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Frequency and phase synchronization in stochastic systems
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The phenomenon of frequency and phase synchronization in stochastic systems requires a revision
of concepts originally phrased in the context of purely deterministic systems. Various definitions of
an instantaneous phase are presented and compared with each other with special attention paid to
their robustness with respect to noise. We review the results of an analytic approach describing
noise-induced phase synchronization in a thermal two-state system. In this context exact expressions
for the mean frequency and the phase diffusivity are obtained that together determine the average
length of locking episodes. A recently proposed method to quantify frequency synchronization in
noisy potential systems is presented and exemplified by applying it to the periodically driven noisy
harmonic oscillator. Since this method is based on a threshold crossing rate pioneered by Rice the
related phase velocity is termed the Rice frequency. Finally, we discuss the relation between the
phenomenon of stochastic resonance and noise-enhanced phase coherence by applying the
developed concepts to the periodically driven bistable Kramers oscillator. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1500497#
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Studying synchronization phenomena in stochastic sys
tems necessitates a revision of concepts originally deve
oped for deterministic dynamics. This statement becomes
obvious when considering the famous phase-locking
effect;1,2 unbounded fluctuations that occur, for instance,
in Gaussian noise will always prevent the existence of a
strict bound for the asymptotic phase difference of two
systems. Nevertheless, a reformulation of the synchroni
zation phenomenon in the presence of noise is possible b
quantifying the average duration ŠT lock‹ of locking ep-
ochs that are disrupted by phase slips. In case tha
ŠT lock‹šT0 , where T0 is some characteristic time of the
dynamics, e.g., the period of an external drive or the in-
verse of some intrinsic natural frequency, it is justified to
speak about effective phase synchronization.

I. INTRODUCTION

From the conceptual point of view different degrees
synchronization can be distinguished: complete synchr
ization,3 generalized synchronization,4 lag synchronization,5

phase synchronization,6,7 and burst ~or train! synchron-
ization.8 In the following, we focus our attention on phas
synchronization in stochastic systems that has attracted
cent interest for the following reasons: in many practical
plications the dynamics of a system, though not perfec
periodic, can still be understood as the manifestation o
stochastically modulated limit cycle.9,10 As examples, we
mention neuronal activity,11 the cardiorespiratory system,12

or population dynamics.13

Given a data set or some model dynamics there exis

a!Electronic mail: freund@physik.hu-berlin.de
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variety of methods to define an instantaneous phasef(t) of
a signal or a dynamics. For a clear cut separation of de
ministic and noise-induced effects it is essential to assess
robustness of each of these different phase definitions w
respect to noise. Section II is devoted to this issue. Since
do not distinguish between dynamical and measurem
noise14 our treatment is also tied to the question how sy
chronization can be detected within any realistic experim
tal data.

The synchronization properties of a noisy system can
classified in a hierarchical manner: stochastic phase lock
always implies frequency locking while the converse is n
true in general. On the other hand, small phase diffusivity
necessary but not sufficient for phase synchronization. T
will become clear in Sec. III when we review an analyt
approach15 to stochastic phase synchronization developed
a thermal two-state system with transitions described
noise-controlled rates.

A recently proposed method16 to measure the averag
phase velocity or frequency in stochastic oscillatory syste
based on Rice’s rate formula for threshold crossings17,18 will
be presented and discussed in Sec. IV. The Rice freque
proves to be useful especially in underdamped situati
whereas the overdamped limit yields only finite values
colored noise. Its relation to the frequency based on
widely used Hilbert phase~cf. Sec. II C! is discussed and
illustrated.

In the final Sec. V we connect the topic of stochas
resonance~SR! ~Refs. 19, 20! with results on noise-enhance
phase coherence.21 To this end we study the synchronizatio
properties of the bistable Kramers oscillator driven ext
nally by a periodic signal.22 As a complement to the fre
quently investigated overdamped limit, we consider here
© 2003 American Institute of Physics
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underdamped case employing the methods presented in
IV.

II. PHASE DEFINITIONS IN THE PRESENCE OF
NOISE

A. Natural phase fN

A phase occurs in a quite natural way when describ
the cyclic motion of an oscillator in phase space. Se
sustained oscillators are nonlinear systems that asymp
cally move on a limit cycle. The instantaneous position
phase space can be represented through instantaneous a
tudeaN(t) and phasefN(t). A systematic approach to relat
the amplitude and phase dynamics to the dynamics for
lated in original phase space was developed by Bogoliu
and Mitropolski.23 Their method starts from the following
decomposition of the dynamics:

ẋ5v, ~1!

v̇52v0
2 x1 f ~x,v,t,j,...!, ~2!

where the functionf comprises all terms of higher than fir
order in x ~nonlinearities!, velocity dependent terms~fric-
tion!, and noise. In their work Bogoliubov and Mitropols
considered the functionf to be a small perturbation of orde
e which means that the system is weakly nonlinear and
noise or the external forces are comparatively small as no
distort the harmonic signal too much. The definition of
instantaneous phase proceeds by expressing the positx
and the velocityv in polar coordinatesaN andfN,

x~ t !5aN~ t !cos@fN~ t !#, ~3!

v~ t !52v0aN~ t !sin@fN~ t !# ~4!

which yields by inversion24

aN~ t !5Ax2~ t !1@v~ t !/v0#2, ~5!

fN~ t !5arctanF2
v~ t !/v0

x~ t ! G . ~6!

It should be noted that a meaningful clockwise rotation in
x, v-plane determines angles to be measured in a spe
way depending on the sign ofv0 . Using Eqs.~3!, ~4!, ~5!,
and ~6! it is straightforward to transform the dynamics inx
andv, Eqs.~1! and ~2!, into the following dynamics foraN

andfN:2,25

ȧN52
f ~aN cos~fN!,2v0 aN sin~fN!,t,j!

v0
sin~fN!, ~7!

ḟN5v02
f ~aN cos~fN!,2v0 aN sin~fN!,t,j!

v0aN cos~fN!.

~8!

The line x50 corresponds to anglesfN5p/21np,nPN.
As can be read off from Eq.~8!, the phase velocity alway
assumes a specific value forx50,26 i.e.,

ḟN~x50!5v0 . ~9!

This has the following remarkable consequence. We see
even in the presence of noise passages through zero in
Downloaded 02 Oct 2003 to 137.250.81.34. Redistribution subject to AIP
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upper half planev.0 are only possible fromx,0 to x
.0, in the lower half plane only fromx.0 to x,0. This
insight becomes even more obvious from a geometrical
terpretation: as the noise exclusively acts on the velocityv,
cf. Eq. ~2!, it can only effect changes in the vertical directio
~in x, v-space!. Along the vertical linex50, however, the
angular motion possesses no vertical component while ra
motion is solely in the vertical direction and, therefore, on
affected by the noise. From this we conclude that betw
subsequent zero crossings of the coordinate with posi
velocity the phase has increased by an amount of 2p. This
finding establishes a simple operational instruction how
measure the average phase velocity of stochastic syst
We will come back to this point in Sec. IV.

B. Linear interpolating phase fL

As we have just seen zero crossings can be utilized
mark the completion of a cycle. This can be generalized
the crossings of an arbitrary threshold with positive veloc
or even to the crossing of some separatrix. In this connec
the concept of isochrones of a limit cycle has to
mentioned.27 All of these extensions of the natural pha
require a thorough knowledge of the dynamics and the ph
space structure. In many practical applications, however,
detailed phase portrait is not known. Instead, one is give
data series exhibiting a repetition of characteristic mar
events, e.g., the spiky peaks of neural activity, the R-peak
an electrocardiogram, or pronounced maxima as found
population dynamics. These marker events can be use
pinpoint the completion of a cycle,k, and the beginning of a
subsequent one,k11. It is then possible to define an insta
taneous phasefL(t) by linear interpolation, i.e.,

fL~ t !5
t2tk

tk112tk
2p1k 2p ~ tk<t,tk11!, ~10!

where the timestk are fixed by the marker events. Reexpre
ing the time seriesx(t) of the system as

x~ t !5aL~ t ! cos@fL~ t !#, ~11!

then defines an instantaneous amplitudeaL(t). The benefit of
such a treatment is to reveal a synchronization of two
more such signals; whereas the instantaneous amplit
and, therefore, the time series might look rather different,
phase evolution can display quite some similarity. If the a
erage growth rates of phases match~notwithstanding the fact
that phases may diffuse rapidly! the result is termed fre-
quency locking. Small phase diffusion, in addition to fr
quency locking, means that phases are practically loc
during long episodes that occasionally are disrupted by ph
slips caused by sufficiently large fluctuations. This elucida
the meaning of effective phase synchronization in stocha
systems.

As should be clear from its definition the linear pha
relies on the clear identification of marker events. With
creasing noise intensity this identification will fail since su
ficiently large fluctuations may either mask true or imita
spurious marker events. On the other hand, in some ca
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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e.g., for excitable systems, fluctuations can be essentia
the generation of marker events, i.e., marker events ma
noise-induced.

As a final remark, let us mention that relative maxima
a differentiable signalx(t) correspond to positive-going ze
ros of its derivativeẋ(t). However, this seemingly trivia
connection is overshadowed by complications if the deri
tive itself is a nonsmooth function that does not allow
easily extract the number of zero crossings~cf. Sec. IV and
Fig. 5!.

C. Hilbert phase fH

In situations where a measured signalx(t) exhibits a lot
of irregularity it is not quite clear how to define a phase—t
signal might look far from a perturbed harmonic or ev
periodic one and marker events cannot be identified un
biguously. The concept of the analytic signal as introduc
by Gabor28 offers a way to relate the signalx(t) to an instan-
taneous amplitudeaH(t) and a phasefH(t). The physical
relevance of a such constructed phase is a question o
own; for narrow-band signals or harmonic noise it has a c
physical meaning whereas the general case requires fu
considerations~cf. Appendix A2 in Ref. 29!.

The analytic signal approach extends the real sig
x(t) to a complex onez(t)5x(t)1 i y(t)5aH(t) exp@fH(t)#
with the imaginary party(t) resulting from an appropriate
transformation of the real partx(t). Instead of takingy(t)
52 ẋ(t)/v0 as for the natural phase we searchy(t) as the
result of a convolution ofx(t) with some appropriate kerne
K(t), i.e.,

y~ t !5E
2`

`

x~t!K~ t2t!dt. ~12!

Now, appropriate means that the kernel has to be chos
such that the method reproduces the phase of a harm
signal. Applying the convolution theorem it is easy to s
that the Fourier transformY(v) of the transformed signa
y(t) should be related to the Fourier transformX(v) of the
original signalx(t) by a phase shift that transforms a cosi
into a sine, i.e.,

Y~v!52 i sgn~v!X~v!, ~13!

where sgn(•) is the sign function. By an inverse Fourie
transform we thus find thatK(t)51/(pt) which implies that
y(t) is related tox(t) via the Hilbert transform,

y~ t !5xH~ t !5
1

p
PE

2`

` x~t!

t2t
dt. ~14!

The symbolP in front of the integral in Eq.~14! is a re-
minder that the integral has to be evaluated in the sens
the Cauchy principal value. The fact that the Hilbert phas24

fH~ t !5arctanFxH~ t !

x~ t ! G ~15!

arises as the result of a convolution instead of a differen
tion makes it less sensitive to short-lived small fluctuatio
This observation was already reported by Vainstein a
Vakman.30
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Moreover, the construction by a convolution brings t
Hilbert phase in close contact with the wavelet transform t
is widely used to compute a time-dependent spectral dec
position of nonstationary signals.31 By virtue of Eq.~13! it is
evident that the Fourier transform of the analytic signalZ(v)
satisfies the relation,

Z~v!5@11sgn~v!# X~v!52 u~v! X~v!, ~16!

whereu(•) is the step function. Equation~16! shows that all
positive Fourier components of the original signal contribu
with equal weights. Selecting, instead, a certain freque
band by using a subsequent Gaussian filter~in frequency
space! corresponds to a convolution with the Morlet wave
~Gabor function!. Generalized phase definitions and t
wavelet transform were employed to detect pha
synchronous activity in the brain32 and in a chaotic lase
array.33

D. Discrete phase fD

Multistability is one of the crucial consequences of no
linearity and plays a dominant role for many important to
ics, e.g., evolution, information processing and communi
tion, pattern formation, etc. Frequently, fluctuations play
benificial role in that they effect transitions between the d
ferent states that are directly tied to the performance o
task. The phenomenon of SR,19,20 for instance, can be ob
served in a bistable system. Typically, the information tha
processed in a bistable system does not require to keep
of a continuum but is rather contained in the switchi
events between the two states.19,34 Hence, it is desirable to
link the dichotomous switching process to a description
terms of an instantaneous phase. Since switching to and
constitutes one cycle and, thus, corresponds to a phase i
ment of 2p the linear interpolating phasefL can be readily
constructed employing switchings as marker events of h
cycles. Furthermore, the Hilbert phase can be easily c
puted. Alternatively, it is possible to use the switching pr
cess ~between 21 and 11! and construct a discret
instantaneous phasefD(t) changing discontinuously at th
switching events. The last-mentioned instantaneous pha
obtained simply by multiplying the number of switches~or
the number of renewals in renewal theory35! k(t) by the
valuep, i.e.,fD(t)5k(t)p. The instantaneous state, in tur
can be obtained from the discrete phase viax(t)
5cos@fD(t)#. In Fig. 1 we show how the three alternativ
phasesfL, fH, andfD agree in the description of a dichoto
mous switching process. Note that the natural phasefN(t) is
related to the underlying process in real phase space
hence, cannot be deduced from the two-state signal. The
vantage of the discrete phase is that it allows an anal
treatment of effective phase synchronization in stocha
bistable systems. This will be addressed in Sec. III.

The robustness of the discrete phase with respec
noise comes into play not when making the ‘‘transition
from the switching process to the instantaneous phasefD(t)
but when constructing the switching events from the conti
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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ous stochastic trajectory. At the level of a Markovian switc
ing process noise enters only via its intensity that chan
transition rates.

E. Phases in higher dimensional systems

In systems of dimensiond.1 there are various ways t
define one or even more instantaneous phases: projectin
2D-dimensional phase space onto two-dimensional surfa
choosing Poincare´ sections or computing the Hilbert phas
for each of the coordinates. Many of the methods can only
done numerically and always require to consider the dyn
ics in detail in order to check whether a made choice
appropriate. We will not elaborate these details here but r
to Ref. 29~especially Chap. 10!, and references therein.

III. ANALYTIC TREATMENT OF A DRIVEN NOISY
BISTABLE SYSTEM

A. Setup of the doubly dichotomous system

In this section we consider a stochastic bistable syst
for instance a noisy Schmitt trigger, which is driven ext
nally either by a dichotomous periodic process~DPP! or a
dichotomous Markovian process~DMP!. The dichotomous
character of the input shall be either due to a two-state
tering or be rooted in the generation mechanism of the
nal. The bistable system generates a dichotomous output
nal. For convenience we choose to label input and ou
states with values11 and 21, respectively. The DPP i
completely specified by its angular frequencyV5p/T0 ,
where T0 is the half-period. Correspondingly, the DMP
fully characterized by its average switching rateg5T0

21.
Since both input and output are two-state variables i

possible to study phase synchronization in terms of disc
input and output phasesf in(t) and fout(t), respectively.
Consequently, also the phase differencef(t)5fout(t)
2f in(t) is a discrete quantity that can assume positive
negative multiples ofp. From the definition of the phas
differencef it follows that each transition between the ou
put statesincreasesf by p, whereas each transition betwee
the input statesreducesf by p.

FIG. 1. The linear interpolating phase, the Hilbert phase, and the disc
phase agree in the description of a dichotomous switching process.
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Transitions between the input states are governed by
rates,

W6
DMP5g and W6

DPP~ t !5 (
n52`

`

d~ t2tn!, ~17!

where a single realization of the DPP is characterized
deterministic switching timestn5(np1w0)V21. Here,w0

is the initial phase of the input signal rendering the perio
process nonstationary~cyclostationary!. To achieve strict sta-
tionarity we average the periodic dynamics with respect
w0 which is equidistributed over the interval@0,2p!.

In the absence of an input signal the two states are s
posed to be symmetric and the hopping rates for both di
tions are identical and completely determined by a prefac
a0 , the energy barrierDU, and the noise intensityD. The
central assumption of our analysis is that the input sig
modifies the transition rates of the output solely through
phase differencef in the following way:

Wout~f!5g~f!5a0 expF2
DU1A s~f!

D G , ~18!

where the functions(f)5cos(f)561 and the amplitude
A,DU50.25 to keep the signal subthreshold. This defi
tion introduces two noise-dependent time scales,

a15a~D ! expS 2
A

D D and a25a~D ! expS A

D D ~19!

with a(D)5a0 exp(2DU/D). The function s(f) favors
phase differences with even multiples ofp, i.e., in-phase
configurations.

A description of the stochastic evolution of the pha
difference is based on the probabilitiesP(f,tuf0 ,t0) to ex-
perience a phase differencef at time t conditioned by a
phase differencef0 at timet0 . Due to the discrete characte
of f ~allowing only for multiples ofp) we briefly denote
Pk5P(f5kp,tuf0 ,t0). Then the probabilistic evolution
operator reads withgk5g(f5kp) from ~18!,

]Pk~ t !

]t
5L̂Pk~ t !1gk21Pk21~ t !2gkPk~ t !. ~20!

While the last two terms on the right-hand side of Eq.~20!
account for the change off due to transitions of the outpu
the operatorL̂ reflects switches of the input,

L̂Pk5W6 ~Pk112Pk!, ~21!

with the related input switching ratesW6 given by Eq.~17!.
As mentioned above the nonstationary~cyclostationary!
character of the DPP can be cured by averaging over
initial phasew0 . Since ‘‘temporal’’ and ‘‘spatial’’ contribu-
tions in Eq.~21! are separable we can perform this avera
prior to the calculation of any moment off yielding

^W6
DPP&w0

5E
0

2p dw0

2p (
n52`

`

dS t2
np1w0

V D5
V

p
. ~22!

From Eq. ~22! we see that thew0-averaged DPP formally
looks equivalent to a DMP with the transition rateV/p. Of
course, initial phase averaging does not really turn a D

te
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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into a DMP. The subtle difference is that whilef-moments
of the DMP change in time continuously correspondi
f-moments of the DPP~before thew0-average! are still dis-
continuous, hence, temporal derivatives of functions of^f&
have to be computed with care before initial pha
averaging.15,36

B. Noise-induced frequency locking

Using standard techniques37 we can derive the evolution
equation for the mean phase difference^f& from Eq. ~20!,

^ḟ&52^v in&1^vout& ~23!

52^v in&1
p

2
~a11a2!2

p

2
~a22a1!^s&. ~24!

Here,^v in& denotes the average frequency of the input ph
and equalsgp for the DMP andV for the DPP. Assuming
higher moments uncoupled, i.e.,^s(f)&}s(^f&), Eq. ~23!
is Adler’s equation25,38 arising in the context of phase lock
ing. Note that here both the frequency mismatchD
52^v in&1 (p/2) (a11a2) and the synchronization band
width Ds5(p/2) (a22a1) are noise dependent. This eluc
dates the opportunity to achievenoise-inducedfrequency and
effective phase locking. For the short-time evolution a n
essary condition for locking isuDu,Ds which defines ‘‘Ar-
nold tongues’’1 of synchronization in theA vs D plane.

The kinetic equation for̂s& can be evaluated explicitly
yielding

^ṡ&52F2
^v in&

p
1a11a2G^s&1a22a1 . ~25!

From Eq.~25! we see that̂s& approaches a stationary valu

^s* &5
a22a1

2
^v in&

p
1a11a2

~26!

that exactly coincides with the stationary correlation coe
cient between the input and output.41 The relaxation time is
given by t5@2^v in&/p1a11a2#21. Hence, the stationary
output phase velocity can be achieved from Eq.~23! by in-
sertion of Eq.~26! yielding

^vout* &5
p

2
~a11a2!2

p

2
~a22a1!^s* &. ~27!

This expression is in agreement with similar results deriv
in the context of resonant activation.39 In Fig. 2 we depict the
mean output switching ratêvout* & as a function of the noise
intensity D for several values of the input signal amplitud
A. With increasing amplitude the region of frequency loc
ing, i.e., the region ofD for which ^vout* &'^v in&, widens~cf.
also Fig. 9 in Ref. 40!. For most of these intensities th
bistable system possesses rates that do not obey the
scale matching condition; nevertheless, on the average
output switching events are entrained by the input signal.
mentioned before the whole effect is nonlinear. If detun
becomes too large the output gets desynchronized and
turns to its own dynamics.
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Besides many alternatives, we defined the width of
frequency locking region by requiring the slope of the curv
to be less than 30% of the slope forA50 at the point where
the output switching rate coincides withg @or V/p, respec-
tively#, simultaneously disqualifying the initial flat region fo
small D. The resulting ‘‘Arnold tongues’’~compatible with
data from Refs. 21, 41, 42! are shown in the inset of Fig. 2
It can be seen that frequency locking necessitates to exce
minimal amplitude that shifts to lower values for slow
signals.42 Let us emphasize that the frequency locking reg
groups around the noise intensity that satisfies the time s
matching condition@in our case by definitionv in5vout* (D)#;
for a harmonic input this range ofD also maximizes the
spectral power amplification, in contrast to values ofD
where the signal to noise ratio attains its maximumD
}DU).19,20

C. Phase locking and effective synchronization

The phenomenon of phase locking can be demonstr
by considering the diffusion coefficientD of the phase dif-
ference, achieved as the time derivative of the varia
1
2] t@^f

2&2^f&2#. Performing the calculation for both th
DMP and DPP yields

D5Din1
p2

2 F ^vout&
p

2~a22a1!
^fs&2^f&^s&

p G ~28!

with Din5(p2/2) g for the DMP andDin50 for the DPP.
The stationary correlator̂(dfds)* &, i.e., the asymptotic
limit of ^fs&2^f&^s&, can be computed from the corre
sponding kinetic equation.15 Inserting ^(dfds)* & into Eq.
~28! we thus find for the DMP~cf. Fig. 3 top!

FIG. 2. Mean output switching frequency~in units ofp! versus noise inten-
sity for the DMP~or the DPP! signal forg50.001~or V/p50.001, respec-
tively! and for three amplitudesA: 0 ~solid!, 0.1 ~dotted!, 0.2 ~dashed!
~DU50.25, other parameters see text!. ‘‘Arnold tongues,’’ defined by the
demand of ‘‘sufficiently small slopes’’~see text!, are shown in the inset for
variousg : 0.001~solid!, 0.002~dotted!, 0.005~dashed!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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D DMP5
p2

2 Fg1
^vout* &

p
2~2g2~a11a2!!^s* &2

2
1

2
~a22a1!^s* &~11^s* &2!G ~29!

and for the DPP~cf. Fig. 3 bottom!,

D DPP5
p2

2 F ^vout* &
p

2S 2
V

p
2~a11a2! D ^s* &2

2
1

2
~a22a1!^s* &~11^s* &2!1

V

p
^s* &G ~30!

with ^s* & given by Eq.~26! and ^vout* & by Eq. ~27!. Both
Eqs.~29! and ~30! possess the same structureD5Din1Dout

2Dco with Dout5(p/2) ^vout* &. SinceDout is never decreas

FIG. 3. Effective diffusion coefficientsD DMP ~top! and D DPP ~bottom! of
the instantaneous phase differencef as functions of the noise intensityD
for g5 V/p 50.001 and for three amplitudesA: 0 ~solid!, 0.1 ~dotted!, 0.2
~dashed! ~other parameters as in Fig. 2!. The values atD50 are determined
solely by the input diffusion and, hence, vanish for strictly periodic sign
Defining the region of phase locking by the demand thatD DMP,D in

DMP

yields the tongues depicted in the upper inset which, as in Fig. 2, reve
critical amplitude varying withg: 0.001 ~solid!, 0.002 ~dotted!, 0.005
~dashed!. As can be seen from the lower inset phase locking occurs
considerably largês* & only @curves for amplitudesA: 0 ~solid!, 0.1 ~dot-
ted!, 0.2 ~dashed!#.
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ing ~with increasing noise intensity! the same is true for the
sum of the first two terms. The possibility of synchroniz
input–output jumps is rooted inDco. Since this term com-
prises only contributions scaling with powers of^s* &, which
itself rapidly vanishes for smallD ~cf. inset of Fig. 3 bot-
tom!, we first observe an increase ofD. An increase of̂ s* &
signals the coherent behavior of input and output and, c
sequently, endowsDco with considerable weight to outbal
ance the increase ofDout. As can be seen from the inset o
Fig. 3 bottom a negative slope is initiated only for a suf
ciently large^s* &. However, the range of high input–outpu
correlation^s* & does not determine the range of low diffu
sion coefficients since at rather high noise intensitiesD the
output switches with a large variance and thus, finally dom
nates over the ordering effect ofDco.

Plotting the boundaries of the region whereD DMP

,D in
DMP defines the tongues depicted in the inset of Fig

top. As for the ‘‘Arnold tongues’’ in Fig. 2 a minimal ampli
tude varies with the mean input switching rate^v in& and
shifts to lower values when considering slower signals. I
worth mentioning that the addition of an independent
chotomous noise that modulates the barrierDU can drasti-
cally reduce this minimal amplitude if this second dichot
mous noise switches faster than the external signal.43

The minimum ofD observed in the region of frequenc
locking can be equivalently expressed as a pronounced m
mum of the average duration of locking episodes^Tlock&. To
show this we note that a locking episode is ended by a ph
slip whenever the phase difference has changed, i.e.,
creased or decreased, by the order ofp, or

^f2&5^ḟ&2^Tlock&
212D^Tlock&5p2. ~31!

This quadratic equation can be solved for^Tlock& ~Ref. 36!
and by inserting the noise-dependent expressions for5^ḟ&
and D we can computê Tlock&/T0 as a function of noise
intensityD whereT0 is either 1/g for the DMP orp/V for
the DPP, respectively. The results for both the DMP and
DPP are plotted in Fig. 4. A pronounced maximum for inte
mediate values of noise intensity clearly proves that no
induced frequency synchronization is accompanied by no
induced phase synchronization.

IV. OSCILLATORY SYSTEMS AND THE RICE
FREQUENCY

A. General relations for potential systems

As mentioned in Sec. II A positive-going zero crossin
can be used to count completions of a cycle in oscillat
systems. In this view the average frequency, i.e., the ave
phase velocity, turns out to be the average rate of zero cr
ings which is captured by a formula put forward by Rice.17,18

This elementary observation yields a novel way to quan
the average frequency of a phase evolution, hencef
termed the ‘‘Rice frequency,’’ and to prove frequency loc
ing in stochastic systems.16

To detail our derivation of the Rice frequency in th
section, we start from the following one-dimensional pote
tial system:

.

a

r
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ẍ1g ẋ1U8~x!5Agj1F cos~Vt ! ~32!

subjected to Gaussian white noisej of intensityD, i.e.,

^j~ t !&50, ^j~ t !j~s!&52Dd~ t2s!, ~33!

and being driven by the external harmonic forceF cos(Vt).
In Fig. 5 we show a sample path for the harmonic oscilla

ẍ1g ẋ1v0
2x5Agj1F cos~Vt !, ~34!

where we used the friction coefficientg51, the natural fre-
quencyv051, and a vanishing amplitudeF50 of the exter-
nal drive. As can be read off from Fig. 5, the velocityv5 ẋ
basically undergoes a Brownian motion and, therefore, c
stitutes a rather jerky continuous, but generally not differ
tiable signal. In particular, near a zero crossing ofv there are
many other zero crossings. In contrast to that, the coordi
x is a much smoother signal since it is determined by
integral over a continuous function,

x~ t !5x~0!1E
0

t

v~t!dt, ~35!

FIG. 4. The normalized average duration of locking episodes^Tlock& @cf. Eq.
~31!# for the DMP~top! and the DPP~bottom! exhibits an enormous maxi
mum for intermediate values of noise intensity thus proving noise-indu
phase synchronization.
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and, therefore, differentiable. In particular, near a zero cro
ing of x there are no other zero crossings. In the followin
we will take advantage of this remarkable smoothness pr
erty of x that is an intrinsic property of the full oscillator
system ~32! and disappears when we perform the ov
damped limit.

In 1944, Rice17 deduced a formula for the average num
ber of zero crossings of a smooth signal likex in the oscil-
lator equation~32!. In this rate formula enters the probabilit
density P(x,v;t) of x and its time derivative,v5 ẋ, at a
given instantt. The Rice rate for passages through zero w
positive slope~velocity! is determined by18

^ f &~ t !5E
0

`

vP~x50,v;t ! dv. ~36!

This time-dependent rate is to be understood as an ense
average. If the dynamical system is ergodic and mixing
asymptotic stationary ratêf s& can likewise be achieved b
the temporal average of a single realization. LetN(@0,t#) be
the number of positive-going zeros of the signalx in the time
interval @0,t#. Using ergodicity, the relation,

^ f s&5E
0

`

vPs~x50,v ! dv5 lim
t→`

N~@0,t# !

t
~37!

is fulfilled for the process characterized by the station
density Ps(x,v). In the following we always consider sta
tionary quantities. As explained in Sec. II A, the zero cro
ings can be used as marker events to define an instantan
phasefL(t) by linear interpolation, cf. Eq.~10!. The related
average phase velocity is the product of the~stationary! Rice
rate and 2p and, hence, called the~stationary! Rice fre-
quency,

^v&R52p ^ f s&52pE
0

`

vPs~x50,v ! dv. ~38!

d

FIG. 5. Positionx and velocityv of the undriven noisy harmonic oscillato
Eq. ~34! with friction coefficient g51, and natural frequencyv051.
Whereas the positionx is smooth the velocityv is continuous but nowhere
differentiable. Counting of zero crossings is, consequently, only possible
the x-coordinate.
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For a dynamics described by a potentialU(x) in the
absence of an external driving, i.e.,~32! with F50, the sta-
tionary density can be calculated explicitly yielding

Ps~x,v !5C expF2S v2

2
1U~x! D Y DG , ~39!

where C is the normalization constant. From this and t
application of Eq.~38!, it is straightforward to derive the
exact result,

^v&R5

A2pD expF2
U~0!

D G
*2`

` expF2
U~x!

D G dx

. ~40!

In the limit D→0, we can perform a saddlepoint approxim
tion around the deepest minimaxi ~e.g., for symmetric po-
tentials!. In this way we find the following expression vali
for D!DU5uU(0)2U(xi)u, i.e., the small noise approxi
mation,

^v&R5F(
i

expF U~0!2U~xi !

D G
AU9~xi !

G21

. ~41!

In the limit D→`, we have to consider the asymptotic b
havior of the potential, limx→6` U(x), to estimate the inte-
gral in Eq. ~40!. For potentials that can be expanded in
Taylor series about zero and that, therefore, result in a po
series of order 2m, i.e.,U(uxu→`);x2m, we can rescale the
integration variable byx5D1/2mx̃. For sufficiently largeD,
the integral is dominated by the power 2m term. In this way
we find the large noise scaling,

^v&R ;
~D→`!

Da, with a5
m21

2m
. ~42!

Applying Eqs.~40! and ~41! to the harmonic oscillator~34!
we immediately find that̂v&R5v0 , independent ofg and
for all values ofD.0. This is also in agreement with Eq
~42!. It follows becausem51 implies that, for large noise
the Rice frequencŷv&R does not depend onD at all. Note,
however, that in the deterministic limit, i.e., forD50, we
have the standard result,

^v&R 5
~D50!HAv0

22g2/4 for g,2v0

0 for g>2v0

, ~43!

which explicitly does depend on the friction strengthg.0.
Therefore, the limitD50 is discontinuous except in the un
damped situationg50.

The similarity of Eqs.~40! and~41! with rates from tran-
sition state theory44 will be addressed below when we di
cuss the bistable potential.

B. The role of colored noise

It is well known that the Rice frequency cannot be d
fined for stochastic variables that integrate increments of
Wiener process~white noise!. From Eq.~32! this holds true
for the velocityv̇5 ẍ. This is so, because the stochastic t
jectories of degrees of freedom being subjected to Gaus
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white noise forces are continuous but are ofunbounded
variation and nowhere differentiable.9,45 This fact implies
that such stochastic realizations cross a given thresh
within a fixed time interval infinitely often if only the nu
merical resolution is increasedad infinitum. This drawback,
which is rooted in the mathematical peculiarities of idealiz
Gaussian white noise, can be overcome if we consider
stead a noise source possessing a finite correlation time,
colored noise, see Ref. 46. To this end, we consider her
oscillatory noisy harmonic dynamics driven by Gaussian
ponentially correlated noisez(t), i.e.,

ẋ5v, ~44!

v̇52gv2v0
2x1Agz~ t !, ~45!

ż52
z

t
1

1

t
j, ~46!

with z(t) obeying^z(t)&50 and

^z~ t !z~s!&5
D

t
expS 2

ut2su
t D . ~47!

Following the same reasoning as before we find for the R
frequency ofx(t) as before,

^v&x5E
0

`

dvE
2`

`

dzv Ps~0,v,z! ~48!

5
v0

A11gt
. ~49!

Likewise, upon noting that within a time intervalDt,
2Dt(2g ẋ2v0

2x1Agz),v,0, or 2Dt(2v0
2x1Agz)

1O(Dt)2,v,0, respectively, the Rice frequency of th
zero crossings with positive slope of the processv(t) is
given by

^v&v5E
2`

`

dxE
x

`

dz~Agz2v0
2x! Ps~x,0,z!, ~50!

which is evaluated to read

^v&v5Av0
21

g

t
. ~51!

The result in~49! shows that for small noise colort the Rice
frequency for ^v&x assumes a correction̂v&x;v0(1
2 (gt/2)), ast→01. In clear contrast, the finite Rice fre
quency^v&v for the velocity processv(t) diverges in the
limit of vanishing noise color proportional tot21/2.

C. Relation between Rice and Hilbert frequency

To exemplify the relation between the Rice frequen
^v&R and the Hilbert frequencŷv&H5^ḟH&, again we con-
sider the damped harmonic oscillator Eq.~34! agitated by
noise alone. In Fig. 6 we show a numerically evalua
sample path and the corresponding Hilbert phase~normal-
ized to 2p and modulo 1! using the parametersg51, D
51, v051, F50. An important point to observe here is th
aroundt'3 andt'9 the Hilbert phasefH does not increase
by 2p after two successive passages through zero with p
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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tive slope. This shall illustrate the difference between
Hilbert phase and the natural phase. In Sec. II C this ob
vation was already mentioned as a consequence of the
local character of the Hilbert transform. In particular, sh
and very small amplitude crossings to positivex are not
properly taken into account by the Hilbert phase since t
only result in a small reduction offH. This leads us to
conjecture that quite generally

^v&R>^v&H ~52!

holds. In fact, for the case of the harmonic oscillator th
generates a stationary Gaussian process one even can
this conjecture by deriving explicit expressions for^v&R and
^v&H . As usual, letS(v) denote the spectrum of the statio
ary Gaussian processx. Then the Rice frequency can b
recast in the form of18

^v&R5F*0
`v2 S~v!dv

*0
`S~v!dv G1/2

. ~53!

A similar expression~additionally involving an Arrhenius-
type exponential! exists when considering nonzero crossin
as in Eq.~53!, but crossings of an arbitrary threshold. In Re
16 it was shown that the Hilbert frequency of the same p
cessx is given by a similar expression, namely,

^v&H5F*0
`v S~v!dv

*0
`S~v!dv G . ~54!

Interpreting the quantityS(v)/*0
`S(v̂)dv̂ as a probability

density P(v), vP(0,̀ ), we can use the property that th
related variance is positive, i.e.,

E
0

`

v2P~v!dv>F E
0

`

vP~v!dvG2

. ~55!

Taking the square-root on both sides of the last inequa
immediately proves Eq.~52!.

FIG. 6. Signalx(t) ~top panel! and corresponding Hilbert phasefH(t)/2p
modulo 1~bottom panel! for the undriven harmonic oscillator Eq.~34! with
friction strengthg51, noise intensityD51, natural frequencyv051, and
driving amplitudeF50. Note that although there are successive zero cro
ings of x with positive slope neart'3 andt'9 the Hilbert phase does no
increase by 2p.
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Using the spectrum of the undriven noisy harmonic o
cillator,

S~v!5
4gD

~v0
22v2!21g2v2 ~56!

and employing Eqs.~53! and~54!, it is easy to see that both
^v&R and^v&H do not vary withD. We have already shown
above that̂ v&R5v0 . In contrast to this,̂ v&H is a mono-
tonically decreasing function ofg that approachesv0 from
below in the limitg→01.

D. Periodically driven noisy harmonic oscillator

The probability density of the periodically driven nois
harmonic oscillator can be determined analytically by tak
advantage of the linearity of the problem. Introducing t
mean values of the coordinate and the velocity,^x(t)& and
^v(t)&, the variables

x̃5x2^x&, ṽ5v2^v& ~57!

obey the differential equation of the undriven noisy harmo
oscillator. In the asymptotic limitt→` the mean values con
verge to the well known deterministic solution,

^x~ t !&5
F

A~v0
22V2!21g2V2

cos~Vt2d!, ~58!

^v~ t !&52V
F

A~v0
22V2!21g2V2

sin~Vt2d!, ~59!

d5arctanF gV

v0
22V2G , ~60!

with the common phase lagd. Therefore, after deterministic
transients have settled the cyclostationary probability den
of the driven oscillator reads

Pcs~x,v;t !5Ps~x2^x~ t !&,v2^v~ t !&! ~61!

with the Gaussian density

Ps~x,v !5
v0

2pD
expF2S v2

2
1

v0
2x2

2 D Y DG . ~62!

Using Eq. ~38! the cyclostationary probability density~61!
yields an oscillating expression for the Rice frequen
^v&R (t). The time dependence of this stochastic average
be removed by an initial phase average, i.e., a subseq
average over one external driving period 2p/V,

^v&R5E
0

2p/V

^v&R~ t !
Vdt

2p
~63!

5E
0

2p/V E
0

`

v Pcs~0,v;t !dvVdt. ~64!

The resulting analytical and numerically achieved values
the Rice frequency as a function of the noise intensityD are
shown in Fig. 7 for fixedv051, F51, V53 and various
values ofg. For small noise intensitiesD the Rice frequency
^v&R is identical to the external driving frequencyV,

s-
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whereas for large noise intensities the external drive beco
inessential and the Rice frequency approaches^v&R5v0 .

Further insight into the analytic expression~64! is gained
from performing the following scale transformations:

t̃ 5V t2d and x̃5
x

A2D/V
~65!

from which we immediately find the rescaled velocity,

ṽ5
dx̃

d t̃
5

V/A2D

V

dx

dt
5

v

A2D
. ~66!

Inserting these dimensionless quantities into Eq.~64! yields

^v&R5v0I ~Ã,ṽ0!, ~67!

I ~Ã,ṽ0!5
1

p E
2d

2p2dE
0

`

ṽ exp@2~ ṽ1Ã sin t̃ !2

2~ṽ0 Ã cost̃ !2# dṽ d t̃, ~68!

where we have defined further dimensionless quantities

Ã5
V

A2D

F

A~v0
22V2!21~gV!2

, ~69!

ṽ05
v0

V
. ~70!

Due to the 2p periodicity of the trigonometric functions, th
integral ~68! does not change when shifting the interval f
the integration with respect tot̃ back to@0,2p#. Hence,I is
only a function of Ã and ṽ0 . An expansion for smallÃ
yields

FIG. 7. Rice frequencies for the driven harmonic oscillator Eq.~34! with
natural frequencyv051, driving amplitudeF51, and driving frequency
V53 for different values of the friction strengthg. The numerically
achieved values~symbols with error bars! match the analytical curves de
termined using Eq.~64!.
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^v&R5v0F11
12ṽ0

2

2
Ã21O~Ã4!G ~71!

which implies for largeD/F2,

^v&R2v0;
F2

D
. ~72!

The opposite extreme,Ã→` or D/F2→0, can be extracted
from a saddlepoint approximation aroundṽ5Ã and t̃
53p/2. Following this procedure, the integral~68! gives the
constant 1/ṽ0 . This directly implieŝ v&R5V.

The crossover between these two extremes occurs w
the first correction term in~71! is no longer negligible, i.e.,
for

u12ṽ0
2u

2
Ã2'1. ~73!

When solved for the crossover noise intensityDco/F2, this
yields

Dco

F2 '
uV22v0

2u

4@~v0
22V2!21~gV!2#

, ~74!

which, for the parameters used in Fig. 7, correctly gives v
ues between 1022 and 1021.

In Fig. 7 the parametersF, V, andv0 and, hence,ṽ0 are
identical for all curves. SolvingÃ(g1 ,D1)5Ã(g2 ,D2) with
respect toD2 shows that the curves become shifted horizo
tally as in the log-linear plot in Fig. 7. Another way to ex
plain this shift is by noting thatdDco/dg,0.

V. BISTABLE KRAMERS OSCILLATOR:
NOISE-INDUCED PHASE COHERENCE AND SR

A. Rice frequency and transition state theory

The bistable Kramers oscillator, i.e., Eq.~32! with the
double well potential,

U~x!5
x4

4
2

x2

2
, ~75!

is often used as a paradigm for nonlinear systems. With
erence to Eq.~32! the corresponding Langevin equation
given by

ẍ1g ẋ1x32x5Agj1F cos~Vt ! ~76!

which, in the absence of the external signal,F50, generates
the stationary probability distribution,

Ps~x,v !5C expH 2S v2

2
1

x4

4
2

x2

2 D /DJ ~77!

with the normalization constantC. Using this stationary
probability density and Eq.~38! we can determine the Ric
frequency analytically. In Fig. 8 we depict this analytic res
together with numerical simulation data including error ba
The simulation points perfectly match the analytically det
mined curve. As expected for the asymptotically domina
quartic term, i.e.,m52 @cf. Sec. IV A, especially Eq.~42!#,
the Rice frequency scales as^v&R;D1/4 for large values of
D.
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Comparing the Rice frequency formula, Eq.~38!, with
the forward jumping ratekTST

1 from the transition state
theory,44

kTST
1 5Ẑ0

21E dx dvu~v ! d~x!v exp@2H~x,v !/D#, ~78!

where

Ẑ05E
x,0

dx dv exp@2H~x,v !/D#, ~79!

andH(x,v)5(1/2)v21(1/4)x42(1/2)x2 represents the cor
responding Hamiltonian, one can see that the difference
tween both solely rests upon normalizing prefacto
Whereas the ratekTST

1 is determined by the division of th
integral Eq.~78! by the ‘‘semipartition’’ functionẐ0 , the rate
^v&R/2p is established by dividing the same integral appe
ing in Eq. ~78! by the complete partition function

Z05E dx dv exp@2H~x,v !/D#. ~80!

Particularly for symmetric ~unbiased! potentials, i.e.,
V~2x!5V(x), this amounts to the relationZ052Ẑ0 , hence,

^v&R5p kTST
1 . ~81!

At weak noise,Eb /D@1, this relation simplifies to@cf. Eq.
~41!#

^v&R'
v0

2
exp@2Eb /D#, ~82!

wherein Eb denotes the barrier height andv0 the angular
frequency inside the well (v05&). Indeed, in the small-to-
moderate regime of weak noise this estimate nicely pred
the exact Rice frequency~cf. Fig. 8!.

B. Periodically driven bistable Kramers oscillator

The periodically driven bistable Kramers oscillator w
the first model considered to explain the phenomenon of

FIG. 8. Rice frequencies for the undriven bistable oscillator Eq.~76! with
friction strengthg51. Numerical values with error bars match the analy
cally determined values~dashed line! using Eq.~38! with Eq. ~77!. As ex-
pected, for large values ofD the Rice frequency scales likeD1/4. The solid
line presents the leading weak noise approximation in Eq.~82!.
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~Ref. 47! and it still serves as one of the major paradigms
SR.19,20 In its overdamped form it was used to support e
perimental data~from the Schmitt trigger! displaying the ef-
fect of stochastic frequency locking21,42 observed for suffi-
ciently large, albeit subthreshold signal amplitudes, i.e.,
Fmin,F,2/A27. From a numerical simulation of the ove
damped Kramers oscillator and computing the Hilbert ph
it was also found that noise-induced frequency locking
large signal amplitudes was accompanied by noise-indu
phase coherence, the latter implies a pronounced minim
of the effective phase diffusion coefficient,

D̃eff5
1
2 ] t@^~f~ t !!2&2^f~ t !&2# ~83!

occurring for optimal noise intensity. Based on a discr
model,48 analytic expressions for the frequency and pha
diffusion coefficient were derived that correctly reflect t
conditions for noise-induced phase synchronization15 for
both periodic and aperiodic input signals~cf. Sec. III!.

To link the mentioned results to the Rice frequency
troduced above we next investigate the behavior of
Kramers oscillator with nonvanishing inertia.16 We show nu-
merical simulations of Eq.~76! with the parametersV
50.01,g50.5 and diverse values ofF in Fig. 9. For larger
values ofF, a region aroundD'0.05 appears where th
Rice frequency is locked at the external driving frequencyV.
Since for larger values of the external drivingF smaller val-
ues of the noise parameterD are needed to obtain the sam
rate for switching events, the entry into the locking regi
shifts to smaller values ofD for increasingF.

In Fig. 10 we present numerical simulations for fixe
F50.384, V50.01 and different values of the dampin
coefficient g. Note that the value ofF is slightly smaller
than the threshold valueF t52/A27'0.3849 . . . . For
smaller values ofg wider coupling regions appear since it
easier for the particle to follow the external driving fo
smaller damping.

FIG. 9. Numerically determined Rice frequencies of the periodically driv
bistable Kramers oscillator Eq.~76! computed with the friction coefficient
g50.5 and the angular driving frequencyV50.01 and plotted as a function
of the noise intensityD. Different curves correspond to various amplitud
of the harmonic driveF. For larger values ofF wider regions appear where
the Rice frequency is locked to the external driving frequencyV.
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To check whether frequency synchronization is acco
panied by effective phase synchronization we have also c
puted the averaged effective phase diffusion coefficient,
time defined by the following asymptotic expression:

Deff5 lim
t→`

1

2t
^@f~ t !2^f~ t !&#2&. ~84!

It should be clear that the instantaneous ‘‘Rice’’ phasef(t)
was determined via zero crossings. The connection with
instantaneous diffusion coefficient defined in~83! is estab-
lished by applying the limitt→`,

Deff5 lim
t→`

1

t E0

t

D̃eff~ t̃ !d t̃. ~85!

In Fig. 11 we show numerical simulations of the effecti
phase diffusion coefficientDeff as a function of the noise
intensityD. The phase diffusion coefficient displays a loc
minimum that gets more pronounced if the damping coe
cient g is decreased. Indeed, phase synchronization rev
itself through this local minimum of the average phase d
fusion coefficientDeff in the very region of the noise inten
sity D where we also observe frequency synchronization,
Fig. 9. The qualitative behavior of the diffusion coefficie
agrees also with a recently found result related to diffusion
Brownian particles in biased periodic potentials.49 A neces-
sary condition for the occurrence of a minimum was an
harmonic potential in which the motion takes place. In t
biased anharmonic potential the motion over one period c
sists of a sequence of two events. Every escape over a ba
~Arrhenius-type activation! is followed by a time scale in-
duced by the bias and describing the relaxation to the n
minimum. The second step is weakly dependent on the n
intensity and the relaxation time may be even larger than
escape time as a result of the anharmonicity. For such po
tials the diffusion coefficient exhibits a minimum for optim
noise, similar to the one presented in Figs. 11 and 12.

FIG. 10. Numerically determined Rice frequency as a function of the n
intensityD for the periodically driven Kramers oscillator Eq.~76! with the
angular driving frequencyV50.01 and driving amplitudeF50.384 for dif-
ferent values of the friction coefficientg. For smaller values ofg wider
regions of frequency locking appear.
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The average duration of locking episodes^Tlock& can be
estimated by equating the second moment of the phase
ference~between the driving signal and the oscillator! to p2

@cf. Eq.~31!#.36 A rough estimate, valid for the regions whe
frequency synchronization occurs, i.e., where the dynam
of the phase difference is dominated by diffusion, thus re
^Tlock&5p2/2Deff or, when expressed by the number of dri
ing periods50

^nlock&5
Vp

2Deff
. ~86!

In this way we estimate from Figs. 11 and 12^nlock&
;150– 15 000 forV50.01 and relevantDeff varying be-
tween 1024– 1026.

eFIG. 11. Effective phase diffusion coefficient vs noise intensity for t
periodically driven bistable Kramers oscillator Eq.~76! with angular driving
frequency V50.01, driving amplitudeF50.384, which is close-to-
threshold driving, and for different values ofg. For smaller values of the
friction coefficientg phase diffusion is diminished.

FIG. 12. Effective phase diffusion coefficient vs noise intensity for t
periodically driven bistable Kramers oscillator Eq.~76! with friction coeffi-
cient g50.5, angular driving frequencyV50.01, plotted for the undriven
caseF50 and for driving with an amplitudeF50.2.
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C. SR without noise-enhanced phase coherence

In the previous examples we have shown how freque
synchronization, revealing itself through a plateau of the o
put frequency matching the harmonic input frequency, a
reduced phase diffusivity together mark the occurrence
noise-enhanced phase coherence. Optimal noise inten
were found in the range where one also observes SR~in the
overdamped system!. In order to underline that under certa
conditions SR exists but may not be accompanied by ef
tive phase synchronization we present simulation results16,51

for the Rice frequency and the diffusion coefficient in Fig.
obtained for the bistable Kramers oscillator with a frictio
coefficientg51 and external frequencyV50.1. For noise
intensities D'0.15 the output frequency matchesV and
nearby the overdamped Kramers oscillator exhibits the p
nomenon of SR, i.e., one finds a maximum of the spec
power amplification.19,20 In contrast, we neither can find
minimum in the diffusion coefficient nor a plateau aroundV
meaning that no phase coherence and not even frequ
synchronization can be observed. The reason is that the
ternal signal switches much too fast for the bistable sys

FIG. 13. For friction coefficientg51 and external driving frequencyV
50.1 the bistable Kramers oscillator does neither exhibit frequency s
chronization nor noise-enhanced phase coherence but still stochastic
nance occurs for noise intensities in the range of values (D'0.15), where
^v&R'V ~see also Ref. 51!.
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to follow; note that in the two-state description with Arrhe
ius rates the prefactora0 @cf. Eq.~19!# restricts the switching
frequency from above. Noise-induced phase coherence
quires a device with a faster internal dynamics, i.e.,V
!a0 .

VI. CONCLUSIONS

We underline that the noise-induced phase synchron
tion is a much more stringent effect than stochastic re
nance. This statement becomes most obvious when reca
that the spectral power amplification attains a maximum
an optimal noise intensity for arbitrarily small signal amp
tudes and any frequency of the external signal. In contr
noise-induced phase synchronization and even freque
locking are nonlinear effects and as such require amplit
and frequency to obey certain bounds~see the ‘‘Arnold
tongues’’ in Sec. III!. We expect that the functioning of im
portant natural devices, e.g., communication and informa
processing in neural systems or subthreshold signal detec
in biological receptors, rely on phase synchronization rat
than stochastic resonance.
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