent average distances the particle travels in the opposite
rections.

The above conditions imposed onA and F imply that A
1F.A2F. In view of Eq. ~10!, we can thus infer that a
current~5! opposite to the static forceF, and therefore ANM,
may emerge only if statistical paths dominate where
mean traveling distanceDy(t,F tot) is smaller for larger
forcesF tot .

A. Moderately fast driving

The system parameters in Fig. 2, in particular the cha
teristic time scalet of Eq. ~4!, are chosen such that th
nonequilibrium noise source operates in the regime of ra
high frequency 1/(2t), i.e., the particle can travel at most
few periodsL by free drift within the timet. The physical
mechanism leading to ANM for this ‘‘moderately fast’’ driv
ing can be understood as follows. Consider a particle be
located in one of the ‘‘corners’’ between the right ‘‘corrido
wall’’ and any of the adjacent obstacles@see Fig. 3~a!# at the
beginning of the time intervalt with constantF tot.0. Due
to this external force, a drift with velocity

vyªF tot /h ~11!

in the positivey direction is induced, additional to the diffu
sive motion stemming from the thermal environment. If t
ambient thermal noise is not too strong, and hence the d
06613
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sion proceeds not too fast, the particle in Fig. 3~a! first
closely follows the right ‘‘corridor wall,’’ not being hindered
by the neighboring obstacle to the left. It then hits the n
obstacle~at the right corridor wall! and ‘‘slides down on the
back’’ of that obstacle until it ‘‘falls off’’ to perform a ‘‘free
fall’’ in the positive y direction. Because the lateral extensio
of the obstaclesb exceeds half the corridor widthB/2, the
particle then hits with a high probabilityq, the next obstacle
on its way and ends up being trapped in the correspond
corner between that obstacle and the left corridor wall.
order to avoid this trap, the particle must thermally diffuse
least over a distanceb2(B2b)52b2B in the positivex
direction during its free fall in they direction. With increas-
ing total force~9!, ‘‘free traveling speed’’~11! increases, im-
plying that the available time and therefore the probabi
pª12q of such a diffusive displacement decreases, see
3~b!. Consequently, the particle travels on average ashorter
distance along they axis during the timet for larger forces
F tot . As discussed above, see below Eq.~10!, it is this very
mechanism that implies the occurrence of ANM.

In order to quantify these qualitative findings, we calc
late the average traveling distanceDy(t,F tot) for F tot.0;
the current~5! then follows according to Eq.~10!. To this
end, we start by approximating the above mentioned pr
ability p of avoiding a trap. After drifting for a timet along
they axis with speedvy from Eq.~11!, the thermal diffusion
along thex axis is approximately captured~for not too large
t) by a Gaussian distribution with variance 2Dt. For a par-
ticle that closely passes by the leftmost edge of an obst
2-4
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attached to the right corridor wall~for F tot.0), the probabil-
ity p is determined by this part of the Gaussian distribut
which lies beyond the rightmost edge of the next ‘‘trappin
obstacle@see Fig. 3~b!#. By use of Einstein’s relationD
5kBT/h and observing that neighboring obstacles have
overlapb2(B2b)52b2B ~in x direction! and an approxi-
mate distanceL/2 ~in y direction!, we obtain

p~F tot!5
1

2
erfcS 2b2B

A2LkBT
AF totD for F tot.0, ~12!

where erfc(x)ª2p21/2*x
`e2u2

du is the complementary er
ror function. With probabilityp, a particle thus covers in
addition to the ‘‘basic distance’’ of approximately 3L/2 from
one of the~right! corners up to the first ‘‘trapping’’ obstacl
another periodL @see Fig. 3~a!#. It then avoids the secon
trap on its way with approximately the same~relative! prob-
ability p as in Eq.~12!, i.e., a second periodL is covered
with ~absolute! probability p2, etc. @see Fig. 3~a!#. If the
maximal traveling distance~avoiding all traps! is of the form
(3/21N)L with NPN, the average traveling distanc
Dy(t,F tot) thus follows asL@3/21p1p21•••1pN#. Ne-
glecting the fact that the free traveling speedvy is slightly
reduced when the particle ‘‘slides down on the back’’ of
obstacle, we obtain (3/21N)L5vyt; hence, in virtue of Eq.
~11!, we find

Dy~t,F tot!5LH 1

2
1

12@p~F tot!#
F tott/(h L)21/2

12p~F tot!
J . ~13!

This expression can also be used as a decent interpol
even if vyt does not precisely equal (3/21N)L.

With the average traveling distance~13!, current ~5! is
finally obtained from Eq.~10!. As can be inferred from Fig
2, the agreement of this analytic prediction with the simu
tions is remarkably good despite the various approximati
underlying our theoretical estimates in Eqs.~12! and ~13!:

~i! The thermal noisej th(t) from Eq.~4! which couples to
the y component of Eq.~1!, has been neglected, thereby ta
itly assuming that corresponding corrections to Eqs.~12! and
~13! are small.

~ii ! In order to obtain Eq.~12!, we have assumed that th
probability distribution resulting from the lateral diffusion o
the particle during its free fall possesses a Gaussian sh
and we have thus neglected effects of the corridor walls

~iii ! The drift distance in they direction between subse
quent obstacles has been supposed to equalL/2, which is
justified as long asu,90° is not too small, see in Fig. 1. I
fact, for very smallu, neighboring obstacles have an overl
in the y direction. Then the probabilityp for avoiding a trap
becomes exactly zero, independent ofF tot , implying that the
crucial mechanism for ANM cannot occur at all. Foru
590°, ANM is found to disappear as well in numeric
simulations of Eq.~1!.

~iv! We have used the assumption that the particle fi
closely follows the~right! corridor wall up to the next ob-
stacle attached to this wall, see Fig. 3~a!. This approximation
becomes doubtful forkBT/F tot.(B2b)2/L because the par
06613
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ticle can then get trapped with considerable probability
ready by the very first obstacle~to the left! due to lateral
diffusion away from the corridor wall.

While these conditions~i!–~iv! basically refer to the geo
metrical properties of the corridor, the derivation of our th
oretical results, in particular the result in Eq.~13!, is more-
over based on further assumptions that involve the time s
t of the nonequilibrium force~4!:

~v! The expression~13! is only valid if the particle covers
at least the ‘‘basic distance’’ 3L/2 during the timet, i.e., if
vyt5F tott/h.3L/2.

~vi! We have completely neglected the possibility tha
trapped particle may escape from its trap due to the amb
thermal noise. This is only justified as long ast is much
smaller than the mean escape timetesc(F tot) out of a trap. In
passing we note that under such an assumption the par
mostly lingers in one of the ‘‘sticky corners’’ before a switc
of F tot occurs; this is consistent with our approach to ta
these corners as initial positions for the motion of the parti
within a time intervalt.

The latter two requirements are fulfilled for both forc
F tot5F6A and the sojourn timet contributing in Eq.~10! if
they hold for thesmaller force A2F, i.e., if

3hL

2~A2F !
,t!tesc~A2F !, ~14!

whereA.0 andF>0 have been tacitly assumed. This rel
tion defines our ‘‘moderately fast’’ driving regime in quant
tative terms. For intermediatet'tescand larget@tescANM
subsists, whereas for smaller driving intervalst ANM even-
tually disappears. These latter driving regimes will be d
cussed in detail in the following sections.

B. Fast driving: Bursting and disappearance of ANM

For shorter half periodst,3hL/2(A2F), ANM is found
to vanish in numerical simulations of Eq.~1!. Before this
disappearance occurs, we observe—much to our o
surprise—anenhancementof ANM, see in Fig. 4. This re-
markable feature is rooted in a completely different mec
nism, illustrated in Fig. 3~c!: Suppose, we are just beyond th
driving-regime characterized in Eq.~14!, i.e., the sojourn
time t with constantF tot5F2A ~the small force! is too short
to cover the ‘‘basic distance’’ 3L/2 with the ‘‘free traveling
speed’’~11!, but still sufficiently large to advance at least b
one periodL. Then, the external forcing switches to the sta
F tot5F1A ~the large force! during the free fall of the par-
ticle towards the first trap, see Fig. 3~c!. Drifting now into
the opposite direction, the particle either gets trapped by
obstacle it just has passed by, or else, it avoids this tra
finally end up~with high probability! in its original starting
corner. In the latter case, no net motion has occurr
whereas in the former case a periodL has been covered into
the directionoppositeto the static forceF, i.e., we again find
ANM. The respective probability for getting trapped is clo
to 1/2, and therefore much larger than the typical probabi
p for avoiding a trap in the moderately fast-driving mech
2-5
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nism as detailed above. Consequently, also the resu
ANM is more pronounced, thereby explaining the observ
bursting of ANM in Fig. 4.

C. Slow driving

The slow-driving regime is characterized by sojourn tim
t of the nonequilibrium source~4!, which are much longer
than the mean escape time out of a trap for the forces c
tributing in Eq. ~10!. In view of tesc(A1F).tesc(A2F),
see Eq.~19! below, this implies that

t@tesc~A1F !. ~15!

To determine the average traveling distanceDy(t,F tot) for
such larget values, we start by calculating the time to a
vance by one periodL along they axis for F tot.0: With
probability p approximately given in Eq.~12!, the particle
avoids the trap within such a period; its traveling time
cover the periodL is then approximately given by

tLª
L

vy
5

Lh

F tot
, ~16!

wherein we have exploited Eq.~11! for the second equality
With probability 12p, the particle gets trapped and has
reescape from the trap in order to cover the periodL; this in
turn yields an increase of the traveling time bytesc on the
average. The average time to advance by one periodL is
thereforep L/vy1@12p#@L/vy1tesc(F tot)#. With Eq. ~16!,
the resulting average traveling distance during the~large!
time t@tesc(F tot) then takes the form

Dy~t,F tot!5
t L

~Lh/F tot!1@12p~F tot!#tesc~F tot!
. ~17!

FIG. 4. Enhancement of ANM for fast driving. Shown as dots
the slope of the current-load curve atF50 as it depends on the
characteristic time scalet of the nonequilibrium noise source~4!. It
is obtained from numerical simulations of model~1! with the po-
tential of Fig. 1 and periodic driving~4!. The dimensionful param-
eter values are chosen as in Fig. 2. The lines interconnecting
dots serve as a guide to the eye. For even largert ~not shown!, a
very small, negative asymptotic value is approached from be
~cf. Fig. 5!.
06613
g
d

s

n-

For smallF tot.0, the effect of the traps is small and th
first term in the denominator of Eq.~17! dominates. Hence
Dy increasesin the expected linear response manner w
increasingF tot . As F tot becomes larger, 12p approaches 1,
cf. Eq. ~12!, and the escape timetesc increases very fast, cf
Eq. ~19! below. This increasing ‘‘stickiness’’ or ‘‘depth’’ of
the traps with increasingF tot @2,4,5,35–38,59,60# implies the
existence of a maximum and a subsequentdecayof Dy. As a
consequence we recover once again ANM in Eq.~10! for
sufficiently largeA, based on the mechanism that the parti
travels on averageshorterdistances forlarger applied forces
F tot . This prediction of ANM is confirmed by the numerica
simulations shown in Fig. 5. Moreover, the agreement of
simulations with Eq.~10! and Eqs.~17! and ~19! below is
satisfactory.

To approximate the mean escape timetesc, the two-
dimensional geometrical trap is reduced to a on
dimensional potential system according to the following p
cedure: Out of the entire corridor we consider only a sm
part consisting of one corner@i.e., a segment of the~left!
corridor wall with an obstacle attached to it#, and a particle
being trapped in this corner by the external forceF tot.0.
Neglecting the effect of the wall, the motion of the partic
decouples into a component parallel to the obstacle an
component perpendicular to it. We thus may consider o
the one-dimensional motion along the auxiliary coordin
X5x/sinu parallel to the obstacle, which is governed b
thermal fluctuations and by the external force compon
F totcosu. The corresponding one-dimensional Langev
equation reads

hẊ~ t !52F totcosu1jX~ t !, ~18!

where jX(t) represents the thermal Gaussian fluctuatio
with the properties specified in Eq.~2!. This dynamics cor-
rectly reproduces the equilibrium distribution as well as t
limiting case of zero temperatureT50. One can then ap

he

w

FIG. 5. Current-load characteristics for Eq.~1! with the potential
V(x,y) of Fig. 1, periodic driving~4!, and the same paramete
values as in Fig. 2 except fort525 s. Dots with error bars show
numerical simulations of Eq.~1!. Solid lines: analytic approxima-
tion ~10! with Eqs.~17! and ~19!.
2-6
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proximatetesc(F tot) by the mean first passage time fromX
50 to X5b/sinu with a reflecting boundary placed atX
50 @40# to obtain

tesc~F tot!5
b2h

kBT

ea2a21

a2sin2u
,

~19!
aªb Ftotcotu/kBT.

D. Driving with arbitrary period

The upshot of our present findings in this section is tw
fold. On the one hand, we showed that ANM occurs for bo
~moderately! fast driving and~asymptotically! slow driving
as characterized by~14! and ~15!. On the other hand, the
respective physical origins of ANM, being quantitative
captured by Eqs.~13! and ~17!, turned out to becompletely
different: In the fast-driving regime, transient, force
dependent ‘‘first-trapping events’’ after each jump ofF tot
provide the crucial mechanism for ANM, while in the slow
driving regime ‘‘reescape events’’ out of the traps are resp
sible for ANM. These escape events are negligible for f
driving, while for slow driving the transient behavior is irre
evant. In other words, the pivotal mechanism creating AN
in one case is completely negligible for the other case
vice versa. Thus, our model~1! ~with the potential of Fig. 1!
reveals the remarkable feature that two completely differe
‘‘complementary’’ physical mechanisms both support o
and the same phenomenon. On the basis of this phys
insight, we may naively expect that ANM will be present
a result of a ‘‘superposition’’ of both effects in the interm
diate driving regime as well. An educated guess is thus
add Eqs.~13! and ~17! and then evaluate Eq.~10!. These
predictions are nicely confirmed by Fig. 6.

For a more sophisticated and systematic analysis of g
eral driving, we start by extending our approach of Sec. II

FIG. 6. Current-load characteristics for Eq.~1! with the potential
V(x,y) of Fig. 1, periodic driving~4!, and the same paramete
values as in Fig. 2 except fort55 s. Dots with error bars: numeri
cal simulations of Eq.~1!. Solid lines show analytic approximatio
by adding up Eqs.~13! and ~17! and then evaluating Eq.~10!.
Dashed lines show analytic approximation based on Eqs.~21!, ~22!,
and ~24! as described in more detail in the main text.
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by taking into account the distributioncesc(t) of escape
times out of the traps. This distribution can be approxima
by

cesc~ t !5
1

tesc
e2t/tesc. ~20!

Similar in spirit as for the derivation of the mean time,
particle needs to cover a periodL @see above Eq.~17!#; we
now obtain a distributionc(t) of traveling times~for F tot
.0). When the trap within such a period is avoided, th
time is given bytL from Eq. ~16!. In contrast, when the
particle’s motion is held up by the trap, the traveling time
distributed according tocesc(t) with an additional ‘‘time off-
set’’ tL that represents the drift across this period. The
spective probabilitiesp and 12p are approximated by Eq
~12!. Therefore, we find

c~ t !5p d~ t2tL!1~12p! Q~ t2tL!cesc~ t2tL!, ~21!

whereQ(t) is the Heaviside function and the argumentF tot
has been omitted inp and tesc. This result is based on ou
assumption that the particle always closely passes by
leftmost edge of any obstacle attached to the right corri
wall whenF tot.0, as indicated in Fig. 3~a!. Furthermore, we
have again neglected the fact that the ‘‘free traveling spe
~11! slightly decreases when the particle ‘‘slides down on
back’’ of an obstacle. As an important consequence of th
two approximations, the traveling times across any perioL
are governed by one and the same probability distribut
c(t) given by Eq.~21!, independent of the particle’s pas
history ~Markov property!, and independent of the concre
partition of the ‘‘corridor’’ along they direction into seg-
ments of periodL.

In this way, the original two-dimensional system~1! ~with
the potential of Fig. 1! is approximately reduced to a one
dimensional, unidirectional random walk characterized
c(t), Eq. ~21!. Provided that the random walk advances
discrete steps~‘‘hopping process’’!, such problems have bee
analyzed in detail in the context of renewal theory@61,62#.
Extending these methods to our case of continuous mo
~see the Appendix!, we obtain for the Laplace transforme
displacement D ỹ(s,F tot)ª*0

`dt Dy(t,F tot)e
2ts the result

@63#

D ỹ~s,F tot!5
L

s

c̃~s!

12c̃~s!

etLs21

tLs
, ~22!

where

c̃~s!5e2stL
11pstesc

11stesc
~23!

is the Laplace transform ofc(t) from Eqs. ~20! and ~21!.
The expression~22! differs from standard renewal theor
@61,62# by the last factor on the right hand side, which a
counts for the fact that the particle proceeds continuou
rather than in discrete jumps of lengthL. After an inverse
Laplace transformation of Eq.~22!, a final transformation,
2-7
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Dy~t,F tot!°H vyt if t,3L/2vy,

Dy~t23L/2vy ,F tot!13L/2 if t>3L/2vy ,
~24!

is required, because the ‘‘basic distance’’ of approximat
3L/2, which the particle covers before encountering the fi
trap @see Fig. 3 and below Eq.~12! below#, is not yet taken
into account by Eq.~22!. The distinction between the tw
cases in Eq.~24! can be understood as follows: On its way
the first trap, the particle proceeds with approximately
free traveling speedvy from Eq. ~11!. It thus can cover the
‘‘basic distance’’ 3L/2 only if t is sufficiently large, namely
t>3L/2vy ; for smallert, the particle advances by the di
tancevyt. With the average traveling distances finally o
tained from Eq.~24!, current ~5! follows according to Eq.
~10!. A typical result is depicted in Fig. 6, being in goo
agreement with the numerical simulations. Moreover, it p
sents a notable improvement in comparison to the naive
guess discussed above.

While a numerical evaluation of the inverse Lapla
transformation is necessary in general, the special case
moderately fast and slow driving detailed in Secs. III A a
III C can be treated analytically. The basic assumption
fast driving that a trapped particle does not escape from
trap corresponds to the limittesc→` in Eq. ~20!; the prob-
ability for escaping from the trap within any finite timet is
then zero. In this limit, Eq.~23! simplifies top e2stL. Then,
the transformation to original time in Eq.~22! is straightfor-
ward, and, by additionally taking into account the final tran
formation ~24!, one recovers the previous~moderately! fast
driving result~13!, provided thatt/tL23/2PN ~for details,
see the Appendix!. Slow driving is characterized by~very!
large sojourn times with constant total force~9!, see Eq.~15!.
We expect that such an asymptotic long-time limit ofDy is
related to the small-s behavior ofD ỹ, for which we find

D ỹ~s,F tot!5
1

s2

L

tL1~12p!tesc
ass→0. ~25!

This guess is mathematically rigorously corroborated b
so-called Tauberian theorem@61,64#: If for constantsJ and
K,

h̃~s!5
J

s2
1

K

s
1O~1! as s→0 ~26!

for the Laplace transformh̃(s) of a functionh(t), then

h~t!5Jt1K1o~1! ast→`. ~27!

In Eq. ~26!, O(1) denotes a function ofs which is bounded
as s→0, whereaso(1) in Eq. ~27! denotes a function oft
tending to zero ast→`. In view of this theorem and expan
sion ~25!, we herewith recover our previous result~17!.

IV. GENERALIZATIONS

The model~1!, ~4! together with the potential landscap
of Fig. 1 is particularly suitable for elucidating the differe
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y
t

e

-
st

of

r
ts

-

a

basic physical mechanisms for ANM, and for quantifyin
them by simple theoretical concepts. Based on the so-ga
physical insight, we expect that ANM subsists for vario
generalizations and modifications of our original mod
thereby providing a whole collection of systems containi
noninteracting classical Brownian particles that are capa
of exhibiting ANM. In the following, we discuss several suc
generalizations, mainly with respect to the form of the p
tential landscape and/or the nonequilibrium perturbation.
stricting ourselves to a more qualitative level in these disc
sions, we shall present corresponding simulation results
Eq. ~1! in dimensionless units.

A. Dichotomous noise

As already alluded to in Sec. II, the simplest nonequil
rium modelzy(t) in Eq. ~1! is, from a theoretical viewpoint
a symmetric dichotomous noise that switches randomly
tween two states6A with a switching rateg. This case of a
nonequilibrium perturbation can be understood along
same qualitative arguments as already developed for peri
driving ~4! in the preceding section. We therefore conclu
that ANM occurs due to the same physical mechanisms
work @28#. However, the current~5! now results from the
contribution of all sojourn timest of the total forcing states
F tot5F6A according to the distributionr(t) from Eq. ~3!.
Consequently, the current formula~10! generalizes to

^ ẏ&5

E
0

`

dtr~t!@Dy~t,A1F !2Dy~t,A2F !#

2 E
0

`

dtr~t!t

, ~28!

wherein the average traveling distanceDy(t,F tot) has, in
general, to be calculated from Eqs.~22! and ~24!. To deter-
mine the mean escape timetesc required in Eq.~22!, one
must take into account that the dichotomous perturba
zy(t) does not contain a thermal noise part. The thermal b
thus only couples to thex component of model~1!. As a
consequence, the relevant effective temperature of the t
mal noisejX(t) in Eq. ~18! is given byTeff5T sin2u, result-
ing in a similar replacementT°T sin2u in Eq. ~19!.

Instead of the generally valid formula~22! for the travel-
ing distanceDy, we may, in some special cases of the d
tribution r(t), employ in Eq. ~28! the high- or low-
frequency results~13! or ~17!, respectively. If, e.g., large
sojournst dominate, then the average traveling distanceDy
may be approximated by Eq.~17!. As a consequence
Dy(t,F tot)/t becomes independent oft, and thus Eq.~28!
resimplifies to Eq.~10!. On the other hand, for large enoug
ratesg in Eq. ~3! ~small sojourn timest predominate!, the
average traveling distancesDy(t,F tot) @which noticeably
contribute in Eq.~28!#, may be well captured by the fas
driving result ~13!. A typical example of such a theoretica
estimate is depicted with Fig. 7, in good agreement with
numerical simulations.

It is quite clear that the above discussion and especi
Eq. ~28! with Eqs.~22! and~24! is not restricted to dichoto-
mous noisezy(t), but can be taken over without any chan
for arbitrary random as well as deterministic processeszy(t)
2-8
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PARADOXICAL MOTION OF A SINGLE BROWNIAN . . . PHYSICAL REVIEW E66, 066132 ~2002!
switching between6A according to some switching tim
distribution r(t). Returning finally to the special case of
dichotomous processzy(t) with Eq. ~3! one sees that the
numerator in Eq.~28! can be evaluated in terms of th
Laplace transformD ỹ(s,F tot). Taking into account the trans
formation~24!, one then obtains the explicit analytical resu

^ ẏ&5
F

h
2

L

2 Fe2(3/2)gtL
1

tL
1

12c̃1~g!egtL
1

12c̃1~g!

2
e2(3/2)gtL

2

tL
2

12c̃2~g!egtL
2

12c̃2~g!
G , ~29!

where the superscripts6 refer to the total forcesA6F. In
Eq. ~29!, tL

6 follows from Eq. ~16! and c̃6(g) from Eq.
~23!; the required probabilityp is obtained according to Eq
~12! and the modified mean escape timetescaccording to Eq.
~19!, with T°T sin2u.

B. Alternative potential landscapes

The most immediate geometrical modification of the p
tential from Fig. 1 is shown in Fig. 8, where the corridor
Fig. 1 is periodically continued along thex direction. Due to
obvious symmetry properties of the dynamics~1!, the current
~5! through this sieve remains exactly the same as in Fig
but the parallelization now admits to simultaneously tra
port many more particles. This ‘‘sieve’’ is reminiscent of th
two-dimensional arrays of obstacles theoretically conside
in Refs.@65–67#. We emphasize, however, that the physic
phenomena studied there are completely different from o
in particular ANM has not been addressed in those work

Yet alternative corridors are depicted in Fig. 9. They
do not possess obstacles, but provide traps with increa
stickiness as the bias forces~along they axis! increase. Con-
sequently, ANM is found in the slow-driving regime accor

FIG. 7. Current-load characteristics for Eq.~1! with the potential
V(x,y) of Fig. 1, dichotomous noise~3!, and dimensionless param
eter valuesL51, B51, b50.55, u545°, kBT50.1, h51, A
510, g50.4. Dots with error bars show numerical simulations
Eq. ~1!. The solid line shows analytic approximation~28! with Eqs.
~12! and ~13!.
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ing to the very same mechanism as discussed in Sec. I
Under ~moderately! fast nonequilibrium perturbations, how
ever, the potential landscapes from Fig. 9 behave quite
ferent from those of Figs. 1 and 8. In the corridor of Fi
9~a!, the particle gets trapped by ‘‘falling into a depressio
when ‘‘sliding down the ramps.’’ Due to the additional di
fusive motion, this trapping occurs with higher probabili

f

FIG. 8. Hard-wall potentialV(x,y) like in Fig. 1 but now peri-
odically continued along thex axis, resulting in a two-dimensiona
array of obstacles~‘‘sieve’’ !. For symmetry reasons, they compo-
nent of the Brownian motion~1! is completely independent o
whether the gray shaded ‘‘corridor’’ is endowed with perfectly r
flecting ‘‘sidewalls’’ ~Fig. 1! or not.

FIG. 9. Alternative geometries for hard-wall corridors with tra
that may represent the potentialV(x,y) in Eq. ~1! to yield ANM. In
each case, the particle is confined to the inner white regions w
V(x,y)[0; the black walls are defined to have infinite potenti
All these corridors are periodic~shown are two periods! and sym-
metric with respect to inversion of they axis. ~a! The vertical parts
of the corridor act as traps. The particle ‘‘falls into’’ them whe
‘‘sliding down the diagonal ramps.’’~b! The traps are represente
by the attached ‘‘fins’’ and are entered by lateral diffusion along
x direction while ‘‘falling’’ along the central ‘‘backbone.’’~c! The
particle is trapped in the ‘‘corners’’ with a probability that is pra
tically 1, independent of the strength of the forceF tot .
2-9
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RALF EICHHORN, PETER REIMANN, AND PETER HA¨ NGGI PHYSICAL REVIEW E66, 066132 ~2002!
the faster the ‘‘free fall’’ with velocityvy from Eq. ~11! pro-
ceeds, and thus the larger the total external force~9! is. As
discussed in Sec. III A, such a force-dependent trapp
probability of the particle implies ANM for~moderately! fast
driving. The potential landscape of Fig. 9~b!, does not sup-
port this mechanism. Here, faster drift along they direction
even decreasesthe trapping probability. Similarly, fast
driving ANM based on force-dependent trapping proces
cannot occur with Fig. 9~c!, since the trapping probability~in
the corners! is practically 1, independent of the external for
strength.

V. CONCLUSIONS

In this paper, we have demonstrated that a single, clas
Brownian particle in a periodic, symmetric, two-dimension
potential landscape can exhibit the paradoxical andprima
faciequite astonishing phenomenon of absolute negative
bility under suitable far from equilibrium conditions. Th
constitutes a substantial simplification and extension in co
parison to the physical systems hitherto known to exh
ANM, where either quantum mechanical effects@2–12#
or else particle-particle interactions@23–27# are clearly in-
dispensable for the emergence of ANM.

The qualitative and quantitative analysis of the ANM ph
nomenon in such classical, one-particle systems has b
exemplified in detail for periodic nonequilibrium perturb
tions ~4! in Eq. ~1! and the potential landscape from Fig.
The main analytical result is the Laplace-transformed av
age traveling distance Eq.~22! from which the particle cur-
rent is obtained~after an inverse Laplace transformation! ac-
cording to ~10!. The occurrence of ANM is found to b
robust against various modifications of the potential la
scape and the nonequilibrium noise source. In general,
simultaneously supported by completely different physi
mechanisms that dominate in the distinct driving regim
~fast vs slow! of the nonequilibrium perturbations@28#.
These different mechanisms have in common that they
exploit the existence of ‘‘particle traps,’’ which is, in fact, th
characteristic feature of the potential landscapes consid
herein. Put differently,any potential landscape that provide
traps with increasing stickiness as the external fo
strengths increase is expected to exhibit ANM, at least
adiabatically slow nonequilibrium perturbations@2,4,5#. A
well-known system of this kind is the two-dimensional g
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network consisting of randomly distributed traps which
used in trapping electrophoresis for DNA-protein complex
@59,60#.

Experimental implementations of the ANM effect can
realized with mechanical microsystems of the type discus
herein. Likewise, other potential realizations involve t
Brownian motion of colloidal particles in light-guided track
or the motion of atoms and molecules in appropriately
signed optical lattices@68#. Extensions of our basic ideas t
Coulomb blockade systems@69,70# represent promising ap
plications.

Apart from the phenomenon of absolute negative mobi
itself, other future challenges involve the problem of optim
zation of ANM as a function of the parameters that char
terize the nonequilibrium situation. Moreover, a single re
ization exhibits mobility fluctuations that depend on t
diffusive properties of the driven Brownian motion proces
The diffusion of the displacements present yet another ob
tive that is worthwhile to be addressed in the future in grea
detail.

ACKNOWLEDGMENTS

We gratefully acknowledge stimulating discussions w
Clemens Bechinger, Chris Van den Broeck, and Hei
Linke. This work has been supported by the DFG und
Sachbeihilfe Grant Nos. HA1517/13-4, SFB 613, and
Graduiertenkolleg Grant No. GRK283.

APPENDIX: CONTINUOUS UNI-DIRECTIONAL
RANDOM WALK

Interpreting the motion of the particle for the mome
within a coarse grained approximation ofy(t) by multiples
of L as a hopping process characterized by some wai
time distributionc(t), we can readily derive the Laplac
transform D ỹ(s,F tot) of the average traveling distanc
Dy(t,F tot) according to the usual renewal theory@61,62#:
The probabilityP(n,t) to maken steps within the timet is
given by the sum over the probabilities of all possible re
izations of the random walk, namely, a first step at tim
t1 (0,t1,t), a second step at timet11t2 (t11t2,t and
t2.0),etc., and the (n11)th step at timet11•••1tn11
later than t @62#,
P~n,t !5E
0

t

dt1 c~ t1!E
0

t2t1
dt2c~ t2!•••E

0

t2t12•••2tn21
dtnc~ tn!E

t2t12•••2tn

`

dtn11c~ tn11!. ~A1!
wn
OnceP(n,t) is known,Dy(t,F tot) readily follows according
to

Dy~ t,F tot!5L (
n50

`

n P~n,t !. ~A2!
After a Laplace transformation, one obtains the well-kno
result @61,62#

D ỹ~s,F tot!5
L

s

c̃~s!

12c̃~s!
, ~A3!
2-10
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PARADOXICAL MOTION OF A SINGLE BROWNIAN . . . PHYSICAL REVIEW E66, 066132 ~2002!
wherec̃(s) is the Laplace transform ofc(t).
However, this discrete approximation clearly does n

capture the continuous motion of the particle properly. N
ertheless, we can describe all periodsL that the particle
passescompletelyduring the timet by such a hopping pro
cess, since the dynamical details within these periods ar
no interest@they are fully incorporated in the waiting tim
distribution c(t)]. Only within the ‘‘final period’’ ~which
will not be passed completely! the continuous motion of the
particle has to be taken into account explicitly. To this e
we approximate that continuous motion by a hopping p
cess with step sizedLªL/K, whereKPN (K large! is the
number of steps to cover the periodL completely. The coor-
dinatey is thus discretized according to

y5nL1kdL, ~A4!

wherenPN0 is the number of complete periods contained
y and k50,1, . . . ,K21 represents the position within th
periodn11. Finally, afterD ỹ(s,F tot) for this coarse grained
approximation has been calculated, we perform the limiK
→` ~implying dL→0) to regain a genuine continuous m
tion.

Due to this approach, we can still apply renewal theore
methods. The particle motion is now characterized by
following three waiting time distributions@cf. Eq. ~21!#

c~ t !5p d~ t2tL!1~12p!Q~ t2tL!cesc~ t2tL!,
~A5a!
th

n
th
n

int

u

06613
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cdL~ t !5d~ t2tL /K !, ~A5b!

c trap,dL~ t !5pd~ t2tL /K !

1~12p!Q~ t2tL /K !cesc~ t2tL /K !,

~A5c!

wherecesc(t) is the distribution of escape times out of a tra
As in Eq. ~21!, Eq. ~A5a! represents the traveling time
through any~full ! period L. The distributions~A5b! and
~A5c! describe the motion within a period, where Eq.~A5c!
accounts for the single step that passes by the trap conta
in this period. Note that both these distributions~A5b! and
~A5c! depend on the step sizedL, sincetL /K5dL/vy . The
Laplace transforms of the distributions~A5! read

c̃~s!5e2stL@p1~12p!c̃esc~s!#, ~A6a!

c̃dL~s!5e2stL /K, ~A6b!

c̃ trap,dL~s!5estL(121/K)c̃~s!, ~A6c!

with c̃esc(s) denoting the Laplace transform ofcesc(t).
In order to calculate the average traveling distan

Dy(t,F tot) via its Laplace-transformed counterpa
D ỹ(s,F tot), we now consider the probabilityP(n,k,t) to
cover n periods L completely and to additionally makek
steps in the ‘‘final period’’n11 during the total timet. Simi-
larly as in Eq.~A1!, it is given by
P~n,k,t !5E
0

t

dt1c~ t1!E
0

t2t1
dt2c~ t2!•••E

0

t2t12•••2tn21
dtnc~ tn!P~0,k,t2t12•••2tn!. ~A7!

In comparison to Eq.~A1!, the last integral has been replaced by the probabilityP(0,k,t2t12•••2tn) to advance byk steps
of sizedL during the remaining timet2t12 . . . 2tn . This probability is given by

P~0,k,t !55 Et

`

dt1c trap,dL~ t1! for k50,

E
0

t

dt1c trap,dL~ t1!E
0

t2t1
dt2cdL~ t2!•••E

0

t2t12•••2tk21
dtk cdL~ tk!E

t2t12•••2tk

`

dtk11cdL~ tk11! for k.0.

~A8!
-
Here, we have exploited the possibility to freely choose
partition of the corridor into periods of lengthL, as discussed
in Sec. III D. We take a period to start just before a trap a
to end just before the next trap which is consistent with
initial ‘‘basic distance’’ captured by the final transformatio
~24!, see also Fig. 3. Consequently, we have to take
account the trap in thefirst small step (k51) by using the
distribution ~A5c!. Then, the right-hand sides of Eq.~A8!
follow according to the same line of reasoning that has led
to Eq. ~A1!.
e

d
e

o

s

The traveling distanceDy(t,F tot) is obtained by averag
ing @cf. ~A2!#,

Dy~ t,F tot!5 (
n50

`

(
k50

K21

~nL1kdL !P~n,k,t !. ~A9!

Using the Laplace transform of the probabilityP(n,k,t),
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P̃~n,k,s!5

1

s
@c̃~s!#n@12c̃ trap,dL~s!# for k50

~A10!
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H 1

s
@c̃~s!#nc̃ trap,dL~s!@c̃dL~s!#k21@12c̃dL~s!# for k.0,
e

ce
l,

-

e

h

n
er

ms

r

so

of

y
e

and taking into account Eqs.~A6b! and ~A6c!, a somewhat
tedious but straightforward calculation yields for th
Laplace-transformed average traveling distance@cf. Eq.
~A3!#,

D ỹ~s,F tot!5
L

s

c̃~s!

12c̃~s!

estL21

K~estL /K21!
. ~A11!

Taking the continuous-space limitK→`, we obtain@63# our
final result@cf. Eq. ~22!#

D ỹ~s,F tot!5
L

s

c̃~s!

12c̃~s!

etLs21

tLs
. ~A12!

As already mentioned in Sec. III D, the inverse Lapla
transformation of Eq.~A12! has to be performed, in genera
numerically. However, for the specific form~20! of the es-
cape time distributioncesc(t), an analytical backtransforma
tion is feasible in the limittesc→`, which corresponds to the
fast-driving regime discussed in Sec. III A. For this limit, th
Laplace transform~23! of the waiting time distributionc(t)
simplifies to

c̃~s!5pe2stL. ~A13!

Observing that c̃(s)/@12c̃(s)#5(n51
` @c̃(s)#n, the

Laplace-transformed average traveling distance~A12! for
this case reads

D ỹ~s,F tot!5
L

s

etLs21

tLs (
n51

`

pne2nstL. ~A14!

The inverse Laplace transform is

Dy~ t,F tot!5
L

2p i (
n51

`
pn

tL
E

2 i`1l

1 i`1l

ds
1

s2
e2nstL~estL21!

5L (
n51

`
pn

tL
$@ t2~n21!tL#Q@ t2~n21!tL#

2~ t2ntL!Q~ t2ntL!% ~A15!
kh

06613
by the theorem of residues, wherel must be chosen suc
that all poles of the integrand in the complex plane ofs are
located to the left of the integration path. With the definitio
Nª@ t/tL# int ~where@•# int denotes the largest integer small
than the enclosed expression!, the first sum terminates atN
11, the second atN, and we obtain

Dy~ t,F tot!5211
12pN11

12p
1pN11~ t/tL2N !.

~A16!

Finally, insertingN5@ t/tL# int5@F tott/hL# int @cf. Eq. ~16!#
and taking into account the transformation~24! ~for t
.3L/2vy), we end up with the result

Dy~ t,F tot!5LH 1

2
1

12@p~F tot!#
[F tott/(h L)21/2]int

12p~F tot!

1@p~F tot!#
[F tott/(h L)21/2]int

3S F tott

h L
2

3

2D mod 1J , ~A17!

where mod is the usual modulo operator. The first two ter
represent the average number of periods,L, that the particle
can cover completely within the timet including the ‘‘basic
distance’’ 3L/2 @see also Eq.~13!#. The last term accounts fo
the situation where the particle passes throughN5@ t/tL
23/2# int periods without being trapped, afterwards it al
avoids the next trap~with absolute probabilitypN11) and
proceeds further for the remaining timet2(3/21N)L/vy .
This latter possibility has been neglected in the derivation
our moderately fast-driving result~13! in Sec. III A. Conse-
quently, Eqs.~13! and ~A17! are identical only ift/tL23/2
PN. Otherwise, Eqs.~13! and~A17! constitute two different
possibilities for a ‘‘smooth interpolation,’’ where obviousl
Eq. ~A17! is the physically correct one. However, for all th
cases considered in this paper~Figs. 2, 6, and 7!, the differ-
ences between Eqs.~13! and ~A17! are extremely small.
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@13# H. Krömer, Phys. Rev.109, 1856~1958!.
@14# D.C. Mattis and M.J. Stevenson, Phys. Rev. Lett.3, 18 ~1959!.
@15# P.F. Liao, A.M. Glass, and L.M. Humphrey, Phys. Rev. B22,

2276 ~1980!.
@16# B.I. Sturman and V.M. Fridkin,The Photovoltaic and Photo

refractive Effects in Noncentrosymmetric Materials~Gordon
and Breach, Philadelphia, 1992!.

@17# A.G. Aronov and B.Z. Spivak, Zh E´ksp. Teor. Fiz.,22, 218
~1975! @JETP Lett.22, 101 ~1975!#.

@18# M.E. Gershenzon and M.I. Fale�, Pis’ma Zh. Éksp. Teor. Fiz.
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