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Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes
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We develop the statistical theory of discrete nonstationary non-Markov random processes in complex sys-
tems. The objective of this paper is to find the chain of finite-difference non-Markov kinetic equations for time
correlation functiongTCF) in terms of nonstationary effects. The developed theory starts from careful analysis
of time correlation through nonstationary dynamics of vectors of initial and final states and nonstationary
normalized TCF. Using the projection operators technique we find the chain of finite-difference non-Markov
kinetic equations for discrete nonstationary TCF and for the set of nonstationary discrete memory functions
(MF’s). The last one contains supplementary information about nonstationary properties of the complex system
on the whole. Another relevant result of our theory is the construction of the set of dynamic parameters of
nonstationarity, which contains some information of the nonstationarity effects. The full set of dynamic,
spectral and kinetic parameters, and kinetic functiofiSF, short MF's statistical spectra of non-Markovity
parameter, and statistical spectra of nonstationarity parajrtessrmade it possible to acquire the in-depth
information about discreteness, non-Markov effects, long-range memory, and nonstationarity of the underlying
processes. The developed theory is applied to analyze the longHiatfer) series ofRRintervals of human
ECG's. We had two groups of patients: the healthy ones and the patients after myocardial infarction. In both
groups we observed effects of fractality, standard and restricted self-organized criticality, and also a certain
specific arrangement of spectral lines. The received results demonstrate that the power spectra of all orders
(n=1,2,...) MFm,(t) exhibit the neatly expressed fractal features. We have found out that the full sets of
non-Markov, discrete and nonstationary parameters can serve as reliable and powerful means of diagnosis of
the cardiovascular system states and can be used to distinguish healthy data from pathologic data.
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[. INTRODUCTION be mentioned: the fractal approach based on scaling of a
frequency spectrum on power lawddy [13—-15, the calcu-
The study of information processing in life systems is onelation of correlation dimensiofil6], the simulation by non-
of the central problems in modern science. It is now welllinear oscillatord 16,17, the calculation of the Kolmogorov
known that in many natural sequences the elements are nehtropy[16], usual[18] and dynamid19] Shannon entropy,
arranged randomly, but exhibit long-range correlations. For ahe use of dynamics of lattice spins as a model of arrhythmia
long period of time it was suggested that many compleX20], Fano-factor and Allan-factdri4], the wavelet analysis
systems observed in nature should be described only byp1], and the detrended fluctuation analygg,23. The fol-
some of low-dimensional nonlinear dynamic models. Thelowing methods are also employed here: the multifractal
properties of these systems were supposed to be ?Xpress&ﬁ’alysis[m], the multiscaled randomne§25], the Markov
by Lyapunov exponents, unique fractal dimensions OFormalization of dynamicg26], and the terminal dynamics
Kolmogorov-Smeu entropy. However, such low dimensional-,qoqel of heart bed7]. In a recent paper, Teiott al. [28]
ity can be expected for rather coherent phenomena such @8 yonstrated the manner in which various measures of fluc-
obseryed in laser systems. Alive data seems to ha_lve a MOf&ation of the sequence of interbeat intervals could be used to
complicated structure largely due to high-dimensional an Psess the presence or likelihood of cardiovascular disease.
many-factor processes and due to the pronounced effects o The profound analysis of the dynamics of heart beats dy-
random fluctuations and long-time memory effects. . e
namics reveals that the fundamental methods of the statisti-

Since the time of Ref§1—6] heart rate variabilitfHRV) | bhysics based on the Hamilton f f d ¢
serves as one of the most reliable and authentic methods 8?‘ physics based on the Hamilton formallsm and exact equa-

testing the state of a human heart in the norm and in thdons .of.motion are directly inapplicab!e for.its quantitative
pathology[7]. In particular, the analysis of HRV has pro- description. On the other hand, the discretization of events
moted the establishment of reliable connections between trfg"d long-time event-event correlation are very relevant in
functioning of a vegetative nervous system and a suddefimilar dynamics. Recently, a non-Markov theory of discrete
heart deatti4,8—13. At present there are many diverse ap-Stochastic processes was developed in Re9]. The ap-
proaches by theoretical physics to the problems of nonlineaproach advanced if29] makes the calculation of the wide
properties of HRV description. The following things should set of non-Markov characteristics of an arbitrary complex
system from experimental database possible.
In the present paper we develop a non-Markov approach
*Corresponding author. FAX+7(8432 924269; Email address: [29] for the study of long-time correlations in chaotic long-
rmy@dtp.ksu.ras.ru time dynamics ofRR intervals from human electrocardio-
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gram’s (ECG’9. RRinterval is defined as the time distance One can see that this function equals the ratio of the lengths
between neareR peaks in human electrocardiogram. The of vectors of final and initial states. In case of the stationary
generalization will consist in taking into account the nonsta{process the dispersion does not vary with the tifoe its
tionarity of stochastic processes and its further applicationsariation is very weak Therefore the following relations
to the analysis of HRV.

We should bear in mind that one of the key moments of
the spectral approach in the analysis of stochixstic processes o(T+h=o(T), AT H=1 (1.5
consists in the use of normalized time correlation function
(TCPF are true for the stationary process.

Due to the conditior{1.5) the following function

oy (AAT+ D)) i
0 (A(T)?) ' T(T,t)=1—$(T,t), (1.6

where the timeT is th inning of a tim ri i . . . .
ere the timeT is the beg g of a time seriah(t) is a is convenient to consider as a dynamic parameter of nonsta-

state vector of a complex systef(t)| is the length of tionarity. This dynamic parameter can serve as a quantitative
vectorA(t), and the double angular brackets indicate a sca- Y- ynamic pa au .

lar product of vectors and ensemble averaging. The ensemb, geasure Of. nonstationarity of the_ process under investiga-
averaging is, of course, needed in Ef.1) when correlation ion. According to Eqs(1.49—(1.6) it s reasonable to suggest

and other characteristic functions are constructed. The avetrIje existence of three different classes of nonstationarity

age and scalar product becomes equivalent when a vector is

composed of elements from a discrete-time sampling, as IT(T,0)|=|1—%(T,0)]
done later in the paper. Here a continuous formalism is dis-
cussed for convenience. However, further, from Sec. Il we
shall consider only a case of discrete processes. ~1, intermediate nonstationarity(1.7)

The above-stated designation is true only for stationary

systems. In a nonstationary case Ef.1) is not true and
should be changed. The concept of TCF can be generalized
in case of discrete nonstationary sequence of signals. For this The existence of a dynamic parameter of nonstationarity
purpose the standard definition of the correlation coefficientakes it possible to determine, on principle, the type of non-
in probability theory for the two random signal andY  stationarity of the investigated process and to find its spectral

<1, weak nonstationarity

>1, strong nonstationarity.

must be taken into account: characteristics from the experimental data base. We intend to
use Egs(1.4), (1.6), and(1.7) for the quantitative description
{(XY)) of effects of nonstationarity in the investigated temporary
P= gy ox=(IX[), oy=(IY[). (1.2 series ofRRintervals of human ECG’s for healthy people

and patients after myocardial infarctigil ).

Here we shall show that the complex dynamics of heart
rate fluctuation can be described in detail by the set of non-
stationary non-Markov properties on the whole. There are
two problems, which we would like to decide. One of them
is, how important is the discretization and long-range
memory effects in the behavior of cardiovascular systems?
The second problem is defined by the following: whether it

In Eq. (1.2 the multicomponent vectobs, Y are determined
by fluctuations of signalg andy accordingly,ai,a%, repre-
sent the variances of signalsandy, and valuesX|, |Y|
represent the lengths of vectovs, Y, correspondingly.
Therefore, the function

a(T,t)= (AMAT D)) (1.3 is possible to use nonstationary and non-Markov properties
(IAMIXIAT+D]) to diagnose the state of a human heart. We demonstrate that
o the solution to these problems is possible to be found.
can serve as the generalization of the concept of TCH The paper is organized in the following way. In Sec. II,

for nonstationary processe&(T+t). Nonstationary TCF \ye present the nonstationary generalization of our previous
(1.3) obeys the conditions of the normalization and attenuapaper[29], used here for the analysis of HRV. In Sec. IIl we

tion of correlation describe the data and standard technique of ECG in the time
) and frequency domains. This section contains technical de-
a(T.0=1, lima(T,t)=0. tails of obtaining experimental data on Holter monitoring of

t—o

ECG'’s for healthy people and patients after MI. The results

. . of quantitative calculations of the phase portraits, the
According to the Eqs(1.1) and (1.3 for the quantitative memory functions, their power frequency spectra, the fre-

description of nonstationarity it is convenient to introduce agyency dependence of the first three points in statistical spec-
function of nonstationarity trum of non-Markovity parameter, and in statistical spectrum
of nonstationarity parameter will be shown in Sec. IV. The
last, Sec. V, contains the discussion of the results obtained
and the conclusion.

1/2

(1.9

2
ST )= (JA(T+1)) _[a (T+1)

JAM | (T
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II. STATISTICAL THEORY OF NONSTATIONARY (A0 AT Y (AO AT
N—1-m"*N—-1 N—-1-m""™N-1
DISCRETE NON-MARKOV PROCESSES a(t)= - = .
IN COMPLEX SYSTEMS (N=m){o(N—m)} |ANZ1-ml

(2.6)

Here we shall extend original results of the statisticaldescribes the correlation of two different states of the system
theory of discrete non-Markov processes in complex systt=mr). Here the bracketg --) indicate the scalar product
tems, developed recently by us in REZ9], for the case of Of the two vectors. The dimension dependence of the corre-
nonstationary processes. The thef29] is developed on the sponding vectors is also taken into account in the variance
basis of the first principles and represents a discrete finitee=0c(N—m). As a matter of fact TCFa(t) represents
difference analogy for complex systems of well-known cosd, whered is the angle between the two vectors from Eq.
Zwanzig'-Mori’s kinetic equationg30,31] in the statistical (2.5. Let us introduce a unit vector of dimensioN{ m) as

physics of condensed matter. follows:
We examine a discrete stochastic procé6s+t), where 0
t=mr, AN-1-m
n= \/ﬁ (27)
X={X(T) X(T+ 1), X(T+27),... x(T+kn), .., (N=m)o

Then it is possible to present TGKt) (2.2) as follows:

) o ) . ) o a(t)=(n(0)n(t)). (2.9
whereT is the beginning of the time anzlis a discretization
time. The normalized TCF From the above discussion it is clear that E@s6)—(2.8)
are true for stationary processes only. In case of nonstation-
. . ary processes it is necessary to redefine TCF to take into
a(t)= (N—m)o? JZO OX(T+j7)8(T+[j+m]7) account the nonstationarity in the varianegin a line with
(2.2 Egs. (1.2—(1.7). For this purpose we shall redefine a unit
vector of the final state as follows:
is a convenient means to analyze dynamic properties of com-

XX(T+(N=1)7)}, (2.2

N—t—m

plex systems. Here is entered variance fluctuation sx(T = AN-1(1) g
+j7), and mean valuéx), n(t)= AT (D] (2.9
X =X(T+[7)=X(T+]j71)—(X), Then for nonstationary processes it is convenient to write

TCF as the scalar product of the two unit vectors of the

0'2:(N 1 - N_zl,:m [ initial and final states
- j=0
: (2.3 a(t) = (n(0)n(t)) = (AR 1-m(0)AR_ 1 (1)) (2.10
N A= 1-m(O)[JAR2 (D]
<x>=m ]_2::0 X(T+j7), (2.4 Now we shall consider dynamics of nonstationary sto-

chastic process. The equation of motion of a random variable

and discrete time is equalt=m X; can be written in a finite-difference form for<gj<N
quait=mr. —1 [29] as follows:

In general, the mean value, the variance and TCF in Egs.

(2.2), (2.3), and(2.4) is dependent on numbensandN. The dx,  Adx;  x(t+7)— (1)
similar situation is especially typical for the case of nonsta- E: AL . . (2.11
tionary processes. All indicated values cease to depend on
numbersm and N for stationary processes at<N. The Then it is convenient to express the discrete evolution of
processes.

Now we shall try to take into account this important de- X[T+(j+1)7r]=0(T+(j+1)7,T+jnx(T+j7).
pendence. With this purpose we shall form two (2.12

k-dimensional vectors of state by the procé3d) _ . )
In the case of stationary process we can rewrite the equation

A= (6xq,8%1,0X,...,0%k_1), of motion (2.11) in a more simple form
m A 6X; N
+k_(5Xm15Xm+1!5Xm+2!"'15Xm+k—1)- — -1 _ .
m 2.5 AT {U(n)—1}6x;. (2.13

When a vector of a state is composed of elements from a The invariance of the mean vale is taken into account
discrete-time sampling, the average and scalar product in Eén an equation, Eg2.13),

(1.1) becomes equivalent. In a Euclidean space of vectors of R R

state(2.5), TCFa(t), xXy=U(7)(x), {U(7r)—1}x)=0. (2.19
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In case of nonstationary process it is necessary to turn tand Liouville’s quasioperator should probably be nonlinear.
the equation of motion for vector of the final sts&&_ ,(t)  Furthermore, in statistical physics Liouville's operator acts

(k=N—1-m) upon the probability densities of dynamical variables, as well
as upon the variables themselves such as in the Mori paper
AAD (1) [31]. The evolution of density would indeed be linear. But
At =iL(t, AR, (D), (219  Mori, in Ref.[31], used Liouville’s operator in the quantum

equation of motion. In line with Mor{31] Egs. (2.13 and
(2.15 can be considered as the formal and exact equation of
motion of a complex system.
Lit,r)=(in YO(t+rt)—1}. (2.16 As a matter of fact, the discrete set of values of the dis-
crete evolution operator is considered in E¢®.15 and
It is well known that, in general, a stochastic trajectory doeqg2.16. This set is convenient for presenting as a
not obey a linear equation, so the general evolution operatqiN — 1)-dimensional diagonal matrix

where the Liouville’s quasioperator is

O(T+7,7) 0 0 0
0 U(T+27,T+7) 0 0
U(t+7,t)= 0 0 U(T+37,T+27) - 0 . (217
0 0 0 o O(T+[N=1]7,T+[N-2]7)

Here each diagonal matrix element acts on the corresponding component of the state vector. Then it is convenient to rewrite
the Liouville’s quasioperator in Eq2.15 in the form of (N— 1)-dimensional diagonal matrix as follows:

U(T+7T)-1 0 0 0

0 U(T+27T+n—-1 0 ce 0

Lt n=(in""x 0 0 O(T+3rT+29-1 - 0
0 0 0 o O(T+[N-1]7,T+[N-2]n)—1

(2.18

It is obvious from Egs(2.17 and (2.18 that the diagonal where angular brackets in the numerator represent the bound-
elements of matrices andL are operators themselves. Here aries of action for the scalar product.

each diagonal matrix element acts on the corresponding For the anaIyS|s of the dynamics of stochastic process
component of the state vector. The matrix representation oh(t), the vectorA(0) from Eq.(2.5) can be considered as
the Liouville’s quasioperatof2.18 and the evolution opera- the vector of the initial stat&(0), andvectorAp, (t) from

tor (2.17) allow to take into account the nonstationary pecu-Eq. (2.5 at valuem+k=N-1 can be considered as the
liarities of the dynamics of the multidimensional vector of vector of the final staté(t).

the final state of the system. It is necessary to note that the projection operé#i9
We shall use the formula&.15 and (2.18 further only  has the necessary property of idempotenfity=I1. The
for compactness. presence of operatokl allows to introduce the mutually

So, due to the Eq$2.10 and(2.15—(2.18) it is possible  supplementary projection operateras follows:
to take into account the nonstationarity of the stochastic pro-
cess. Now let us introduce the linear projection operator in P=1-II, P2=P, IIP=PII=0. (2.20
Euclidean space of the state vectors

It is necessary to mark that both projectbkandP are linear
A(0))(A(0)A(1)) ~A0))A(0) and can be recorded for the fulfillment of operations in the
|A(0)|? ’ ~ (A(0)A(0))’ particular Euclidean space. Due to the propd@yl0 and
(2.19 Eq. (1.4 it is easy to receive the required TCF as follows:

ITA(t)=
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MA(t) =TIAT, () =A2(0)(n2(0)N, (1)) y1(1) act as follows:L,;, from a subspacé’ to subspacé/\’;
=AE(0)a(t)y1(t), 'Ig_oli/’\/’tromA toW’; Lyq, fromW’ toW”; andL,,, fromA
" The projection operatorsl and P allow to execute the
B |Am+k(D)] 59 contracted description of stochastic process. Splitting the dy-
(D)= |A21(O)| ' (2.2 namic equatiorf2.15 into two equations in the two mutually

supplementary Euclidean subspatsse, for exampld29]),
Therefore the projectofl generates a unit vector along the we find
vector of the final staté(t) and creates its projection on the
initial state vectorA(0). AA'(t) . N
The existence of a pair of two mutually supplementary At =iL A’ (1) +iL A" (1), (2.27
projection operator§l andP allows to carry out the splitting
of Euclidean space of vector8[A(0),A(t)eA] into a

straight sum of the two mutually supplementary subspaces as AA"(Y) A
Pt y Supp y subsp —r =LA (O +HL A (1), (2.28
A=A'"+A", A’'=I1IA, A"=PA (2.22 Following [29] it is necessary to eliminate first irrelevant

o _ _ o partA”(t) to simplify Liouville’s equation(2.15 and then to
Substituting Eq(2.22 in Eq. (2.16 we find Liouville’s  \yrite a closed equation for relevant part(t). According to

quasioperatoE in a matrix form [29] this can be realized by the series of successive steps
example, see Eq$32)—(36) in Ref.[29]). At first a solution
[ = |A_11+ |:12+ |:21+ |:22, (2.23 to Eqgs.(2.28 for the first step can be obtained in a form
where the matrix elements are introduced AA"(t)  A"(t+7)—A"(t) .
At . =il A" (1) +HIL A" (1),

L=IILH, L,,=ILP, Lyx=PLI, L[,=PLP.
(2.24)
Due to the propertie€.17) and(2.18 Euclidean space of

values of Liouville’s quasioperatd/=LA will be generated
by vectorsW of dimensionk— 1

A"(t+7)=A"(t)+i7L A" (1) +i7L A" (1)

={1+i7l b A"(t) +itl A (1)

=U,(t+ 7, ) A" (1) +i Tl (t+ 7, A’ (1).
(W(0) e W,W(t) e W) (2.29

W=W'i+W", W'=IIW, W’'=PW. (2.2 Here we considered the obvious ratio for operators of the
particular step and introduced designations
Matrix elementsf_ij of the contracted description
Upalt+ 7,t) =1+irlpo(t+ 7,1). (2.30

o (Lp L
L=( All Alz) (2.26 Using Eqgs.(2.29 and(2.30, we derive successively for the
La; L2 next step

A"(t+27)=Uo(t+27,t+ 1)A"(t+ 7) +i Ly (t+ 27, t+ 1) A’ (t+ 7)

Upp(t+ 7,t+ I{Up(t+ 7, ) A"(1) +i 7l og(t+ 7, 1) AT (1)} +i 7l pq(t+ 27,8+ ) A (14 7)

Upp(t+27,t+ 1)Ut + 7, ) A" (1) +i U gt + 27t + 1) Lpg(t+ 7, ) A (1) + Lopy(t+ 27t + 7)A' (t+ 7))
(2.3D)

Consequently, for the third step of evolution of the final state vector we obtain

A"(t+37)= U (t+37t+ 1) Upy(t+27,t+ 1) Upp(t+ 7, 1) A" (1) +i 7{U ot + 37, t+ 27) U gt + 27t + 7) Lpy(t+ 7,1) A/ (1)

+ 0ot +37,t+ 20 Lop(t+27,t+ DA’ (t+ 7) + Log(t+ 37t +27)A’ (t+27)}). (2.32
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Generally, after a series ofith successive discrete steps,

the final result represents, respectively, the following:
m—1

A"(t+mr)={ T[] Oo(t+[j+1]mt+jr) A1)
i=0

Un(t+[j/ +2]7,t

m—2
711

m-1
+i7’2 {
i=o -

+[j’+1]7‘)) Coy(t+[j+1]7t+j7)

XA (t+j7). (2.33

Here T denotes the Dyson operator of chronological order-

ing. Substituting the irrelevant part in E@.27) to the right
side of Eq.(2.33, we obtain the closed finite-difference
equation for the relevant part of the state vector

A
AtA (t+mr)—|L11(t+[m+ 1]7,t+m7n)A’(t+m7)

+il(t+[m+1]7,t+m7)

]A//(t)

m—1
X [?H Up(t+(j+1)7t+j7)
j=0

m—2

TII Oot+(j’+2)7,
J_J

5]

+[j’+1]7-)]I:21(t+[j+1]r,t+jT)A’

X(t+j7)|.

(2.39

Introducing the modified evolution operator by the formula
m—1

Vt+mrt+sn)=T[I Ox(t+[i+1]7t+]r),
i=s
(2.39

where the integersn and s fit the conditionm>s, we can
rewrite Eq.(2.34) in the following form:

A
AtA (t+m7) =il (t+[m+1]7,t+mn)A’ (t+m7)

+iﬁ12(t+[m+1])7t+mr)

_Tz L12

X(t+[m+1)7,t+mr)

X V(t+mr,t)A"(t

XV(t+mrt+[j+1]7)

X Log(t+[j+1]7 t+]7)A (t+]j7).
(2.36

PHYSICAL REVIEW E 65 046107

This vector equation can be simplified as well. For this pur-
pose we shall take into account the idempotentity property of
the projection operators. Substituting time arguments in Eqgs.
(2.36 t—T, mr—t we receive ratio

A"(T)=0, V(T+t,T)A"(T)= (2.37

Substituting Egs(2.21) and (2.22) in Eq. (2.36, we de-
rive a finite-difference kinetic equation of a non-Markov type
for TCFa(t=mr)

m—1

Aa(t
a( ):)\la(t)_TAljZO My(t—jna(j7).

At (2.39

Here)\, is an eigenvalue and , is the relaxation param-
eter of Liouville’s quasioperatdc

<A (0)LAR (0)>
[A%(0)[?

(AR(O)L2AL(0))
YOI
(2.39

(ARO)L 1oL 21AR(0))

v |AR(0)|2

and angular brackets indicate a scalar product of the new
vectors of state. Functioll;(t—j 7) in the right side of Eq.
(2.38 represents the modified memory functidviF) of the

first order

ya(t=j7)

y1(t) (240

Ml(t_ ml(t_

jn)= i7).

For stationary processes the functipy(t) turns to unit then

the memory function®,(t) and m,(t) coincide with each
other. The latter equation is the first kinetic finite-difference
equation for TCF. It is remarkable that the non-Markovity,
discretization, and nonstationarity of stochastic process can
be considered here explicitly. Due to the account of nonsta-
tionarity both in TCF and in the first memory function this
equation generalizes our results obtained recently in Ref.
[29]. We introduced the following designations for functions
in Egs.(2.38 and (2.40:

(W1 (OV(T+m7,T+j)7W(j 7))
|W1(0)||Wy(t—j7)] ’
(2.4

my(t—j7)=
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. W (t—j7)| with notations for eigenvalues, and relaxation parameters
yi(t—j7m)= RO (242 A,,vq_1,in2,... Of Liouville’s quasioperator
e o w,LW W, _,LW
n n—
The modified evolution operator in EQR.42 has prop-
erty V(T+t,T+t)=1. It should be mentioned that a new AW, LW,
dynamic parameter of nonstationarigy(t—j7), Eq. (2.42 Vn-1=| W, o2
appears in the first MAVI{(t—j7). On the one hand, as
indicated by Eq.(2.41), short MFm,(t—j7) represents an r
. <Wn—3LWn>

ordinary memory function of the first order, normalized with
the view of the property of nonstationarity.

It is important to mark that the memaory functiom,(j 7)
is a normalized TCF for a new random variahg,

el e e AR T
Hn=2=" w4

From Egs.(2.48 and (2.49 it will be obvious that in the
cited Gram-Schmidt procedure from each new vector of state

_ [ a0 one should subtract the projection on to all previous vectors.
WiO=V(THtTL2A0). 249 rhereafter the orthogonalizatiaf®.47) is complete. In the
Now contracted Liouville's quasioperator present form the new vectdl/, would necessarily be per-
pendicular to the preceding vectdrg, with k<n—2. This
LY=L,,=PLP (2.45  problem affects the coupled finite-discrete equations for the

memory functions, a central result in this paper.
determines the time evolution. Owing to the discreteness of As the initial stochastic proces&/y(t) =A(t) is nonsta-
time series and Eq92.17 and (2.18 the dimension K  tionary, all subsequent orthogonal dynamic variahgt)
—1) of new state vectdW, is a unit less than dimensidk)  [see, Eq.(2.44)] also describe nonstationary process. It is
of initial vectorWO:AE_ It should be taken into account in necessary to take into account that in this case all eigenspec-
numerical calculations. Now let us write in an obvious formtrum values do not disappeav,# 0. It is important to note
an equation of motion fow,(j7) with regard to Egs. that relaxation parameters,, v,, u,,... will reflect non-
(2.159—(2.18, (2.29, and(2.30 equilibrium and nonstationary properties of the system con-
sidered. It is interesting to note that in the statistical theory
AW3(t)  Wi(t+7)—=Wy(t) . Laq Zwanzig and Mori a relaxation parametar, can be only
At T =IL W3 (1) =1L Wy (D). positive. Therefore, unlike the case of physical systems, nu-
(2.4  merical values of parametens, ,v,,_1,4n—2,... can beboth
positive and negative in case of complex systems.
For a new random dynamic variatW,(t) it is possible to As noted above, by the simple, but cumbersome calcula-
repeat all the above-mentioned arguments, which we havgons it is possible to show that the first short memory func-

used at finding the kinetic equati¢®.38. Then it is possible  tion m,(t) represents a normalized TCF of the first dynamic
to find the second equation for the short normalized memoryariablew,,

functionmy(j 7).

However, it is more convenient to use the Gram-Schmidt (W(0)W,(t))
orthogonalization proceduri®2,33 for the set of new dy- My (t) = (Nyw(0)Nny(1))= W,(0)[Wi (D]
namical orthogonal variables
(W W)= 85 m(|Wo|2), (2.47) W(t)=V(T+t,T)W4(0). (2.50

where 8, , is Kronecker’s symbol. It is easy to find the Heren,,(0) andn,(t) are the unit vectors in Euclidean space
recurrence formula for the orthogonal variable of differentWi[W1(0),W,(t) e W,] of the new orthogonal vectors of

orders i=2) the state with dimension equat{ 1).
Following Egs.(2.19—(2.29) it is possible to introduce
W0=AE(0), W1={i|: — N1} ?Wo, (2.49  the sequence of projection operatdlg in sequence of Eu-

clidean subspaces/,,(W,(0),W,(t) e W,,) with n=1
Wo={il =N }W;— AWy,

LW, (1) = Wn(0)><Wn(O)Wn(t)>:W (0)M (1) 74 (1)
W3:{i|:_)\3}W2_A2W1_V1WO, e |Wn(o)||Wn| " " I ,
W4:{i|:_)\4}W3_A3W2_ VoW — Wy, ya(t) = —||VV\\//”((:)))|| ) (2.51)

Wi =1L =Ny ) Wo— AW — vy W,
ne1=1 ne1tWn= AaWn 1= vn-1W - Alongside a set of projectoid , it is possible to introduce

— oWy g+, a set of mutually supplementary projectdts,

046107-7



RENAT YULMETYEV, PETER HANGGI, AND FAIL GAFAROV PHYSICAL REVIEW E 65 046107

P,=1-11,, P,I,=II,P,=0, Amy(t) m—1  (ya(in)yalt=jn) |
A=A m ){—3 (3t) }mz(t—m

HnHm: 5n,mHn, Pan: 5m’nPn. 1= 73
(2:52 +N3my(t). (2.58

Each pair of the projection operatols,, P, splits the . .
appropriate Euclidean spad#, of vectors of statew,, E;ré(;eégxfé)'Ogﬁgﬁgﬂ%ﬁ;;&ga;ﬂgﬁanirt?ocri;[(etr)m::rzd
W, (t) e W, into the two mutually supplementary subspacesintroduced in Eqs(2.42 and (2.57). Now by analogy with
Wo=W/,+W!, W =I,W,, W./=P,W,. Eq. (1.6) we can introduce a set of dynamic parameters of

’ (2.53  nonstationarityPNS for the arbitrarynth relaxation level

Now we derive the discrete equation of motion of variable F(T,H)=1—y,(t)=1—yu(T,1). (2.59
Wi (1),
1 The whole set of values of dynamic PN§(t) determines
_ Y YR the broad spectrum of nonstationarity effects of the consid-
{Wi(t+7) = Wi(t)}= —{V"(r) — 1}Wy(1) ered process.
. The obtained equations are very similar to the well-known
=iLMWq(t). (254 zwanzig-Mori's kinetic equation$30,31] in the nonequilib-
rium statistical physics of condensed matter. Let us mark
three essential distinctions of our E¢®.56) and(2.58 from
the results of Refs[30,31]. In Zwanzig’-Mori’s theory the
(2.59 key moment in the analysis of considered physical systems is
' the presence of a Hamiltonian and an operation of a statisti-

Following the projection technique described above, we re¢@l averaging carried out with the help of the quantum den-

ceive a chain of connected kinetic finite-difference equation$ity operator or the classic Gibbs distribution function. In the
of a non-Markov type for normalized short memory func- examined case both Hamiltonian and distribution functions

tions m,(t) in Euclidean space of state vectors of dimension@'® absent. In physics exact classic or quantum equations of

AW, (1) 1
At 7

HereL(™ is a new Liouville’s quasioperator

LW=L=(in) YV (r)—1}=P,L5 VP,.

(k—n) (t=mr,n=1) motion exist, therefore, Liouville'’s equation and Liouville’s
operator are useful in many applications. The motion of both

Am,(t) m-1 . . individual particles and the whole statistic system is de-
T:)\nﬂmn(t)— TAn+1E M, 1(j7)My(t—j7) scribed by states with smooth time. Therefore, for physical
1=0 systems it is possible to use effectively the methods of inte-

i i grodifferential calculus, based on mathematically habitual

Yne1(J7) Ynea(t=]7) . . . e

( ] , (2.56 (but from the physical point of view difficult for understand-

n() ing) representation of infinitesimal variations of values of

(W, 1(0)W, .+ 4(1)) coordinat.es _and time. _By nature the major?ty pf c_or_nplex

My 1 (1) = nti ntl , systems is discrete. As is well known, discretization is inher-
(Wi 1(0)|[Wp i 1(D)] ent in a wide variety of both classic and quantum complex
_ systems. It compels us to reject the concept of infinite small
S [Wi(j7)| o5 values and continuity and turn to the discrete-difference
i 7)= IWL(0)] | 257 schemes. And, at last, the third feature is connected with

incorporating the nonstationary processes into our theory.

Here yy(j 7) is thenth order nonstationarity function. The Zwanzig’-Mori’s theory is true only for stationary pro-

The set of all memory functionsi,(t), my(t), ms(t),...  cesses. Due to the introduction of normalized vectors of
allows to describe non-Markov processes and statisticadtates and the use of the appropriate projection technique our
memory effects in the considered nonstationary system. Faheory allows to take into account nonstationary processes.
the particular case we receive a more simple form for the sefhe last ones can be described by the non-Markov kinetic
of equationg2.47) for the first three short memory functions equations together with the introduction of the set of nonsta-
(t=m7) tionarity functions.
The nonstationary theory advanced here, essentially dif-

Aa(t) A mEl . (i rt=jn) . fers from stationary cas9]. The external structure of the
At A M) y1(t) alt=jn kinetic equations remains constant. As well as earlier, they
represent the kinetic equations with memory. However, the
+Nja(t), functions and the parameters, which are included in these

equations, differ appreciably from each other. As we have

Amy(t) ! Vo(jT)yo(t—j7) ) already marked above, nonstationarity effects are shown both
At AZJ.ZO mz(”)(T} my(t—j7) in functions y,(t), and in spectral and kinetic parameters.
Therefore, it appears possible to carry the careful account of
+Nomy(t), nonstationarity effects in complex systems.
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FIG. 2. Phase portraits dRR intervals dynamics from human
FIG. 1. The time record of the four first orthogonal variables ECG'’s in a plane of the two various orthogonal variable w;)
Wy, Wy, W,, and W5 of healthy person, Kshf(a)—(d), and a  for the healthy persofKshf.), (8)(f). In caseqa), (d), and(c) the
patient, Sibg., after M(e)—(h) from the time dynamics odRRinter-  phase clouds are stretched along/gaxis and they look similar to
vals of the ECG's. In both cases the disappearance of trends ig pancake. In three other cagds—(f) they become more and more
appreciable. The scales of fluctuations of the orthogonal variablesymmetrical and acquire spherical forms.

practically do not change. ] ) ) o
first, second, and third points of the statistical spectrum of

non-Markovity parameter and PS of the first four nonstation-

IIl. EXPERIMENTAL DATA AND PREPROCESSING arity parameters.

A. Data
. . IV. THE QUANTITATIVE ANALYSIS OF LONG-RANGE
Dynamic ECG recording has been done on three chan- MEMORY EEFECTS OF LONG-TIME DYNAMICS

nels. The bipolar Qrthogonal channglis char_m(_aINl, Yis OF HUMAN ECG'S RR INTERVALS

channelN2, andZ is channeIN3. Our analysis is executed

on the channeN1. TheRRrecordings were drawn from the In this section we shall present some results of the quan-
Division of Cardiac Surgery of 6th Kazan city Hospitila-  titative analysis of random dynamics &R intervals of a
zan, Tatarstancongestive heart-failure database comprisinghealthy person and a patient after a Ml ECG's within the
30 records from normal patientage: 1831 years; mean: 22 framework of the theory developed in Sec. Il. Figures 1-6
yeah and 14 records from severe congestive heart-diseag@esent typical examples of phase portraits, the power spec-
patients(age: 32—67 years, mean: 55 yeaf&he recordings, tra of TCF and junior short memory functions and the fre-
which form a standard database for evaluating the merits giluéncy spectra of the first three points of a statistical spec-
various measures for identification of heart disease, wer8um of non-Markovity parameter. Figures 7 and 8
made with a standard Holter MonitéAstrocard Holter sys- demonstrate the results of calculations of the statistical pa-
tem, 2F), digitized at a fixed value of 250 Hz. We use the fameter of nonstationarity and its power spectrum for long-
long-time series to $=65536 beats to eliminate spurious time series oRRintervals for the ECG's of healthy persons

effects due to variations in data to nonsinus beats associatéd patients after MI. In Figs.(d-1(h) the representative
with artifacts. time records oRRintervals of the ECG’s of a healthy person

1000 1000 1000
a) D) c)

B. Patients 500 e, 500 . 500 -
In this preliminary study, we have included a sample of ¥ ° 50 e 2O »
500 . 500 * 500 . .

patients subdivided into two groups. The first group consists

of 30 healthy persons. In the second group there are 14 pa "% 0 w0 "o 0 o "o o 5m
tients after MI with weak electrical riskarrhythmias of low Yo U Yo Yt
degree. o o — 1o —

W2 ['L1

500 500 N 2 500
C. Traditional analysis =0 . ';“u :ﬁo g
500 - ve 500 3

These techniques can be divided into time and frequency =
domains. In the time domain we have calculated the follow- "tm = o s0 o “%m =0 o =0 om w 0 0 s wow
ing standard functions: the phase portrait in plane projections " " vl
of the multidimensional space of the dynamic orthogonal [iG. 3. pPhase portraits d®R intervals dynamics from human
variables, the time correlation function throughout the 0b-£cG's in a plane of two various orthogonal variabl&, (w;) for
served time domain, and the set of the first three juniopatient Sibg. on the 20th day after Ma)—(f). In all six plane
memories, and the first four nonstationarity functions. Alsoprojections there is a strong stratification of the phase clouds. Thus
we have determined the following power spect®: of the  there are the shoots similar to the legs of an octopus. The similar
initial TCF's first, second, and third short MF’s, PS of the stratification can serve as a serious indicator of MI.

046107-9



RENAT YULMETYEV, PETER HANGGI, AND FAIL GAFAROV

10 10° . . , .
a=—1.7662 =2.0177
a) b)
— 105 —
L S
3 31 1
o >~
= 100 a4
-5 -5
10 10 L .
10 10 107 10 10” 10° 107° 107 107 1072 107" 10°
® [2x/1) o [27/4]
10° : T . . 10°
o=2.2015 a=2.0014
c) d)
T <
g 10 31
= y
-5 -5
10 10
107 10 107 107 107! 10° 107° 10™ 107 1072 107" 10°
w [2nM) o [27/]
10 o
10 =—1.5852 10 =1.7996
a) b)
_10° —
S S
— —_ 0
5 310
X =
3.
3 100
-5 -5
10 : . . 10
10°° 107 10 107 107" 10° 10° 107 107 107 107 10°
o [2n/7] o [2nA]
5 5
10 =1.9013 1 =2.0033
c) d)
< €
310 310° |
Ey =
10_5 -5 4 3 2 1 q 104 -5 —4 -3 -2 -1 0
10 10” 107 107 107 10 10 10 10 10 10 10
o [2 71 o [2n/]
200 8 20
a) b) c)
150 6 15
Z z z
S 100 24 ;10
50 2 5
0 Tealaale L | 0 o
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
o [2 i) o [2 /] o [2 n/t]
30 20 10
d) e) 1)
25 s
15
20
6
T Z10 z
w'_1o oSN o 4
5 ® 2
0 0 0
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
o [2 /] o [2 /] o [2nA]

046107-10

PHYSICAL REVIEW E 65 046107

FIG. 4. (a)—(d) Power spectra
pi(w), 1=0,1,2,3 for the healthy
person(Kshf.,) from time dynam-
ics of RR intervals of human
ECG’s in a double-log scale. In
the spectrum of initial TCF self-
organized criticality is observed.
With the growth of order of the
memory function there is a certain
reduction of the linear(fractal
site. Besides, a high-frequency
peak appears as a reflection of res-
piratory arrhythmia.

FIG. 5. (a)—(d) Power spectra
mi(w), 1=0,1,2,3 for the first four
junior memory functions for the
patient (Sibg) after Ml from the
time dynamics ofRRintervals of
human ECG's in a double-log
scale. All spectra have linear sites
with fractal frequency dependence
and there are no high-frequency
peaks connected with respiratory
arrhythmia. As a rule, fractal ex-
ponents are smaller here than in
the case of a healthy person.

FIG. 6. The frequency depen-
dence of the first three points of
non-Markovity parameter for the
healthy persoitKshf.) (a)—(c) and
patient (Sibg) after MI (d)—(f)
from the time dynamics oRRin-
tervals of human ECG's. In the
spectrum of the first point of NMP
€,(w) there is an appreciable low-
frequency(long-time component,
which  concerns the quasi-
Markovian processes. Spectra
NMP €,(w) and NMPe3(w) fully
comply with non-Markovian pro-
cesses within the whole range of
frequencies.
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[Figs. {a)—1(d)] and a patient after MIFigs. {e)-1(h)] are  much higher for the patient after MI than for the healthy
displayed for comparison. The records are given for the firsperson.

four orthogonal variable®/, [Figs. 1a) and Xe)], W, [Figs. In Figs. 2a)—2(f) and 3a)—3(f) the phase clouds for the
1(b) and Xf)], W, [Figs. 1c) and Xd)], andW; [Figs. 1d) healthy persoriKshf, Figs. Za)—2(f)] and the patient after
and Xh)]. Two circumstances have drawn our attention. TheMI [Sibg., Figs. 82)—-3(f)] in six plane projectionsW; ,W;)
initial variable W, for the healthy person has a higher value of first four orthogonal dynamic variablé¥;, i#j=0,1,2,3
than for the patient after MI. In comparison with the fluctua-are shown. In phase portraits of the healthy pergéigs.
tion Wy, the fluctuation scale¥V, and W5 grow insignifi-  2(@)—2(f)] in a plane W; ,W;) there is some asymmetry of a
cantly both for the healthy person and for the patient aftephase cloud along variabM/;(i=1,2,3) at valug =0. But
MI. However, the scale and amplitude of this fluctuation arethe projection of a phase cloud in plané&;(W,;) with i,j

10 = 10 =
—_ a o==U4/34%4 — b o=—0.48976
b, ) € )
5 10° 5 10°
® ey
-5 -5
10 -3 -2 -1 0 10 -3 -2 -1 (4]
10 10 10 10 10 10 10 10
o [2n/ 1] w[2n/ 1]
10° 10° FIG. 8. The frequency depen-
— C) O=—0"28605 — d) 0=—0.48079 d ) Lo
& G ence of the first four junior non-
z10° 510° stationary dynamical parameters
& & Bi(w), 1=0,1,2,3 for a healthy
1010‘3 107 107" 10° 1010'3 107 107" 10° person(Kshf) (a-(d) and a pa-
o [2n/ 1] o [2v 1) tient after Ml (Sibg (e)—_(h)_ in a
10° 10° double-log scale. The distinctions
— e) o=—UF//89 — f) o==U&/U3Z . ..
5 < in fractal exponents are undistin-
z10° z10° guished. All spectra are character-
=2 . - . ized by a fractal frequency depen-
10— > » 0 10— > - 0 dence. It is possible to notice
10 10 o2 1 10 10 10 10 o2 q 10 10 some reduction of parameters,
n for th ien r MI.
_105 7 o ooEs st o R and a5 for the patient afte
ke, L,
=10° \\’\/««M ] 510° \—\_\M
g 3
& <
10 -3 -2 —1 0 10 -3 -2 —1 Q
10 10 10 10 10 10 10 10
o [2n/ 1] Figure 8 w [2n/ 7]
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TABLE |. Some kinetic and relaxation parameters in comparison for healthy and patient after MI.

A7 h Ao(77h) Aa(77h) Aq(772) Ax(77?)
Healthy —0.0267 —0.907 —-0.974 0.005 —-0.074
Patient after Ml —-0.1676 —-1.201 —1.048 0.254 0.156

=1,2,3 is characterized by the symmetrical distribution ofthe spectra of patients after MI, but they have essentially
the phase cloud. In the case of patients after Ml some fedimited character. Criticality is appreciable in the linear re-
tures are evident. The basic feature is a fingerlike scatteringion for initial TCF[see, Fig. )] in the frequency interval

of the phase cloud in plané#/,; with numbersj=1,2,3.  from 0.4 f.u. up to frequency 02910 “ f.u. and for all short
This scattering is so specific, that its occurrence representdF’s [Figs. §b) and Jc)] in the frequency interval from 2
the indicator of MI. The next feature is an octopuslike dis-x 10 2<w<6x10 °f.u. The packets of spectral lines ap-
tribution of the phase clouds in the other three plafse=®, pear in the power spectra of short MFEigs. 5b) and 5d)]
Figs. 3d)—3(f)]. in a high-frequency region from>210~2 f.u. up to 0.5 f.u.

In Figs. 4a)-4(d) the power spectra of TCRa(t) Table | contains some kinetic and relaxation parameters of
=my(t) [Fig. 4a@)], the first[Fig. 4(b)], the secondFig.  stochastic dynamics of RR intervals of human ECG’s for
4(c)], and the third Fig. 4(d)] MF’s of the dynamics oRR  healthy persons and patients after M. It is possible to notice
intervals of the ECG for the healthy pers@iisth., y) are  some similarity of our kinetic parametiy with well-known
represented. The fractal peculiarities are found for the sped-yapunov’s exponents. It is important to note thatallare
tra of all memory functiongthe zero(TCF) and the first, the only negative numbersa(<0). Relaxation parameters;
second, and the third ordeffigs. 4a and 4c)]). There are both positive and negative. Numerical changes of these
appears a frequency dependence suchud®)~w™ ¢, i parameters can appear useful to diagnose CVS diseases. For
=0,2. Fractal behavior exists in full frequency range only forexample, it is visible from Table | that the transition from the
the initial TCF[see, Fig. 4a)]. The power spectra of the first healthy person to the patient after Ml is accompanied by
three junior MF'su(w), 1=1,2,3, depict the nonfractal be- sharp change of parametky (almost 6.28 timegsand pa-
havior in frequency domain IG<w<0.5fu., 1fu. rameterA; (almost 50 times
=2m/7, where the set of peaks is connected with the fast By analogy with Ref[29] it is convenient to define the
alteration of the first three orthogonal variablds, W,, and  generalized non-Markov parameter for the frequency-
W3, which describe a human cardiovascular syst€wS) dependent case as

state.
Thus, the sudden emergence of a group of high-frequency wi—1(w)] 2
peaks in the spectrum of the healthy person for functjops €(w)= @) | (4.1
Mo, ma(w) contradicts the standard point of vigw,17,21 !
and can serve as the proof of latent pathology in human CV%vherei —1.2,..., andu(w) is the power spectrum of the

activity. . . i . .
Let us return again to fractal behavior in Figgasand ith memory _funct|on..lt.|s convenient to use this parameter
for quantitative description of long-range memory effects in

4(c). The self-similar behavior of spectja(w) and u,(w) . . .
for the healthy person is accompanied by a number of ef'ghe system considered together with memory functions de-

. fined above. The behavior of spectra of the first three points
fects. The effects of respiratory arrhythmiRA) are con- o
spicuous in both Figs.(b)pand ‘){d)- Inya preczrum of the g;(w) of the statistical spectrum of NMP for the healthy

initial TCF [Fig. 4(a)] the influence of RA can be found on a persor{Figs. @a)—6(c)] and the patient after MIFigs. 6d)—

- 6(f)] is rather informative. Careful analysis of these data
frequency of 0.11 f.u. in the form of a weak spectral splash. hows that the dynamics 6tR intervals is non-Markovian

In the spectrum of the next short MF's the same influence o or the second and the third relaxation levels both for the
RAis appreciably amplified owing to the Syuyumbike Tower healthy person and for the patient after MI. As seen from

effect[34]. The fractal behavior of all spectra is also assom-FigS_ &b).6() and Ge).6(f) the similar behavior arises for

ated with the phenomenon of the self-organized criticality . .
: ‘the first and the second non-Markovity parametestw)
(SOQ [35,36. Nevertheless, the lengths of the linear seg ~1 andey(w)~1, everywhere within the whole frequency

ments in Figs. @) and 4d) are different. For example, for . . . e
o : I ; . region. The behavior of;(w) for the patient after MI within
the initial TCF [see, Fig. 4a)] criticality exists within the the whole frequency regiofisee, Fig. &)] is typical for

frequency range from 0.5 f.u. up to<510"* f.u., and SOC
is characteristic for the whole registered frequency area. Vice L
versa, SOC in the short MF[see, Figs. &)—4(d)] is seen TABLE_II. Set of fractal expon_ents for power spectra of initial
only in the restricted frequency area from 2d.u. up to ' CF and first three memory functions.

frequency 5<10 #f.u. As a result the restricted self-

organized criticality(RSOQ is significant in the spectra of o o 2 3
all short MF's. Healthy 1.7662 2.0177 2.2015 2.0914
The power spectra for patients after Ml and for healthypatient after Mi 1.5852 1.7996 1.9013 2.0033

persons differ a little. Fractality and criticality also exist in
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non-Markov relaxation scenario. A sharp change of value otomplex systems of various nature. From the very beginning
parametere;(0) from the healthy persofe;(0)~71.6] to  we developed the theory on the basis of nonstationary TCF.
the patient after M[€,(0)~11.0] (almost 6.5 timekis valu-  For finding the latter we have taken advantage of the general
able for pathologic data sets based on the difference of thesghq exact definition of correlation coefficient of the stochas-
non-Markov properties. Careful analysis of Figs. 6 reveals §¢ processes in the probability theory. The construction of

less prominent non-Markov behavior for the patient after Ml : : P
rather than for the healthy person. CVS of the healthy persoﬂonstatlonary TCF allows one to get the linear projection

represents the more chaotic system whereas CVS of the pgperator acting in a Euclidean space of nonstationary dy-

tient after MI shows evidence of the more ordered system, 1amic vectors of states. For the analysis of nonstationary
Table Il contains a number of fractal exponents for thedynamics of stochastic process we have constructed discrete-

power spectra of the initial TCF and the first three juniordifference stochastic equation of motion, Liouville’s quasio-
memory functions for the healthy person and patient aftePerator and evolution operator in the form of diagonal ma-
MI. As may be seen from these tables crucial differencedrices. We have executed careful investigation of stochastic
exist in fractal exponents,, a;, a,, andas for the healthy nonstationary dynamics of multidimensional vectors of ini-
person and the patient after MI. They are trustworthy meangal and final chaotic states. To find the nonstationary TCF we
of distinguishing healthy cases from cardiac diseases. have taken advantage of the technique of projection opera-
In Figs. 7 and 8 numerical results of calculation of non-tors, developed in our previous pad&9]. We have espe-
stationarity effects for the healthy perspiigs. 7a)—7(d), cially updated it here to analyze nonstationary stochastic pro-
and 8a)—8(d)] and the patient after MlIFigs. 1e)-7(h) and  cesses.
8(e)—8(h)] are displayed. The time behavior of these effects Due to splitting of a stochastic Liouville’s equation into
is presented in Figs.(&—7(h) through the time dependence two mutually supplementary Euclidian subspaces we could
of nonstationarity functionsy;(t). Frequency behavior is receive the chain of connected finite-difference kinetic equa-
shown in Figs. 8)—8(h) by the frequency dependence of PStjons for discrete nonstationary TCF and MF’s. Kinetic pa-
vi(w) of functionsy;(t). Figures Ta)—7(f) convincingly dis-  rameters and discrete functiofECF and MF’s of different
play that according to our classificatigh.?) the long-term  4rderg in this set of equations can be easily found from
dynamics ofRR intervals of human ECG's, both for the eyperimental time series. It makes possible to apply our
healthy person and the patient with cardiac disease, conceffeqry in the study of the broad class of discrete nonstation-
the case of |ntermgd|ate nonstationarity. From Figs)-8 ary stochastic processes with a long-range memory. It is nec-
8(h) we can state with assurance that all #6w) both for essary to mark one more relevant feature of the developed
the healthy person and the patient after M£0,1,2,3 dem- 00y Our theory has certain analogy with the famous
onstrate the similar fractal-llkg behavior with power law de'Zwanzig-Mori theory in statistical physics. But there are two
pendence» “ exponents are in the range 04#<0.49as  \qy differences. First, our results are true for non-Hamilton
a rule. But the values of exponeatfor the patient after Ml gy tams where there are no Hamiltonian and exact equations
for the case =2 (;=0.44285) and =3 (@3=0.44045) 4t motion. Second, our theory is specially adapted to account
are far outside of this range. These values of fractal exponenf, e step-type behavior of the underlying process with
differ drastically from the similar values for PS for patients yiscretization timer. It is easy to notice that our theory con-
after MI and the first points of the statistical spectrum ofaing zyanzig-Mori's results as the specific case. For this
NMP. . . . _purpose it is necessary to proceed to a limit0 and to
We emphasize especially that frequency spectra intioggp|ace the stochastic Liouville's quasioperator on the physi-
duced above are characterized by a specific a!ternauon al quantum or classical Liouville’s operator.
fractal spectra and spectra such as the color noise. In a Cer- Apother relevant result of this paper is the quantification
tain sense the similar alternation reminds the peculiar alterst yiscrete nonstationary non-Markov stochastic processes in
nation of effects of a Markov and non-Markov behavior for poart rate variability for healthy persons and for patients after
hydrodynamic systems in statistical physics of condensegq by memory functions, non-Markovity and nonstationary
systems detected for the first time in pap&8,38. The fine parameters, and a Iong-,range memory. We have established
specificity of such alternation appears essentially diverse f0f,q oyistence of a large variety of interesting physical effects
healthy persons and patients after MI. It is important t0 N0t&y, giterent nonlinear spectra. Among them it is necessary to
that the similar alternation is completely absent in frequency, o the fractal-like behavior of PS with power frequency
spectrums of non-Markovity for the short-time seriesRRR law, the phenomena of SOC and RSOC, the spectral behav-
|_ntervals of _human ECG.’S both for healthy persons and pajor of some frequency spectra in the form of white and color
tients of various heart diseasg20]. _noises, the existence of the legibly expressed qualitative and
As the research held by us demonstrates such altematiqq),nsitative differences in spectral and kinetic characteristics
of non-Markov effects is typical only for long-timéolten) ¢, heathy persons and patients after MI. Our preliminary
series of RR intervals of human ECG’s. It allows to use thegy, gy shows that the indicated differences can serve a trust-
fine points of this behavior for more comprehensive and dey, o thy method of diagnosis of the state of cardiovascular
tailed diagnosis of human CVS diseases. systems for healthy persons and patients. The last circum-
stance is of special value for the results of theory developed
here. An interesting feature of the advanced theory is that it
In the present paper we have constructed the kinetigustifies not only the change of absolute values, but also the
theory of discrete nonstationary non-Markov processes isign of the relaxation parameters. Change of a sign of param-

V. DISCUSSION OF RESULTS AND CONCLUSION
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eter is unattainable in the standard physical theory of statiorbrain activities for both healthy subjects and patients with
ary processes. moderate sleep disorder. They have found a sleep phase
One of the most interesting experimental results of ouffinder that is based on the different heart rhythm in the dif-
study consists in the reliable registration of hydrodynamicferent sleep stages, supplementing the quite tedious evalua-
effects of alternation of Markov and non-Markov effects in tion of the sleep phases by the standard electrophysiological
the behavior of power spectra for cardiac time series. Th@rocedures.
analysis of these terms provides insight into the nature of Thus, our observation suggests strongly that the fractal
chaotic dynamics of HRV. All the abovementioned are infrequency behavior is one of the basic properties of the hu-
good agreement with the basic results of recent publicationsian cardiovascular system. From our standpoint the funda-
[39-43. In particular, in Ref[39] is offered an approach for mental property of a human heart consists in the specific
analyzing signals with long-range correlations by decomposalternation of Markov and non-Markov memory effects. It is
ing the signal increment series into magnitude and sign serieguite probable that the last conclusion is the key moment in
and analyzing their scaling properties. It is well known thatunderstanding the physics of alive systems.
many complex systems share statistical characteristics. For
instance, in Ref[40] a turbult_anc_e_ analogy is proposed for ACKNOWLEDGMENTS
the long-term heart rate variability of healthy humans. In
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