
c© 2001 Nonlinear Phenomena in Complex Systems

Non-Markov Stationary Time Correlation in Complex

Systems with Discrete Current Time

Renat Yulmetyev†‡, Peter Hänggi†, and Fail Gafarov‡

† Department of Physics,University of Augsburg,
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The statistical non-Hamiltonian theory of fluctuation in the complex systems with a discrete current time
is presented. Quasidynamic Liouville equation for the state vector of the complex system serves as a initial
point of the discrete analysis. The projection operator in a vector state space of finite dimension allows to
reduce Liouville equations to a closed non-Markov kinetic equation for a discrete time correlation function
(TCF). By the subsequent projection in the space of orthogonal variables we found a discrete analoguos
of famous Zwanzig-Mori’s equations for the nonphysical non-Hamiltonian systems. The main advantage of
the finite-difference approach developed is served with two moments. At first, the method allows to receive
discrete memory functions and statistical spectrum of non-Markovity parameter for the discrete complex
systems. At second, the given approach allows to plot a set of discrete dynamic information Shannon
entropies. It allows successively to describe non-Markov properties and statistical memory effects in discrete
complex systems of a nonphysical nature.
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1 Introduction

Basic feature of complex systems of a substantial
nature is their nonphysical and non-Hamiltonian
nature. The absence of a Hamiltonian and pre-
cise Hamilton equations of motion does not allow
sequentially to use a statistical physics of Hamilto-
nian systems for the description of complex systems
in psychology, cardiology, finance, ecology as well as
in seismic phenomena etc. Therefore rather actual
the problem is the development of non-Hamiltonian
statistical method of testings of dynamic properties
of the complex systems.

Other relevant feature of the complex systems
is their discretization. As a rule, for the descrip-

tion of properties of complex systems the continu-
ous and sliding functions will be utilized. In a sub-
stantial nature the complex processes always take
place as discrete events. However statistical theory
of discrete stochastic processes now misses. On the
other hand, the discretization contains the relevant
and valuable information, both about random, and
about regular components of complex process.

In the present article we develop the new con-
cept of the description of random discrete processes
in composite systems. Due to the registration of
a discretization it allows sequentially to take into
account for non-Markov properties and effects of
statistical memory in random behavior of complex
systems.
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2 Non-Markov Kinetic Equation

for Discrete Time Correlation

of Random Fluctuation

To consider a random process like a sequence of ran-
dom variables defined at successive times we shall
denote the random variable by

X = {x(T ), x(T + τ), x(T + 2τ),

. . . , x(T + kτ), · · · , x(T + τN − τ)}, (1)

which corresponds to signal during the time pe-
riod t = (N − 1)τ where τ is time interval of sig-
nal discretization. The normalized time correla-
tion function (TCF) [1-3] depending on current time
t = mτ,N − 1 ≥ m ≥ 1 can be conveniently used
for the analysis of dynamic properties of complex
systems

a(t) =
1

(N −m)σ2

×
N−1−m∑

j=0

δx(T + jτ)δx(T + (j + mτ)). (2)

TCF usage means that developed method is just for
complex systems, when correlation function exist.
In forthcoming papers we intend to apply developed
method for discrete random processes analysis in
complex systems in practical psychology, cardiology
(for the development of diagnosis method of cardio-
vascular diseases), financial and ecological systems,
seismic phenomena and etc. The properties of TCF
a(t) are easily determined by Eqs. (??)

lim
t→0

a(t) = 1, lim
t→∞

a(t) = 0. (3)

We have to recognize that the second property in
Eqs. (??) is not always satisfied for the real systems
even with arbitrary big values of time t or number
(N − 1) = t/τ . Taken into account fact that the
process is discrete, we must rearrange all standard

operation of differentiation and integration

dx

dt
→ 4x(t)

4t
=

x(t + τ)− x(t)
τ

,∫ b

a
x(t)dt =

n−1∑
j=0

x(Ta + jτ)4t

= τ

n−1∑
j=0

x(Ta + jτ) = nτ < X > ,

b− a = c, c = τn.

(4)

The first derivative on the right is recorded in
Eqs.(??). The second derivative on the right is also
derived easily

d2x(t)
dt2

→ 4
4t

(
4x

4t

)
=

[x(t + 2τ)− x(t + τ)]− [x(t + τ)− x(t)]
τ2

= τ−2{x(t + 2τ)− 2x(t + τ) + x(t)}. (5)

Now let us proceed to the description of the dy-
namics of the process. For real systems values
xj = x(T + jτ) and δxj = δx(T + jτ) result
from the experimental data. Thus we can intro-
duce in Shannon’s manner the evolution operator
U(T + t2, T + t1) in the following manner (t2 ≥ t1)

x(T + t2) = U(T + t2, T + t1)x(T + t1). (6)

For brevity let us present Eqs.(??) in the form

x(j) = U(j, k)x(k), j ≥ k; j, k = 0, 1, 2, · · · , N − 1.

(7)
Now let us present a set of values of random vari-

ables δxj = δx(T + jτ), j = 0, 1, · · · , N − 1 as a
k-component vector of system state

A0
k(0) = (δx0, δx1, δx2, · · · , δxk−1)

= (δx(T ), δx(T + τ), · · · , δx(T + (k − 1)τ). (8)

So we can introduce the scalar product operation

< A ·B >=
k−1∑
j=0

AjBj (9)
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with or whithout indication of obvious time depen-
dence of vectors A and B respectively in the set of
vectors A0

k(0) and Am
m+k(t) where t = mτ and

Am
m+k(t) = {δxm, δxm+1, δxm+2, · · · , δxm+k−1}

= {δx(T + mτ), δx(T + (m + 1)τ),

δx(T + (m + 2)τ), · · · , δx(T + (m + k − 1)τ}.(10)

A k- component vector Am
m+k(t) displaced to the

distance t = mτ on the discrete time scale can be
formally presented by the time evolution operator
U(t + τ, t) as follows

Am
m+k(t) = U(T + mτ, T )A0

k(0)

= {U(T + mτ, T + (m− 1)τ)

×U(T + (m− 1)τ, T + (m− 2)τ)

. . . U(T + τ, T}A0
k(0). (11)

Normalized TCF in Eqs. (??) can be rewritten in a
more compact form by means of Eqs.(??) ( t = mτ

is discrete current time here)

a(t) =
< A0

k ·Am
m+k >

< A0
k ·A0

k >
=

< A0
k(0) ·Am

m+k(t) >

< A0
k(0)2 >

.

(12)
Such vectors’ notion is very helpful for the anal-

ysis of dynamics of random processes by means
of finite-difference kinetic equations of non-Markov
type.

Let us consider the projection operation in the
set of vectors for different system states. It is easy
to introduce it employing the above scalar prod-
uct (??). Then it is necessary to introduce vectors
A = A0

k(0) and B = Am
m+k(mτ). Using simple ge-

ometrical notions we can demonstrate the following
relations in terms of these symbols

< A ·B >= |A| · |B| cos ϑ, cos ϑ = a(t),

B = B‖ + B⊥;

B‖ = |B| cos ϑ
A
|A|

=
A
|A|

|B|a(t), |B‖|2

= |A|2{a(t)}2,

|B⊥| = |B| sinϑ = |B|{1− [a(t)]}1/2,

(13)

where symbol |A| denotes the vector A length. Ge-
ometrical distance R(A,B) between two vectors A
and B can also be found

R(A,B) = {|A−B|2}1/2 = {
k−1∑
j=0

(Aj −Bj)2}1/2.

Using the latter and taking into account Eqs. (??),
(??) we can find

R(A0
k(0),Am

m+k(t)) = {|Am
m+k,⊥(t)|2}1/2

=
√

2|Am
m+k(t)|{1− a(t)}1/2.

The equation above immediately shows that the dis-
tance is determined by the dynamics of evolution of
correlation process. Owing to the property (??) the
following relation limt→∞ R(A0

k(0)),Am
m+k(t)) =√

2kσ2, where σ2 is the variance can be developed.
With regard to Eqs. (??) the correlation decay in
limit t →∞ may result in complete annihilation of
parallel component of state Am

m+k(t) vector . Then
the state of the system at the moment t →∞ is en-
tirely determined by the perpendicular component
Am

m+k,⊥(t) of the full vector Am
m+k(t).

It follows from Eqs. (??) that in the set of state
{A0

k(0),Am
m+k(t)} vectors at different values of t, m

and k, TCF of random processes a(t) plays a cru-
cial role as an indicator of two interrelated states
of a complex system. One of them deals with the
creation of correlation and is specified by the B‖
component, whereas the second one is related to
the annihilation of correlation and determined by
the component B⊥. It results in the fact that in
the limit of great t →∞ the following relation

lim
t→∞

Am
m+k,‖(t) = 0, lim

t→∞
Am

m+k,⊥(t) = Am
m+k(t).

(14)
is immediately fulfilled in correspondence with to
Bogolubov’s principle of correlation attenuation.

From the physical point of view this fact means
that TCF a(t) represents two interrelated states de-
termined by creation and annihilation of correla-
tion. Hence it follows that such consideration must
be given to both processes in an explicit form for

Nonlinear Phenomena in Complex Systems Vol. 4, No. 4, 2000



Renat Yulmetyev et al.: Non-Markov Stationary Time Correlation 415

stochastic dynamics of random processes’ correla-
tion.

It is obvious from Eqs.(13) that TCF a(t) is orig-
inated by projection of vector Am

m+k(t) (??) where
time t = mτ on the initial vector of state A0

k(0) (see,
for example, formula (??)). The following construc-
tion of projection operator

ΠAm
m+k(t) = A0

k(0)
< A0

k(0)Am
m+k(t) >

< |A0
k(0)|2 >

= A0
k(0)a(t) (15)

results from here . It is turn projection operator Π
from Eqs. (??) has the following properties

Π =
A0

k(0) >< A0
k(0)

< |A0
k(0)|2 >

, Π2 = Π,

P = 1−Π, P 2 = P, ΠP = 0, PΠ = 0.

(16)

A pair of projection operators Π and P are idempo-
tent and mutually - supplementary. Therefore, pro-
jector Π projects on the direction A0

k(0), whereas
the orthogonal operator P transfers all vectors to
the orthogonal direction.

Let us consider quasidynamic finite-difference Li-
ouville’s Equation for the vector of fluctuations

∆
∆t

Am
m+k(t) = iL̂(t, τ)Am

m+k(t). (17)

The vectors Am
m+k(t) generate the vector finite-

dimensional space A(k) with scalar product in
which (according to Eqs.(??), (??)) the orthogonal
projection operation is expressed by Eqs. below

A(k) = A′(k) + A′′(k), Am
m+k(t) ∈ A(k),

A′(k) = ΠA(k),

A′′(k) = PA(k) = (1−Π)A(k).

(18)

Operators Π and P split Euclidean space A(k) into
two mutually-orthogonal subspaces. This permits
to split dynamical equation (??) into two Equa-
tions within two mutually-supplementary subspaces
as follows

∆A′(t)
∆t

= iL̂11A
′(t) + iL̂12A

′′(t),

∆A′′(t)
∆t

= iL̂21A
′(t) + iL̂22A

′′(t).
(19)

In the Eqs. above we crossout for short space el-
ements indices A,A′ and A′′ and matrix elements
arguments L̂ij , L̂ij = ΠiL̂Πj , Π1 = Π, Π2 = P =
1−Π, i = 1, 2. We write down Liouville’s operator
in matrix form

L̂ =

(
L̂11 L̂12

L̂21 L̂22

)
,

L̂11 = ΠL̂Π, L̂12 = ΠL̂P,

L̂21 = PL̂Π, L̂22 = PL̂P. (20)

Operators L̂ij act in the following way: L̂11 - from
A′ to A′, L̂22 - from A′′ to A′′, L̂21 - from A′ to A′′,
and L̂12 operates from A′′ to A′.

To simplify Liouville’s Eqs. (??) we exclude the
irrelevant part A′′(t) and construct closed Equation
for relevant part A′(t). For this purpose let us solve
Eqs.(??) step by step

∆
∆t
{Am

m+k(t)}′′

= iL̂21{Am
m+k(t)}′ + iL̂22{Am

m+k(t)}′′. (21)

Considering Eqs.(??) we arrive at finite-difference
solution of this Eqs. in the following form

∆A′′(t)
τ

= τ−1[A′′(t + τ)−A′′(t)]

= iL̂21A
′(t) + iL̂22A

′′(t), A′′(t + τ)

= {1 + iτ L̂22}A′′(t) + iτ L̂21A
′(t). (22)

In general case we find

A′′(t + mτ) = {1 + iτ L̂22}mA′′(t)

+
m−1∑
j=0

{1 + iτ L̂22}j{iL̂21A
′(t + (m− 1− j)τ)} (23)

for the arbitrary number of m-steps. Then after the
substitution of right side of Eqs.(??) for Eqs.(??) we
obtain the closed finite-difference kinetic equation
for the relevant parts of vectors

∆
∆t

A′(t + mτ) = iL̂11A
′(t + mτ)

+iL̂12{1 + iτ L̂22}mA′′(t)

−L̂12

m+1∑
j=0

{1 + iτ L̂22}jL̂21A
′(t + (m− 1− j)τ).(24)
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To simplify this Eqs, let us consider the idempoten-
tity property, and then determine (0 ≤ k ≤ m− 1)

A′′(t) = 0, {1 + iτ L̂22}kA′′(t) = 0. (25)

Transfering from vectors Am
m+k in Eqs.(??) to a

scalar value of TCF a(t) by means of suitable projec-
tion we come to the closed finite-difference discrete
Equation for the initial TCF

∆a(t)
∆t

= iω
(0)
0 a(t)− τΩ2

0

m−1∑
j=0

M1(jτ)a(t− jτ). (26)

Here Ω0 is the general relaxation frequency whereas
frequency ω

(0)
0 describes the eigenspectrum of the

Liouville’s quasioperator L̂

ω
(0)
0 =

< A0
k(0)L̂A0

k(0) >

< |A0
k(0)|2 >

,

Ω2
0 =

< A0
kL̂12L̂21A0

k(0) >

< |A0
k(0)|2 >

.

(27)

Function M1(jτ) in the right side of Eqs.(26) is the
first order memory function

M1(jτ)

=
< A0

k(0)L̂12{1 + iτ L̂22}jL̂21A0
k(0) >

< A0
k(0)L̂12L̂21A0

k(0) >
,

M1(0) = 1.

(28)

Equation (26) alongside with Eqs.(27),(28) present
first order discrete non-Markov kinetic equation for
the discrete time correlation function a(t).

3 Orthogonal Random Variables

and Finite-Difference

non-Markov Kinetic Equations

for Discrete Memory Functions

The discrete memory function M1(jτ) (??) in Eqs.
(??) is in its turn the normalized TCF, evolution
of which is defined by the deformed (compressed)
Liouvillian’s (L̂(0) = L̂)

L̂(1) = L̂
(0)
22 = L̂22 = (1−Π)L̂(1−Π) (29)

for a new dynamical variable B(1) = iL̂21A0
k(0).

Thus, we can completely repeat for M1(jτ) the
whole procedure within Eqs. (??)-(??), and obtain
the following non-Markov kinetic equation for the
normalized TCF. The infinite chain of equations for
the initial TCF and memory functions of increas-
ing order results from multiple repetition of similar
procedure.

However this chain of equations can be obtained
differently, i.e. much shorter and less costly. For
this purpose let us employ the method developed
earlier for the physical Hamilton systems with the
continuous current time . Moreover the lack of
Hamiltonian and the time discreteness must be
taken into account.

Let us remember that natural equation of motion
is the finite-difference Liouville’s equation

∆
∆t

x(t) = iL̂x(t) (30)

where Liouville’s quasioperator is L̂ = L̂(t, τ) =
(iτ)−1{U(t + τ, t)− 1}.

Successively applying the quasioperator L̂ to the
dynamic variables Am

m+k(t) (t = mτ , where τ is
a discrete time step) we obtain the infinite set of
dynamic functions

Bn(0) = {L̂}nA0
k(0), n ≥ 1. (31)

Using variables Bn(0) one can find the formal
solution of evolution Eqs.(30) in the form of

Am
m+k(mτ) = {1 + iτ L̂}mA0

k(0)

=
m∑

j=0

m!(iτ)m−j

j!(m− j)!
B0

m−j(0). (32)

However, the similar form of dynamic variables is
deficient. That is why we prefer the use the orthog-
onal variables as vectors Wn given below. Employ-
ing Gram-Schmidt orthogonalization procedure for
the set of variables Bn(0) one can obtain the new
infinite set of dynamical orthogonal variables, i.e.
vectors Wn

< W∗
n(0),Wm(0) >= δn,m < |Wn(0)|2 >, (33)
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where the mean < · · · > should be read in terms
of Eqs. (??)-(??) and δn,m is Kronecker’s symbol.
Now we may easily introduce the recurrence for-
mula in which the senior values Wn = Wn(t) are
connected with the juniour values

W0 = A0
k(0), W1 = {L̂− ω

(0)
0 }W0,

Wn = {L̂− ω
(n−1)
0 }Wn−1 − Ω2

n−1Wn−2, n > 1.

Here we used the equation, given earlier in (27) for
number n=0

ω
(n)
0 =

< WnL̂Wn >

< |Wn|2 >
,

Ω2
n =

< |Wn|2 >

< |Wn−1|2 >
, (34)

where Ωn is the general relaxation frequency, and
frequency ω

(n)
0 completely describes the eigen spec-

trum of Liouville’s quasioperator L̂. Now the ar-
bitrary variables Wn may be expressed directly
through the initial variable W0 = A0

k(0) by fol-
lowing

Wn+1 (35)

=

∣∣∣∣∣∣∣∣∣
L̂− ω

(0)
0 Ω1 . . . 0

Ω1 L̂− ω
(1)
0 . . . 0

0 Ω2 . . . 0
0 0 . . . L̂− ω

(n)
0

∣∣∣∣∣∣∣∣∣W0.

The physical sense of Wn variables (vectors of state)
can be cleared up in the following way. For example,
in the continuous matter physics, the local density
fluctuations may be considered as initial variables.
So the local flow density, energy density and energy
flow density fluctuations are the dynamic variables
Wn where numbers n ≥ 1. The careful usage of
the above mentioned variables within the long-wave
limits creates the basis for the condensed matter
theory in hydrodynamic approximation. The set of
the orthogonal variables can be connected with the
set of projection operators.The later projects the
arbitrary dynamic variable (i.e.,vector of state) Y

on the corresponding vector of the set

Πn =
Wn >< W∗

n

< |Wn|2 >
,

Π2
n = Πn, ΠnΠm = δn,mΠn,

Pn = 1−Πn, P 2
n = Pn, ΠnPn = 0,

PnPm = δn,mPn, PnΠn = 0.

(36)

Let us take into consideration the fact that both
sets (31) and (35) are infinite. If we execute the
operations in the Euclidean space of dynamic vari-
ables then the formal expressions (36) must be un-
derstood as follows

ΠnY = Wn
< W∗

nY >

< |Wn|2 >
, YΠn = W∗

n

< YWn >

< |Wn|2 >
.

(37)
Now according to (19)-(20), (36),(37) we can intro-
duce the following notation for the splitting of the
Liouville’s quasioperator into the diagonal (L̂(n)

ii )
and non-diagonal (L̂(n)

ij ) matrix elements with i 6=
j, n ≥ 1

L̂(n) = Pn−1L̂
(n−1)Pn−1,

L̂0 = L̂, L̂
(n)
ij = Π(n−1)

i L̂Π(n−1)
j , i, j = 1, 2,

Π(n)
1 = Πn, Π(n)

2 = Pn = 1−Πn. (38)

For example, we come to the following Eqs.

L̂
(0)
22 = L̂0 = L̂, L̂

(n)
22

= Pn−1Pn−2 . . . P0L̂P0 . . . Pn−2Pn−1. (39)

for the second diagonal matrix elements. Succes-
sively applying projection operators Πn and Pn for
the discrete equation (30) in the set of normalized
TCF (t = mτ)

Mn(t) =
< Wn[1 + iτ L̂

(n)
22 ]mWn >

< |Wn(0)|2 >
(40)

we obtain the infinite hierarchy of connected non-
Markov finite-difference kinetic equations (t = mτ)

∆Mn(t)
∆t

= iω
(n)
0 Mn(t)

−τΩ2
n+1

m−1∑
j=0

Mn+1(jτ)Mn(t− jτ), (41)

Nonlinear Phenomena in Complex Systems Vol. 4, No. 4, 2000



418 Renat Yulmetyev et al.: Non-Markov Stationary Time Correlation

where ω
(n)
0 is the eigen frequency and Ωn is the gen-

eral relaxation frequency as follows

ω
(n)
0 =

< W ∗
nLnWn >

< |Wn|2 >
, Ln = L

(n)
22 ,

Ω2
n =

< |Wn|2 >

< |Wn−1|2 >
.

(42)

A set of functions Mn(t) (40), (41) except n = 0
can be considered as functions characterizing the
statistical memory of time correlation in the com-
plex systems with discrete current time. The initial
TCF a(t) and the set of discrete memory functions
Mn(t) in Eqs. (41) are of crucial role for the further
consideration. It is convenient to rewrite the set
of discrete kinetic Eqs.(41) as the infinite chain of
coupled non-Markov discrete equations of nonlinear
type for the initial discrete TCF a(t) (discrete time
t = mτ everywhere)

∆a(t)
∆t

= −τΩ2
1

m−1∑
j=0

M1(jτ)a(t− jτ)

+iω
(0)
0 a(t),

∆M1(t)
∆t

= −τΩ2
2

m−1∑
j=0

M2(jτ)M1(t− jτ)

+iω
(1)
0 M1(t),

∆M2(t)
∆t

= −τΩ2
3

m−1∑
j=0

M3(jτ)M2(t− jτ)

+iω
(2)
0 M2(t).

(43)

These finite-difference Eqs. (??) and (??) are very
similar to famous Zwanzig’-Mori’s chain (ZMC) of
kinetic equations [?]- [?], which plays the fundamen-
tal role in modern statistical physics of nonequilib-
rium phenomena with the smooth current time. It
should be noted that ZM’sC is true only for the
physical quantum and classical systems with current
smooth time governed by Hamiltonian. Our finite-
difference kinetic equations (??), (??) are valid for
complex systems lacking Hamiltonian, the time be-
ing discrete and the exact equations of motion being
absent. However, the ”dynamics” and ”motion” in

the real complex systems are undoubtedly abundant
and are immediately registered during the experi-
ment.

The first three of those Eqs.(??) in the whole infi-
nite chain (??) form the basis for the quasihydrody-
namic description of random processes in complex
systems.

Now let’s find the matrix elements L̂ij of com-
plex systems Liouvillian’s quasioperator. Employ-
ing Eqs. (??), (??), (??), (??) and (??) we succes-
sively found

iL̂
(0)
11 = Π

a(τ)− a(0)
τ

= a′(0)Π,

iL̂
(0)
21 = {τ−1[U(t + τ, t)− 1]− a′(0)}Π,

iL̂
(0)
12 = Π{τ−1[U(t + τ, t)− 1]− a′(0)},

iL̂
(0)
22 = iL̂− i{L̂(0)

11 + L̂
(0)
12 + L̂

(0)
21 }

= τ−1[U(t + τ, t)− 1]− τ−1Π{U(t + τ, t)− 1}

−τ−1{U(t + τ, t)− 1}Π + a′(0)Π.

(44)

A diagonal matrix element L̂
(0)
22 is the part of ”com-

pressed” evolution quasioperator, which in its turn
is equal to

1 + iτ L̂22 = U(t + τ, t) + τa′(0)Π

−{Π, U(t + τ, t)− 1}+ (45)

where the anticommutator of appropriate opera-
tor is designate by the brackets {A,B}+ = AB +
BA.One can see from the Eqs.(??) that the ”com-
pressed” evolution operator differs from the natural
operator U(t+τ, t) because of the presence of contri-
butions, associated with the first and the following
derivatives of TCF the initial TCF a(t).

Now let us move to practical realization of
Eqs.(??), forming a basis of pseudohydrodynamic
description of correlation dynamics. Thus using or-
thogonal dynamic variables (??), (??),(??), we im-
mediately obtain
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Ŵ0 = A0
k, Ŵ1 = {L̂− ω

(0)
0 }Ŵ0 = L̂Ŵ0 = (iτ)−1(Uτ − 1)A0

k(0),

Ŵ2 = L̂Ŵ1 − Ω2
1Ŵ0 = {L̂2 − Ω2

1}Ŵ0 = (iτ)−2{Uτ − 1}2Ak − Ω2
1A

0
k,

Ŵ3 = L̂Ŵ2 − Ω2
2Ŵ1 = L̂(L̂2 − Ω2

1)Ŵ0 − Ω2
2L̂Ŵ0 = {L̂3 − (Ω2

1 + Ω2
2)L̂}Ŵ0

= {(iτ)3[Uτ − 1]3 − (iτ)−1(Ω2
1 + Ω2

2)(Uτ − 1)}A0
k.

(46)

Simple relation for the eigen and general relaxation frequencies

ω
(n)
0 =

< ŴnL̂Ŵn >

< |Ŵn|2 >
= 0, Ω2

n =
< |Ŵn|2 >

< |Ŵn−1|2 >
,

Ω2
1 = |a(2)(0)|, Ω2

2 =
a(4)(0)− (a(2)(0))2

|a2(0)|
,

Ω2
3 =

a(6)(0)− 2a(4)(0)(Ω2
1 + Ω2

2)− (Ω2
1 + Ω2

2)
2a(2)(0)

a(4)(0)− (a(2)(0))2

(47)

should be taken into consideration here. The or-
thogonal variables Ŵn can be easily rearranged as
follows

Ŵ0 = A0
k, Ŵ1 = −i

∆
∆t

Ak,

Ŵ2 = {
(

∆
∆t

)2

+ Ω2
1}A0

k,

Ŵ3 = i

{(
∆
∆t

)3

+ (Ω2
1 + Ω2

2)
∆
∆t

}
A0

k.

(48)

Those formulas (??) have considerable utility inas-
much as they permit to see the structure of for-
mation of orthogonal variables and junior orders
memory functions for the numbers n = 1, 2, 3.
Eqs. (??), (??) open up new fields of construc-
tion of quasikinetic description of random processes
{A0

k(0),Am
m+k(mτ)}. By analogy with hydrody-

namics the variables Ŵ0, Ŵ1, Ŵ2 and Ŵ3 in Eqs.
(??) play the role similar to that of the local density,
local flow, local energy density and energy flow. It
is clear that this is only formal analogy and the vari-
ables Ŵn don’t possess any physical sense. However,
such analogies can be helpful in revealing of the real
sense of orthogonal variables.

To describe pseudohydrodynamics we have to use
the set of first three discrete kinetic Eqs. (??) with
frequencies Ω2

i (i = 1, 2, 3) derived from Eqs.(??).

It is essential that all frequencies Ω2
i are connected

straightly with the properties of the initial TCF a(t)
only. The latter can be easily derived directly from
the experimental data [?]. Thus the system of Eqs.
(??) has considerable utility for the experimental
investigations of statistical memory effects and non-
Markov processes in complex systems.

Among them it seems to us that one could pro-
pose more physical interpretation of the different
terms in the right side of the three Eqs. (48).
For example, term −i∆A/∆t is like a dissipation,
∆2A/∆t2 is like a inertia and Ω2A(t) is like a restor-
ing force. Third derivative ∆3A/∆t3 is the finite-
difference generic form of the Abraham-Lorenz force
corresponding to dissipation feedback due to radia-
tive losses.

4 Information Shannon Entropy

for the Discrete Time

Correlation and Discrete Time

Memory in Complex Systems

According to the results in section 3, the informa-
tion measure for the description of random pro-
cesses in complex systems can be expressed not only
via TCF, but also by means of the certain set of time
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memory functions. To accomplish that let us return
to section III in which we presented the geometrical
picture of stochastic dynamics of correlation . In a
line with Shannon in case of discrete source of in-
formation we were able to determine a definite rate
of generating information, namely the entropy of
the underlying stochastic information by introduc-
tion fidelity evaluation function ν(P (x, y)). Here
the function P (x, y) is the two-dimensional distri-
bution of random variables (x, y) and

ν(P (x, y)) =
∫ ∫

dx dyP (x, y)ρ(x, y), (49)

where the function ρ(x, y) has the general nature
of the ”distance” between x and y. As pointed by
Shannon the function ρ(x, y) is not a ”metric” in
the strict sense, however, since in general it does not
satisfy either ρ(x, y) = ρ(y, x) or ρ(x, y) + ρ(y, z) ≥
ρ(x, z).. It measures how undesirable it is accord-
ing to our fidelity criterion (??) to receive y when x
transmitted. According to Shannon any evolution
of fidelity must correspond mathematically to the
operation of a simple ordering of systems by the
transmission of a signals within the certain toler-
ance. According to Shannon the following is simple
example of fidelity evaluation function

ν(P (x, y)) =< (x(t)− y(t))2 > . (50)

In our case it is convenient to consider the ini-
tial vector A0

k(0) as a variable x and the final vector
Am

m+k(t) at time t = mτ for a variable y. The dis-
tance function ρ(x, y)

ρ(x, y) =
1
T

∫ T

0
dt{x(t)− y(t)}2 (51)

is the most commonly used measure of fidelity.
Taking into account Eqs.(??), (??) and the re-

sults in Section 2 as the fidelity function one can
use the following function of geometrical distance

ν(P (A0
k(0),Am

m+k(t)) = 2kσ2{1− a(t)}, (52)

where distance function is

ρ(A0
k(0),Am

m+k(t)) = R2(A0
k(0),Am

m+k(t)). (53)

According to Shannon partial solution of the gen-
eral maximizing problem for determining the rate
of generating information of a source can be given
using Lagrange’s method and considering the fol-
lowing functional∫ ∫

{P (x, y) log
P (x, y)

P (x)P (y)

+µP (x, y)ρ(x, y) + ν(x)P (x, y)}dx dy, (54)

where the function ν(x) and µ are unknown. The
following equation for the conditional probability
can be obtained by variation on P (x, y)

Py(x) =
P (x, y)
P (y)

= B(x) exp{−λρ(x, y)}. (55)

This shows that with best encoding the conditional
probability of a certain cause for various received y,
Py(x) will decline exponentially with the distance
function ρ(x, y) between values the x and y in prob-
lem. Unknown constant λ is defined by the required
fidelity, and function B(x) in the case of continuous
variables obeys the normalization condition∫

B(x) exp{−λρ(x, y)}dx = 1. (56)

Since the distance function ρ(x, y) (??) is dependent
only on the vectors difference ρ(x, y) = ρ(x− y), we
get a simple solution for the special case B(x) = α

Py(x) = α exp{−λρ(x− y)} = α exp{−c[1− a(t)]}
(57)

instead of Eqs.(??). Constants α and λ result from
the corresponding normalizing condition and in ac-
cordance with the required fidelity. From the phys-
ical point of view the basic value of solution (??) is
directly related to the occurrence of the TCF a(t).
Therefore,the solution (??) describes the state of
the system with certain level and scale of correla-
tion.

Now let us employ Shannon’s solution for contin-
uous variables (??), (??) and pass to simplified dis-
crete two-level description of the system. Then let
us consider the conditional probability (??) which
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describes the state on time axis at the moment
t = mτ as corresponding to the creation of correla-
tion. Whereas the other state at the fixed moment
t = mτ which accounts for the state with the ab-
sence (annihilation) of correlation will exist. Let us
introduce two probabilities, which will fit normaliz-
ing condition

P1(t) + P2(t) = 1, P1(t) = Pcc(t),

P2(t) = Pac(t), Pcc(t) + Pac(t) = 1.
(58)

In the case of two lewels Shannon entropy

S = −
2∑

i=1

Pi lnPi (59)

increases at full disorder and takes its limiting value

lim
t→∞

S = lim
t→∞

S(t) = ln 2. (60)

To find unknown parameters α and c in two-level de-
scription (creation and annihilation of correlation)
in Eqs. (??) we should take into account normaliza-
tion condition, principle of entropy increase (??) at
t →∞ and of entropy extremality (presence of min-
imum) at full order when the following relationship:
limt→o a(t) = 1 is true for the TCF. We obtained
the following equation

lim
t→0

S(t) = −{α lnα + (1− α) ln(1− α)} = 0

for the parameters α and c (c ≥ 0, 0 ≤ α ≤ 1)
having regard to these requirements. Among two
solutions (α1 = 1, α2 = 0) only the first one (α1 =
1) has physical sense. Two probabilities calculated
by means of Eqs.(??) will satisfy conditions (??),
(??)

P1(t) = Pcc(t) = exp{− ln 2[1− a(t)]},
P2(t) = Pac(t) = 1− exp{− ln 2[1− a(t)]}

(61)

respectively. In acordance with two -lewel descrip-
tion it would be convenient to deal with two dy-
namic channels of entropy (creation (cc) and anni-
hilation (ac)) of correlation

Scc(t) = ln 2{1− a(t)} exp{− ln 2[1− a(t)]},
Sac(t) = −{1− exp[(− ln 2(1− a(t))]}

ln{1− exp[(− ln 2(1− a(t))]}.
(62)

The probabilities obtained are in the line with full
dynamic (time dependent) information Shannon en-
tropy

S0(t) = Scc(t) + Sac(t)

= ln 2{1− a(t)} exp{− ln 2[1− a(t)]}
−{1− exp[(− ln 2(1− a(t))]}

× ln{1− exp[(− ln 2(1− a(t))]}. (63)

The entropy introduced in to Eqs. (??),(??) char-
acterized a quantitative measure of disorder in the
system related to creation and annihilation of dy-
namic correlation. Owing to discreteness of the
TCF a(t) all functions Pαβ , Sαβ as well as S0(t)
(α = a, c; β = c) are discrete in the real complex
systems.

The results obtained in Section III permit
to present the set of entropies for the states
connected with the set of orthogonal variables
Wi and set of memory functions Mi(t) =
{M1(t),M2(t),M3(t), · · · }.

Four corresponding entropies S0(t), S1(t), S2(t)
and S3(t) and their power frequency spectra
are available from the set of four time func-
tions (TCF a(t) and three memory functions
M1(t), M2(t), M3(t)). Eqs. (??)-(??) are of great
value because they allow us to estimate stochas-
tic dynamics of the real complex systems with dis-
crete time. As a matter of principle the first three
memory functions Mi(t) (i = 1, 2, 3) are easy to
find via Eqs. (??). Using dimensionless parame-
ter ε1 = τ2Ω2

1 and solution of the finite-difference
Eqs.(??) we can found the recurrence relations be-
tween the memory functions of junior and higher in
the following form

Ms(mτ) = −
m−1∑
j=0

Ms(jτ)Ms−1((m− j)τ)

+ε−1
s {Ms−1((m + 1)τ)−Ms−1((m + 2)τ)},

εs = τ2Ω2
s, s = 1, 2, 3, · · · (64)

The relations obtained allow us to derive straightly
the necessary memory functions Ms(t) of any or-
der s = 1, 2, ... from experimental data using the
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registered TCF a(mτ) [?]. Relaxation frequencies
Ω2

i , i = 1, 2, 3, ..., given in Eqs. (??) are available
to experimental registration. Thus, it is fair to say
that the applications of Eqs.(??) will open up fresh
opportunities for detailed study of statistical prop-
erties of correlations in the complex systems. The
very fact of existence of finite -difference Eqs. (??),
(??) enables us to develop any functions directly
from the experiment. Therefore, the availability of
discreteness permits to enhance substantially the
capability to get information for the complex sys-
tems’ state.

Equations above are useful for the discussion of
the experimental data. Close inspection of these
equations shows that the behaviour of derivative(

∂S0
∂t

)
is described in many respects by the func-

tion a′(t) = τ−1[a(t + τ)− a(t)], which is in its turn
can be obtained from the time series observed. Re-
lations analogous to (??), (??) are easily available
for the sequence of memory functions Mi(t) (40) as
well.

5 Conclusion

Present paper deals with two interrelated impor-
tant results. The first one is connected with the
establishment of the chain of finite-difference non-
Markov kinetic equations for the discrete TCF. In
this case the state of complex systems at the defi-
nite level of correlation is described by two vectors
constructed over the strict determined rules. It is
natural finite-difference equation of motion, being
the peculiar analogue of Liouville’s equation for the
initial dynamic variables, that is of particular inter-
est for our analysis. In the subsequent discussion
we employ the strict deduced mathematical fact of
the existence of the normalized TCF. Due to the
operation of scalar product the availability of TCF
makes it possible to introduce the projection op-
erators in the space of vectors of states. Those
projection operations and matrix elements of Liou-
ville’s quasioperator ensure the splitting of natural
equations of motion and then they are solved in the

closed finite-difference form. Using Gram-Schmidt
orthogonalization procedure we find an infinite set
of the orthogonal dynamic random variables. It al-
lows us to obtain the whole infinite chain of finite-
difference kinetic equations for the initial discrete
TCF. These equations contain the set of all mem-
ory functions characterizing the complete spectrum
of non-Markov processes and statistical memory ef-
fects in the complex system. The presence of dis-
cretness and the very fact of the existence of finite-
difference structure enable, in principle, to find all
memory functions solving successively kinetic equa-
tions for the TCF. Parameters of these equations
can be easily obtained from the experimentally reg-
istered TCF. In chaotic dynamics of complex sys-
tems the TCF above playes the role similar to that
of the statistical integral in equilibrium statistical
physics.

Another important result of our work is the dy-
namic (time dependent) information Shannon en-
tropy given in terms of the TCF. It allows us to use
the information measure for the quantitative char-
acteristic of two interrelated correlation channels.
One of them corresponds to the creation of time
correlation and the other - to the annihilation of
correlation.

For that as we employ one of the classical Shan-
non’s results, related to the introduction of fidelity
evolution function and distance function between
two vectors of state. The existence of new infor-
mation measure opens up new fields for exploration
of information characteristics of complex systems.
In particular, some interesting data arise from cal-
culations frequency spectra of power of information
entropy.

The important consequence of the results ob-
tained is the usage of power spectra of memory
functions Mj(mτ), where m = 0, 1, 2, 3, ... and
j = 1, 2, 3, .... The set of three junior memory func-
tions with numbers j = 1, 2, 3 provides the basis for
the pseudohydrodynamical description of the com-
plex system. In practice, any memory function can
be extracted from the experimental time sets and
experimentally recorded TCF. These criteria pro-
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vide the possibility to get reliable information about
non-Markov processes and memory effects in natu-
ral evolution of complex systems. In principle, the
new point in the analysis of complex systems arises
from the opportunity to construct the dynamical
information Shannon entropy for the experimental
memory functions. Undoubtedly, detection of the
frequency spectra of power of entropy for memory
functions gives us new unique information about the
statistical non-Markov properties as well as memory
effects in complex systems of various nature.

In conclusion it may be said that this paper de-
scribes a first-principle derivation of a hierarchy of
finite-difference equations for time correlation func-
tion of out-of-equilibrium systems without Hamilto-
nian. The approach developed seems to have poten-
tials and offer few advantages over the usual Hamil-
tonian point of view. A similar situation are true
apparently with regard to turbulence, aging for in-
stance as in spinglasses and glasses as well as ex-
perimental time series for living, social and natural
complex systems (physiology, cardiology, finance,
psychology and seismology, etc.)
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