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Abstract. Two previously suggested, physically distinct mechanisms for a growth instability of vapor de-
posited films, the finite atomic size effect and the particle deflection effect due to interatomic attraction,
are reconsidered, further analyzed, and compared. We substantiate why the instability caused by inter-
atomic attraction must be considered as the truly underlying instability mechanism. We demonstrate that
aspects of the structure zone model of Movchan and Demchishin can also be consistently explained using
the growth instability induced by particle deflection instead of the instability arising from the atomic size
effect. Most significantly we show that, for vapor deposited amorphous Zr65Al7.5Cu27.5-films, the growth
instability due to the atomic size effect cannot be present.

PACS. 68.55.-a Thin film structure and morphology – 81.15.Aa Theory and models of film growth

1 Introduction

The preparation and properties of thin films constitute
an important field of scientific research and its technolog-
ical applications. Since the condensation of the films hap-
pens far from equilibrium, the structure and the proper-
ties of the films depend strongly on the deposition process.
Therefore, the understanding of the mechanisms leading
to the formation of films has attracted considerable in-
terest [1–5]. Experimental investigations have resulted in
a classification of the film structure as it depends on the
deposition parameters, especially the substrate tempera-
ture [3–5]. Such a classification can help to identify the rel-
evant mechanisms during the growth process of the films.
For instance, activation energy determinations have re-
vealed the importance of bulk diffusion at higher substrate
temperature [4], whereas at intermediate temperature sur-
face diffusion is the dominant process [3]. In the latter
case, roughening due to the deposition of particles then
competes with smoothing due to surface diffusion. The
surface can evolve into self-similar structures or, in the
presence of a growth instability, into a pattern with some
intrinsic periodicity. Leamy et al. [6] suggested that the
finite size of the atoms induces a growth instability of the
type ∼ −∇2H (where H(x, t) denotes the coarse-grained
surface morphology) because arriving atoms are attached
to the surface at a position separated from their center
of mass. Mazor et al. [7–9] took up this idea in order to
predict the surface morphology of vapor deposited films of
zone II microstructure and to estimate the zone I to zone
II transition temperature in the zone model of Movchan
and Demchishin [3]. They argued that this growth insta-
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bility overcomes the effect of the surface diffusion below
the transition temperature, leading to the porous struc-
tures of zone I.

On the other hand, Shevchik [10] suggested that a dif-
ferent instability caused by particle deflection due to in-
teratomic attraction gives rise to the growth of surface
irregularities on vapor deposited amorphous films. This
can lead to the formation of voids when surface diffusion
is suppressed.

The aim of this paper is twofold. First, in Section 2, by
carefully reconsidering the afore-mentioned mechanisms,
we substantiate on theoretical grounds (i) why the atomic
size effect is not a feasible option to trigger a growth in-
stability and (ii) that the deflection effect must be consid-
ered as the genuine mechanism for that instability. Sec-
ond, in Section 3, even putting aside the arguments in
Section 2 for the moment, we demonstrate that (i) re-
cent experimental data on vapor deposited amorphous
Zr65Al7.5Cu27.5 films cannot be consistently explained by
the atomic size effect and (ii) the transition temperature
T1 between zone I and zone II microstructures of the struc-
ture zone model of Movchan and Demchishin previously
interpreted by the instability arising from the atomic size
effect can also be consistently explained by the deflection
effect. Section 4 summarizes the results of our study.

2 Different growth instabilities

2.1 Finite atomic size effect

Mazor et al. [7–9] and, earlier, Leamy et al. [6] suggested
that the finite extension of the deposited atoms (of ra-
dius δ) can lead to an unstable growth of the surfaces of
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Fig. 1. Sketch of the growth instability attributed to the finite
size of the atoms [6–9]: If a particle is deposited on the “real
surface” it is actually (with its center of mass) deposited on
the “imaginary surface” that is separated by the atomic ra-
dius δ from the “real surface”. As a consequence, it seems that
the segment C −D of the “real surface” receives an increased
particle flux due to its negative curvature ∇2H < 0.

vapor deposited films. They argued that, if a particle is
deposited on the surface H(x, t), this deposition actually
takes place on an imaginary surface that is displaced by
δn(x, t) from the real surface (x,H(x, t)); see Figure 1.
Here, n(x, t) denotes the unit vector perpendicular to the
surface and reads

n =
1√

1 + (∇H)2

(
−∇H

1

)
· (1)

From this purely geometric consideration, the authors of
references [6–9] concluded that, depending on the surface
curvature, the flux of particles onto a part of the real sur-
face is either increased or decreased, as shown in Figure 1.

One possible way to derive a quantitative expression
for the suggested local change of the deposition rate goes
as follows: The imaginary surface can be parametrized by

x ′ = x− δ√
1 + (∇H)2

∇H, (2)

H ′ = H +
δ√

1 + (∇H)2
· (3)

Then, the deposition rate on a part of the real surface is
changed by the functional determinant of the right-hand
side of equation (2) given by

α = det

1− δ∂x ∂xH√
1+(∇H)2

−δ∂y ∂xH√
1+(∇H)2

−δ∂x ∂yH√
1+(∇H)2

1− δ∂y ∂yH√
1+(∇H)2

 · (4)

Since the atomic radius δ is usually very small compared
to the radii of the surface curvature, the correction pro-
portional to δ2 can be neglected, yielding

α = 1− δ∇ ·
(

∇H√
1 + (∇H)2

)
· (5)

Therefore, the initially uniform deposition rate F is
changed to

Fα = F − Fδ∇ ·
(

∇H√
1 + (∇H)2

)
· (6)

In addition, the curvature dependent surface diffusion as
suggested by Mullins [11] must also be taken into account.
Therefore, the complete growth equation for the surface
evolution of vapor deposited films that has been proposed
by Mazor et al. [7,8] reads in one spatial dimension

∂tH = F − Fδ∂x

(
∂xH√

1 + (∂xH)2

)
(7)

−De∂x

[
1√

1 + (∂xH)2
∂2
x

(
∂xH√

1 + (∂xH)2

)]
·

Here, De = DsγΩ
2ν/kBT denotes the effective surface

diffusion constant where Ds is the coefficient of surface
diffusion, γ is the surface-free energy per unit area, Ω is
the atomic volume, ν is the number of atoms per unit area,
and T is the surface temperature [11].

If the initial height distribution H(x, 0) is almost flat,
useful insights into the early stages of the surface evolu-
tion predicted by equation (7) can be obtained from its
linearized version

∂tH = F − Fδ∂2
xH −De∂

4
xH. (8)

A perturbation of the form sin(kx) grows or decays ex-
ponentially with the growth rate σ(k) = Fδk2 − Dek

4.
Therefore, all perturbations with wavelengths λ > λ0 =
2π
√
De/Fδ increase until the nonlinear terms of equa-

tion (7) begin to influence the evolution of the height pro-
file [7,8].

2.2 Deflection of particles due to interatomic forces

Next, we discuss an alternative scenario leading to a
growth instability that has been suggested by Shevchik
[10] for the spatio-temporal evolution of amorphous films.
Here, the key idea is that the particles initially move in
a direction being perpendicular to the substrate towards
the film, but, when they are close to the surface, they are
attracted by interatomic forces towards the surface. As a
consequence, more particles arrive at places with negative
curvature ∇2H < 0 than at places with positive curvature
∇2H > 0, as shown in Figure 2. The attractive forces be-
tween the oncoming particles and the already condensed
atoms at the surface are the same forces that hold the
solid together [10]. For experimental indications of the rel-
evance of this effect we refer to [12,13], for its relevance
in the context of crystal growth cf. the recent simulations
in reference [14].

In order to derive a quantitative expression for the ef-
fect of the particle deflection on the evolution of the height
profile H(x, t), we use the idealization that this deflection
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Fig. 2. Sketch of the deflection effect [10]: When the particles
are close to the surface they are attracted by interatomic forces
in a direction perpendicular to the surface. Consequently, more
particles arrive on mounds than on valleys.

(in a direction perpendicular to the surface) happens in-
stantaneously when a particle arrives at a distance b from
the surface [15], as shown in Figure 3. This idealization is
reasonable if the initial kinetic energy of the particles (typ-
ically a few tenths of an eV in physical vapor deposition
experiments) is small compared to their binding energy
on the surface (typically a few eVs). Here, the parame-
ter b characterizes the effective range of the interatomic
forces and depends on the specific details of the interac-
tion potential and the initial kinetic energy of the parti-
cles (cf. the Appendix for a quantitative estimate of b).
As shown in Figure 3, b can be larger or smaller than the
atomic radius. Using the same mathematical technique as
in the previous section and again adding the contribution
of the surface diffusion, we obtain the surface evolution
equation

∂tH = F − Fb∂x

(
∂xH√

1 + (∂xH)2

)
(9)

−De∂x

[
1√

1 + (∂xH)2
∂2
x

(
∂xH√

1 + (∂xH)2

)]
for vapor deposited films in the presence of particle de-
flection and surface diffusion in the one-dimensional case,
or, after linearization,

∂tH = F − Fb∂2
xH −De∂

4
xH. (10)

2.3 Comparison of the growth instabilities

The two presented growth instabilities are based on rather
distinct physical arguments: The atomic size effect con-
stitutes a purely geometric argument (no interaction in-
volved) and the entering parameter δ is fixed by the size
of the deposited atoms. In contrast to that, the deflec-
tion effect results from the ubiquitous atomic interaction.
The similarity of the mathematical description of the two
effects, cf. equations (8, 10), is only the result of the sim-
plified model that we have used in order to quantitatively
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Fig. 3. Idealization of the deflection effect: In a simplified
model, the particle changes instantaneously its direction when
it arrives at a distance b from the surface where b characterizes
the typical range of the interatomic forces. In the upper (lower)
part of the figure, b is larger (smaller) than the atomic radius δ.

estimate the effect of the particle deflection. Another strik-
ing difference is that the “imaginary surface” of Figure 1
coincides with the “real surface” that is defined in Fig-
ure 3. We find the definition of the “real surface” given
in Figure 3 more satisfactory because the oncoming par-
ticles are effectively deposited on this surface and diffuse
along it.

Next, we reexamine the growth instability due to the
finite size effect of the deposited atoms. The absence of
particle desorption implies a balance of the mass equation

∂tc = ρ0[−∇ · j + F ] (11)

where c(x, t) denotes the number of atoms of the film per
substrate area above a given substrate position x. Allow-
ing for possible density variations that depend on the sur-
face inclination, but not on the surface curvature, the rate
of change of c is related to the rate of change of H by
∂tc = ρ(∇H)∂tH. Here ρ(∇H) denotes the density of the
film close to the surface. Dividing equation (11) by ρ(∇H)
leads to

∂tH =
ρ0

ρ(∇H)
[−∇ · j + F ]. (12)

This equation shows that, if no particle desorption
from the surface occurs and curvature dependent density
variations in the growing film can be neglected, a growth
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Fig. 4. Without the influence of the interatomic attraction the
particle does not traverse the boundary between the area of the
valley V and the area of the mound M . It only “looks” into
area M . This again shows that the finite atomic size cannot
cause a growth instability.

instability of the type −∇2H must necessarily be the re-
sult of a mass current of the form j ∼ ∇H. However, the
atomic size does not cause a mass transport parallel to
the substrate, as shown in Figure 1. The current j ∼ ∇H
that is included in the model equations (7, 8) is essen-
tially the result of an unjustified change in the description
of the particle position. Before deposition, the location of
the particle is described by the coordinates of its center
of mass, but after deposition, the particle position is de-
scribed by the place where it sticks to the surface. This
leads to a fictive motion from point A to point B in Fig-
ure 1. In contrast to that, the interatomic attraction re-
sults in a real motion of the particle in the direction of the
height gradient, as shown in the Figures 2 and 3. Since
only real displacements of particles count in the growth
equation, we conclude that the finite atomic size effect is
unable to cause a growth instability.

This statement can be further substantiated by the fol-
lowing, simple consideration. In Figure 4 we show a height
profile that possesses a valley in area V and a mound in
area M . In the presence of a growth instability particles
should traverse the boundary from V to M in order to
enhance the height increase of the mound. However, the
particle shown in Figure 4 (without the inflection of its
trajectory due to interatomic forces) does not cross the
boundary between area V and area M . It only “looks”
into area M with a part of its volume. That the particle
in Figure 4 sticks to the surface at a place that is on the
right of its center of mass does not imply that it prefers
to diffuse to the right.

3 Comparison with experiments

3.1 Transition temperature between microstructural
growth regimes

Since the effective range b of the interatomic forces usu-
ally has the same order of magnitude as the atomic radius
δ, experimental indications of the relevance of the growth

instability based on the finite atomic size effect can also be
interpreted as the result of the instability that is caused
by the particle deflection. For example, the transition tem-
perature between the zone I and zone II microstructures
appearing in the growth of thick vapor deposited films
has been derived by Mazor et al. [7,8] from the smallest
unstable wavelength λ0 = 2π

√
De/Fδ of equation (7).

By studying thick films of different metals and metal
oxides deposited by evaporation at high rates between
F = 20 nm/s and F = 300 nm/s Movchan and
Demchishin [3] identified three structure zones separated
by the boundary temperatures T1 and T2. Each zone has
its own characteristic structure and physical properties.
The boundary temperatures are T1 ≈ 0.3Tm for metals,
T1 ≈ (0.22− 0.26)Tm for oxides, and T2 ≈ (0.45− 0.5)Tm
for metals and oxides where Tm is the melting point of
the film. At low substrate temperature T < T1 (zone I),
the film is porous and consists of tapered crystallites
with domed tops which are separated by voided bound-
aries [3,5]. For T1 < T < T2 (zone II), the microstruc-
ture consists of columnar grains separated by distinct,
dense, intercrystalline boundaries. There is no porosity,
and the columnar grains have smooth, mat surfaces. The
increase of the grain width with temperature T yields the
same activation energy as for surface diffusion [3]. Beyond
T2 (zone III), the film consists of equiaxed grains with a
bright surface. Here, an activation energy equal to that for
bulk diffusion can be estimated from the relationship be-
tween the crystallite diameters and the temperature T [4].

The porosity of the zone I microstructures is due to
ballistic aggregation at weak surface diffusion. On the
other hand, at higher temperature the surface diffusion
smoothes the surface, so that overhangs and voided re-
gions do not form. In order to obtain the transition
temperature T1, Mazor et al. [7,8] equated the small-
est unstable wavelength λ0 with a few atomic radii,
i.e. they solved the equation 2π

√
De/Fδ = ηδ where

η is an arbitrary number between 1 and 10. Using
the temperature dependence of the diffusion coefficient,
Ds = D0 exp(−5Tm/T − 20/3), they obtained a transition
temperature of T1 ≈ 0.23Tm [7,8], being in good agree-
ment with the experimental value. Since the diffusion coef-
ficient Ds increases with temperature, even Fourier modes
with a wavelength of an atomic diameter are unstable be-
low this temperature and the surface structure becomes
rough on all length scales. This roughness can act as a
progenitor for the formation of the voided regions of zone I
microstructures.

In order to show that the transition temperature from
zone I to zone II microstructures can also be interpreted by
means of the growth instability induced by particle deflec-
tion, we now use the growth model equation (10) instead
of equation (8). Here, the smallest unstable wavelength
reads λ0 = 2π

√
De/Fb. The condition 2π

√
De/Fb = ηδ

again yields the same transition temperature T1 ≈ 0.23Tm
because b has the same order of magnitude as δ [13] and
the coefficient of surface diffusion Ds depends exponen-
tially on the temperature T . Therefore, the growth insta-
bility caused by the particle deflection can also lead to an
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exponential growth of all physically meaningful Fourier
modes if the temperature T is smaller than T1. In addi-
tion, the growth rate of the Fourier modes predicted by
equation (10), σ(k) = Fbk2 −Dek

4, takes very large val-
ues below the transition temperature T1. Then, the max-
imum F 2b2/4De of σ(k) that occurs at a wavelength of√

2λ0 = 2π
√

2De/Fb is larger than Fbπ2/δ2η2 ∼ F/δ.
This implies that even after the deposition of a few atomic
layers the amplitudes of Fourier modes with a wavelength
of a few atomic radii increase by several orders of magni-
tude. Again, as in the case of the growth instability due
to the atomic size effect, the fast increasing surface rough-
ness can act as a progenitor for the formation of voided
regions in the film [10], as explained in the next section.
Therefore, the successful prediction of the transition tem-
perature between the growth of zone I and zone II mi-
crostructures by Mazor et al. [7,8] can also be obtained
if one uses the growth instability due to the deflection of
particle trajectories instead of the growth instability being
related to the atomic size.

3.2 The influence of the finite atomic size
on the growth of films

A major purpose of this paper is to substantiate that the
finite size of the atoms cannot give rise to a linear growth
instability of the form −∇2H. However, the finite size of
the atoms can influence the growth of vapor deposited
films. If the surface diffusion is very small, steep surface
areas appear due to the growth instability caused by the
particle deflection, the stochasticity of the incident parti-
cle flux, or the substrate roughness [5]. On these strongly
inclined parts of the surface, protruding atoms cast a
shadow upon unoccupied places because of their size. This
can lead to the formation of overhangs and finally to the
appearance of voided regions in the film. However, this fi-
nite atomic size effect does not imply a growth instability
in the sense that more particles are incorporated on sur-
face mounds than above the troughs. If lower parts of the
film surface are overgrown due to shadowing effects this
leads to an additional volume increase above the valleys,
contrary to the effect of a growth instability of the form
−∇2H in a surface evolution equation.

3.3 Growth instability on vapor deposited amorphous
films

The growth instability attributed to the particle deflec-
tion effect has been recently observed in vapor deposition
experiments of amorphous films. Specifically, a continuum
equation of the form

∂th = a1∇2h+ a2∇4h+ a3∇2(∇h)2 + a4(∇h)2 + η
(13)

has been compared to experimental results [13]. Here,
h(x, t) denotes the height profile in a frame comoving with
the deposition velocity F , i.e. h(x, t) = H(x, t) − Ft. In

the experiments [16–19] amorphous Zr65Al7.5Cu27.5-films
have been prepared at room temperature in ultra high vac-
uum by electron beam evaporation with a deposition rate
of F = 0.79nm/s. The surface morphology of the result-
ing films has been observed using scanning tunneling mi-
croscopy (STM) [16–19]. One observation in reference [13]
has been that the linearized version of equation (13)

∂th = a1∇2h+ a2∇4h+ η (14)

is sufficient to reproduce the experimental data up to a
layer thickness of 240 nm and that the crossover to non-
linear behaviour sets in at a larger layer thickness.

The first term on the right-hand side of equation (14)
has been attributed to the growth instability that is in-
duced by particle deflection. Therefore, a1 = −Fb < 0
holds. The second term a2∇4h with a2 < 0 is related to
the known microscopic mechanism of curvature induced
surface diffusion [11,20]. The deposition noise η represents
the experimentally unavoidable fluctuations of the parti-
cle flux around its mean F and is assumed to be Gaussian
white, i.e.

〈η(x, t)〉 = 0,
〈η(x, t)η(y, t′)〉 = 2Dδ(x− y)δ(t− t′) (15)

where the brackets denote ensemble averaging. Equa-
tions (13, 14) have been solved on an area [0, L]2 subject
to periodic boundary conditions and starting from a flat
substrate h(x, 0) = 0. Note that the linearized growth
equation (14) possesses one length constant

√
a2/a1, one

time constant |a2/a
2
1|, and one height constant

√
D/|a1|.

In order to compare with the experiments we calcu-
lated the height-height correlation function

C(r, t) =
〈〈〈[h(x, t)−〈h(t)〉x][h(x+r, t)−〈h(t)〉x]〉〉x〉|r|=r(16)

where 〈h(t)〉x = (1/L2)
∫
d2xh(x, t) denotes the spatial

average of the height, and 〈〈〈. . . 〉〉x〉|r|=r denotes a com-
bined ensemble, spatial, and radial average. Then, the
square of the surface roughness w(t) is given by the rela-
tionw2(t) = C(0, t), and the correlation lengthRc(t) is de-
fined by the radius r of the first maximum of C(r, t) occur-
ring at nonzero r. The quantities w(t) and Rc(t) basically
represent the typical height and length scale of the mound-
like surface structures arising from equations (13, 14).

The linearized equation (14) reads in Fourier space
∂th̃(k, t) = σ(k)h̃(k, t)+η̃(k, t) where σ(k) = −a1k

2+a2k
4

denotes the growth coefficient of the Fourier modes. The
growth rate σ(k) possesses a maximum at the critical wave
number kc =

√
a1/2a2. Therefore, the correlation length

Rc(t) of the surface structure arising from equation (14)
first increases and then saturates into

Rc(t) = 7.0156/kc = 7.0156
√

2a2/a1 (17)

when the critical mode dominates. Since the experimental
results also reveal a saturation of Rc for film thicknesses
larger than 200nm (cf. the diamond symbols in Fig. 5a),
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Fig. 5. The solid lines depict the correlation length Rc and surface roughness w calculated from the linearized growth equa-
tion (14) using the parameters given in equation (18) as functions of the layer thickness that is determined by Ft. The dashed
line shows the correlation length Rc resulting from equation (14) using the parameters a1 = −0.119 nm2/s, a2 = −0.658 nm4/s,
and D = 0.0249 nm4/s. The dash-dotted lines show the prediction that results from equation (14) using the parameters
a1 = −0.119 nm2/s, a2 = −0.459 nm4/s, and D = 0.0119 nm4/s. The diamond symbols represent the corresponding experi-
mental results (taken from [16–19]).

the ratio a2/a1 can be estimated. The surface roughness
w(t) grows exponentially with the growth rate σ(kc) =
−a2

1/4a2, when the critical mode dominates at larger layer
thicknesses. Since an exponential growth of w(t) is also
observed in the experiments for film thicknesses between
30 nm and 240 nm (cf. the diamond symbols in Fig. 5b),
the ratio a2

1/a2 can also be estimated. From the ratios
a2/a1 and a2

1/a2 the coefficients a1 and a2 can roughly
be derived. Using a systematic parameter identification
procedure that starts from these roughly estimated values
of a1 and a2 described in reference [13], we have obtained
the following parameters

a1 = −0.0826 nm2/s, a2 = −0.319 nm4/s,
D = 0.0174 nm4/s, (18)

that fit the experimental results best. The solid lines in
Figures 5a and b show the correlation length Rc(t) and the
surface roughness w(t) resulting from equation (14) using
these parameters. There is obviously a very good agree-
ment with the experimental results up to a layer thick-
ness of 〈H〉 ≈ 240 nm. Additionally, using the complete
nonlinear growth equation (13), the experimental data at
larger film thicknesses 〈H〉 ≤ 480 nm could also be repro-
duced [13]. From the coefficient a1 given in equation (18)
and the relation a1 = −Fb we have determined the effec-
tive range of the interatomic forces given by b ≈ 0.1 nm.
As remarked in reference [13], this value is a little bit
smaller than the atomic radii of Zr, Al, and Cu and has
therefore a reasonable order of magnitude.

Next, we investigate whether the growth instability
arising from the finite atomic size effect can also repro-
duce the experimental data. In this case, the coefficient
a1 of the equations (13) and (14) is given by the relation
a1 = −Fδ where δ is the atomic radius. The metallic radii,
i.e. the half of the minimal distance between neighbouring
atoms, of the pure elements Zr, Al, and Cu are given by
0.16 nm, 0.143 nm, and 0.128 nm, respectively [21,22]. If

we weight these radii according to the stoichiometric com-
position of the three elements in the Zr65Al7.5Cu27.5-films,
we obtain an averaged atomic radius of δ = 0.15 nm. This
yields a coefficient a1 = −0.119 nm2/s that exceeds the
one given in equation (18) by 44%. If we adjust the other
parameters to a2 = −0.658 nm4/s and D = 0.0249 nm4/s
in order to obtain the same time constant |a2/a

2
1| and the

same height constant
√
D/|a1| again, the surface rough-

ness w(t) remains unchanged. However, due to an in-
creased length constant

√
a2/a1 the correlation length

Rc(t) of the height profile arising from equation (14) is
then too large compared to the experimental values; see
the dashed line in Figure 5a. On the other hand, if we use
the coefficient a2 = −0.459 nm4/s, the length constant√
a2/a1 takes the same value as in equation (18) and

Rc(t) is now again in accordance with the experimental
data, as shown by the dash-dotted line in Figure 5a. But
then the time constant |a2/a

2
1| is too small and the criti-

cal growth rate σ(kc) = −a2
1/4a2 is too large, leading to a

too fast increase of w(t); see the dash-dotted line in Fig-
ure 5b. Consequently we conclude that the experimental
data on vapor deposited amorphous Zr65Al7.5Cu27.5-films
(taken from [16–19]) cannot be consistently interpreted if
one applies the growth instability attributed to the finite
atomic size effect because then the resulting coefficient
a1 = −Fδ in equation (14) would have a far too large
absolute value. This outcome corroborates the fact that a
growth instability −Fδ∇2h arising from the finite atomic
size effect cannot be present.

4 Conclusions

In this study we have reconsidered two possible mecha-
nisms for a growth instability of vapor deposited films:
(i) the effect of the finite size of the atoms [6–9] and
(ii) the effect of particle deflection due to interatomic
attraction [10]. We have argued on theoretical grounds
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Fig. 6. Sketch of the deflection effect (in the local coordi-
nate system of the surface). The particle hits the surface at
a position that is displaced by a distance ∆x′ from the dis-
posal position for V (z′) ≡ 0. The attractive interaction po-
tential V (z′) < 0 possesses a minimum at z′ = 0. Therefore,
the x′-axis of this figure lies in the “real surface” that is de-
fined in Figure 3 where the attractive and repulsive forces from
the already condensed surface atoms onto the arriving particle
compensate each other.

why the instability caused by particle attraction seems
to be the physically relevant one. Further, we have illus-
trated by an example that experimental indications of the
growth instability due to the finite atomic size effect can
also be consistently attributed to the instability induced
by the deflection of particle trajectories. Finally, we have
shown for the specific case of vapor deposited amorphous
Zr65Al7.5Cu27.5-films that the growth instability due to
interatomic attraction leads to a consistent explanation
of experimental data [16–19], whereas the other growth
instability cannot be present. This corroborates our theo-
retical reasoning that the atomic size effect is not a sub-
stantial instability mechanism.

This work has been supported by the DFG-Sonderfor-
schungsbereich 438 München/Augsburg, TP A1. We also
thank S.G. Mayr, M. Moske, and K. Samwer for interesting
discussions.

Appendix A: Estimation of the effective range
of the interatomic forces

Here, we present a derivation of the effective range of the
interatomic forces b in terms of the attractive interaction
potential and the initial kinetic energy of the particles. Let
us suppose that the film surface is flat, but oblique com-
pared to the particle beam, as shown in Figure 6. Consider
a particle that travels from a large distance towards the
film. Initially, the angle between the particle direction and
the direction perpendicular to the surface is Θ. On its way,
the particle changes its direction due to the attractive in-
teraction potential V (z′) < 0. Therefore, the particle hits

the surface at a point that is displaced by a distance

∆x′ =
∫ ∞

0

dz′
(

tan(Θ) − vx
vz

)
(19)

from the disposal point for V (z′) ≡ 0. Here, vx
and vz denote the velocities of the particle in the x′-
and z′-direction. The velocity component in the surface
direction vx = −v0 sin(Θ) remains unchanged where v0

denotes the initial velocity of the particle. In contrast to
that, the velocity component perpendicular to the surface
vz depends on the distance z′ to the surface because of
the conservation of energy:

1
2
mv2

z + V (z′) =
1
2
mv2

0 cos2(Θ). (20)

Therefore, vz(z′) = −
√
v2

0 cos2(Θ)− 2V (z′)/m holds,
yielding

vx/vz = sin(Θ)/
√

cos2(Θ) − V (z′)/Ekin (21)

where Ekin = mv2
0/2 represents the kinetic energy of the

particle before the interaction with the surface atoms. This
leads to

∆x′ =∫ ∞
0

dz′
(

tan(Θ) − sin(Θ)√
cos2(Θ) − V (z′)/Ekin

)
· (22)

The effective range of the interaction b can be obtained
if one supposes that the particle first moves straight and
then, at a distance b from the surface (at point P in Fig. 6),
suddenly turns into a direction perpendicular to the sur-
face. Therefore, b is given by

b(Θ) =
∆x′

tan(Θ)

=
∫ ∞

0

dz′
(

1− 1√
1− V (z′)/(Ekin cos2(Θ))

)
·(23)

Note that b(Θ) increases with increasing angle Θ. At
Θ = 90◦ there is even b(Θ) = +∞. This, however, is
only a consequence of the unrealistic assumption that the
inclined surface area is flat and infinite and leads to un-
realistic results at large angles of inclination Θ. At small
Θ, b(Θ) is basically independent of Θ:

b ≈
∫ ∞

0

dz′
(

1− 1√
1− V (z′)/Ekin

)
· (24)

This equation shows how b depends on the interaction
potential V (z′) and the initial kinetic energy of the parti-
cles Ekin. The resulting effective range of the interatomic
forces b is approximately determined by the distance from
the surface where the absolute value of the attractive in-
teraction potential becomes smaller than the initial kinetic
energy.
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