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In this paper we examine the cumulant properties of generally multiplicative noise of 
stochastically equivalent stochastic differential equations (SDE) for a given (integro) 
master equation. For  an I to-SDE we obtain as a necessary consequence that the noise 
f i ( t )  possesses a ~-correlated 2-nd order conditioned cumulant ( f l ( t l ) f i ( t 2 ) l x ( t * ) = x )  if 
t* < max {t 2, t~ }. For time points {t I < t2... __< t,_ 1 = t,} the conditioned cumulants of f i ( t )  
of order n > 2 generally contain memory  contributions, but vanish if t,_ 1 < t, and t* < t,. 
These memory  terms are not of relevance for the measure of the macroscopic process 
x(t). Focussing on an alternative non-l to SDE description we discuss the resulting facts. 
The character of multiplicative noise is clearly not removable by choosing a different 
stochastic calculus. The cumulants of order n > l  of the noise f~l( t)  generally contain 
memory  contributions which are different from the corresponding possibly non-zero 
(Ito)-memory terms. 

1. Introduction 

The statistical evolution of a macroscopic system 
can in many situations be modeled reasonably well 
by a stochastic Markov process x(t). The evolution 
of the single event probabili ty pt(x) is governed by 
the master equation. If the increments are of a dis- 
continuous character (jumps) the master equation is 
of the integro-type with a transition function 
W ( y - ~  x ) =  W(x ,  y). The master equation describes all 
the statistical properties. F rom a principal point of 
view there is consequently no need to force a Mar- 
kov process x(t) into a stochastic differential equa- 
tion (SDE) framework. However, as already pointed 
out previously [1] (in the following this reference 
will be denoted by I) and explicitly in [2], the in- 
vestigation of the underlying noise structure clarifies 

* It may be worthwhile pointing out that the sequence of coef- 
ficients {b,,} in [7] cannot be chosen arbitrarily: The coefficients 
{b,,} must form a sequence of moments. Also, relation (3.26) in 
[6], which is important in the study of coloured noise phenom- 
ena, contains a misprint for a sign. Correct (3.26) reads: 
az(t) 

= b(z(s), s) 
5f(s) 
+ ~ dz 0 ~ gJz(z) 

~ a ( z ( z ) , ' c ) + ~ b ( z ( z ) ,  z)f(z) 3f(s) 

the involved physics and form of the master equa- 
tion. The SDE may also simplify calculations of cer- 
tain statistical quantities. For Fokker-Planck pro- 
cesses those relationships are of course known [3-  
5, 9]: The elementary noise source is Gaussian white 
noise ~(t) which represents the building stone for 
more complicated noise as e.g. multiplicative noise 
yielding non-constant diffusion coefficients. For the 
case of discontinuous processes it has been demon- 
stated previously [1,6,7]* that the appropriate 
elementary noise element is white Poissonian count- 
ing noise ~(t;u) with u denoting a fixed jump size. 
The statistics of ((t;u) is characterized by its cu- 
mulant  averages [1] 

(~(t; u)) = 0  (1.1) 

and 

G(t,; u)... ~(t~ u))c 
--2,  a(t 1 - t 2 )  ... a(tn_ t - t , ) .  (1.2) 

The index (c) denotes the cumulant average and 2, is 
the Poisson counting parameter  which may depend 
on the jump size u. 
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Starting from a general master equation the con- 
struction of a stochastically equivalent SDE has 
been presented in I using Ito calculus. In a recent 
publication [8], Van Kampen put forward a SDE 
description for the radioactive decay problem. In 
contrast to the approach in I, where we derived the 
results by use of an elementary representation for 
the generally multiplicative noise, Van Kampen elab- 
orates on the cumulant properties of the multipli- 
cative noise. He shows that a third order cumulant 
average of the noise contains generally memory con- 
tributions. This correct result contradicts an ex- 
pression in (I.5.30c) for the cumulant average. 
In this paper we examine in more detail the cu- 
mulant properties of generally multiplicative noise 
occuring in a SDE description of a Markov process; 
thereby correcting a mistake in (I.5.30c). Loosely 
speaking one often argues that the temporal evolu- 
tion of a system is Markovian if and only if the en- 
vironmental fluctuations are ~-correlated. As it will 
be shown below, such a statement is correct only if 
the term "fluctuations" refers to the elementary 
noise sources ~(t) and ~(t; u)*. Multiplicative noise 
represents a generalized [9] macroscopic process 
and such a multiplicative noise will generally exhibit 
memory whenever we consider conditioned or un- 
conditioned multi-time moments. As shown in the 
Appendix this fact holds even for the case of multi- 
plicative continuous noise in a SDE for Fokker- 
Planck processes. 
The outline of the paper is as follows: In Sect. 2 we 
study the correlation properties of multiplicative 
noise of an Ito-SDE. In Sect. 3 we present some facts 
concerning a non-Ito-SDE description of the process 
x(t).  
The main results of the paper can be summarized as 
follows : 
t )  Using 
the noise 
ditioned 

for a given master equation an Ito-SDE, 
f~(t) has a 8-correlated 2-nd order con- 
cumulant <fi(tl)fi(t2)[x(t*)=X>c for 

t* __< max {t2, tl}. Non-equal time cumulants of order 
n > 2  with {tl~=t2~...<=t ~ l=tn}, conditioned at 
time t*<=t,, generally contain a memory contri- 
bution, but vanish if t,_~ < t , .  The highest order sin- 
gular term is given by a (n-1)-dimensional  6-func- 
tion and the memory terms are of less singular char- 
acter. 
2) The memory terms are not of relevance for the 
measure of the macroscopic process x(t). 
3) For a non-Ito SDE description with noise fN1(t) 
the conditioned cumulant averages of order n > l  
generally contain memory contributions which differ 

* More generally, strictly additive noise f(t) possesses cS-corre- 
lated unconditioned cumulants 

from the corresponding possibly non-zero Ito-me- 
mory contributions. However, the n-th order cu- 
mulant, n >  1, of fro(t) contains as highest order sin- 
gular part the equal time Ito-cumulant, (2.18), of 
order n, being proportional to the n-th Kramers- 
Moyal moment A,(x) if t* = t,. 

2. Noise Correlations 

The theory in this section is outlined for discon- 
tinuous processes (i.e. all variations are of step char- 
acter). The case of continuous processes is contained 
implicitly by letting the jump frequency 2~ go to in- 
finity and the jump size u go to zero such that 2 u �9 u 2 
=const.  [2]. Given a master equation, we can recast 
the integro equation 

p~(x) = ~ W(x, y) p~(y) ay (2.1) 

into the form of the Kramers-Moyal expansion 

pt(x)= • - - m  ~xx {A,(x)p,(x)}. (2.2) 
n = l  t ~ .  

With an arbitrary function B(x) the SDE 

2(0 =B(x(t)) + f(t) (2.3) 

is a stochastically equivalent description of the Mar- 
kov process in (2.2) if the generally multiplicative 
noise f(t) satisfies the condition I, II [2]: 

1 ,+A 
I) lim ~ .[ ds(f(s)]x(t)=x> = A l ( x ) - B ( x  ). (2.4) 

A~O 

Here ( I x )  denotes the conditional average. The 
part (Al(X)-B(x)) presents the fluctuation induced 
drift. The higher order conditioned cumulants (de- 
noted by an index c) must obey 

t+A  t+A  

II)  lim--1 ~ ... j. dt 1"'" d t , ( f ( t l  ) . . . f ( t . ) lx( t )=x> c 
A ~ O  A t t 

=A,(x)  n >2 .  (2.5) 

Here the {A,(x)} are the Kramers-Moyal moments 
in (2.2). 
Obviously, with such a formulation the concept of 
an Ito or non-Ito interpretation does not enter. As 
long as the integral properties in (2.4), (2.5) hold for 
the noise, the process x(t) is described stochastically 
equivalently by the corresponding SDE (2.3). From 
a mathematical point of view, any stochastic cal- 
culus with 

lim < dx (t) lx(t) = x> /dt = A 1 (x) (2.6) 
dt~O 
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and cumulant averages for the increments dy(t) 
=f(t) at 

((dy(t) f ix( t )=x)~ 

=A. (x )d t+dtO(d t ) ,  n>2  (2,7) 

yields a consistent description of the Markov pro- 
cess x(t). 
The concept of Ito or non-Ito interpretation enters 
when we give the noise f( t)  a more explicit meaning 
via an elementary representation (interpretation of 
stochastic integral). 

dy(t) 
f(t)  = - -  

dt 

i7 , 1/ = lim ~ g(t, x(s), u) ~(s; u) du dt. (2.8) 
dr+0 ~ t 

Next we investigate the details of the cumulant pro- 
perties of stochastically equivalent noise f~(t); i.e. we 
use for f(t)  an elementary representation (2.8) with 
the right hand side of (2.8) interpreted using Ito ru- 
les [1]. Although a general noise is a superposition 
over all jump sizes of mutually independent elemen- 
tary noise {(t; u) we can discuss the memory effects 
by assuming, for the sake of simplicity only, that 
fx(t) has the special representation 

f ,  (t) d t = dy,(t) = g (x (t)) d~ (t) (2.9) 

where 

drl(t) = [(t; u) dt (2.10) 

with u fixed and 

)~= 1. (2.11) 

cases for which the time-point of the condition t* 
lies between t o < t*<  t s with t I being the latest time 
involved in the expression of the multi-time average. 
Considering a 2-nd order average, we obtain in view 
of (1.2) and (2.11) 

((dy, (tl))2 ] x (t*) = x)  c 

=(g2(x(q))[x( t*)=x) dtl, t ,~ t* .  (2.14) 

For t* < m a x { t >  t l }  , t2~: q we have 

( dyi(q) dyi(t2)lx(t* ) = x)c =0,  

t 2 4= q ,  t* <max{t2,  q} (2.15) 

(2.14) and (2.15) are combined to give 

( f t ( q )  fi(ta)lx(t*)= x)c 

=(g2(x(t2))[x(t*)=x) c5(t I - t 2 )  t*_<_max{t 2, tl}. 

(2.16) 

An important cumulant average, which enters the 
discussion of the SDE construction [1, 2] is with 
(1.2) and (2.11) 

((dy,(t))~[x(t)=x)~=g~(x) (~(t).. .  ~(t))c(dt)" 

=g"(x)dt,  n> 2. (2.17) 

In terms of the noise f~(t), (2.17) is recast as 

lim [(dt) "-1 ( f i ( t l ) . . .  f~(t,)lx(t*) =x)~]  = g"(x), 
dr+0 

q = . . . = t , = t * ,  n> 2. (2.18) 

(2.18) shows that the cumulant (f1(tl) . . . f i( t ,)[x(t ,)  
= x ) ,  t i<t, ,  contains a (n-D-dimensional  a-func- 
tion and possibly a memory part m,,(tz,..., t,,; x t~) 

If we note the Ito starting point rule [1] in the mul- 
tiplication in (2.9), implying g(x(t)) to be independent 
of dtl(t), we find [1] 

(f,(t,)lx(t*)=x) =0, t,>=t*. (2.12) 

The relation (2.12) is generally not true for t*>t  1, 
since for t * > q ,  drl(tl) is not independent of x(t*). 
Nevertheless, we obtain from (2.12) for the uncon- 
ditioned average 

(f~(tl)) = 5 (L(t l) lx( t*)  = x )  pt,(x) dx =0.  (2.13) 

Because only conditioned cumulants do enter the 
discussion of the SDE we will in the following con- 
sider only conditional multi-time cumulant averages. 
Moreover, because the solution x(t) in (2.3) is a 
functional ~-(f(s); to<S<__t ) of the noise f(s), we re- 
strict the discussion of conditioned averages to those 

<f,(t,) ..f,(t )lx(t.)=~>c 
= g n ( x )  •(t 1 - - t 2 )  . . .  a ( t n _  1 - - t n ) - ~ - g n n ( t  I . . . . .  tn;  X ,  tn)~ 

t~<t,,, i<n, n>2.  (2.19a) 

In order not to contribute to (2.18), the memory 
function is of less singular character; i.e. it does not 
contain a (n-1)-dimensional Q-function. Because the 
averages are symmetric with respect to the time- 
points {t 1 . . . .  ,t,} it is sufficient to consider 
{q <=tz < . . . < t  . l <t,}. With r*<t,  we obtain more 
generally 

(f1(tl) ... f1(t~)lx(t*)=X)c 

: ( g n  (X (tn)) ] X ( t* )  : X )  (~ (t 1 - -  t2) . . .  ~ ( t  n -  1 - -  tn) 

+m,(t 1 . . . .  , t ;  x,t*), 

tl < . . . < t , ,  t*<t , ,  n> 2. (2.19b) 
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From (2.19), (2.18) we find 

lim [(dr)"- l m , ( q , . . . ,  t,; x, t*)] =0  (2.10) 
d t ~  0 

and from (2.16) 

m2(q, t2;x,t*)=O, t*<=max{t2, q}. (2.21) 

For the sequence 

ta <=tz<_...~tn_l <t,; t*<=t, (2.22) 

the corresponding cumulant reads 

<f1(q) .. .fx(t,)lx(t*)=x> : 0  (2.23) 

so that 

m,(q , . . . , t , ; x , t* )=O,  t1<=...<=t" l<t , ,  t*<=t,. 

(2.24) 

This result follows from the fact that in a con- 
ditioned moment of order i<n containing the ran- 
dom variable dtl(t,) which is of a vanishing average, 
dtl(t,) is independent from the rest. Thus, each mo- 
ment term in the corresponding cumulant represen- 
tation is multiplied by zero. This fact explicitly 
exhibits the properties of the Ito-calculus for f1(t) 
(martingale property). 
The result (2.24) is generally not true if t~_ ~ = t,. For 
example, we find for t I < t z = t  3, t*<=t 3 by use of the 
expression for the third cumulant [10] 

(dy,(tO (dy(t2))2lx(t *) = x)~ 

= (g(x(tl)) g2 (x(t2)) drl(tl)l x(t,) = x)  dt. (2.25 a) 

Close inspection of (2.25a) on the intervals ([t o, q ] ;  
[q,  t 1 +d t ] ;  [q  +dr, t2] ) reveals the structure 

lim [ ~  ( g ( x ( t l ) )  g2(x(t2)) dtl(t,)lx(t* ) = x ) ]  
d t~O 

= lim [dt m 3 ( t l ,  t 2 = t3; x, t*)] 
d t ~ 0  

=h(q, t2,xt*)~O. (2.25b) 

The memory in (2.25b) (as well as in (2.19)) results 
from the fact that the increment dtl(tl) is not inde- 
pendent from nonconstant g2(x(t2)), t 2 > t  1. Howev- 
er, cumulants of the type in (2.25) do not contribute 
to (2.4), (2.5) (derivation of corresponding master 
equation). 
Only (2.18) does contribute in (2.4), (2.5). In other 
words, the memory terms are not of relevance for 
the measure of the corresponding macroscopic pro- 
cess x(t). 
Moreover, the results in this section, in particular 
(2.16) and (2.25), are consistent with Van Kampens' 

explicit calculations (up to order n=3) for the cu- 
mulant averages for the noise fi(t) of the radioactive 
decay process [8]. 

3. Ito Versus Non-Ito 

Interpreting the elementary representation (2.9) ac- 
cording to a non-Ito calculus we obtain different 
noise fm(t)oefi(t) with generally different results for 
corresponding cumulant averages; in particular dif- 
ferent results for corresponding memory terms. (For 
Fokker-Planck processes see the Appendix.) In vir- 
tue of (2.7) however, the n-th order conditioned cu- 
mulant of the noise fro(t) of a non-Ito-SDE for a 
given master equation (2.1) must contain the highest 
order singular term A~(x)c~(tl-t2). . .g(t~_l-tn),  
n>2, t*=t, .  
In conclusion, the character of multiplicative noise, 
reflected by non-constant Kramers-Moyal moments 
A,(x), n>2, is clearly not removed by choosing a 
different stochastic calculus. However, as shown in 
[1], (see the Ito-Stratonovitch calculation in Sect. 6 
of [1]) the coupling function g, (2.8), is generally 
sensitive to a change of the stochastic calculus. This 
is in contrast to the Fokker-Planck case where only 
the drift expression in the corresponding stochasti- 
cally equivalent SDE becomes modified when we 
choose a different stochastic calculus. (Note that 
with a nonconstant g in a SDE for a discontinuous 
process we would obtain different Kramers-Moyal 
moments of order n > 2  by choosing different sto- 
chastic calculi.) The Ito calculus possesses a particu- 
larly simple relationship between coupling function g 
and Kramers-MoyaI moment (see 1.5.17). 

Appendix 

For a Fokker-Planck process modeled by the sto- 
dw(t) 

chastically equivalent Ito-SDE ~(t)= d~-  standard 

Gaussian white noise) 

Ito: :~(t) = b(x(t)) +g(x(t)) ~(t) (A.1) 

= b(x(t)) +f~(t) (A.2) 

the corresponding stochastically equivalent Strato- 
novitch SDE reads [3-5, 9] 

2(0 = b(x(t)) - �89 g'(x (t)) + g(x(t)) o ~(t). (A.3) 

Hereby the increment is interpreted using Stratono- 
vitch rules; i.e. dys(O=g(x(t))o~(t) (o denotes Strato- 
novitch multiplication rule). (A.3) is recast into the 



P. Hanggi: Markov Master Equation II 273 

form (2.3) 

2(0 =B(x(t))+ fs(t) (a.4) 

with the Stratonovitch noise fs(t) 

fs(t) = g(x(t))o ~(t). (A.5) 

Evaluating the conditional average, t~ < t 2 = t* 

(fs(tl) fs(t2)lx(t2)= X} (A.6) 

we obtain 

(fs(tO fs(t2) lx(t2) = x )  = g2(x)  b ( t  t - t2) 

+�88 ) g'(x(tl) ) g(x(t2) ) g'(x(t2))lx(t2) =x) .  (A.7) 

(A.7) contains memory. The first term on the right 
hand side just gives the Ito result. Observing (A.3) 
and (A.7) we find for the 2-nd cumulant 

(fs(t:) fs(t2)]x(t2) = x)c =g2(x) 6(t 1 - t2) 

+ �88 (g(x(tl)) g'(x (tl)) g(x(t2) ) g'(x(t2))[x(t2) = x)  

�88 (g(x(tt)) g'(X(tx))lx(t2)=x) 

�9 (g(x(t2)) g'(x(t2))[x(t2)=X). (A.8) 

Higher Ito-cumulants generally also contain memory 

terms. For example, with t*<~tl<t2=t 3 w e  obtain 
for the Ito noise dyi(t)=g(x(t))((t) 

(dyi(tl) [dye(t2)]2 Ix(t *) =x)  
= (g(x(tfl) g2(x(t2)) [w(t 1 + d t ) -  w(tl)]lx(t* ) = x )  dt 

= ~(dt) 2. (A.9) 
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