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Frequency and phase synchronization in stochastic systems
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The phenomenon of frequency and phase synchronization in stochastic systems requires a revision
of concepts originally phrased in the context of purely deterministic systems. Various definitions of
an instantaneous phase are presented and compared with each other with special attention paid to
their robustness with respect to noise. We review the results of an analytic approach describing
noise-induced phase synchronization in a thermal two-state system. In this context exact expressions
for the mean frequency and the phase diffusivity are obtained that together determine the average
length of locking episodes. A recently proposed method to quantify frequency synchronization in
noisy potential systems is presented and exemplified by applying it to the periodically driven noisy
harmonic oscillator. Since this method is based on a threshold crossing rate pioneered by Rice the
related phase velocity is termed the Rice frequency. Finally, we discuss the relation between the
phenomenon of stochastic resonance and noise-enhanced phase coherence by applying the
developed concepts to the periodically driven bistable Kramers oscillat@0@3 American
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Studying synchronization phenomena in stochastic sys- variety of methods to define an instantaneous phigdg of
tems necessitates a revision of concepts originally devel- a signal or a dynamics. For a clear cut separation of deter-
oped for deterministic dynamics. This statement becomes ministic and noise-induced effects it is essential to assess the
obvious when considering the famous phase-locking robustness of each of these different phase definitions with
effect;* unbounded fluctuations that occur, for instance,  respect to noise. Section Il is devoted to this issue. Since we
in Gaussian noise will always prevent the existence of a do not distinguish between dynamical and measurement
strict bound for the asymptotic phase difference of two  nojsé our treatment is also tied to the question how syn-

systems. Nevertheless, a reformulation of the synchroni-  chronization can be detected within any realistic experimen-
zation phenomenon in the presence of noise is possible by (5] gata.

guantifying the average duration (T, of locking ep-
ochs that are disrupted by phase slips. In case that
(T10c?>T,, where T is some characteristic time of the
dynamics, e.g., the period of an external drive or the in-
verse of some intrinsic natural frequency, it is justified to
speak about effective phase synchronization.

The synchronization properties of a noisy system can be
classified in a hierarchical manner: stochastic phase locking
always implies frequency locking while the converse is not
true in general. On the other hand, small phase diffusivity is
necessary but not sufficient for phase synchronization. This
will become clear in Sec. Ill when we review an analytic
approacf? to stochastic phase synchronization developed for
I. INTRODUCTION a thermal two-state system with transitions described by

noise-controlled rates.

From the conceptual point of view different degrees of ~ A recently proposed meth&iito measure the average
synchronization can be distinguished: complete synchronphase velocity or frequency in stochastic oscillatory systems
ization3 generalized synchronizatidriag synchronizatiodi, ~based on Rice’s rate formula for threshold crossihgwill
phase synchronizatidh, and burst (or train synchron- be presented and discussed in Sec. IV. The Rice frequency
ization® In the following, we focus our attention on phase proves to be useful especially in underdamped situations
synchronization in stochastic systems that has attracted ravhereas the overdamped limit yields only finite values for
cent interest for the following reasons: in many practical apcolored noise. Its relation to the frequency based on the
plications the dynamics of a system, though not perfectlywidely used Hilbert phasécf. Sec. 11Q is discussed and
periodic, can still be understood as the manifestation of allustrated.

stochastically modulated limit cycfe!® As examples, we In the final Sec. V we connect the topic of stochastic
mention neuronal ac_tivit}/l, the cardiorespiratory systeth, resonancéSR) (Refs. 19, 2Dwith results on noise-enhanced
or population dynamick’ phase coherené@ To this end we study the synchronization

Given a data set or some model dynamics there exists groperties of the bistable Kramers oscillator driven exter-
nally by a periodic signal?> As a complement to the fre-
3Electronic mail: freund@physik.hu-berlin.de quently investigated overdamped limit, we consider here the
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underdamped case employing the methods presented in Semper half planev>0 are only possible fronx<0 to x

IV. >0, in the lower half plane only fromx>0 to x<<0. This

insight becomes even more obvious from a geometrical in-

terpretation: as the noise exclusively acts on the velagjty

cf. Eq.(2), it can only effect changes in the vertical direction

(in x, v-spacg. Along the vertical linex=0, however, the

A. Natural phase ¢" angular motion possesses no vertical component while radial
A phase occurs in a quite natural way when Olescribinglﬂotion is solely in _the vertical Qirection and, therefore, only

the cyclic motion of an oscillator in phase space. self-2ffected by the noise. From this we conc_lude th".“ betw_e_en

sustained oscillators are nonlinear systems that asymptot?-UbS?quem ZEro Crossings of the coordinate with po sitive

velocity the phase has increased by an amountmofThis

cally move on a limit cycle. The instantaneous position in . di tablish impl tional instruction how t
phase space can be represented through instantaneous am jieing establishes a simple operational instruction-how 1o
easure the average phase velocity of stochastic systems.

tudea(t) and phasep™(t). A systematic approach to relate ) O
the amplitude and phase dynamics to the dynamics formuwe will come back to this point in Sec. IV.

lated in original phase space was developed by Bogoliubov
and Mitropolski?® Their method starts from the following
decomposition of the dynamics: B. Linear interpolating phase ¢t

II. PHASE DEFINITIONS IN THE PRESENCE OF
NOISE

X=v, (1) As we have just seen zero crossings can be utilized to
. P mark the completion of a cycle. This can be generalized to
v=—pXFHX,LE, ), 2) the crossings of an arbitrary threshold with positive velocity
where the functiorf comprises all terms of higher than first or even to the crossing of some separatrix. In this connection
order in x (nonlinearitie$, velocity dependent terméric-  the concept of isochrones of a limit cycle has to be
tion), and noise. In their work Bogoliubov and Mitropolski mentioned”” All of these extensions of the natural phase
considered the functioh to be a small perturbation of order require a thorough knowledge of the dynamics and the phase
€ which means that the system is weakly nonlinear and thépace structure. In many practical applications, however, the
noise or the external forces are comparatively small as not tdetailed phase portrait is not known. Instead, one is given a
distort the harmonic signal too much. The definition of andata series exhibiting a repetition of characteristic marker
instantaneous phase proceeds by expressing the pogitionevents, e.g., the spiky peaks of neural activity, the R-peaks of
and the velocity in polar coordinatesN and ¢V, an electrocardiogram, or pronounced maxima as found in
opulation dynamics. These marker events can be used to
x(t)=a"(tycog ¢"(1)], ®) Einrgj)oint the gompletion of a cycl&, and the beginning of a
v(t)=—wea(t)sin $N(1)] (4) subsequent ond+ 1. It is then possible to define an instan-

L . . . .
which yields by inversioff taneous phaseé-(t) by linear interpolation, i.e.,

t—t,

V()= \(0) +[v (D) wo]?, (5) PHO= = 2mtkem (hSt<ter), (10
SNt = arcta+ - M (6)  Where the times, are fixed by the marker events. Reexpress-
(1) ing the time seriex(t) of the system as

It should be noted Fhat a meaningful clockwise rot'atlon in th'e. x(t)=al(t) cog 4L (1)], (11)

X, v-plane determines angles to be measured in a specific

way depending on the sign @f,. Using Eqgs.(3), (4), (5), then defines an instantaneous amplitatigt). The benefit of

and (6) it is straightforward to transform the dynamicsxn such a treatment is to reveal a synchronization of two or

andv, Egs.(1) and(2), into the following dynamics foaV more such signals; whereas the instantaneous amplitudes

and ¢N: 2% and, therefore, the time series might look rather different, the
N Ny N i N phase evolution can display quite some similarity. If the av-

aN= _ f(a"cog ™), —~wga sin(¢"),t,¢) sin(o), 7 erage growth rates of phases matohtwithstanding the fact

o that phases may diffuse rapidllyhe result is termed fre-
_ f(aN Ny N sin( M) t, quency locking. Small phase diffusion, in addition to fre-
dN=wy— (a"cos¢7) ww;,Na siN¢7).1.¢) cog ¢N). quency locking, means that phases are practically locked
0

®) during long episodes that occasionally are disrupted by phase
slips caused by sufficiently large fluctuations. This elucidates
The linex=0 corresponds to angleg"=m/2+nm,neN.  the meaning of effective phase synchronization in stochastic
As can be read off from E8), the phase velocity always systems.
assumes a specific value for=0i.e., As should be clear from its definition the linear phase
MNx=0)=w ) relies on the clear identification of marker events. With in-
0 creasing noise intensity this identification will fail since suf-
This has the following remarkable consequence. We see théitiently large fluctuations may either mask true or imitate
even in the presence of noise passages through zero in tepurious marker events. On the other hand, in some cases,
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e.g., for excitable systems, fluctuations can be essential for Moreover, the construction by a convolution brings the

the generation of marker events, i.e., marker events may bidilbert phase in close contact with the wavelet transform that

noise-induced. is widely used to compute a time-dependent spectral decom-
As a final remark, let us mention that relative maxima ofposition of nonstationary signaisBy virtue of Eq.(13) it is

a differentiable signak(t) correspond to positive-going ze- evident that the Fourier transform of the analytic sigh@b)

ros of its derivativex(t). However, this seemingly trivial satisfies the relation,

connection is overshadowed by complications if the deriva-

tive itself is a nonsmooth function that does not allow to  7(y)=[1+sgn(w)] X(w)=2 6(w) X(w), (16)

easily extract the number of zero crossirigs Sec. IV and

Fig. 9. whered(-) is the step function. Equatioil6) shows that all
positive Fourier components of the original signal contribute

C. Hilbert phase ¢ with equal weights. Selecting, instead, a certain frequency

In situations where a measured sigrét) exhibits a lot band by using a subsequent Qauss_ian filter frequency
of irregularity it is not quite clear how to define a phase—theSPaCe corresponds to a convolution with the Morlet wavelet
signal might look far from a perturbed harmonic or eVen(Gabor function. Generalized phase definitions and the

periodic one and marker events cannot be identified unarrW‘"“’elet transform were employed to detect phase-

biguously. The concept of the analytic signal as introduceiﬂa(;ggonous activity in the braifiand in a chaotic laser

by Gabof® offers a way to relate the signa(t) to an instan-

taneous amplituda*(t) and a phasep(t). The physical

relevance of a such constructed phase is a question of its

own; for narrow-band signals or harmonic noise it has a cleap. Discrete phase ¢P°

hysical meaning whereas the general case requires further . S .
PRy 9 9 d Multistability is one of the crucial consequences of non-

considerationscf. Appendix A2 in Ref. 23 linearity and plays a dominant role for many important top-
The analytic signal approach extends the real signalI "y play ! y imp P

_ . _ iIcs, e.g., evolution, information processing and communica-
x(t) to a complex one(t)=x(t)+iy(t)=a"(t) exd ¢"(t)] ) ) )
with e imaginary pary(t) resuling ffom an appropriate . c1L FBITCE U 8 Mo L EEE WU R
transformation of the real pax(t). Instead of takingy(t) ferent states that are d?;ectl tied to the performance of a
=—X(t)/wy as for the natural phase we seardlt) as the Y P

20 ; _
result of a convolution ok(t) with some appropriate kernel task. The phgnomenon of SR} .for mstanpe, can.be ob .
K(1), i.e., served in a bistable system. Typically, the information that is

processed in a bistable system does not require to keep track
* of a continuum but is rather contained in the switching
y(t)=f X(DK(t=7)dr. (12 events between the two statd$* Hence, it is desirable to
. link the dichotomous switching process to a description in
Now, appropriate means that the kernel has to be choseng ms of an instantaneous phase. Since switching to and fro
such that the method reproduces the phase of a harmoniggiitytes one cycle and, thus, corresponds to a phase incre-
signal. AppIymg the convolution theorem it is easy .to S€€ment of 2 the linear interpolating phasét can be readily
that the Fourier transfornY(w) of the transformed signal qonsirycted employing switchings as marker events of half-
y(t) should be related to the Fourier transfor(w) of the  cycles. Furthermore, the Hilbert phase can be easily com-
original signalx(t) by a phase shift that transforms a cosineteq. Alternatively, it is possible to use the switching pro-
Into a sine, 1.e., cess (between —1 and +1) and construct a discrete
Y(w)=—isgnw)X(w), (13 instantaneous phasgP(t) changing discontinuously at the
switching events. The last-mentioned instantaneous phase
obtained simply by multiplying the number of switches
the number of renewals in renewal theSiyk(t) by the
value, i.e., ¢°(t) =k(t) 7. The instantaneous state, in turn,
1 © X(T) can be obtained from the discrete phase viét)
y(O)=x"(t)= ;Pﬁwt—rdT' (14 =cog¢P®)]. In Fig. 1 we show how the three alternative
phasespt, ¢, and¢P agree in the description of a dichoto-
The symbolP in front of the integral in Eq(14) is a re-  mous switching process. Note that the natural phslig) is
minder that the integral has to be evaluated in the sense @élated to the underlying process in real phase space and,
the Cauchy principal value. The fact that the Hilbert ptfdse, hence, cannot be deduced from the two-state signal. The ad-
xM(t) vantage of the discrete phase is that it allows an analytic
¢H(t)=arcta+— (15  treatment of effective phase synchronization in stochastic
X(t) bistable systems. This will be addressed in Sec. Ill.
arises as the result of a convolution instead of a differentia- The robustness of the discrete phase with respect to
tion makes it less sensitive to short-lived small fluctuationsnoise comes into play not when making the “transition”
This observation was already reported by Vainstein androm the switching process to the instantaneous plige)
Vakman®° but when constructing the switching events from the continu-

) . ) . ) s
where sgn() is the sign function. By an inverse Fourier

transform we thus find tha€(t) = 1/(#t) which implies that
y(t) is related tox(t) via the Hilbert transform,
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Transitions between the input states are governed by the
rates,

10

WOMP= o and WEPRt)= D) S(t—t,), 17)

n=—o

where a single realization of the DPP is characterized by
deterministic switching times,=(n7+ @) Q1. Here, ¢
is the initial phase of the input signal rendering the periodic
process nonstationafgyclostationary. To achieve strict sta-
tionarity we average the periodic dynamics with respect to
¢ Which is equidistributed over the intervidd,2u).
In the absence of an input signal the two states are sup-
0 ! s . posed to be symmetric and the hopping rates for both direc-
0 20 4 60 tions are identical and completely determined by a prefactor
t [in arb. units] ag, the energy barrieAU, and the noise intensit®. The
FIG. 1. The linear interpolating phase, the Hilbert phase, and the discret6€ntral assumption of our analysis is that the input signal
phase agree in the description of a dichotomous switching process. modifies the transition rates of the output solely through the
phase difference in the following way:

ous stochastic trajectory. At the level of a Markovian switch- Weu B _ AU+Aa(p)
ing process noise enters only via its intensity that changes (d)=9(¢)=aoexp - D
transition rates.

o/n

: (18

where the functiono(¢)=cos@)==x1 and the amplitude
A<AU=0.25 to keep the signal subthreshold. This defini-

) ) ) tion introduces two noise-dependent time scales,
In systems of dimensiod>1 there are various ways to

define one or even more instantaneous phases: projecting the -~ A
) : . . and a,=a(D)exp =| (19
2D-dimensional phase space onto two-dimensional surfaces, D

choosing Poincarsections or computing the Hilbert phase with (D)= aoexp(—AU/D). The function o(4) favors

for each of the coordinates. Many of the methods can only be ; : . . .
. . . phase differences with even multiples @f i.e., in-phase
done numerically and always require to consider the dynam="_ "~ .
o S - . configurations.
ics in detail in order to check whether a made choice is . . .
appropriate. We will not elaborate these details here but refer A description of the stochastic evolution of the phase
pprop difference is based on the probabilitiP$¢,t|bg,to) to ex-

to Ref. 29(especially Chap. )0 and references therein. perience a phase differenag at time t conditioned by a

phase difference, at timety. Due to the discrete character

E. Phases in higher dimensional systems

A
a;=a(D) ex;{ )

III. ANALYTIC TREATMENT OF A DRIVEN NOISY

BISTABLE SYSTEM of ¢ (allowing only for multiples of) we.t.)ri(_afly deno_te
. P=P(¢p=km,t|¢o,tp). Then the probabilistic evolution
A. Setup of the doubly dichotomous system operator reads witly,=g(¢=k) from (18),

In this section we consider a stochastic bistable system, AP (1)
for instance a noisy Schmitt trigger, which is driven exter- g
nally either by a dichotomous periodic proceé&PP or a
dichotomous Markovian proces®MP). The dichotomous While the last two terms on the right-hand side of E2Q)
character of the input shall be either due to a two-state filaccount for the change @f due to transitions of the output
tering or be rooted in the generation mechanism of the Sigie operatoﬂ: reflects switches of the input,
nal. The bistable system generates a dichotomous output sig-
nal. For convenience we choose to label input and output LP=W. (Pyi1—Py), (21)
states with values+1 and —1, respectively. The DPP is
completely specified by its angular frequen€y= /T,
where T, is the half-period. Correspondingly, the DMP is

. . . . _1
fully characterized by its average switching rate T, . initial phaseg,. Since “temporal” and “spatial” contribu-

s|nce both input and output are t\_/vo—§tate varlablgs It 'Sions in Eq.(21) are separable we can perform this average
possible to study phase synchronization in terms of d|scret<5rior to the calculation of any moment @f yielding
input and output phase;,(t) and ¢,.(t), respectively.

Consequently, also the phase differenggt)= o, (1) 27 dey nT+ey| QO

Zgu(t) is a di i it T P - =—. (2
din(t) is a discrete quantity that can assume positive and (W2 0 Q g

negative multiples ofr. From the definition of the phase

difference¢ it follows that each transition between the out- From Eq.(22) we see that thepy-averaged DPP formally

put statesncreasesy by m, whereas each transition between looks equivalent to a DMP with the transition rd#. Of

the input stateseducesg by . course, initial phase averaging does not really turn a DPP

=LPy(t)+ gk 1Py 1(t) — gP(1). (20)

with the related input switching rat&¥.. given by Eq.(17).
As mentioned above the nonstationa(gyclostationary
character of the DPP can be cured by averaging over the

0 2 n=—o
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into a DMP. The subtle difference is that whigmoments
of the DMP change in time continuously corresponding
¢-moments of the DPFbefore thepg-average are still dis-
continuous, hence, temporal derivatives of functiong ¢f

have to be computed with care before initial phase

averaging:>%®

B. Noise-induced frequency locking

Using standard techniqu¥ave can derive the evolution
equation for the mean phase differedde from Eq. (20),

<¢>: —(win) T (0ou) (23

aw a
:_<win>+5(314'32)_5(32_31)(@- (24
Here,(w;,) denotes the average frequency of the input phas
and equalsys for the DMP and() for the DPP. Assuming
higher moments uncoupled, i.€q(®))xa({¢)), Eq. (23
is Adler’s equatiof> 8 arising in the context of phase lock-
ing. Note that here both the frequency mismatah
=—(wp+ (7/2) (a,+a,) and the synchronization band-
width A;=(7/2) (a,—a,;) are noise dependent. This eluci-
dates the opportunity to achiemeise-inducedrequency and

effective phase locking. For the short-time evolution a nec-

essary condition for locking ifA|<Ag which defines “Ar-
nold tongues™ of synchronization in thé\ vs D plane.

The kinetic equation fofo) can be evaluated explicitly
yielding

(@in)

w

+a1+a2 <(T>+a2_al. (25)

(o)y=— [2
From Eq.(25) we see tha{o) approaches a stationary value,

a—ay

<U*>: <win>

2

(26)

+a;+as

that exactly coincides with the stationary correlation coeffi-
cient between the input and outgtitThe relaxation time is
given by r=[2(w;,)/ m+a;+a,] 1. Hence, the stationary
output phase velocity can be achieved from Ezp) by in-
sertion of Eq.(26) yielding

(27)

T T
(o = E(al"‘az)_ E(a2_al)<(f*>-

This expression is in agreement with similar results derived

in the context of resonant activatidhln Fig. 2 we depict the
mean output switching ratgw},) as a function of the noise
intensity D for several values of the input signal amplitude
A. With increasing amplitude the region of frequency lock-
ing, i.e., the region ob for which{wj,)~(wi,), widens(cf.
also Fig. 9 in Ref. 4D For most of these intensities the

bistable system possesses rates that do not obey the time
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EIG. 2. Mean output switching frequen@y units of ) versus noise inten-
sSity for the DMP(or the DPP signal fory=0.001(or )/ 7=0.001, respec-
tively) and for three amplitudeg: O (solid), 0.1 (dotted, 0.2 (dashed
(AU=0.25, other parameters see jextArnold tongues,” defined by the
demand of “sufficiently small slopes(see text, are shown in the inset for
variousy: 0.001(solid), 0.002(dotted, 0.005(dashed

Besides many alternatives, we defined the width of the
frequency locking region by requiring the slope of the curves
to be less than 30% of the slope fak=0 at the point where

the output switching rate coincides with[or Q/, respec-
tively], simultaneously disqualifying the initial flat region for
small D. The resulting “Arnold tonguesf{compatible with
data from Refs. 21, 41, 4zre shown in the inset of Fig. 2.

It can be seen that frequency locking necessitates to exceed a
minimal amplitude that shifts to lower values for slower
signals?? Let us emphasize that the frequency locking region
groups around the noise intensity that satisfies the time scale
matching conditiorjin our case by definitiom ;,= wg,(D)];

for a harmonic input this range dd also maximizes the
spectral power amplification, in contrast to values f
where the signal to noise ratio attains its maximub (
xAU) 19,20

C. Phase locking and effective synchronization

The phenomenon of phase locking can be demonstrated
by considering the diffusion coefficier? of the phase dif-
ference, achieved as the time derivative of the variance
30{{ %) —(¢)?]. Performing the calculation for both the
DMP and DPP yields

s <wout>

2

D:Din+ _(az_al (28)

)<¢0>—<¢><U>

v

scale matching condition; nevertheless, on the average theith D,,=(7?/2) y for the DMP andD;,=0 for the DPP.
output switching events are entrained by the input signal. AFhe stationary correlatof(d¢do)*), i.e., the asymptotic

mentioned before the whole effect is nonlinear. If detuning

limit of (po)—(p)(o), can be computed from the corre-

becomes too large the output gets desynchronized and reponding kinetic equatiotr. Inserting ((8¢d0)* ) into Eq.

turns to its own dynamics.
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0.003 ing (with increasing noise intensityhe same is true for the
sum of the first two terms. The possibility of synchronized
input—output jumps is rooted i®.,. Since this term com-
prises only contributions scaling with powers(ef* ), which
itself rapidly vanishes for smaD (cf. inset of Fig. 3 bot-
tom), we first observe an increase Bf An increase of o*)
signals the coherent behavior of input and output and, con-
sequently, endow®,, with considerable weight to outbal-
ance the increase @b,,. As can be seen from the inset of
Fig. 3 bottom a negative slope is initiated only for a suffi-
ciently large{o™*). However, the range of high input—output
correlation{c*) does not determine the range of low diffu-
sion coefficients since at rather high noise intensibethe
output switches with a large variance and thus, finally domi-
0.00 0.02 0.04 0.06 0.08 nates over the ordering effect ..

Plotting the boundaries of the region whe
<DPY" defines the tongues depicted in the inset of Fig. 3
top. As for the “Arnold tongues” in Fig. 2 a minimal ampli-
tude varies with the mean input switching rgte;,) and
shifts to lower values when considering slower signals. It is
worth mentioning that the addition of an independent di-
chotomous noise that modulates the bardés can drasti-
cally reduce this minimal amplitude if this second dichoto-
mous noise switches faster than the external sithal.

The minimum ofD observed in the region of frequency
locking can be equivalently expressed as a pronounced maxi-
mum of the average duration of locking episod&g). To
show this we note that a locking episode is ended by a phase
slip whenever the phase difference has changed, i.e., in-
creased or decreased, by the ordermpbr

(%)= (&) (Tiocd™ + 2D(Tioqd = 7 (31)
FIG. 3. Effective diffusion coefficient®°"* (top) and D °"" (bottom of  This quadratic equation can be solved (i) (Ref. 36

the instantaneous phase differengas functions of the noise intensify . . . .
for y= Q/7 =0.001 and for three amplitudés 0 (solid), 0.1 (dotted, 0.2 and by inserting the noise-dependent eXpI’eSSIOI’]S=f<Oj5)

(dashedl (other parameters as in Figl. The values ab =0 are determined and D we can computg Ti,9/To as a function of noise
solely by the input diffusion and, hence, vanish for strictly periodic signals.intensity D where T is either 14 for the DMP or#/() for
Defining the region of phase locking by the demand tB!""<DP""  the DPP, respectively. The results for both the DMP and the

yields the tongues depicted in the upper inset which, as in Fig. 2, reveals : : : ; _
critical amplitude varying withy: 0.001 (solid), 0.002 (dotted, 0.005 BPP are plotted in Fig. 4. A pronounced maximum for inter
(dashedl As can be seen from the lower inset phase locking occurs formediate values of noise intensity clearly proves that noise-

considerably largéa™) only [curves for amplitudeg: 0 (solid), 0.1 (dot-  induced frequency synchronization is accompanied by noise-
ted, 0.2 (dashed]. induced phase synchronization.

0.002

2DDMP/TE2

0.001

EDMP

0.003

*
<0 > o5

0.002

0.0
0.00

2DDPP /n2

0.001

0.08

2 <w3ur> IV. OSCILLATORY SYSTEMS AND THE RICE
DPWP=—=- 7+T—(27—(a1+a2))<cr*>2 FREQUENCY
1 A. General relations for potential systems
- E(aZ_a1)<U*>(1+<U*>2)} (29 As mentioned in Sec. Il A positive-going zero crossings
can be used to count completions of a cycle in oscillatory
and for the DPRcf. Fig. 3 bottom, systems. In this view the average frequency, i.e., the average
72 [ (k) Q phase velocity, turns out to be the average rate of zero cross-
pbPP___| 10U ( 2— —(a;+ay) |(*)2 ings which is captured by a formula put forward by Rté&®
2 77 77 This elementary observation yields a novel way to quantify

the average frequency of a phase evolution, henceforth
(300 termed the “Rice frequency,” and to prove frequency lock-
ing in stochastic systents.
with (o*) given by Eq.(26) and{w? ) by Eq. (27). Both To detail our derivation of the Rice frequency in this
Egs. (29 and(30) possess the same structdve- D;,+D,,;  section, we start from the following one-dimensional poten-
—Deo With Doy= (7/2) (w}h,p. SinceDy, is never decreas- tial system:

1 * *\2 Q *
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20 FIG. 5. Positiorx and velocityv of the undriven noisy harmonic oscillator
A=0 SN Eq. (34) with friction coefficient y=1, and natural frequencw,=1.
e A=0.1 / \‘ Whereas the positior is smooth the velocity is continuous but nowhere
----- A—0'2 // | differentiable. Counting of zero crossings is, consequently, only possible for
15 - — g ¢ the x-coordinate.
. / “‘
= ” |
— / i
s \ . . .
"§ 10 - / \ and, therefore, differentiable. In particular, near a zero cross-
1 . . .
w‘ J v ing of x there are no other zero crossings. In the following,
/ ‘\ we will take advantage of this remarkable smoothness prop-
5+ ! \ erty of x that is an intrinsic property of the full oscillatory
7 A .
[ / \ system (32) and disappears when we perform the over-
7 . .
S/ damped limit.
0 1
0 0.02 0.04 0.06 0.08
D

In 1944, Ricé’ deduced a formula for the average num-
ber of zero crossings of a smooth signal liken the oscil-
lator equation(32). In this rate formula enters the probability
density P(x,v;t) of x and its time derivativep =X, at a

given instant. The Rice rate for passages through zero with
mum for intermediate values of noise intensity thus proving noise-induceddOSitive slopevelocity) is determined bJS;3

FIG. 4. The normalized average duration of locking episddes,) [cf. Eq.
(31)] for the DMP (top) and the DPRbottom) exhibits an enormous maxi-

phase synchronization.

(f)(t)= f:v P(x=0p;t) dv. (36)
X+ yx+U’(X)=\/y&+F cog Qt) (32)
subjected to Gaussian white noisef intensityD, i.e.,
(&(1))=0,

This time-dependent rate is to be understood as an ensemble
average. If the dynamical system is ergodic and mixing the
(£()é(s))=2D4(t~s),

asymptotic stationary ratef ;) can likewise be achieved by
(33)  the temporal average of a single realization. N¢fOt]) be
and being driven by the external harmonic fofeeos(lt).

In Fig. 5 we show a sample path for the harmonic oscillator,

the number of positive-going zeros of the sigraih the time
interval[O,t]. Using ergodicity, the relation,
X+ yX+ wix=\[yé+F cog Qt), (34)

<f5>=f vPs(x=0p) dv=
0
where we used the friction coefficient=1, the natural fre-
guencywy=1, and a vanishing amplitude= 0 of the exter-

nal drive. As can be read off from Fig. 5, the velocity X

N([Ot

Iim—([ ) (37
t—o t

is fulfilled for the process characterized by the stationary

density P¢(x,v). In the following we always consider sta-
basically undergoes a Brownian motion and, therefore, contionary quantities. As explained in Sec. Il A, the zero cross-
tiable signal. In particular, near a zero crossing dhere are

stitutes a rather jerky continuous, but generally not differenings can be used as marker events to define an instantaneous
phaseg"(t) by linear interpolation, cf. Eq.10). The related
many other zero crossings. In contrast to that, the coordinat@verage phase velocity is the product of (sationary Rice
x is a much smoother signal since it is determined by arfate and z and, hence, called théstationary Rice fre-
integral over a continuous function, quency,
t
x(t)=x(0)+ f

v(7)dT,
0

35 <w>R=2w<fs>=2wf:ups(x=o,u) do.

(38)
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For a dynamics described by a potentia(x) in the white noise forces are continuous but are wfbounded
absence of an external driving, i.€32) with F=0, the sta- variation and nowhere differentiablé® This fact implies
tionary density can be calculated explicitly yielding that such stochastic realizations cross a given threshold

2 within a fixed time interval infinitely often if only the nu-

P.(x,v)=C ex;{— /D

U_+U(X) (39)  merical resolution is increaseatl infinitum This drawback,

2 which is rooted in the mathematical peculiarities of idealized
where C is the normalization constant. From this and theGaussian white noise, can be overcome if we consider in-
application of Eq.(38), it is straightforward to derive the stead a noise source possessing a finite correlation time, i.e.,

exact result, colored noise, see Ref. 46. To this end, we consider here an
U(0) oscillatory noisy harmonic dynamics driven by Gaussian ex-
27D exp{ — T} ; pon.erltlally correlated noisg(t), i.e., y
<w>R_ . U(X) . ( ) X=v, ( )
[ exg = =5~ dx b= —y0— wix+ yz(b), (45)
In the limit D— 0, we can perform a saddlepoint approxima- ) z 1
tion around the deepest minima (e.g., for symmetric po- z=——+—¢ (46)

tential9. In this way we find the following expression valid .
for D<AU=|U(0)—U(x;)|, i.e., the small noise approxi- With z(t) obeying(z(t))=0 and

mation, D [t—s|
I
exg —————
ollowing the same reasoning as before we find for the Rice

(| S p[ D (47 Following th ing as bef find for the Ri

A JU"(x) frequency ofx(t) as before,
In the limit D—o, we have to consider the asymptotic be- _ J"” f”
havior of the potential, lig., .., U(x), to estimate the inte- (@) 0 dv %dzv Ps(0w.2) (“48)

gral in Eq. (40). For potentials that can be expanded in a
Taylor series about zero and that, therefore, result in a power (o)

series of order @, i.e.,U(|x|—»)~x?", we can rescale the - ity (49

integration variable bx=DY2™. For sufficiently largeD, o _ o o

the integral is dominated by the powem2erm. In this way Likewise, spon noting that within a time |2nterVAIt,

we find the large noise scaling, —At(— yx—wpx+\y2)<v<0, or —At(—wix+\y2)

(D) +O(At)2<.v<0, (espect?\{ely, the Rice frequency of the
(0)g ~ D% with a= m—ll (42) zero crossings with positive slope of the procegs) is
' 2m given by

Applying Egs.(40) and(41) to the harmonic oscillato{34) o *

we immediately find thatw)r=w,, independent ofy and (0),= f_deJX dz(\yz— w3x) P«(x,02), (50)

for all values ofD>0. This is also in agreement with Eq.

(42). It follows becausem=1 implies that, for large noise, Which is evaluated to read

the Rice frequencyw)g does not depend oB at all. Note,

however, that in the deterministic limit, i.e., f@=0, we (@)= "\ wi+ % (51

have the standard result,
(D=0) 2" for y<20 The result in(49) shows that for small noisq colarthe Rice
(g = Wo— Y Y 0' (43) frequency for (w), assumes a correctlo@@)x~ g)o(l
0 for y=2w, — (y7/2)), ast—07. In clear contrast, the finite Rice fre-
quency{w), for the velocity proces®(t) diverges in the

which explicitly does depend on the friction strengtb»0. limit of vanishing noise color proportional te 2

Therefore, the limiD =0 is discontinuous except in the un-
damped situationy=0.

The similarity of Eqs(40) and(41) with rates from tran-  C. Relation between Rice and Hilbert frequency
sition state theoA will be addressed below when we dis- To exemplify the relation between the Rice frequency

cuss the bistable potential. (w)gr and the Hilbert frequencyw)y={$y), again we con-
sider the damped harmonic oscillator E4) agitated by
noise alone. In Fig. 6 we show a numerically evaluated
It is well known that the Rice frequency cannot be de-sample path and the corresponding Hilbert phas@mal-
fined for stochastic variables that integrate increments of theed to 2r and modulo 1 using the parameterg=1, D
Wiener procesgwhite noise. From Eq.(32) this holds true =1, wy=1, F=0. An important point to observe here is that
for the velocityo =%. This is so, because the stochastic tra-aroundt~3 andt~9 the Hilbert phase" does not increase
jectories of degrees of freedom being subjected to Gaussidy 27 after two successive passages through zero with posi-

B. The role of colored noise
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: : : : : : : : Using the spectrum of the undriven noisy harmonic os-
: I /\ | cilator
A N A 49D
con A M A L e 50
Vi \/ YA 'ASRARIY VW (0g=@*)*+ Y’
21 N eV and employing Eqs(53) and(54), it is easy to see that both
R R N R A (w)r and(w)y do not vary withD. We have already shown
I above that w)r=wy. In contrast to this{w)y is a mono-
= ! : tonically decreasing function of that approaches from
E s S : below in the limity—0*.
C 05 F ] i | ) Vo
~ M :
& A |
0 ! ! ! ! ! ! ! ! D. Periodically driven noisy harmonic oscillator
0 ? 10 The probability density of the periodically driven noisy

harmonic oscillator can be determined analytically by taking
FIG. 6. Signalx(t) (top panel and corresponding Hilbert phag#'(t)/27 advantage of the linearity of the problem. Introducing the

modulo 1(bottom panelfor the undriven harmonic oscillator E¢B4) with mean values of the coordinate and the veIocﬂ&(t)) and
friction strengthy=1, noise intensityD =1, natural frequencw,=1, and (v(t)) the variables

driving amplitudeF =0. Note that although there are successive zero cross-
?ngs of x with positive slope near~3 andt~9 the Hilbert phase does not Y=X— (X), T=v— (v) (57)
increase by 2.
obey the differential equation of the undriven noisy harmonic
oscillator. In the asymptotic limit— < the mean values con-

tive slope. This shall illustrate the difference between the’€"9€ to the well known deterministic solution,

Hilbert phase and the natural phase. In Sec. II C this obser-

vation was already mentioned as a consequence of the non- (x(t))=
local character of the Hilbert transform. In particular, short

and very small amplitude crossings to positiveare not

properly taken into account by the Hilbert phase since they  (y(t))=—-0Q
only result in a small reduction of". This leads us to N
conjecture that quite generally

Q
(0)g=(w) (52) d=arcta —27_ 5
R H wy—

holds. In fact, for the case of the harmonic oscillator thatvvith the common phase lag Therefore, after deterministic

generates a stationary Gaussian process one even can proVé,qients have settled the cyclostationary probability density
this conjecture by deriving explicit expressions {ar)z and of the driven oscillator reads

(w)y . As usual, letS(w) denote the spectrum of the station-
ary Gaussian process Then the Rice frequency can be  Pcs(X,05t)=Pg(X—(X(1)),v —(v(t))) (61)
53 pyxw)= ﬂex;{ .

recast in the form df
v?  w2x? ,
27D 2772 D (62)

f%cwz S(w)dw
[oS(w)dw
A similar expr_essiqr‘(additionally !nvqlving an Arrheniu.s— Using Eq.(38) the cyclostationary probability densitp1)
type exponentialexists when considering nonzero Crossingsields an oscillating expression for the Rice frequency

as i'n Eq.(53), but crossings.of an arbitrary threshold. In Ref. () (1). The time dependence of this stochastic average can
16 it was shown that the Hilbert frequency of the same proye removed by an initial phase average, i.e., a subsequent

\/(w3_92)2+y292005(m_5)’ (58)

F
(05— Q%)%+ y*Q

2sin(Qt— 5), (59

: (60)

with the Gaussian density
1/2

(w)r=

cessx is given by a similar expression, namely, average over one external driving period/@,
fgw S(w)dw 27/Q Qdt
(= T Sw)de | ®4 (@)r= fo (@)r(t) 5 — (63

Interpreting the quantitys(w)/[;S(@)d@ as a probability 2wl (o

densityP(w), we(0,°), we can use the property that the =f J v P.(0p;t)dvQdt. (64)

related variance is positive, i.e., 0 0

2 The resulting analytical and numerically achieved values of
(55  the Rice frequency as a function of the noise intenBitgre

shown in Fig. 7 for fixedwy=1, F=1, =3 and various
Taking the square-root on both sides of the last inequalityalues ofy. For small noise intensitid3 the Rice frequency
immediately proves E¢52). (w)g is identical to the external driving frequencsl,

JoochP(w)de meP(w)dw

0
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FIG. 7. Rice frequencies for the driven harmonic oscillator &4) with
natural frequencywy=1, driving amplitudeF=1, and driving frequency
O =3 for different values of the friction strength. The numerically

achieved valuegsymbols with error bajsmatch the analytical curves de-

termined using Eq(64).

Freund, Schimansky-Geier, and Hanggi

~2

1_ 0)0,.., ~
(0)r=wq| 1+ A%+ O(A%) (71)
which implies for largeD/F?,
F2

The opposite extremé— or D/F?—0, can be extracted
from a saddlepoint approximation arourt=A and t
=3m/2. Following this procedure, the integr@8) gives the
constant Ib,. This directly implies{w)g=Q.

The crossover between these two extremes occurs when
the first correction term ii71) is no longer negligible, i.e.,
for

1-o2| -
11~ A2~1, (73)

When solved for the crossover noise intendity,/F?, this
yields

Dco |Qz_wg|
F2 4[(03—02%+(yQ)?2]’

which, for the parameters used in Fig. 7, correctly gives val-

(74)

1
whereas for large noise intensities the external drive becomés between 1¢ and 10°*.

inessential and the Rice frequency approacheg= wg.
Further insight into the analytic expressi@) is gained
from performing the following scale transformations:

X
J2D/Q

from which we immediately find the rescaled velocity,

T=0Qt—6 and %=

(65)

dx Q/V2D dx v
dt Q dt 2D

Inserting these dimensionless quantities into @&4) yields

(66)

=

(w)r=wol (A, Do), (67)
1(A @) = % f:fﬁf;a ex — (7 +Asint)?
— (@ A cost)?] dv dft, (68

where we have defined further dimensionless quantities

~ Q F

A= , (69)
V2D V(03— 02)2+(y0)?

aoz% (70

In Fig. 7 the parametelis, (), andwg and, hencep, are
identical for all curves. Solvind\(y;,D;)=A(y,,D,) with
respect tdD, shows that the curves become shifted horizon-
tally as in the log-linear plot in Fig. 7. Another way to ex-
plain this shift is by noting thatl D.,/dy<<0.

V. BISTABLE KRAMERS OSCILLATOR:
NOISE-INDUCED PHASE COHERENCE AND SR

A. Rice frequency and transition state theory

The bistable Kramers oscillator, i.e., EQ2) with the
double well potential,
4 2

X
(75)

is often used as a paradigm for nonlinear systems. With ref-
erence to Eq(32) the corresponding Langevin equation is
given by

X+ yX+x3—x=\Jy&+F cog Qt) (76)

which, in the absence of the external sigriak 0, generates
the stationary probability distribution,

v x* x? . .
27472 (79
with the normalization constan€. Using this stationary
probability density and Eq.38) we can determine the Rice
frequency analytically. In Fig. 8 we depict this analytic result
together with numerical simulation data including error bars.

Ps(x,v)=Cexp|’ —

Due to the 2Zr periodicity of the trigonometric functions, the e simulation points perfectly match the analytically deter-
integral (68) does not change when shifting the interval for ined curve. As expected for the asymptotically dominant

the integration with respect tb back to[0,27]. Hence,l is

only a function of A and @,. An expansion for smal/A
yields

quartic term, i.e.m=2 [cf. Sec. IV A, especially Eq42)],
the Rice frequency scales &s)r~ D for large values of
D.
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FIG. 8. Rice frequencies for the undriven bistable oscillator #6) with
friction strengthy=1. Numerical values with error bars match the analyti-
cally determined value&lashed ling using Eq.(38) with Eq. (77). As ex-
pected, for large values @ the Rice frequency scales li2"*. The solid
line presents the leading weak noise approximation in(B#).

Comparing the Rice frequency formula, E&8), with
the forward jumping ratekis; from the transition state
theory**

kT+ST=251j dx dv 8(v) 8(x)v exd —H(x,v)/D], (798
where
Zozf dx dv exyf —H(x,v)/D], (79
x<0

andH(x,v) = (1/2)v?+ (1/4)x*— (1/2)x? represents the cor-

235
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0.03

0.02 r

<w>p

0.01

FIG. 9. Numerically determined Rice frequencies of the periodically driven
bistable Kramers oscillator E¢76) computed with the friction coefficient
y=0.5 and the angular driving frequen€y=0.01 and plotted as a function
of the noise intensityD. Different curves correspond to various amplitudes
of the harmonic drivé=. For larger values of wider regions appear where
the Rice frequency is locked to the external driving frequeficy

(Ref. 47 and it still serves as one of the major paradigms of
SR1%2%|n its overdamped form it was used to support ex-
perimental datdfrom the Schmitt triggerdisplaying the ef-
fect of stochastic frequency lockifigf2 observed for suffi-
ciently large, albeit subthreshold signal amplitudes, i.e., for
Fmin<F<2/\/27. From a numerical simulation of the over-
damped Kramers oscillator and computing the Hilbert phase
it was also found that noise-induced frequency locking for
large signal amplitudes was accompanied by noise-induced

responding Hamiltonian, one can see that the difference bgshase coherence, the latter implies a pronounced minimum
tween both solely rests upon normalizing prefactors.of the effective phase diffusion coefficient,

Whereas the ratk;s; is determined by the division of the
integral Eq.(78) by the “semipartition” functionZo, the rate

Den= 3 {((1))2)—((1))?] (83

(w)r/2m is established by dividing the same integral appearpccurring for optimal noise intensity. Based on a discrete

ing in Eq. (78) by the complete partition function

Zo=f dx dv exd —H(x,v)/D]. (80

Particularly for symmetric (unbiasedl potentials, i.e.,
V(—x)=V(x), this amounts to the relatiafi,=2Z,, hence,
At weak noise E,/D>1, this relation simplifies t¢cf. Eq.

(41)]
()~ 5 exiT ~ Ey/D], (82

wherein E,, denotes the barrier height ang the angular
frequency inside the welly=v2). Indeed, in the small-to-

moderate regime of weak noise this estimate nicely predicts

the exact Rice frequendygf. Fig. 8.

B. Periodically driven bistable Kramers oscillator

model?® analytic expressions for the frequency and phase
diffusion coefficient were derived that correctly reflect the
conditions for noise-induced phase synchronizafiofor
both periodic and aperiodic input signats. Sec. Il)).

To link the mentioned results to the Rice frequency in-
troduced above we next investigate the behavior of the
Kramers oscillator with nonvanishing inerfiawe show nu-
merical simulations of Eq(76) with the parameterd)
=0.01,y=0.5 and diverse values &f in Fig. 9. For larger
values ofF, a region around>~0.05 appears where the
Rice frequency is locked at the external driving frequeficy
Since for larger values of the external drivikgsmaller val-
ues of the noise parametBr are needed to obtain the same
rate for switching events, the entry into the locking region
shifts to smaller values dd for increasingF.

In Fig. 10 we present numerical simulations for fixed
F=0.384, )=0.01 and different values of the damping
coefficient y. Note that the value of is slightly smaller
than the threshold valueF,=2/\/27~0.3849.... For
smaller values ofy wider coupling regions appear since it is

The periodically driven bistable Kramers oscillator waseasier for the particle to follow the external driving for
the first model considered to explain the phenomenon of SRmaller damping.
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0.02

0.01

<(!)>R

0 0.04 0.08

D

FIG. 10. Numerically determined Rice frequency as a function of the nois
intensity D for the periodically driven Kramers oscillator E(.6) with the
angular driving frequenc{2 =0.01 and driving amplitud& = 0.384 for dif-
ferent values of the friction coefficient. For smaller values ofy wider
regions of frequency locking appear.

eFIG. 11. Effective phase diffusion coefficient vs noise intensity for the
periodically driven bistable Kramers oscillator E@6) with angular driving
frequency (1=0.01, driving amplitude F=0.384, which is close-to-
threshold driving, and for different values of For smaller values of the
friction coefficienty phase diffusion is diminished.

To check whether frequency synchronization is accom- Th durati f locki i b
panied by effective phase synchronization we have also com- @ average duration of locking episoddqg can be

puted the averaged effective phase diffusion coefficient, thi%Stimated by equating _th_e segond moment of _the pha;se dif-
time defined by the following asymptotic expression: erence(between the driving signal and the oscillatto =
[cf. Eq.(31)].%° A rough estimate, valid for the regions where

frequency synchronization occurs, i.e., where the dynamics
of the phase difference is dominated by diffusion, thus reads

(Tiock) = 212D o OF, when expressed by the number of driv-
It should be clear that the instantaneous “Rice” phase) ing periods®

was determined via zero crossings. The connection with the
instantaneous diffusion coefficient defined (BB) is estab- (Moo = Qm 86)
lished by applying the limit— oo, lock/ ™ 2D o

1
D= lim 5o ([ (1) —((1))]?). (84)
t—oo

o1t o~ o In this way we estimate from Figs. 11 and X2,y
Denr= “mTjoDeff(t)dt- (85  ~150-15000 forQ=0.01 and relevanD4 varying be-
o tween 104-107°.
In Fig. 11 we show numerical simulations of the effective
phase diffusion coefficienD. as a function of the noise
intensity D. The phase diffusion coefficient displays a local
minimum that gets more pronounced if the damping coeffi-
cient y is decreased. Indeed, phase synchronization reveal:
itself through this local minimum of the average phase dif-
fusion coefficientD o in the very region of the noise inten-
sity D where we also observe frequency synchronization, cf.
Fig. 9. The qualitative behavior of the diffusion coefficient
agrees also with a recently found result related to diffusion of &
Brownian particles in biased periodic potentifls\ neces-
sary condition for the occurrence of a minimum was an an-
harmonic potential in which the motion takes place. In this
biased anharmonic potential the motion over one period con-
sists of a sequence of two events. Every escape over a barrie
(Arrhenius-type activationis followed by a time scale in-
duced by the bias and describing the relaxation to the next 0
minimum. The second step is weakly dependent on the noise
intensity and the relaxation time may be even larger than the ) o o o )
escape time s a result of the anharmniciy. For such poref!%, 12 Efetive, phoce difusion cosicent v ol tensty for the
tials the diffusion coefficient exhibits a minimum for optimal cient y=0.5, angular driving frequencf2=0.01, plotted for the undriven
noise, similar to the one presented in Figs. 11 and 12. caseF=0 and for driving with an amplitud&=0.2.

0.0005

0 0.02 0.04 0.06
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0.2 to follow; note that in the two-state description with Arrhen-
ius rates the prefactar, [cf. Eq.(19)] restricts the switching
frequency from above. Noise-induced phase coherence re-
quires a device with a faster internal dynamics, €.,

<(1’0.

VI. CONCLUSIONS

We underline that the noise-induced phase synchroniza-
tion is a much more stringent effect than stochastic reso-
nance. This statement becomes most obvious when recalling
that the spectral power amplification attains a maximum at
an optimal noise intensity for arbitrarily small signal ampli-
tudes and any frequency of the external signal. In contrast,
noise-induced phase synchronization and even frequency
locking are nonlinear effects and as such require amplitude
0.01 and frequency to obey certain boun@see the “Arnold
tongues” in Sec. ll). We expect that the functioning of im-
portant natural devices, e.g., communication and information
processing in neural systems or subthreshold signal detection
in biological receptors, rely on phase synchronization rather
than stochastic resonance.
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