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Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes
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We develop the statistical theory of discrete nonstationary non-Markov random processes in complex sys-
tems. The objective of this paper is to find the chain of finite-difference non-Markov kinetic equations for time
correlation functions~TCF! in terms of nonstationary effects. The developed theory starts from careful analysis
of time correlation through nonstationary dynamics of vectors of initial and final states and nonstationary
normalized TCF. Using the projection operators technique we find the chain of finite-difference non-Markov
kinetic equations for discrete nonstationary TCF and for the set of nonstationary discrete memory functions
~MF’s!. The last one contains supplementary information about nonstationary properties of the complex system
on the whole. Another relevant result of our theory is the construction of the set of dynamic parameters of
nonstationarity, which contains some information of the nonstationarity effects. The full set of dynamic,
spectral and kinetic parameters, and kinetic functions~TCF, short MF’s statistical spectra of non-Markovity
parameter, and statistical spectra of nonstationarity parameter! has made it possible to acquire the in-depth
information about discreteness, non-Markov effects, long-range memory, and nonstationarity of the underlying
processes. The developed theory is applied to analyze the long-time~Holter! series ofRR intervals of human
ECG’s. We had two groups of patients: the healthy ones and the patients after myocardial infarction. In both
groups we observed effects of fractality, standard and restricted self-organized criticality, and also a certain
specific arrangement of spectral lines. The received results demonstrate that the power spectra of all orders
(n51,2, . . . ) MFmn(t) exhibit the neatly expressed fractal features. We have found out that the full sets of
non-Markov, discrete and nonstationary parameters can serve as reliable and powerful means of diagnosis of
the cardiovascular system states and can be used to distinguish healthy data from pathologic data.

DOI: 10.1103/PhysRevE.65.046107 PACS number~s!: 02.50.Tt, 05.20.2y, 05.65.1b, 45.05.1x
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I. INTRODUCTION

The study of information processing in life systems is o
of the central problems in modern science. It is now w
known that in many natural sequences the elements are
arranged randomly, but exhibit long-range correlations. Fo
long period of time it was suggested that many comp
systems observed in nature should be described only
some of low-dimensional nonlinear dynamic models. T
properties of these systems were supposed to be expre
by Lyapunov exponents, unique fractal dimensions
Kolmogorov-Sinai entropy. However, such low dimension
ity can be expected for rather coherent phenomena suc
observed in laser systems. Alive data seems to have a m
complicated structure largely due to high-dimensional a
many-factor processes and due to the pronounced effec
random fluctuations and long-time memory effects.

Since the time of Refs.@1–6# heart rate variability~HRV!
serves as one of the most reliable and authentic method
testing the state of a human heart in the norm and in
pathology @7#. In particular, the analysis of HRV has pro
moted the establishment of reliable connections between
functioning of a vegetative nervous system and a sud
heart death@4,8–12#. At present there are many diverse a
proaches by theoretical physics to the problems of nonlin
properties of HRV description. The following things shou
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be mentioned: the fractal approach based on scaling o
frequency spectrum on power law 1/va @13–15#, the calcu-
lation of correlation dimension@16#, the simulation by non-
linear oscillators@16,17#, the calculation of the Kolmogorov
entropy@16#, usual@18# and dynamic@19# Shannon entropy,
the use of dynamics of lattice spins as a model of arrhyth
@20#, Fano-factor and Allan-factor@14#, the wavelet analysis
@21#, and the detrended fluctuation analysis@22,23#. The fol-
lowing methods are also employed here: the multifrac
analysis@24#, the multiscaled randomness@25#, the Markov
formalization of dynamics@26#, and the terminal dynamics
model of heart beat@27#. In a recent paper, Teichet al. @28#
demonstrated the manner in which various measures of fl
tuation of the sequence of interbeat intervals could be use
assess the presence or likelihood of cardiovascular disea

The profound analysis of the dynamics of heart beats
namics reveals that the fundamental methods of the sta
cal physics based on the Hamilton formalism and exact eq
tions of motion are directly inapplicable for its quantitativ
description. On the other hand, the discretization of eve
and long-time event-event correlation are very relevant
similar dynamics. Recently, a non-Markov theory of discre
stochastic processes was developed in Ref.@29#. The ap-
proach advanced in@29# makes the calculation of the wid
set of non-Markov characteristics of an arbitrary comp
system from experimental database possible.

In the present paper we develop a non-Markov appro
@29# for the study of long-time correlations in chaotic lon
time dynamics ofRR intervals from human electrocardio
©2002 The American Physical Society07-1
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gram’s ~ECG’s!. RR interval is defined as the time distanc
between nearestR peaks in human electrocardiogram. T
generalization will consist in taking into account the nons
tionarity of stochastic processes and its further applicati
to the analysis of HRV.

We should bear in mind that one of the key moments
the spectral approach in the analysis of stochastic proce
consists in the use of normalized time correlation funct
~TCF!

a0~ t !5
^^A~T!A~T1t !&&

^A~T!2&
, ~1.1!

where the timeT is the beginning of a time serial,A(t) is a
state vector of a complex system,uA(t)u is the length of
vectorA(t), and the double angular brackets indicate a s
lar product of vectors and ensemble averaging. The ensem
averaging is, of course, needed in Eq.~1.1! when correlation
and other characteristic functions are constructed. The a
age and scalar product becomes equivalent when a vect
composed of elements from a discrete-time sampling,
done later in the paper. Here a continuous formalism is
cussed for convenience. However, further, from Sec. II
shall consider only a case of discrete processes.

The above-stated designation is true only for station
systems. In a nonstationary case Eq.~1.1! is not true and
should be changed. The concept of TCF can be genera
in case of discrete nonstationary sequence of signals. For
purpose the standard definition of the correlation coeffici
in probability theory for the two random signalsX and Y
must be taken into account:

r5
^^XY &&
sXsY

, sX5^uXu&, sY5^uYu&. ~1.2!

In Eq. ~1.2! the multicomponent vectorsX, Y are determined
by fluctuations of signalsx andy accordingly,sX

2,sY
2, repre-

sent the variances of signalsx and y, and valuesuXu, uYu
represent the lengths of vectorsX, Y, correspondingly.
Therefore, the function

a~T,t !5
^^A~T!A~T1t !&&

^uA~T!u&^uA~T1t !u&
~1.3!

can serve as the generalization of the concept of TCF~1.1!
for nonstationary processesA(T1t). Nonstationary TCF
~1.3! obeys the conditions of the normalization and atten
tion of correlation

a~T,0!51, lim
t→`

a~T,t !50.

According to the Eqs.~1.1! and ~1.3! for the quantitative
description of nonstationarity it is convenient to introduce
function of nonstationarity

g~T,t !5
^uA~T1t !u&

^uA~T!u&
5H s2~T1t !

s2~T! J 1/2

. ~1.4!
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One can see that this function equals the ratio of the leng
of vectors of final and initial states. In case of the station
process the dispersion does not vary with the time~or its
variation is very weak!. Therefore the following relations

s~T1t !5s~T!, g~T,t !51 ~1.5!

are true for the stationary process.
Due to the condition~1.5! the following function

G~T,t !512g~T,t !, ~1.6!

is convenient to consider as a dynamic parameter of non
tionarity. This dynamic parameter can serve as a quantita
measure of nonstationarity of the process under invest
tion. According to Eqs.~1.4!–~1.6! it is reasonable to sugges
the existence of three different classes of nonstationarity

uG~T,t !u5u12g~T,t !u

!1, weak nonstationarity

;1, intermediate nonstationarity

@1, strong nonstationarity.

~1.7!

The existence of a dynamic parameter of nonstationa
makes it possible to determine, on principle, the type of n
stationarity of the investigated process and to find its spec
characteristics from the experimental data base. We inten
use Eqs.~1.4!, ~1.6!, and~1.7! for the quantitative description
of effects of nonstationarity in the investigated tempora
series ofRR intervals of human ECG’s for healthy peop
and patients after myocardial infarction~MI !.

Here we shall show that the complex dynamics of he
rate fluctuation can be described in detail by the set of n
stationary non-Markov properties on the whole. There
two problems, which we would like to decide. One of the
is, how important is the discretization and long-ran
memory effects in the behavior of cardiovascular system
The second problem is defined by the following: whethe
is possible to use nonstationary and non-Markov proper
to diagnose the state of a human heart. We demonstrate
the solution to these problems is possible to be found.

The paper is organized in the following way. In Sec.
we present the nonstationary generalization of our previ
paper@29#, used here for the analysis of HRV. In Sec. III w
describe the data and standard technique of ECG in the
and frequency domains. This section contains technical
tails of obtaining experimental data on Holter monitoring
ECG’s for healthy people and patients after MI. The resu
of quantitative calculations of the phase portraits, t
memory functions, their power frequency spectra, the f
quency dependence of the first three points in statistical s
trum of non-Markovity parameter, and in statistical spectru
of nonstationarity parameter will be shown in Sec. IV. T
last, Sec. V, contains the discussion of the results obtai
and the conclusion.
7-2
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II. STATISTICAL THEORY OF NONSTATIONARY
DISCRETE NON-MARKOV PROCESSES

IN COMPLEX SYSTEMS

Here we shall extend original results of the statisti
theory of discrete non-Markov processes in complex s
tems, developed recently by us in Ref.@29#, for the case of
nonstationary processes. The theory@29# is developed on the
basis of the first principles and represents a discrete fin
difference analogy for complex systems of well-know
Zwanzig’-Mori’s kinetic equations@30,31# in the statistical
physics of condensed matter.

We examine a discrete stochastic processX(T1t), where
t5mt,

X5$x~T!,x~T1t!,x~T12t!,...,x~T1kt!,...,

3x~T1~N21!t!%, ~2.1!

whereT is the beginning of the time andt is a discretization
time. The normalized TCF

a~ t !5
1

~N2m!s2 (
j 50

N2t2m

dx~T1 j t!d~T1@ j 1m#t!

~2.2!

is a convenient means to analyze dynamic properties of c
plex systems. Here is entered variances2, fluctuationdx(T
1 j t), and mean valuêx&,

dxj5dx~T1 j t!5x~T1 j t!2^x&,

s25
1

~N2m! (
j 50

N212m

$dx~T1 j t!%2,

~2.3!

^x&5
1

~N2m! (
j 50

N212m

x~T1 j t!, ~2.4!

and discrete timet is equalt5mt.
In general, the mean value, the variance and TCF in E

~2.2!, ~2.3!, and~2.4! is dependent on numbersm andN. The
similar situation is especially typical for the case of nons
tionary processes. All indicated values cease to depend
numbersm and N for stationary processes atm!N. The
definition of TCF in Eq.~2.2! is true only for stationary
processes.

Now we shall try to take into account this important d
pendence. With this purpose we shall form tw
k-dimensional vectors of state by the process~2.1!

Ak
05~dx0 ,dx1 ,dx,...,dxk21!,

Am1k
m 5~dxm ,dxm11 ,dxm12 ,...,dxm1k21!.

~2.5!

When a vector of a state is composed of elements from
discrete-time sampling, the average and scalar product in
~1.1! becomes equivalent. In a Euclidean space of vector
state~2.5!, TCF a(t),
04610
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a~ t !5
^AN212m

0 AN21
m &

~N2m!$s~N2m!%2 5
^AN212m

0 AN21
m &

uAN212m
0 u2

~2.6!

describes the correlation of two different states of the sys
(t5mt). Here the bracketŝ̄ & indicate the scalar produc
of the two vectors. The dimension dependence of the co
sponding vectors is also taken into account in the varia
s5s(N2m). As a matter of fact TCFa(t) represents
cosq, whereq is the angle between the two vectors from E
~2.5!. Let us introduce a unit vector of dimension (N2m) as
follows:

n5
AN212m

0

A~N2m!s2
. ~2.7!

Then it is possible to present TCFa(t) ~2.2! as follows:

a~ t !5^n~0!n~ t !&. ~2.8!

From the above discussion it is clear that Eqs.~2.6!–~2.8!
are true for stationary processes only. In case of nonstat
ary processes it is necessary to redefine TCF to take
account the nonstationarity in the variances2 in a line with
Eqs. ~1.2!–~1.7!. For this purpose we shall redefine a un
vector of the final state as follows:

n~ t !5
AN21

m ~ t !

uAN21
m ~ t !u

. ~2.9!

Then for nonstationary processes it is convenient to w
TCF as the scalar product of the two unit vectors of t
initial and final states

a~ t !5^n~0!n~ t !&5
^AN212m

0 ~0!AN21
m ~ t !&

uAN212m
0 ~0!uuAN21

m ~ t !u
. ~2.10!

Now we shall consider dynamics of nonstationary s
chastic process. The equation of motion of a random varia
xj can be written in a finite-difference form for 0< j <N
21 @29# as follows:

dxj

dt
⇒ Ddxj

Dt
5

dxj~ t1t!2d j~ t !

t
. ~2.11!

Then it is convenient to express the discrete evolution
single step operator as follows:

x@T1~ j 11!t#5Û~T1~ j 11!t,T1 j t!x~T1 j t!.
~2.12!

In the case of stationary process we can rewrite the equa
of motion ~2.11! in a more simple form

Ddxj

Dt
5t21$Û~t!21%dxj . ~2.13!

The invariance of the mean value^x& is taken into account
in an equation, Eq.~2.13!,

^x&5Û~t!^x&, $Û~t!21%^x&50. ~2.14!
7-3
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In case of nonstationary process it is necessary to tur
the equation of motion for vector of the final stateAm1k

m (t)
(k5N212m)

DAm1k
m ~ t !

Dt
5 i L̂ ~ t,t!Am1k

m ~ t !, ~2.15!

where the Liouville’s quasioperator is

L̂~ t,t!5~ i t!21$Û~ t1t,t !21%. ~2.16!

It is well known that, in general, a stochastic trajectory do
not obey a linear equation, so the general evolution oper
re
in

n
-
u
of

ro
r i
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and Liouville’s quasioperator should probably be nonline
Furthermore, in statistical physics Liouville’s operator ac
upon the probability densities of dynamical variables, as w
as upon the variables themselves such as in the Mori p
@31#. The evolution of density would indeed be linear. B
Mori, in Ref. @31#, used Liouville’s operator in the quantum
equation of motion. In line with Mori@31# Eqs. ~2.13! and
~2.15! can be considered as the formal and exact equatio
motion of a complex system.

As a matter of fact, the discrete set of values of the d
crete evolution operator is considered in Eqs.~2.15! and
~2.16!. This set is convenient for presenting as
(N21)-dimensional diagonal matrix
to rewrite
Û~ t1t,t !5S Û~T1t,T! 0 0 ¯ 0

0 Û~T12t,T1t! 0 ¯ 0

0 0 Û~T13t,T12t! ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ Û~T1@N21#t,T1@N22#t!

D . ~2.17!

Here each diagonal matrix element acts on the corresponding component of the state vector. Then it is convenient
the Liouville’s quasioperator in Eq.~2.15! in the form of (N21)-dimensional diagonal matrix as follows:

L̂~t,t!5~it!213SÛ~T1t,T!21 0 0 ¯ 0

0 Û~T12t,T1t!21 0 ¯ 0

0 0 Û~T13t,T12t!21 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ Û„T1@N21#t,T1@N22#t…21

D .

~2.18!
und-

ess
s

e

he

:

It is obvious from Eqs.~2.17! and ~2.18! that the diagonal
elements of matricesÛ andL̂ are operators themselves. He
each diagonal matrix element acts on the correspond
component of the state vector. The matrix representatio
the Liouville’s quasioperator~2.18! and the evolution opera
tor ~2.17! allow to take into account the nonstationary pec
liarities of the dynamics of the multidimensional vector
the final state of the system.

We shall use the formulas~2.15! and ~2.18! further only
for compactness.

So, due to the Eqs.~2.10! and~2.15!–~2.18! it is possible
to take into account the nonstationarity of the stochastic p
cess. Now let us introduce the linear projection operato
Euclidean space of the state vectors

PA~ t !5
A~0!&^A~0!A~ t !&

uA~0!u2
, P5

A~0!&^A~0!

^A~0!A~0!&
,

~2.19!
g
of

-

-
n

where angular brackets in the numerator represent the bo
aries of action for the scalar product.

For the analysis of the dynamics of stochastic proc
A(t), the vectorAk

0(0) from Eq.~2.5! can be considered a
the vector of the initial stateA(0), andvectorAm1k

m (t) from
Eq. ~2.5! at value m1k5N21 can be considered as th
vector of the final stateA(t).

It is necessary to note that the projection operator~2.19!
has the necessary property of idempotentityP25P. The
presence of operatorP allows to introduce the mutually
supplementary projection operatorP as follows:

P512P, P25P, PP5PP50. ~2.20!

It is necessary to mark that both projectorsP andP are linear
and can be recorded for the fulfillment of operations in t
particular Euclidean space. Due to the property~2.10! and
Eq. ~1.4! it is easy to receive the required TCF as follows
7-4
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PA~ t !5PAm1k
m ~ t !5Ak

0~0!^nk
0~0!nk1m

m ~ t !&g1~ t !

5Ak
0~0!a~ t !g1~ t !,

g1~ t !5
uAm1k

m ~ t !u
uAm

0 ~0!u
. ~2.21!

Therefore the projectorP generates a unit vector along th
vector of the final stateA(t) and creates its projection on th
initial state vectorA(0).

The existence of a pair of two mutually supplementa
projection operatorsP andP allows to carry out the splitting
of Euclidean space of vectorsA@A(0),A(t)PA# into a
straight sum of the two mutually supplementary subspace
follows:

A5A8uA9, A85PA, A95PA. ~2.22!

Substituting Eq.~2.22! in Eq. ~2.16! we find Liouville’s
quasioperatorL̂ in a matrix form

L̂5L̂111L̂121L̂211L̂22, ~2.23!

where the matrix elements are introduced

L̂115PL̂P, L̂125PL̂P, L̇215PL̂P, L̂225PL̂P.
~2.24!

Due to the properties~2.17! and~2.18! Euclidean space o
values of Liouville’s quasioperatorW5L̂A will be generated
by vectorsW of dimensionk21

„W~0!PW,W~ t !PW…

W5W8uW9, W85PW, W95PW. ~2.25!

Matrix elementsL̂ i j of the contracted description

L̂5S L̂11 L̂12

L̂21 L̂22
D ~2.26!
04610
as

act as follows:L̂11, from a subspaceA8 to subspaceW8;
L̂12, from A9 to W8; L̂21, from W8 to W9; andL̂22, from A9
to W9

The projection operatorsP and P allow to execute the
contracted description of stochastic process. Splitting the
namic equation~2.15! into two equations in the two mutually
supplementary Euclidean subspaces~see, for example,@29#!,
we find

DA8~ t !

Dt
5 i L̂ 11A8~ t !1 i L̂ 12A9~ t !, ~2.27!

DA9~ t !

Dt
5 i L̂ 21A8~ t !1 i L̂ 22A9~ t !. ~2.28!

Following @29# it is necessary to eliminate first irrelevan
partA9(t) to simplify Liouville’s equation~2.15! and then to
write a closed equation for relevant partA8(t). According to
@29# this can be realized by the series of successive steps~for
example, see Eqs.~32!–~36! in Ref. @29#!. At first a solution
to Eqs.~2.28! for the first step can be obtained in a form

DA9~ t !

Dt
5

A9~ t1t!2A9~ t !

t
5 i L̂ 21A8~ t !1 i L̂ 22A9~ t !,

A9~ t1t!5A9~ t !1 i tL̂21A8~ t !1 i tL̂22A9~ t !

5$11 i tL̂22%A9~ t !1 i tL̂21A8~ t !

5U2~ t1t,t !A9~ t !1 i tL̂21~ t1t,t !A8~ t !.

~2.29!

Here we considered the obvious ratio for operators of
particular step and introduced designations

Û22~ t1t,t !511 i tL̂22~ t1t,t !. ~2.30!

Using Eqs.~2.29! and~2.30!, we derive successively for th
next step
A9~ t12t!5Û22~ t12t,t1t!A9~ t1t!1 i tL̂21~ t12t,t1t!A8~ t1t!

5Û22~ t1t,t1t!$Û22~ t1t,t !A9~ t !1 i tL̂21~ t1t,t !A8~ t !%1 i tL̂21~ t12t,t1t!A8~ t1t!

5Û22~ t12t,t1t!Û22~ t1t,t !A9~ t !1 i t$Û22~ t12t,t1t!L̂21~ t1t,t !A8~ t !1L̂21~ t12t,t1t!A8~ t1t!%.

~2.31!

Consequently, for the third step of evolution of the final state vector we obtain

A9~ t13t!5Û22~ t13t,t1t!Û22~ t12t,t1t!Û22~ t1t,t !A9~ t !1 i t$Û22~ t13t,t12t!Û22~ t12t,t1t!L̂21~ t1t,t !A8~ t !

1Û22~ t13t,t12t!L̂21~ t12t,t1t!A8~ t1t!1L̂21~ t13t,t12t!A8~ t12t!%. ~2.32!
7-5
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Generally, after a series ofmth successive discrete step
the final result represents, respectively, the following:

A9~ t1mt!5H T̂ )
j 50

m21

Û22~ t1@ j 11#t,t1 j t!J A9~ t !

1 i t (
j 50

m21 H T̂ )
j 85 j

m22

Û22~ t1@ j 812#t,t

1@ j 811#t!J L̂21~ t1@ j 11#t,t1 j t!

3A8~ t1 j t!. ~2.33!

Here T̂ denotes the Dyson operator of chronological ord
ing. Substituting the irrelevant part in Eq.~2.27! to the right
side of Eq. ~2.33!, we obtain the closed finite-differenc
equation for the relevant part of the state vector

D

Dt
A8~ t1mt!5 i L̂ 11~ t1@m11#t,t1mt!A8~ t1mt!

1 i L̂ 12~ t1@m11#t,t1mt!

3F H T̂ )
j 50

m21

Û22~ t1~ j 11!t,t1 j t!J A9~ t !

2t (
j 50

m21 H T̂ )
j 85 j

m22

Û22~ t1~ j 812!t,t

1@ j 811#t!J L̂21~ t1@ j 11#t,t1 j t!A8

3~ t1 j t!G . ~2.34!

Introducing the modified evolution operator by the formu

V̂~ t1mt,t1st!5T̂ )
j 5s

m21

Û22~ t1@ i 11#t,t1 j t!,

~2.35!

where the integersm and s fit the conditionm.s, we can
rewrite Eq.~2.34! in the following form:

D

Dt
A8~ t1mt!5 i L̂ 11~ t1@m11#t,t1mt!A8~ t1mt!

1 i L̂ 12~ t1@m11# !t,t1mt)

3V̂~ t1mt,t !A9~ t !2t (
j 50

m21

L̂12

3~ t1@m11!t,t1mt!

3V̂~ t1mt,t1@ j 11#t!

3L̂21~ t1@ j 11#t,t1 j t!A8~ t1 j t!.

~2.36!
04610
-

This vector equation can be simplified as well. For this p
pose we shall take into account the idempotentity property
the projection operators. Substituting time arguments in E
~2.36! t2T, mt2t we receive ratio

A9~T!50, V̂~T1t,T!A9~T!50. ~2.37!

Substituting Eqs.~2.21! and ~2.22! in Eq. ~2.36!, we de-
rive a finite-difference kinetic equation of a non-Markov typ
for TCF a(t5mt)

Da~ t !

Dt
5l1a~ t !2tL1 (

j 50

m21

M1~ t2 j t!a~ j t!. ~2.38!

Herel1 is an eigenvalue andL1 is the relaxation param
eter of Liouville’s quasioperatorL̂

l15 i
^Ak

0~0!L̂Ak
0~0!&

uAk
0~0!u2

,

L15
^Ak

0~0!L̂12L̂21Ak
0~0!&

uAk
0~0!u2 5

^Ak
0~0!L̂2Ak

0~0!&

uAk
0~0!u2

,

~2.39!

and angular brackets indicate a scalar product of the n
vectors of state. FunctionM1(t2 j t) in the right side of Eq.
~2.38! represents the modified memory function~MF! of the
first order

M1~ t2 j t!5
g1~ t2 j t!

g1~ t !
m1~ t2 j t!. ~2.40!

For stationary processes the functiong1(t) turns to unit then
the memory functionsM1(t) and m1(t) coincide with each
other. The latter equation is the first kinetic finite-differen
equation for TCF. It is remarkable that the non-Markovi
discretization, and nonstationarity of stochastic process
be considered here explicitly. Due to the account of nons
tionarity both in TCF and in the first memory function th
equation generalizes our results obtained recently in R
@29#. We introduced the following designations for function
in Eqs.~2.38! and ~2.40!:

m1~ t2 j t!5
^W1~0!V̂~T1mt,T1 j !tW1~ j t!&

uW1~0!uuW1~ t2 j t!u
,

~2.41!
7-6
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g1~ t2 j t!5
uW1~ t2 j t!u

uW1~0!u
, ~2.42!

W1~ t2 j t!5V̂~T1t,T1 j t!L̂21Ak
0~0!. ~2.43!

The modified evolution operator in Eq.~2.42! has prop-
erty V̂(T1t,T1t)51. It should be mentioned that a ne
dynamic parameter of nonstationarityg1(t2 j t), Eq. ~2.42!
appears in the first MFM1(t2 j t). On the one hand, a
indicated by Eq.~2.41!, short MF m1(t2 j t) represents an
ordinary memory function of the first order, normalized wi
the view of the property of nonstationarity.

It is important to mark that the memory functionm1( j t)
is a normalized TCF for a new random variableW1,

W1~ t !5V̂~T1t,T!L̂21Ak
0~0!. ~2.44!

Now contracted Liouville’s quasioperator

L ~1!5L225PL̂P ~2.45!

determines the time evolution. Owing to the discretenes
time series and Eqs.~2.17! and ~2.18! the dimension (k
21) of new state vectorW1 is a unit less than dimension~k!
of initial vector W05Ak

0. It should be taken into account i
numerical calculations. Now let us write in an obvious for
an equation of motion forW1( j t) with regard to Eqs.
~2.15!–~2.18!, ~2.29!, and~2.30!

DW1~ t !

Dt
5

W1~ t1t!2W1~ t !

t
5 i L̂ 22W1~ t !5 i L̂ 1W1~ t !.

~2.46!

For a new random dynamic variableW1(t) it is possible to
repeat all the above-mentioned arguments, which we h
used at finding the kinetic equation~2.38!. Then it is possible
to find the second equation for the short normalized mem
function m1( j t).

However, it is more convenient to use the Gram-Schm
orthogonalization procedure@32,33# for the set of new dy-
namical orthogonal variables

^Wn ,Wm&5dn,m^uWnu2&, ~2.47!

where dn,m is Kronecker’s symbol. It is easy to find th
recurrence formula for the orthogonal variable of differe
orders (n>2)

W05Ak
0~0!, W15$ i L̂ 2l1%?W0 , ~2.48!

W25$ i L̂ 2l2%W12L1W0 ,

W35$ i L̂ 2l3%W22L2W12n1W0 ,

W45$ i L̂ 2l4%W32L3W22n2W12m1W0 ,

Wn115$ i L̂ 2ln11%Wn2LnWn212nn21Wn22

2mn22Wn231¯ ,
04610
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with notations for eigenvaluesln and relaxation parameter
Ln ,nn21 ,mn22 ,... of Liouville’s quasioperator

ln115 i
^WnL̂Wn&

uWnu2
; Ln5 i

^Wn21L̂Wn&
uWn21u2

, ~2.49!

nn215 i
^Wn22L̂Wn&

uWn22u2 ,

mn225 i
^Wn23L̂Wn&

uWn23u2
,... .

From Eqs.~2.48! and ~2.49! it will be obvious that in the
cited Gram-Schmidt procedure from each new vector of s
one should subtract the projection on to all previous vecto
Thereafter the orthogonalization~2.47! is complete. In the
present form the new vectorWn would necessarily be per
pendicular to the preceding vectorsWk with k,n22. This
problem affects the coupled finite-discrete equations for
memory functions, a central result in this paper.

As the initial stochastic processW0(t)5A(t) is nonsta-
tionary, all subsequent orthogonal dynamic variablesWn(t)
@see, Eq.~2.44!# also describe nonstationary process. It
necessary to take into account that in this case all eigens
trum values do not disappear,lnÞ0. It is important to note
that relaxation parametersLn , nn , mn ,... will reflect non-
equilibrium and nonstationary properties of the system c
sidered. It is interesting to note that in the statistical the
Zwanzig and Mori a relaxation parameterLn can be only
positive. Therefore, unlike the case of physical systems,
merical values of parametersLn ,nn21 ,mn22 ,... can beboth
positive and negative in case of complex systems.

As noted above, by the simple, but cumbersome calc
tions it is possible to show that the first short memory fun
tion m1(t) represents a normalized TCF of the first dynam
variableW1,

m1~ t !5^nw~0!nw~ t !&5
^W1~0!W1~ t !&
uW1~0!uuW1~ t !u

,

W1~ t !5V̂~T1t,T!W1~0!. ~2.50!

Herenw(0) andnw(t) are the unit vectors in Euclidean spa
W1@W1(0),W1(t)PW1# of the new orthogonal vectors o
the state with dimension equal (k21).

Following Eqs.~2.19!–~2.24! it is possible to introduce
the sequence of projection operatorsPn in sequence of Eu-
clidean subspacesWn„Wn(0),Wn(t)PWn… with n>1

PnWn~ t !5
Wn~0!&^Wn~0!Wn~ t !&

uWn~0!uuWnu
5Wn~0!mn~ t !gn~ t !,

gn~ t !5
uWn~ t !u
uWn~0!u

. ~2.51!

Alongside a set of projectorsPn it is possible to introduce
a set of mutually supplementary projectorsPn,
7-7
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Pn512Pn , PnPn5PnPn50,

PnPm5dn,mPn , PnPm5dm,nPn .
~2.52!

Each pair of the projection operatorsPn , Pn splits the
appropriate Euclidean spaceWn of vectors of stateWn ,
Wn(t)PWn into the two mutually supplementary subspac

Wn5Wn8uWn9 , Wn85PnWn, , Wn95PnWn .
~2.53!

Now we derive the discrete equation of motion of variab
Wn(t),

DWn~ t !

Dt
5

1

t
$Wn~ t1t!2Wn~ t !%5

1

t
$V̂~n!~t !21%Wn~ t !

5 i L̂ ~n!Wn~ t !. ~2.54!

HereL (n) is a new Liouville’s quasioperator

L̂ ~n!5L̂22
~n!5~ i t!21$V̂~n!~t !21%5PnL̂22

~n21!Pn .
~2.55!

Following the projection technique described above, we
ceive a chain of connected kinetic finite-difference equati
of a non-Markov type for normalized short memory fun
tionsmn(t) in Euclidean space of state vectors of dimens
(k2n) (t5mt,n>1)

Dmn~ t !

Dt
5ln11mn~ t !2tLn11 (

j 50

m21

mn11~ j t!mn~ t2 j t!

3H gn11~ j t!gn11~ t2 j t!

gn~ t ! J , ~2.56!

mn11~ t !5
^Wn11~0!Wn11~ t !&
uWn11~0!uuWn11~ t !u

,

gn~ j t!5H uWn~ j t!u
uWn~0!u J . ~2.57!

Heregn( j t) is thenth order nonstationarity function.
The set of all memory functionsm1(t), m2(t), m3(t),...

allows to describe non-Markov processes and statist
memory effects in the considered nonstationary system.
the particular case we receive a more simple form for the
of equations~2.47! for the first three short memory function
(t5mt)

Da~ t !

Dt
52tL1 (

j 50

m21

m1~ j t!H g1~ j t!g1~ t2 j t!

g1~ t ! J a~ t2 j t!

1l1a~ t !,

Dm1~ t !

Dt
52tL2 (

j 50

m21

m2~ j t!H g2~ j t!g2~ t2 j t!

g2~ t ! J m1~ t2 j t!

1l2m1~ t !,
04610
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Dm2~ t !

Dt
52tL3 (

j 50

m21

m3~ j t!H g3~ j t!g3~ t2 j t!

g3~ t ! J m2~ t2 j t!

1l3m2~ t !. ~2.58!

Here relaxation parametersL1 , L2 , andL3 are determined
by Eq. ~2.49!, and the nonstationarity functionsgn(t) are
introduced in Eqs.~2.42! and ~2.57!. Now by analogy with
Eq. ~1.6! we can introduce a set of dynamic parameters
nonstationarity~PNS! for the arbitrarynth relaxation level

Gn~T,t !512gn~ t !512gn~T,t !. ~2.59!

The whole set of values of dynamic PNSgn(t) determines
the broad spectrum of nonstationarity effects of the cons
ered process.

The obtained equations are very similar to the well-kno
Zwanzig’-Mori’s kinetic equations@30,31# in the nonequilib-
rium statistical physics of condensed matter. Let us m
three essential distinctions of our Eqs.~2.56! and~2.58! from
the results of Refs.@30,31#. In Zwanzig’-Mori’s theory the
key moment in the analysis of considered physical system
the presence of a Hamiltonian and an operation of a stat
cal averaging carried out with the help of the quantum d
sity operator or the classic Gibbs distribution function. In t
examined case both Hamiltonian and distribution functio
are absent. In physics exact classic or quantum equation
motion exist, therefore, Liouville’s equation and Liouville
operator are useful in many applications. The motion of b
individual particles and the whole statistic system is d
scribed by states with smooth time. Therefore, for physi
systems it is possible to use effectively the methods of in
grodifferential calculus, based on mathematically habit
~but from the physical point of view difficult for understand
ing! representation of infinitesimal variations of values
coordinates and time. By nature the majority of compl
systems is discrete. As is well known, discretization is inh
ent in a wide variety of both classic and quantum comp
systems. It compels us to reject the concept of infinite sm
values and continuity and turn to the discrete-differen
schemes. And, at last, the third feature is connected w
incorporating the nonstationary processes into our the
The Zwanzig’-Mori’s theory is true only for stationary pro
cesses. Due to the introduction of normalized vectors
states and the use of the appropriate projection technique
theory allows to take into account nonstationary proces
The last ones can be described by the non-Markov kin
equations together with the introduction of the set of nons
tionarity functions.

The nonstationary theory advanced here, essentially
fers from stationary case@29#. The external structure of the
kinetic equations remains constant. As well as earlier, t
represent the kinetic equations with memory. However,
functions and the parameters, which are included in th
equations, differ appreciably from each other. As we ha
already marked above, nonstationarity effects are shown b
in functions gn(t), and in spectral and kinetic paramete
Therefore, it appears possible to carry the careful accoun
nonstationarity effects in complex systems.
7-8
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QUANTIFICATION OF HEART RATE VARIABILITY BY . . . PHYSICAL REVIEW E 65 046107
III. EXPERIMENTAL DATA AND PREPROCESSING

A. Data

Dynamic ECG recording has been done on three ch
nels. The bipolar orthogonal channelX is channelN1, Y is
channelN2, andZ is channelN3. Our analysis is execute
on the channelN1. TheRRrecordings were drawn from th
Division of Cardiac Surgery of 6th Kazan city Hospital~Ka-
zan, Tatarstan! congestive heart-failure database compris
30 records from normal patients~age: 18–31 years; mean: 2
year! and 14 records from severe congestive heart-dise
patients~age: 32–67 years, mean: 55 years!. The recordings,
which form a standard database for evaluating the merit
various measures for identification of heart disease, w
made with a standard Holter Monitor~Astrocard Holter sys-
tem, 2F!, digitized at a fixed value of 250 Hz. We use th
long-time series to 216565 536 beats to eliminate spuriou
effects due to variations in data to nonsinus beats assoc
with artifacts.

B. Patients

In this preliminary study, we have included a sample
patients subdivided into two groups. The first group cons
of 30 healthy persons. In the second group there are 14
tients after MI with weak electrical risk~arrhythmias of low
degree!.

C. Traditional analysis

These techniques can be divided into time and freque
domains. In the time domain we have calculated the follo
ing standard functions: the phase portrait in plane projecti
of the multidimensional space of the dynamic orthogo
variables, the time correlation function throughout the o
served time domain, and the set of the first three jun
memories, and the first four nonstationarity functions. A
we have determined the following power spectra~PS!: of the
initial TCF’s first, second, and third short MF’s, PS of th

FIG. 1. The time record of the four first orthogonal variabl
W0 , W1 , W2 , and W3 of healthy person, Kshf.~a!–~d!, and a
patient, Sibg., after MI~e!–~h! from the time dynamics ofRRinter-
vals of the ECG’s. In both cases the disappearance of trend
appreciable. The scales of fluctuations of the orthogonal varia
practically do not change.
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first, second, and third points of the statistical spectrum
non-Markovity parameter and PS of the first four nonstatio
arity parameters.

IV. THE QUANTITATIVE ANALYSIS OF LONG-RANGE
MEMORY EFFECTS OF LONG-TIME DYNAMICS

OF HUMAN ECG’S RR INTERVALS

In this section we shall present some results of the qu
titative analysis of random dynamics ofRR intervals of a
healthy person and a patient after a MI ECG’s within t
framework of the theory developed in Sec. II. Figures 1
present typical examples of phase portraits, the power s
tra of TCF and junior short memory functions and the fr
quency spectra of the first three points of a statistical sp
trum of non-Markovity parameter. Figures 7 and
demonstrate the results of calculations of the statistical
rameter of nonstationarity and its power spectrum for lon
time series ofRR intervals for the ECG’s of healthy person
and patients after MI. In Figs. 1~a!–1~h! the representative
time records ofRRintervals of the ECG’s of a healthy perso

is
es

FIG. 2. Phase portraits ofRR intervals dynamics from human
ECG’s in a plane of the two various orthogonal variables (Wi ,Wj )
for the healthy person~Kshf.!, ~a!–~f!. In cases~a!, ~d!, and~c! the
phase clouds are stretched along aW0 axis and they look similar to
a pancake. In three other cases~d!–~f! they become more and mor
symmetrical and acquire spherical forms.

FIG. 3. Phase portraits ofRR intervals dynamics from human
ECG’s in a plane of two various orthogonal variables (Wi ,Wj ) for
patient Sibg. on the 20th day after M,~a!–~f!. In all six plane
projections there is a strong stratification of the phase clouds. T
there are the shoots similar to the legs of an octopus. The sim
stratification can serve as a serious indicator of MI.
7-9
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FIG. 4. ~a!–~d! Power spectra
m i(v), i 50,1,2,3 for the healthy
person~Kshf.! from time dynam-
ics of RR intervals of human
ECG’s in a double-log scale. In
the spectrum of initial TCF self-
organized criticality is observed
With the growth of order of the
memory function there is a certai
reduction of the linear~fractal!
site. Besides, a high-frequenc
peak appears as a reflection of re
piratory arrhythmia.

FIG. 5. ~a!–~d! Power spectra
m i(v), i 50,1,2,3 for the first four
junior memory functions for the
patient ~Sibg.! after MI from the
time dynamics ofRR intervals of
human ECG’s in a double-log
scale. All spectra have linear site
with fractal frequency dependenc
and there are no high-frequenc
peaks connected with respirator
arrhythmia. As a rule, fractal ex
ponents are smaller here than
the case of a healthy person.

FIG. 6. The frequency depen
dence of the first three points o
non-Markovity parameter for the
healthy person~Kshf.! ~a!–~c! and
patient ~Sibg.! after MI ~d!–~f!
from the time dynamics ofRR in-
tervals of human ECG’s. In the
spectrum of the first point of NMP
e1(v) there is an appreciable low
frequency~long-time! component,
which concerns the quasi
Markovian processes. Spectr
NMP e2(v) and NMPe3(v) fully
comply with non-Markovian pro-
cesses within the whole range o
frequencies.
046107-10
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FIG. 7. The time dependenc
of the first four junior nonstation-
ary dynamical parametersg i(t),
i 50,1,2,3 for the healthy person
~Kshf.! ~a!–~d! and the patient
~Sibg.! after MI ~e!–~h!.
r

h
ue
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r
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@Figs. 1~a!–1~d!# and a patient after MI@Figs. 1~e!–1~h!# are
displayed for comparison. The records are given for the fi
four orthogonal variablesW0 @Figs. 1~a! and 1~e!#, W1 @Figs.
1~b! and 1~f!#, W2 @Figs. 1~c! and 1~d!#, andW3 @Figs. 1~d!
and 1~h!#. Two circumstances have drawn our attention. T
initial variableW0 for the healthy person has a higher val
than for the patient after MI. In comparison with the fluctu
tion W0 , the fluctuation scalesW2 and W3 grow insignifi-
cantly both for the healthy person and for the patient a
MI. However, the scale and amplitude of this fluctuation a
04610
st

e
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r
e

much higher for the patient after MI than for the healt
person.

In Figs. 2~a!–2~f! and 3~a!–3~f! the phase clouds for the
healthy person@Kshf, Figs. 2~a!–2~f!# and the patient after
MI @Sibg., Figs. 3~a!–3~f!# in six plane projections (Wi ,Wj )
of first four orthogonal dynamic variablesWi , iÞ j 50,1,2,3
are shown. In phase portraits of the healthy person@Figs.
2~a!–2~f!# in a plane (Wi ,Wj ) there is some asymmetry of
phase cloud along variableWi( i 51,2,3) at valuej 50. But
the projection of a phase cloud in planes (Wi ,Wj ) with i,j
-

s

s
-
r-
-

FIG. 8. The frequency depen
dence of the first four junior non-
stationary dynamical parameter
b i(v), i 50,1,2,3 for a healthy
person~Kshf.! ~a!–~d! and a pa-
tient after MI ~Sibg! ~e!–~h! in a
double-log scale. The distinction
in fractal exponents are undistin
guished. All spectra are characte
ized by a fractal frequency depen
dence. It is possible to notice
some reduction of parametersa2

anda3 for the patient after MI.
7-11
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TABLE I. Some kinetic and relaxation parameters in comparison for healthy and patient after MI.

l1(t21) l2(t21) l3(t21) L1(t22) L2(t22)

Healthy 20.0267 20.907 20.974 0.005 20.074
Patient after MI 20.1676 21.201 21.048 0.254 0.156
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51,2,3 is characterized by the symmetrical distribution
the phase cloud. In the case of patients after MI some
tures are evident. The basic feature is a fingerlike scatte
of the phase cloud in planesW0,j with numbers j 51,2,3.
This scattering is so specific, that its occurrence repres
the indicator of MI. The next feature is an octopuslike d
tribution of the phase clouds in the other three planes@see,
Figs. 3~d!–3~f!#.

In Figs. 4~a!–4~d! the power spectra of TCFa(t)
5m0(t) @Fig. 4~a!#, the first @Fig. 4~b!#, the second@Fig.
4~c!#, and the third@Fig. 4~d!# MF’s of the dynamics ofRR
intervals of the ECG for the healthy person~Ksfh., y! are
represented. The fractal peculiarities are found for the sp
tra of all memory functions„the zero~TCF! and the first, the
second, and the third orders@Figs. 4~a! and 4~c!#…. There
appears a frequency dependence such asm i(v);v2a, i
50,2. Fractal behavior exists in full frequency range only
the initial TCF@see, Fig. 4~a!#. The power spectra of the firs
three junior MF’sm i(v), i 51,2,3, depict the nonfractal be
havior in frequency domain 1022,v,0.5 f.u., 1 f.u.
52p/t, where the set of peaks is connected with the f
alteration of the first three orthogonal variablesW1 , W2 , and
W3 , which describe a human cardiovascular system~CVS!
state.

Thus, the sudden emergence of a group of high-freque
peaks in the spectrum of the healthy person for functionsm1 ,
m2 , m3(v) contradicts the standard point of view@7,17,21#
and can serve as the proof of latent pathology in human C
activity.

Let us return again to fractal behavior in Figs. 4~a! and
4~c!. The self-similar behavior of spectram i(v) andm2(v)
for the healthy person is accompanied by a number of
fects. The effects of respiratory arrhythmia~RA! are con-
spicuous in both Figs. 4~b! and 4~d!. In a spectrum of the
initial TCF @Fig. 4~a!# the influence of RA can be found on
frequency of 0.11 f.u. in the form of a weak spectral spla
In the spectrum of the next short MF’s the same influence
RA is appreciably amplified owing to the Syuyumbike Tow
effect @34#. The fractal behavior of all spectra is also asso
ated with the phenomenon of the self-organized critica
~SOC! @35,36#. Nevertheless, the lengths of the linear se
ments in Figs. 4~a! and 4~d! are different. For example, fo
the initial TCF @see, Fig. 4~a!# criticality exists within the
frequency range from 0.5 f.u. up to 531024 f.u., and SOC
is characteristic for the whole registered frequency area. V
versa, SOC in the short MF’s@see, Figs. 4~c!–4~d!# is seen
only in the restricted frequency area from 1022 f.u. up to
frequency 531024 f.u. As a result the restricted sel
organized criticality~RSOC! is significant in the spectra o
all short MF’s.

The power spectra for patients after MI and for healt
persons differ a little. Fractality and criticality also exist
04610
f
a-
g

ts
-

c-

r

t

cy

S

f-

.
f

-
y
-

e

the spectra of patients after MI, but they have essenti
limited character. Criticality is appreciable in the linear r
gion for initial TCF @see, Fig. 5~a!# in the frequency interval
from 0.4 f.u. up to frequency 0.931024 f.u. and for all short
MF’s @Figs. 5~b! and 5~c!# in the frequency interval from 2
31022,v,631025 f.u. The packets of spectral lines ap
pear in the power spectra of short MF’s@Figs. 5~b! and 5~d!#
in a high-frequency region from 231022 f.u. up to 0.5 f.u.

Table I contains some kinetic and relaxation parameter
stochastic dynamics of RR intervals of human ECG’s
healthy persons and patients after MI. It is possible to no
some similarity of our kinetic parameterl i with well-known
Lyapunov’s exponents. It is important to note that alll i are
only negative numbers (l i,0). Relaxation parametersL i
are both positive and negative. Numerical changes of th
parameters can appear useful to diagnose CVS diseases
example, it is visible from Table I that the transition from th
healthy person to the patient after MI is accompanied
sharp change of parameterl1 ~almost 6.28 times! and pa-
rameterL1 ~almost 50 times!.

By analogy with Ref.@29# it is convenient to define the
generalized non-Markov parameter for the frequen
dependent case as

e i~v!5H m i 21~v!

m i~v! J 1/2

, ~4.1!

where i 51,2, . . . , andm i(v) is the power spectrum of the
i th memory function. It is convenient to use this parame
for quantitative description of long-range memory effects
the system considered together with memory functions
fined above. The behavior of spectra of the first three po
« i(v) of the statistical spectrum of NMP for the health
person@Figs. 6~a!–6~c!# and the patient after MI@Figs. 6~d!–
6~f!# is rather informative. Careful analysis of these da
shows that the dynamics ofRR intervals is non-Markovian
for the second and the third relaxation levels both for
healthy person and for the patient after MI. As seen fro
Figs. 6~b!,6~c! and 6~e!,6~f! the similar behavior arises fo
the first and the second non-Markovity parameterse2(v)
;1 ande3(v);1, everywhere within the whole frequenc
region. The behavior ofe1(v) for the patient after MI within
the whole frequency region@see, Fig. 6~d!# is typical for

TABLE II. Set of fractal exponents for power spectra of initi
TCF and first three memory functions.

a0 a1 a2 a3

Healthy 1.7662 2.0177 2.2015 2.0914
Patient after MI 1.5852 1.7996 1.9013 2.0033
7-12
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non-Markov relaxation scenario. A sharp change of value
parametere1(0) from the healthy person@e1(0);71.6# to
the patient after MI@e1(0);11.0# ~almost 6.5 times! is valu-
able for pathologic data sets based on the difference of th
non-Markov properties. Careful analysis of Figs. 6 revea
less prominent non-Markov behavior for the patient after
rather than for the healthy person. CVS of the healthy per
represents the more chaotic system whereas CVS of the
tient after MI shows evidence of the more ordered syste

Table II contains a number of fractal exponents for t
power spectra of the initial TCF and the first three jun
memory functions for the healthy person and patient a
MI. As may be seen from these tables crucial differen
exist in fractal exponentsa0 , a1 , a2 , anda3 for the healthy
person and the patient after MI. They are trustworthy me
of distinguishing healthy cases from cardiac diseases.

In Figs. 7 and 8 numerical results of calculation of no
stationarity effects for the healthy person@Figs. 7~a!–7~d!,
and 8~a!–8~d!# and the patient after MI@Figs. 7~e!–7~h! and
8~e!–8~h!# are displayed. The time behavior of these effe
is presented in Figs. 7~a!–7~h! through the time dependenc
of nonstationarity functionsg i(t). Frequency behavior is
shown in Figs. 8~a!–8~h! by the frequency dependence of P
n i(v) of functionsg i(t). Figures 7~a!–7~f! convincingly dis-
play that according to our classification~1.7! the long-term
dynamics ofRR intervals of human ECG’s, both for th
healthy person and the patient with cardiac disease, con
the case of intermediate nonstationarity. From Figs. 8~a!–
8~h! we can state with assurance that all PSn i(v) both for
the healthy person and the patient after MI,i 50,1,2,3 dem-
onstrate the similar fractal-like behavior with power law d
pendencev2a; exponents are in the range 0.47,a,0.49 as
a rule. But the values of exponenta for the patient after MI
for the casei 52 (a250.442 85) andi 53 (a350.440 45)
are far outside of this range. These values of fractal expon
differ drastically from the similar values for PS for patien
after MI and the first points of the statistical spectrum
NMP.

We emphasize especially that frequency spectra in
duced above are characterized by a specific alternatio
fractal spectra and spectra such as the color noise. In a
tain sense the similar alternation reminds the peculiar a
nation of effects of a Markov and non-Markov behavior f
hydrodynamic systems in statistical physics of conden
systems detected for the first time in papers@37,38#. The fine
specificity of such alternation appears essentially diverse
healthy persons and patients after MI. It is important to n
that the similar alternation is completely absent in freque
spectrums of non-Markovity for the short-time series ofRR
intervals of human ECG’s both for healthy persons and
tients of various heart diseases@29#.

As the research held by us demonstrates such alterna
of non-Markov effects is typical only for long-time~Holter!
series of RR intervals of human ECG’s. It allows to use
fine points of this behavior for more comprehensive and
tailed diagnosis of human CVS diseases.

V. DISCUSSION OF RESULTS AND CONCLUSION

In the present paper we have constructed the kin
theory of discrete nonstationary non-Markov processes
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complex systems of various nature. From the very beginn
we developed the theory on the basis of nonstationary T
For finding the latter we have taken advantage of the gen
and exact definition of correlation coefficient of the stoch
tic processes in the probability theory. The construction
nonstationary TCF allows one to get the linear project
operator acting in a Euclidean space of nonstationary
namic vectors of states. For the analysis of nonstation
dynamics of stochastic process we have constructed disc
difference stochastic equation of motion, Liouville’s quas
perator and evolution operator in the form of diagonal m
trices. We have executed careful investigation of stocha
nonstationary dynamics of multidimensional vectors of i
tial and final chaotic states. To find the nonstationary TCF
have taken advantage of the technique of projection op
tors, developed in our previous paper@29#. We have espe-
cially updated it here to analyze nonstationary stochastic p
cesses.

Due to splitting of a stochastic Liouville’s equation int
two mutually supplementary Euclidian subspaces we co
receive the chain of connected finite-difference kinetic eq
tions for discrete nonstationary TCF and MF’s. Kinetic p
rameters and discrete functions~TCF and MF’s of different
orders! in this set of equations can be easily found fro
experimental time series. It makes possible to apply
theory in the study of the broad class of discrete nonstat
ary stochastic processes with a long-range memory. It is n
essary to mark one more relevant feature of the develo
theory. Our theory has certain analogy with the famo
Zwanzig-Mori theory in statistical physics. But there are tw
key differences. First, our results are true for non-Hamilt
systems, where there are no Hamiltonian and exact equa
of motion. Second, our theory is specially adapted to acco
for the step-type behavior of the underlying process w
discretization timet. It is easy to notice that our theory con
tains Zwanzig’-Mori’s results as the specific case. For t
purpose it is necessary to proceed to a limitt→0 and to
replace the stochastic Liouville’s quasioperator on the ph
cal quantum or classical Liouville’s operator.

Another relevant result of this paper is the quantificati
of discrete nonstationary non-Markov stochastic processe
heart rate variability for healthy persons and for patients a
MI by memory functions, non-Markovity and nonstationa
parameters, and a long-range memory. We have establi
the existence of a large variety of interesting physical effe
in different nonlinear spectra. Among them it is necessary
mark the fractal-like behavior of PS with power frequen
law, the phenomena of SOC and RSOC, the spectral be
ior of some frequency spectra in the form of white and co
noises, the existence of the legibly expressed qualitative
quantitative differences in spectral and kinetic characteris
for healthy persons and patients after MI. Our prelimina
study shows that the indicated differences can serve a tr
worthy method of diagnosis of the state of cardiovascu
systems for healthy persons and patients. The last circ
stance is of special value for the results of theory develo
here. An interesting feature of the advanced theory is tha
justifies not only the change of absolute values, but also
sign of the relaxation parameters. Change of a sign of par
7-13
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eter is unattainable in the standard physical theory of stat
ary processes.

One of the most interesting experimental results of
study consists in the reliable registration of hydrodynam
effects of alternation of Markov and non-Markov effects
the behavior of power spectra for cardiac time series. T
analysis of these terms provides insight into the nature
chaotic dynamics of HRV. All the abovementioned are
good agreement with the basic results of recent publicat
@39–43#. In particular, in Ref.@39# is offered an approach fo
analyzing signals with long-range correlations by decomp
ing the signal increment series into magnitude and sign se
and analyzing their scaling properties. It is well known th
many complex systems share statistical characteristics.
instance, in Ref.@40# a turbulence analogy is proposed f
the long-term heart rate variability of healthy humans.
Ref. @41# it was revealed that when fluctuation in physic
activity and other behavioral modifiers are minimized, a
markable level of complexity of heart beat dynamics
mains, while for neuroautonomic blockage the multifrac
complexity decreases. Introducing a model of competit
population dynamics of biological species with clock dyna
ics incorporated, Daido@42# has shown that periods equal
close to that of the environment do not always guaran
overwhelming superiority and can even lead to extincti
Stanley and co-workers@43# have analyzed a comple
rhythm of heart beats for patients at high risk for sudd
cardiac death. They have shown that the rhythm can be
scribed by a theoretical model consisting of two interact
oscillators with stochastic elements. Bundeet al. @44# have
studied the heart rhythm in the different sleep stages@deep,
light, and rapid eye movement sleep# that reflect different
re

io

r,

al
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brain activities for both healthy subjects and patients w
moderate sleep disorder. They have found a sleep ph
finder that is based on the different heart rhythm in the d
ferent sleep stages, supplementing the quite tedious eva
tion of the sleep phases by the standard electrophysiolog
procedures.

Thus, our observation suggests strongly that the fra
frequency behavior is one of the basic properties of the
man cardiovascular system. From our standpoint the fun
mental property of a human heart consists in the spec
alternation of Markov and non-Markov memory effects. It
quite probable that the last conclusion is the key momen
understanding the physics of alive systems.
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