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Abstract. We introduce phase space concepts to describe quantum states in a disordered system. The
merits of an inverse participation ratio defined on the basis of the Husimi function are demonstrated by
a numerical study of the Anderson model in one, two, and three dimensions. Contrary to the inverse
participation ratios in real and momentum space, the corresponding phase space quantity allows for a
distinction between the ballistic, diffusive, and localized regimes on a unique footing and provides valuable
insight into the structure of the eigenstates.
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Numerical simulations of chaotic models

The behavior of a quantum particle in a disorder poten-
tial depends significantly on the disorder strength. If the
mean free path exceeds the system size, one may think
of plane waves characterized by a fixed momentum which
are scattered by the weak random potential. On the other
hand, sufficiently strong disorder leads to exponentially
localized states in real space. Then a wide range of mo-
menta is needed to construct these states. A description
for arbitrary disorder strength thus requires to adequately
take into account real space as well as momentum space
properties. It is therefore appropriate to treat the system
in phase space. Moreover, phase space quantities have re-
cently been measured in experiments on light scattering
from disordered media [1]. Hence, in the following we will
develop a phase space approach to disordered systems.

Signatures of the different regimes can already be
found in the energy spectrum. While for weak and strong
disorder energy levels can almost be degenerate, level re-
pulsion occurs in an intermediate regime. Making use of
random matrix theory the chaotic nature can be verified
and related to diffusive motion. However, such considera-
tions cover only statistical properties of the spectrum and
do not give information about the structure of individual
states.

A popular way to investigate the properties of single
states is the calculation of their inverse participation ra-
tio (IPR). In real space this quantity has frequently been
employed [2] to measure the size of the localization do-
main of quantum states in the localized regime and to
characterize the Anderson transition [3,4]. Furthermore,
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an analysis based on the IPR has been performed for the
eigenmodes of disordered microwave cavities [5]. However,
the real space IPR is not very sensitive to changes in ex-
tended wave functions when going from the ballistic to the
diffusive regime. In order to obtain a meaningful descrip-
tion of the structure of quantum states for all regimes on
a unique footing, we generalize the concept of the IPR to
phase space.

The Anderson model of disordered solids [6] has
been the subject of extensive investigations over the last
decades [7]. A numerical study of this model in one, two,
and three dimensions and comparison with energy level
statistics will demonstrate the virtues of our approach.
The IPR in phase space enables us to individually char-
acterize eigenstates and to identify ballistic, diffusive, and
localized regimes. In particular, the results in one dimen-
sion will significantly differ from those in higher dimen-
sions, which can be attributed to the absence of a diffusive
regime.

We start by introducing the relevant phase space con-
cepts. At this point there is no need to specify the details
of the disordered system except that we will consider a
d-dimensional lattice model with lattice constant a and
length L in each direction. In order to keep the notation
simple, we will give the formulae for the case of one di-
mension, which can be generalized to higher dimensions
in a straightforward manner.

A positive definite density in phase space is given by
the Husimi function [8] or Q function [9]

%(x0, k0) = |〈x0, k0|ψ〉|2 . (1)

Here, the state |ψ〉 is projected onto a minimal uncertainty
state |x0, k0〉 centered around position x0 and momentum
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Fig. 1. The Husimi function of a state at the band center is shown for a one-dimensional Anderson model of size L = 128
with disorder strengths W = 0.1, 1, 2.5, 10, and 25 increasing from left to right. Exploiting the symmetry with respect to k = 0
the Husimi function is plotted on a linear and logarithmic scale in the upper and lower half, respectively. The gray values from
white to black for increasing Husimi function have been normalized separately in each panel. The width σ of the Gaussian (2)
is indicated by the black square in panel (e).

k0. In position representation, the latter assumes a Gaus-
sian form

〈x|x0, k0〉 =
(

1
2πσ2

)1/4

exp
(
− (x− x0)2

4σ2
+ ik0x

)
(2)

where the value of the variance σ2 is yet undetermined.
The Husimi function is normalized,

∫
(dxdk/2π)%(x, k) =

1, and, for real wave functions ψ(x), obeys the symmetry
%(x0, k0) = %(x0,−k0).

The variance σ2 of the Gaussian (2) determines the rel-
ative importance of real and momentum space. In the fol-
lowing, we choose σ2 = La/4π leading to equal widths of
the Gaussian in x- and k-direction. In order to obtain suffi-
cient resolution, one has to ensure that σ � L which limits
the possible system sizes from below. Then, the effect of
neglecting the tails of the Gaussian in finite size systems
in presence of periodic boundary conditions will also be
small. Examples of Husimi functions for one-dimensional
disordered systems are presented in Figure 1, which will
be discussed in detail below.

For practical purposes a more global description of
the phase space properties is appropriate. Based on the
Husimi function the so-called Wehrl entropy [10–12] is
defined, which represents a measure of the phase space
occupation. It was shown for the driven rotor that the
Wehrl entropy of individual quantum states is connected
to the energy level statistics [13]. A very similar system,
the kicked rotor, can be mapped onto the Anderson model
[14], suggesting that the Wehrl entropy is a useful quantity
for the characterization of the eigenstates of the Anderson
model [15].

A more convenient quantity is the inverse participation
ratio (IPR) in phase space

P =
∫

dxdk
2π

[%(x, k)]2 , (3)

which has been employed to measure the complexity of
quantum states [16]. This IPR corresponds to a lineariza-
tion of the Wehrl entropy [17] and can be compared di-
rectly to the corresponding quantities Px =

∫
dx|ψ(x)|4

and Pk =
∫

dk|ψ̃(k)|4 in real and momentum space, re-
spectively. Px is particularly well studied as it is related

to the probability for a diffusing particle to return to its
original position in the long-time limit [18].

Furthermore, P can be evaluated without recourse to
the 2d-dimensional Husimi function. In fact, only the wave
function is required since we can recast (3) in the form [19]

P =
1

8
√
πσ

∫
du
∣∣∣∣∫ dv ψ

(
1
2

(u− v)
)
ψ

(
1
2

(u+ v)
)

(4)

× exp
(
− v2

8σ2

)∣∣∣∣2 .
Its nondiagonal character provides the information on mo-
mentum. It is only by means of (4) that one succeeds in
determining the IPR for three-dimensional systems.

In the following, we specifically consider the Anderson
model for non-interacting electrons on a lattice with peri-
odic boundary conditions, where disorder is modeled by a
random on-site potential. In d = 1, the Hamiltonian reads

H = −t
∑
n

(|n〉〈n+ 1|+ |n+ 1〉〈n|) +W
∑
n

vn|n〉〈n|

(5)

with Wannier states |n〉 localized at sites n = 1, . . . , L.
All lengths are measured in units of the lattice constant
a = 1. The hopping matrix element t = 1 between neigh-
boring sites defines the energy scale. The on-site energies
vn are drawn independently from a box distribution on the
interval [−1/2; 1/2] and W denotes the disorder strength.

Husimi functions for a state at the band center are
presented in Figure 1 for increasing disorder strength W
and a randomly selected disorder realization vn. Making
use of the symmetry with respect to k = 0, the Husimi
function is plotted on a linear and logarithmic gray scale
in the upper and lower half, respectively. White points in
the lower half may be related to the zeros of the Husimi
function [20].

For W = 0.1 (Fig. 1a), the disorder represents only a
small perturbation and the Husimi function is thus still
close to that of plane waves. Except for the states at the
band edges, one finds two stripes well localized at the cor-
responding k-values, which are extended over the full real
space. The width of the stripes is induced by the projec-
tion onto the Gaussian (2). In Figure 1e the opposite limit
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Fig. 2. Distributions of the logarithms of the IPR for 50 dis-
order realizations in (a) real space, (b) phase space, and (c)
momentum space as a function of the disorder strength W for
a one-dimensional system of length L = 2048.

is depicted. At W = 25, the hopping is a small perturba-
tion, t�W , and the state is localized in real space.

In Figure 1d, where W = 10, the influence of the near-
est neighbor hopping becomes relevant and tends to ex-
tend the wave function in real space over several sites.
Since the coupled states have to remain orthogonal, they
separate in momentum space. This leads to a contraction
of the Husimi function in k direction, which is more impor-
tant than the spreading over a few sites. As a consequence,
the phase space properties for strong disorder are domi-
nated by the behavior in momentum space and the IPR
in phase space increases with decreasing disorder. This
behavior will also be evident from Figures 2 and 3 below.

Similarly, at weak disorder, the transition from Fig-
ure 1a to Figure 1b, i.e. to W = 1, can be understood in
terms of a coupling between different plane waves. Here,
however, the coupling is not restricted to neighboring k
values, but is governed by the energy difference of the re-
spective states. For one-dimensional systems, the contrac-
tion in real space dominates the spreading in momentum
space, again leading to an increase of the IPR in phase
space (cf. Fig. 2b).

As a consequence of the behavior for weak and strong
disorder, one expects a maximum for the IPR at inter-
mediate disorder strength. Indeed, for W = 2.5, the state
shown in Figure 1c displays strong localization in phase
space.

The situation just described is generic for one-dimen-
sional systems. This can be seen from the distributions of
the IPR depicted in Figure 2. The distributions of the log-
arithms of P as well as Px (real space) and Pk (momentum
space) have been obtained by diagonalizing equation (5)
for 50 different disorder realizations vn for each disorder
strength W and taking L/2 states around the band center
into account.

In the limit of very strong disorder, the states are local-
ized on a single site in real space and uniformly distributed
over momentum space. This leads to the limiting values
Px(∞) = 1 and Pk(∞) = L−d. In phase space one has to
account for the finite width of the Husimi function and
thus finds P (∞) = L−d/2. For d = 1, these values can
be checked against the data shown in Figure 2. Starting

Fig. 3. Distributions of the logarithms of the IPR in phase
space (top) and η defined in equation (6) (bottom) are shown
as a function of disorder strength W for (a) d = 1, L = 128,
(b) d = 2, L = 64, and (c) d = 3, L = 20. The distributions are
based on 250, 20, and 20 disorder realizations, respectively.

from this limit, with decreasing disorder two energetically
almost degenerate states become coupled via the finite
hopping matrix element t. For these states Px is reduced
to 1/2 while Pk is enhanced by a factor of 3/2. As already
discussed above, it is the latter which dominates the be-
havior in phase space.

In the opposite limit W → 0, the real wave functions in
d = 1 contain equal contributions from degenerate plane
waves of momenta k and −k. This implies Pk(0) = 1/2
and Px(0) = 2/3L. In phase space, the finite width of
the Husimi function leads to P (0) = 1/2L1/2. In higher
dimensions, however, degeneracies occur and render the
behavior for W → 0 more complex. Nevertheless, as a
function of system size, Px and P scale as L−d and L−d/2,
respectively. A more detailed discussion will be presented
elsewhere [21].

After this comparison of the IPR in different spaces,
we now concentrate on the IPR in phase space. The upper
part of Figure 3 shows the distributions of the logarithm
of P for dimensions d = 1, 2, and 3 and system sizes L =
128, 64, and 20, respectively. For better comparison the
data have been scaled with the length dependence L−d/2,
being valid in the limits W → 0 and ∞.

The most striking difference between the one-dimen-
sional case and higher dimensions consists in the behav-
ior of the IPR for weak disorder. For d = 1, the average
IPR increases with disorder strength and eventually goes
through a maximum. The overall behavior can be under-
stood as a crossover from a regime dominated by real space
properties to one dominated by momentum space.

In contrast, in d ≥ 2 the average IPR initially de-
creases. This implies a spreading of the Husimi function
beyond the broadened stripes present for weak disorder
(cf. Fig. 1a). On the other hand, the behavior at strong
disorder is governed by the same mechanism as for the
one-dimensional case, which implies an increase of the IPR
with decreasing disorder. The two regimes are joined by
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a short interval of disorder strengths where the Husimi
function contracts strongly as disorder is increased.

The main difference of the behavior of P in d ≥ 2
compared to d = 1 consists in the existence of a minimum
of P . This implies a large spread of the eigenstates in phase
space indicating the diffusive nature of these states. This
interpretation is consistent with the expected absence of
diffusion in d = 1 and its appearance in d ≥ 2.

For d = 2 and 3, the distributions of P depicted in
Figures 3b and c behave similarly. However, the perti-
nent scaling argument for Anderson localization [3] pre-
dicts a phase transition only in dimensions higher than
two. While in d = 3 a diffusive regime appears even in
the thermodynamic limit, in d = 2 it is present for sys-
tems of finite size when the system size exceeds the mean
free path but not the localization length. Unfortunately,
in d = 3, numerical constraints revent us from performing
a sound finite size scaling, which would allow to distin-
guish the form of the jumps of P in d = 2 and 3 in the
thermodynamic limit L → ∞. Nevertheless, an analysis
of the distributions of P for different system sizes exhibits
clear differences between d = 2 and 3 [21]. In d = 2, the
minimum together with the jump shifts to smaller disor-
der strengths with increasing L. In contrast, for d = 3, the
minimum shifts in the opposite direction and the jump re-
mains at finite disorder strength giving evidence for the
Anderson transition at W ≈ 16.5.

To further substantiate our findings about the
signatures of the different transport regimes in phase
space, we compare our results to energy level statistics.
In the diffusive regime the energy spacing distribu-
tion p(s) is close to the Wigner-Dyson distribution
pW (s) = 1

2πs exp(−πs2/4). In contrast, in the local-
ized regime, p(s) approaches the Poissonian statistics
pP (s) = exp(−s). To quantify the form of the distribution
we evaluate

η =

∫ b
0

ds(p(s)− pW (s))∫ b
0

ds(pP (s)− pW (s))
(6)

which is particularly sensitive to level repulsion. Here,
b = 0.4729 . . . refers to the first crossing point of the dis-
tributions pW (s) and pP (s). According to its definition,
η = 1 for a Poissonian spacing distribution and η = 0 for
a Wigner-Dyson spacing distribution.

In the lower part of Figure 3, η is shown as a function
of the disorder strength. For weak disorder, η exceeds 1
because of non-universal level statistics appearing in reg-
ular geometries in the ballistic regime. For strong disorder
one finds Poissonian statistics as expected for the localized
regime. At intermediate disorder strengths in d = 1, η ex-
hibits a minimum due to level repulsion, but no proper
diffusive regime exists. On the other hand, for finite size
systems in d = 2, an extended region is present, where the
level statistics is close to that predicted by random matrix
theory. This property is commonly used to identify a re-
gion of diffusive dynamics. For d = 3 the diffusive region
survives even in the thermodynamic limit L→∞.

Figure 3 clearly shows that the decrease of the IPR is
related to a plateau of η at values close to zero. Using the

spreading of the states in phase space as an indicator for
diffusive behavior is therefore consistent with the results
from level statistics. For d = 3, a comparison between η
and the distribution of P even allows to identify the bal-
listic regime for weak disorder, where the IPR essentially
remains constant.

In conclusion, we have shown that phase space proper-
ties represent a new tool to describe disordered systems for
arbitrary disorder strength. The IPR in phase space pro-
vides information, which could not be obtained from the
corresponding quantities Px in real space and Pk in mo-
mentum space. It is only the first quantity which captures
the appearance of a diffusive regime in two and higher
dimensions. Given our demonstration that the physics in
phase space is able to provide new insight into the dynam-
ics of disordered systems, these concepts likely will also
make a valuable contribution towards understanding the
challenging problem of the combined effects of interaction
and disorder in few-body systems.

We acknowledge useful discussions with I. Varga. Financial
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12. S. Gnutzmann, K. Życzkowski, J. Phys. A 34, 10123
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