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Oscillatory systems driven by noise: Frequency and phase synchronization
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The phenomenon of effective phase synchronization in stochastic oscillatory systems can be quantified by an
average frequency and a phase diffusion coefficient. A different approach to compute the noise-averaged
frequency is put forward. The method is based on a threshold crossing rate pioneered by Rice. After the
introduction of the Rice frequency for noisy systems we compare this quantifier with those obtained in the
context of other phase concepts, such as the natural and the Hilbert phase, respectively. It is demonstrated that
the average Rice frequency^v&R typically supersedes the Hilbert frequency^v&H , i.e. ^v&R >^v&H . We
investigate next the Rice frequency for the harmonic and the damped, bistable Kramers oscillator, both without
and with external periodic driving. Exact and approximative analytic results are corroborated by numerical
simulation results. Our results complement and extend previous findings for the case of noise-driven inertial
systems.
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I. INTRODUCTION

The topic of synchronization covers a plethora of ph
nomena@1# ranging from the entrainment of a system by
external drive over mutual synchronization of two bidire
tionally coupled systems to coherent modes of many u
with complex coupling patterns@2#. From the conceptua
point of view different degrees of synchronization can
distinguished: complete synchronization@3#, generalized
synchronization@4#, lag synchronization@5#, phase synchro-
nization@6,7#, and burst~or train! synchronization@8#. In the
following, we restrict our considerations to phase synchro
zation that has attracted recent interest for the following r
son: In many practical applications the dynamics of a s
tem, though not perfectly periodic, can still be understood
the manifestation of a stochastically modulated limit cy
@9,10#. As examples, we mention neuronal activity@11#, the
cardiorespiratory system@12#, population dynamics@13#, or
even digital communications~where switching back and
forth constitutes a cycle!. In all these dynamics, marke
events can be used to pinpoint the completion of a cyclek,
and the beginning of a subsequent onek11. It is then pos-
sible to define an instantaneous phasefL(t) by linear inter-
polation, i.e.,

fL~ t !5
t2tk

tk112tk
2p1k 2p ~ tk<t,tk11!, ~1!

where the timestk are fixed by the marker events. Introdu
ing a Poincare´ section is another way of defining a mark
event and was widely used in model studies@1#. Reexpress-
ing the time seriesx(t) of the system as

x~ t !5a~ t !cos@fL~ t !#, ~2!
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then defines an instantaneous amplitudea(t). The benefit of
such a treatment is to reveal a synchronization of two
more such signals: whereas the instantaneous amplit
and, therefore, the time series might look rather different,
phase evolution can display quite some similarity. If the a
erage growth rates of phases match each other~notwithstand-
ing the fact that phases may diffuse rapidly! the result is
termed frequency locking. Small phase diffusion, in additi
to frequency locking, means that phases are practic
locked during long episodes that occasionally are disrup
by phase slips caused by sufficiently large fluctuations. T
elucidates the meaning of effective phase synchronizatio
stochastic systems.

The mentioned marker events that determine the mom
when the phase passes multiples of 2p can be either spikey
peaks as for the neural activity, pronounced maxima as
population dynamics or switchings from ‘‘low’’ to ‘‘high’’ in
digital communications. In a unifying approach the pha
evolution can be related to zero crossings since rela
maxima of a smooth function are zeros of the derivative a
the inclusion of an arbitrary threshold only requires a shift
the coordinate. In this view the average frequency, i.e.
average phase velocity, turns out to be the average rat
zero crossings that is captured by a formula put forward
Rice @14,15#.

This elementary observation yields a proposed way~i! to
quantify the average frequency of a phase evolution, hen
forth termed the ‘‘Rice frequency,’’ and~ii ! to track down
frequency locking in stochastic systems. In this investigati
we will elaborate how the proposed approach contrasts w
other definitions, e.g., the one based on the analytic sig
@16# and the Hilbert transform@6#. For developing the
method and illustrating its purpose, we will employ th
damped harmonic oscillator and the damped bistable Kr
ers oscillator serving as paradigmatic systems. As we
show, the Rice frequency matches, in practice, the m
phase velocity as computed from the linear interpola
©2002 The American Physical Society10-1
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phasefL. In theory, it opens a simple way to derive statio
ary or even time dependent average phase velocities f
known probability densities.

II. NOISE-DRIVEN SYSTEMS: DEVELOPING
THE RICE FREQUENCY

To detail our derivation of the Rice frequency in this se
tion, we start from the following one-dimensional potent
system@17#:

ẍ1g ẋ1U8~x!5Agj1Fcos~Vt ! ~3!

subjected to Gaussian white noisej of intensityD, i.e.,

^j~ t !&50, ^j~ t !j~s!&52Dd~ t2s!, ~4!

and being driven by the external harmonic forceF cos(Vt).
In Fig. 1 we show a sample path for the harmonic oscilla
specified by the potential

U~x!5v0
2 x2

2
~5!

and the corresponding Langevin equation

ẍ1g ẋ1v0
2x5Agj1F cos~Vt !. ~6!

In Fig. 1 we used the friction coefficientg51, the natural
frequencyv051, and a vanishing amplitudeF50 of the
external drive. As can be read off from Fig. 1, the veloc

v5 ẋ basically undergoes a Brownian motion and, therefo
constitutes a rather jerky continuous, but generally not
ferentiable signal. In particular, near a zero crossing ov
there are many other zero crossings. In contrast to that,
coordinatex is a much smoother signal since it is determin
by an integral over a continuous function

FIG. 1. Positionx and velocityv of the undriven noisy harmonic
oscillator Eq.~6! with friction coefficient g51, and natural fre-
quencyv051. Whereas the positionx is smooth the velocityv is
continuous but nowhere differentiable. Counting of zero crossi
is, consequently, only possible for thex coordinate.
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x~ t !5x~0!1E
0

t

v~t!dt, ~7!

and, therefore, differentiable. In particular, near a zero cro
ing of x there are no other zero crossings. In the followin
we will take advantage of this remarkable smoothness pr
erty of x that is an intrinsic property of the full oscillator
system~3! and disappears when we perform the overdam
limit.

In 1944, Rice@14# deduced a formula for the averag
number of zero crossings of a smooth signal likex in the
oscillator Eq.~3!. In this rate formula enters the probabilit
density P(x,v;t) of x and its time derivative,v5 ẋ, at a
given instantt. The Rice rate for passages through zero w
positive slope~velocity! is determined by@15#

^ f &~ t !5E
0

`

vP~x50,v;t !dv. ~8!

This time-dependent rate is to be understood as an ense
average. If the dynamical system is ergodic and mixing
asymptotic stationary ratêf s& can likewise be achieved b
the temporal average of a single realization. LetN(@0,t#) be
the number of positive-going zeros of the signalx in the time
interval @0,t#. Using ergodicity, the relation

^ f s&5E
0

`

vPs~x50,v !dv5 lim
t→`

N~@0,t# !

t
~9!

is fulfilled for the process characterized by the station
density Ps(x,v). In the following we always consider sta
tionary quantities. As explained in the Introduction, the ze
crossings can be used as marker events to define an in
taneous phasefL(t) by linear interpolation, cf. Eq.~1!. The
related average phase velocity is the product of the~station-
ary! Rice rate and 2p and, hence, called the~stationary! Rice
frequency

^v&R52p ^ f s&52pE
0

`

vPs~x50,v !dv. ~10!

For a dynamics described by a potentialU(x) in the ab-
sence of an external driving, i.e., Eq.~3! with F50, the
stationary density can be calculated explicitly yielding

Ps~x,v !5C expF2S v2

2
1U~x! D Y DG , ~11!

whereC is the normalization constant. Note that the indepe
dence of the stationary probability density from the frictio
coefficient will also make the Rice frequency independ
from g. From Eq.~11! and the application of Eq.~10!, it is
straightforward to derive the exact result

s
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^v&R5

A2pD expF2
U~0!

D G
E

2`

`

expF2
U~x!

D Gdx

. ~12!

Without loss of generality we can setU(0)50. In the limit
D→0, we can perform a saddle-point approximation arou
the deepest minimaxm ~e.g., for symmetric potentials!. In
this way we find the following expression valid forD
!DU5U(0)2U(xi), i.e., the small noise approximation,

^v&R5F(
i

expF2
U~xi !

D G
AU9~xi !

G21

. ~13!

In the limit D→`, we have to consider the asymptotic b
havior of the potential, limx→6`U(x), to estimate the inte-
gral in Eq. ~12!. For potentials that can be expanded in
Taylor series about zero and that, therefore, result in a po
series of order 2m, i.e.,U(uxu→`);x2m, we can rescale the
integration variable byx5D1/2mx̃. For sufficiently largeD,
the integral is dominated by the power 2m term. In this way
we find the large noise scaling

^v&R;Da with a5
m21

2m
. ~14!

Applying Eqs.~12! and ~13! to the harmonic oscillator~5!
we immediately find that̂ v&R5v0, independent ofg and
for all values ofD.0. This is also in agreement with Eq
~14!. It follows becausem51 implies that, for large noise
the Rice frequencŷv&R does not depend onD at all. Note,
however, that in the deterministic limit, i.e., forD50, we
have the standard result

^v&R5HAv0
22g2/4 for g,2v0

0 for g>2v0

~15!

which explicitly does depend on the friction strengthg.0.
Therefore, the limitD50 is discontinuous except in the un
damped situationg50.

The similarity of Eqs.~12! and~13! with rates from tran-
sition state theory@18# will be addressed below when w
discuss the bistable potential.

III. ALTERNATIVE PHASE DEFINITIONS

An alternative phase definition stems from the method
Bogoliubov and Mitropolski@19#. This method starts from
the following decomposition of the dynamics:

ẋ5v, ~16!

v̇52v0
2x1 f ~x,v,t,j, . . . !, ~17!
05111
d
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where the functionf comprises all terms of higher than firs
order in x ~nonlinearities!, velocity dependent terms~fric-
tion!, and noise. In their work Bogoliubov and Mitropolsk
considered the functionf to be a perturbation of ordere. For
the subsequent discussion, however, this assumption is b
means necessary. The definition of an instantaneous p
proceeds by expressing the positionx and the velocityv in
polar coordinatesr andfP,

x~ t !5r ~ t !cos@fP~ t !#, ~18!

v~ t !52v0r ~ t !sin@fP~ t !#, ~19!

which yields by inversion@20#

r ~ t !5Ax2~ t !1@v~ t !/v0#2, ~20!

fP~ t !5arctanF2
v~ t !/v0

x~ t ! G . ~21!

Here, it should be noted that a meaningful clockwise rotat
in the x,v plane determines angles to be measured in a s
cific way depending on the sign ofv0. Using Eqs.~18!, ~19!,
~20!, and~21! it is straightforward to transform the dynamic
in x andv, Eqs.~16! and ~17!, into the following dynamics
for r andfP @21,22#:

ṙ 52
f „r cos~fP!,2v0r sin~fP!,t,j…

v0
sin~fP!, ~22!

ḟP5v02
f „r cos~fP!,2v0r sin~fP!,t,j…

v0r
cos~fP!.

~23!

For instance, for the harmonic oscillator Eq.~6! with F50
these equations read

ṙ 52Fgr sin~fP!1
Ag

v0
jGsin~fP!, ~24!

ḟP5v02Fg sin~fP!1
Ag

v0

j

r G cos~fP!. ~25!

The line x50 corresponds to anglesfP5p/21np,nPN.
As can be read off from Eq.~23!, the phase velocity always
assumes a specific value forx50 @23#, i.e.,

ḟP~x50!5v0 . ~26!

This has the following remarkable consequence. We see
even in the presence of noise passages through zero in
upper half planev.0 are only possible fromx,0 to x.0,
in the lower half plane only fromx.0 to x,0. This insight
becomes even more obvious from a geometrical interpr
tion: as the noise exclusively acts on the velocityv, cf. Eq.
0-3
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~17!, it can only affect changes in the vertical direction~in
x,v space!. Along the vertical linex50, however, the angu
lar motion possesses no vertical component while radial
tion is solely in the vertical direction and, therefore, on
affected by the noise. From this, we conclude that both
linear interpolating and the polar phase increase between
passages throughx50 with positive slope by an amount o
2p. Therefore, the~stationary! average phase velocity i
identical for the linear interpolating phasefL, cf. Eq. ~1!,
and the natural phase defined by virtue of polar coordina
fP, i.e.,

^ḟP&ª^v&P5^v&L5^v&R . ~27!

The Hilbert phasefH constitutes yet another phase de
nition. It is widely used in applications in the context of th
analytic signal@10,16,24# to construct a phase for a one
dimensional time seriesx(t). In this context the Hilbert
transformxH of the signalx is defined by the convolution

xH~ t !5H@x#~ t !5
1

p
PE

2`

` x~t!

t2t
dt, ~28!

where the integral in the last equation has to be evaluate
the sense of the Cauchy principal value (P). Rewriting the
original signal x(t)5^x&1 x̂(t), where ^x& represents the
constant mean and, consequently,x̂(t) a zero mean signal
we find thatxH(t)5H@x#(t)5H@ x̂#(t). Hence, we can al-
ways subtract the signal mean without changing the res
The Hilbert transform is subsequently used to define the
bert phase@20#,

fH~ t !5arctanFxH~ t !

x~ t ! G . ~29!

The convolution kernel in Eq.~28! has the property of prop
erly reproducing the phase of a harmonic signal. T
asymptotic Hilbert phase velocitŷv&H is then defined in
connection with Eq.~29! in a straightforward manner by

^v&H5 lim
t→`

fH~ t !

t
. ~30!

Again, as a consequence of stationarity and ergodicity
also find

^v&H5^ḟH&s5K vHx2vxH

x21~xH!2L
s

, ~31!

where the subscripts is a reminder of the stationary statistic
To exemplify the relation between the Rice frequen

^v&R and the Hilbert frequencŷ v&H , we consider the
damped harmonic oscillator Eq.~6! agitated by noise alone
In Fig. 2 we show a numerically evaluated sample path
the corresponding Hilbert phase modulo 2p using the pa-
rametersg51, D51, v051, F50. An important point to
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observe here is that att'2.6 andt'9 the Hilbert phasefH

does not increase by 2p after two successive passag
through zero with positive slope. This illustrates a rema
able difference between the Hilbert phase and the previo
discussed phase definitions. This observation is a co
quence of the nonlocal character of the Hilbert transfor
i.e., the fact that the whole temporal history ofx(t) enters in
the convolution~28!. In particular, short and very small am
plitude crossings to positivex are not properly taken into
account by the Hilbert phase since they only result in a sm
reduction offH. This leads us to conjecture that quite ge
erally

^v&H<^v&R ~32!

holds. In fact, for the case of the harmonic oscillator th
generates a stationary Gaussian process we even can
this conjecture by deriving explicit expressions for^v&R and
^v&H . As usual, letS(v) denote the spectrum of the statio
ary Gaussian processx. Then the Rice frequency can be r
cast in the form of@15#

^v&R5F E
0

`

v2 S~v! dv

E
0

`

S~v! dv
G 1/2

. ~33!

In the Appendix, we show that the Hilbert frequency of t
same processx is given by a similar expression@25# ~cf. also
@24#!, namely,

^v&H5F E
0

`

v S~v! dv

E
0

`

S~v! dv
G . ~34!

FIG. 2. Hilbert phasefH(t) modulo 2p ~thick solid! and cor-
responding signalx(t) ~thin solid! for the undriven harmonic oscil-
lator Eq.~6! with friction strengthg51, noise intensityD51, natu-
ral frequency v051, and driving amplitudeF50. Note that
although there are two successive zero crossings ofx with positive
slope neart'2.6 andt'9 the Hilbert phase does not increase
2p.
0-4
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Interpreting the quantityS(v)/*0
`S(v̂)dv̂ as a probability

density P(v), vP(0,̀ ), we can use the property that th
related variance is positive, i.e.,

F E
0

`

vP~v!dvG2

<E
0

`

v2P~v!dv. ~35!

Taking the square root on both sides of the last inequa
immediately proves Eq.~32!.

Using the spectrum of the undriven noisy harmonic os
lator

S~v!5
4gD

~v0
22v2!21g2v2

~36!

and employing Eqs.~33! and~34!, it is easy to see that bot
^v&R and^v&H do not vary withD. We have already shown
above that̂ v&R5v0. In contrast to this,̂ v&H is a mono-
tonically decreasing function ofg that approachesv0 from
below in the limitg→01.

IV. RICE FREQUENCY FOR THE PERIODICALLY
DRIVEN NOISY HARMONIC OSCILLATOR

The probability density of the periodically driven nois
harmonic oscillator can be determined analytically by tak
advantage of the linearity of the problem. Introducing t
mean values of the coordinate and the velocity,^x(t)& and
^v(t)&, the variables

x̃5x2^x&, ṽ5v2^v& ~37!

obey the differential equation of the undriven noisy harmo
oscillator. In the asymptotic limitt→` the mean values con
verge to the well known deterministic solution

^x~ t !&5
F

A~v0
22V2!21g2V2

cos~Vt2d!, ~38!

^v~ t !&52V
F

A~v0
22V2!21g2V2

sin~Vt2d!, ~39!

d5arctanF gV

v0
22V2G ~40!

with the common phase lagd. Therefore, after deterministi
transients have settled thecyclostationaryprobability density
of the driven oscillator reads

Pcs~x,v;t !5Ps„x2^x~ t !&,v2^v~ t !&… ~41!

with the Gaussian density
05111
y
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g

c

Ps~x,v !5
v0

2pD
expF2S v2

2
1

v0
2x2

2 D Y DG . ~42!

Using Eq. ~10! the cyclostationary probability density~41!
yields an oscillating expression for the Rice frequen
^v&R(t). The time dependence of this stochastic average
be removed by an initial phase average, i.e., a subseq
average over one external driving period 2p/V,

^v&R5E
0

2p/V

^v&R ~ t !
Vdt

2p
~43!

5E
0

2p/V E
0

`

v Pcs~0,v;t !dvVdt. ~44!

The resulting analytical and numerically achieved values
the Rice frequency as a function of the noise intensityD are
shown in Fig. 3 for fixedv051,F51,V53 and various val-
ues ofg. For small noise intensitiesD the Rice frequency
^v&R is identical to the external driving frequencyV,
whereas for large noise intensities the external drive beco
inessential and the Rice frequency approaches^v&R5v0.

Further insight into the analytic expression~44! is gained
from performing the following scale transformations:

t̃ 5Vt2d and x̃5
x

A2D/V
, ~45!

from which we immediately find the rescaled velocity

ṽ5
dx̃

d t̃
5

A2D/V

1/V

dx

dt
5A2D v. ~46!

FIG. 3. Rice frequencies for the driven harmonic oscillator E
~6! with natural frequencyv051, driving amplitudeF51, and
driving frequencyV53 for different values of the friction strength
g. The numerically achieved values~symbols with error bars!
nicely match the analytical curves determined using Eq.~44!.
0-5
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Inserting these dimensionless quantities into Eq.~44! yields

^v&R5v0I ~Ã,ṽ0!, ~47!

I ~Ã,ṽ0!5
1

pE2d

2p2d E
0

`

ṽexp@2~ ṽ1Ã sin t̃ !2

2~ṽ0 Ã cost̃ !2#dṽ d t̃, ~48!

where we have defined further dimensionless quantities

Ã5
V

A2D

F

A~v0
22V2!21~gV!2

, ~49!

ṽ05
v0

V
. ~50!

Due to the 2p periodicity of the trigonometric functions, th
integral ~48! does not change when shifting the interval f
the integration with respect tot̃ back to@0,2p#. Hence,I is
only a function ofÃ andṽ0. An expansion for smallÃ yields

^v&R5v0F11
12ṽ0

2

2
Ã21O~Ã4!G , ~51!

which implies for largeD

^v&R2v0;
1

D
. ~52!

The opposite extreme,Ã→` or D→0, can be extracted
from a saddle point approximation aroundṽ5Ã and t̃
53p/2. Following this procedure, the integral~48! gives the
constant 1/ṽ0. This directly implieŝ v&R5V.

The crossover between these two extremes occurs w
the first correction term in Eq.~51! is no longer negligible,
i.e., for

u12ṽ0
2u

2
Ã2'1. ~53!

When solved for the crossover noise intensityDco, this
yields

Dco'
F2uV22v0

2u

4@~v0
22V2!21~gV!2#

, ~54!

which, for the parameters used in Fig. 3, correctly gives v
ues between 1022 and 1021.

In Fig. 3 the parametersF,V, andv0 and, hence,ṽ0 are
identical for all curves. SolvingÃ(g1 ,D1)5Ã(g2 ,D2) with
respect toD2 shows that the curves become shifted horizo
05111
en
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tally as in the log-linear plot in Fig. 3. Another way to ex
plain this shift is by noting thatdDco/dg,0.

V. THE ROLE OF COLORED NOISE

As noted already above, see also in Fig. 1, the R
frequency—strictly speaking —cannot be defined for s
chastic realizations that are directly driven by Gaussian w
noise~i.e., the ‘‘derivative’’ of the Wiener process!. From Eq.
~3! this holds true for the velocity degree of freedomv̇5 ẍ.
This is so, because the stochastic trajectories of degree
freedom being subjected to white Gaussian noise forces
continuous but are ofunboundedvariation and nowhere dif-
ferentiable@26#. This fact implies that such stochastic rea
izations cross a given threshold within a fixed time interv
infinitely often if only the numerical resolution is increase
ad infinitum. This drawback, which is rooted in the math
ematical peculiarities of idealized Gaussian white noise,
be overcome if we consider instead a noise source posse
a finite correlation time, i.e., colored noise, see Ref.@27#. To
this end, we consider here an oscillatory noisy harmonic
namics driven by Gaussian exponentially correlated no
z(t), i.e.,

ẋ5v, ~55!

v̇52gv2v0
2x1Agz~ t !, ~56!

ż52
z

t
1

1

t
j, ~57!

with z(t) obeying^z(t)&50 and

^z~ t !z~s!&5
D

t
expS 2

ut2su
t D . ~58!

Following the reasoning in Sec. II, we find for the Rice fr
quency ofx(t) as before

^v&x5E
0

`

dvE
2`

`

dzv Ps~0,v,z! ~59!

5
v0

A11gt
. ~60!

Likewise, upon noting that within a time intervalDt,
2Dt(2g ẋ2v0

2x1Agz),v,0, or 2Dt(2v0
2x1Agz)

1O(Dt)2,v,0, respectively, the Rice frequency of th
zero crossings with positive slope of the processv(t) is
given by

^v&v5E
2`

`

dxE
x

`

dz~Agz2v0
2x!Ps~x,0,z!, ~61!

which is evaluated to read
0-6
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^v&v5Av0
21

g

t
. ~62!

The result in Eq.~60! shows that for small noise colort the
Rice frequency for̂ v&x assumes a correction̂v&x;v0(1
2t/2g), as t→01. In clear contrast, the finite Rice fre
quency for the velocity processv(t) ~56! diverges in the
limit of vanishing noise color proportional tot21/2.

VI. RICE FREQUENCY OF THE BISTABLE
KRAMERS OSCILLATOR

The bistable Kramers oscillator, i.e., Eq.~3! with the
double well potential,

U~x!5
x4

4
2

x2

2
, ~63!

is often used as a paradigm for nonlinear systems. With
erence to Eq.~3! the corresponding Langevin equation
given by

ẍ1g ẋ1x32x5Agj1F cos~Vt !, ~64!

which, in the absence of the external signal,F50, generates
the stationary probability distribution

Ps~x,v !5C expH 2S v2

2
1

x4

4
2

x2

2 D Y DJ ~65!

with the normalization constantC. Using this stationary
probability density and Eq.~10!, we can determine the Ric
frequency analytically. In Fig. 4 we depict this analytic res
together with numerical simulation data including error ba
The simulation points perfectly match the analytically det

FIG. 4. Rice frequencies for the undriven bistable oscillator E
~64! with friction strengthg51. Numerical values with error bar
match the analytically determined values~dotted line! using Eq.
~10! with Eq. ~65!. As expected, for large values ofD the Rice
frequency scales likeD1/4. The solid line presents the leading wea
noise approximation in Eq.~70!.
05111
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mined curve. As expected for the asymptotically domina
quartic term, i.e.,m52 @cf. Sec.II, especially. Eq.~14!#, the
Rice frequency scales as^v&R;D1/4 for large values ofD .

Comparing the Rice frequency formula, Eq.~10!, with the
forward jumping ratekTST

1 from the transition state theor
@18#,

kTST
1 5Ẑ0

21E dx dv u~v !d~x!v exp@2H~x,v !/D#,

~66!

where

Ẑ05E
x,0

dx dv exp@2H~x,v !/D#, ~67!

andH(x,v)5(1/2)v21(1/4)x42(1/2)x2 represents the cor
responding Hamiltonian, one can see that the difference
tween both solely rests upon normalizing prefacto
Whereas the ratekTST

1 is determined by the division of the

integral Eq.~66! by the ‘‘semipartition’’ functionẐ0, the rate
^v&R/2p is established by dividing the same integral E
~66! by the complete partition functionZ0

Z05E dx dv exp@2H~x,v !/D#. ~68!

Particularly for symmetric ~unbiased! potentials, i.e.,
V(2x)5V(x), this amounts to the relationZ052Ẑ0, hence,

^v&R5p kTST
1 . ~69!

At weak noise,Eb /D@1, this relation simplifies to

^v&R'
v0

2
exp@2Eb /D#, ~70!

wherein Eb denotes the barrier height andv0 the angular
frequency inside the well (v05A2). Indeed, in the small-to-
moderate regime of weak noise this estimate nicely pred
the exact Rice frequency, cf. Fig. 4.

The periodically driven bistable Kramers oscillator w
the first model considered to explain the phenomenon of
chastic resonance~SR! @28# and it still serves as one of th
major paradigms of SR@29,30#. In its overdamped form it
was used to support experimental data~ from the Schmitt
trigger! displaying the effect of stochastic frequency lockin
@9# observed for sufficiently large, albeit subthreshold sig
amplitudes, i.e., forFmin,F,2/A27. From a numerical
simulation of the overdamped Kramers oscillator it was a
found that noise-induced frequency locking for large sig
amplitudes was accompanied by noise-induced phase co
ence, the latter implies a pronounced minimum of the eff
tive phase diffusion coefficient@31#

D̃eff5
d

dt
@^„f~ t !…2&2^f~ t !&2# ~71!

.
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occurring for optimal noise intensity. Based on a discr
model@32#, analytic expressions for the frequency and ph
diffusion coefficient were derived that correctly reflect t
conditions for noise-induced phase synchronization@33# for
both periodic and aperiodic input signals.

To link the mentioned results to the Rice frequency int
duced above we next investigate the behavior of the Kram
oscillator with nonvanishing inertia. We show numeric
simulations for Eq.~64! with the parametersV50.01,g
50.5 and diverse values ofF in Fig. 5. For larger values o
F, a region aroundD'0.05 appears where the Rice fr
quency is locked to the external driving frequencyV. Since
for larger values of the external drivingF smaller values of
the noise parameterD are needed to obtain the same rate
switching events, the entry into the locking region shifts
smaller values ofD for increasingF.

In Fig. 6 we present numerical simulations for fixe
F50.384,V50.01 and different values of the damping c
efficient g. Note that the value ofF is slightly smaller than
the critical valueFc52/A27'0.3849 . . . . Forsmaller val-
ues ofg wider coupling regions appear, since it is easier
the particle to follow the external driving for smaller dam
ing. To check whether frequency synchronization is acco
panied by effective phase synchronization, we have a
computed the effective average phase diffusion coeffici
this time defined by the following asymptotic expression:

Deff5 lim
t→`

1

t
Š@f~ t !2^f~ t !&#2

‹ . ~72!

The connection to the instantaneous diffusion coefficient
fined in Eq.~71! is established by applying the limitt→`

FIG. 5. Numerically determined Rice frequencies of the perio
cally driven bistable Kramers oscillator Eq.~64! computed with the
friction coefficient g50.5 and the angular driving frequencyV
50.01 and plotted as a function of the noise intensityD. Different
curves correspond to various amplitudes of the harmonic driveF.
For larger values ofF wider regions appear where the Rice fr
quency is locked to the external driving frequencyV.
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Deff5 lim
t→`

1

t E0

t

D̃eff~ t̃ ! d t̃. ~73!

In Fig. 7 we show numerical simulations of the effectiv
phase diffusion coefficientDeff as function ofD for the linear
interpolating phasefL. The phase diffusion coefficient dis
plays a local minimum that gets more pronounced if t
damping coefficientg is decreased. Indeed, phase synch
nization reveals itself through this local minimum of the a
erage phase diffusion coefficientDeff in the very region of
the noise intensityD where we also observe frequency sy
chronization, cf. Fig. 5.

- FIG. 6. Numerically determined Rice frequency as a function
the noise intensityD for the periodically driven Kramers oscillato
Eq. ~64! with the angular driving frequencyV50.01 and driving
amplitudeF50.384 for different values of the friction coefficien
g. For smaller values ofg wider regions of frequency locking ap
pear.

FIG. 7. Effective phase diffusion coefficient vs noise intens
for the periodically driven bistable Kramers oscillator Eq.~64! with
angular driving frequencyV50.01, driving amplitudeF50.384,
which is close-to-threshold driving, and for different values ofg.
For smaller values of the friction coefficientg phase diffusion is
diminished.
0-8
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The qualitative behavior of the diffusion coefficie
agrees also with a recently found result related to diffusion
Brownian particles in biased periodic potentials@34#. A nec-
essary condition for the occurrence of a minimum was
anharmonic potential in which the motion takes place. In t
biased anharmonic potential the motion over one period c
sists of a sequence of two events. Every escape over a ba
~Arrhenius-like activation! is followed by a time scale in-
duced by the bias and describing the relaxation to the n
minimum. The second step is weakly dependent on the n
intensity and the relaxation time may be even larger then
escape time as a result of the anharmonicity. For such po
tials the diffusion coefficient exhibits a minimum for optim
noise, similar to the one presented in Figs. 7 and 8.

The average duration of locking episodes^Tlock& can be
computed by equating the second moment of the phase
ference~between the driving signal and the oscillator! to p2

@36#. A rough estimate, valid for the regions where frequen
synchronization occurs, i.e. where the dynamics of the ph
difference is dominated by diffusion, thus reads^Tlock&
5p2/Deff or, when expressed by the number of driving p
riods @37#

^nlock&5
Vp

2Deff
. ~74!

In this way we estimate from Figs. 7 and 8̂nlock&
;150 . . . 15 000 forV50.01 and relevantDeff varying be-
tween 1024

•••1026.

VII. SUMMARY

Positive-going threshold crossings are suitable mar
events to define an instantaneous phase by linear interp
tion in the case of smooth zero mean signals. The smo
ness of the signal~coordinate! and, hence, the applicabilit
of the method, relies on a dynamics with non-negligible
ertia ~nonoverdamped dynamics!. In combination with the

FIG. 8. Effective phase diffusion coefficientvs noise intensity
for the periodically driven bistable Kramers oscillator Eq.~64! with
friction coefficient g50.5, angular driving frequencyV50.01,
plotted for the undriven caseF50 and for driving with an ampli-
tudeF50.2.
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linear interpolated phase, the Rice formula can be use
define an asymptotic average phase velocity, namely,
Rice frequency. This frequency is identical to the one o
tained in the context of the natural polar phase. The f
quency based on the Hilbert phase never exceeds the
frequency. This has been proven analytically by the deri
tion of explicit expressions for the undriven noisy harmon
oscillator ~stationary Gaussian process!.

When turning on the noise, the Rice frequency of t
periodically driven harmonic oscillator shows a crossov
from the frequency of the external driveV ~no noise! to the
natural frequencyv0 of the oscillator~large noise!. Scaling
of the Rice frequency as a function of the noise intensity
the large noise limit can be derived from a suitable expans
and the crossover region can be estimated quantitatively

The Rice frequency of the bistable undriven Kramers
cillator ~with inertia! is essentially identical with the forward
hopping rate within transition state theory@18#. Noise-
induced frequency locking regions between the Kramers
cillator and an external periodic driving can be detected e
ploying the Rice frequency. Numerical data are similar
simulations results obtained earlier for the overdamped eq
tion and the Hilbert phase@35#. In the frequency locking
region, stochastic phase synchronization, characterized
drastically diminished effective phase diffusion coefficient,
observed as well. These findings are in agreement with
vious analytical results@32,33#.

The Rice frequency as well as the Hilbert frequency c
both be used to characterize complex physical, biophysi
and physiological noisy processes. They also carry the
tential to serve as indicators–and possibly even as us
diagnostic predictors–for such complex processes as ca
respiratory diseases, epileptic seizures, earthquake, and
fic dynamics, to mention but a few.

APPENDIX: HILBERT FREQUENCY OF THE HARMONIC
OSCILLATOR

Here, we determine the Hilbert frequency of the undriv
harmonic oscillator Eq.~6! using the stationary probability
distribution of (x,xH) and their temporal derivatives (v,vH).
The variables (x,v) in Eq. ~6! describe Gaussian process
and the same is true for their corresponding Hilbert tra
forms. The correlation matrix of (x,v,xH,vH) is given by

S ^1& 0 0 ^v&

0 ^v2& 2^v& 0

0 2^v& ^1& 0

^v& 0 0 ^v2&

D , ~A1!

where we have used the abbreviations

^1&5
1

2pE0

`

S~v!dv, ~A2!
0-9
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^v&5
1

2pE0

`

vS~v!dv, ~A3!

^v2&5
1

2pE0

`

v2 S~v!dv, ~A4!

with the spectral density of the damped harmonic oscilla

S~v!5
4gD

@~v0
22v2!21~gv!2#

. ~A5!

The covariance matrix Eq.~A1! determines the probability
densityP(x,v,xH,vH) and the average of the velocity of th
Hilbert phase Eq.~29! is determined by

^ḟH&5E dx dv dxH dvH
vHx2vxH

x21~xH!2
P~x,v,xH,vH!.

~A6!

This integral can be evaluated using first the transformatio

v5r 1sin~a1!, ~A7!

vH5r 1cos~a1!, ~A8!

x5r 2cos~a2!, ~A9!

xH5r 2sin~a2!, ~A10!

and, after applying a trigonometric theorem, the subsequ
transformationsa5a11a2 , b5a12a2. Since the inte-
grand does not depend onb the related integration can b
readily done yielding

^ḟH&5E
0

`

dr1E
0

`

dr2E
0

2p

da
r 1

2cos~a!

2p@^1&^v2&2^v&2#

3expF2
^1&r 1

21^v2&r 2
222r 1r 2^v&cos~a!

2@^1&^v2&2^v&2#
G .

~A11!

Further evaluation proceeds by using the Bessel functio
first kind and first orderJ1 together with its series expan
sions, i.e.,
ce

05111
r

s,

nt

of

E
0

2p

cos~a!exp@c cos~a!# da52p i J1 ~2 ic !

~A12!

52p i (
m50

`
~21!m

m! ~m11!! S 2 ic

2 D 2m11

~A13!

52p (
m50

`
1

m! ~m11!! S c

2D 2m11

~A14!

leading to

^ḟH&5E
0

`

dr1E
0

`

dr2

r 1
2

@^1&^v2&2^v&2#

3expF2
^1&2r 1

21^v2&2r 2
2

2@^1&^v2&2^v&2#
G

3 (
m50

`
1

m! ~m11!! S r 1r 2^v&

2@^1&^v2&2^v&2#
D 2m11

.

~A15!

Upon changing summation and integration and perform
the integration we arrive at

^ḟH&5 (
m50

`
^v&@^1&^v2&2^v&2#

^1&2^v2&
S ^v&2

^1&^v2&
D m

~A16!

5
^v&~^1&^v2&2^v&2!

^1&2^v2&

1

12
^v&2

^1&^v2& ~A17!

5
^v&

^1&
, ~A18!

which is exactly the desired expression~34!.
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@12# B. Schäfer, M.G. Rosenblum, and J. Kurths, Nature~London!
392, 239 ~1998!.

@13# B. Blasius, A. Huppert, and L. Stone, Nature~London! 399,
354 ~1999!.

@14# S.O. Rice, Bell Syst. Tech. J.23Õ24, 1 ~1944!; 23Õ24, 57
~1944!.

@15# S.O. Rice, inSelected Papers on Noise and Stochastic P
cesses, edited by N. Wax~Dover, New York, 1954!, pp. 189–
195.

@16# D. Gabor, J. Inst. Electr. Eng. Part 393, 429 ~1946!.
@17# Throughout the publication we use dimensionless units.
@18# P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62,

251 ~1990!.
@19# N. N. Bogoliubov and Y. A. Mitroploski,Asymptotic Methods

in the Theory of Non-Linear Oscillations~Gordon and Breach
New York, 1961!.
05111
.

,

.

.

-

@20# The explicit expression for the phase involving the arctan
to be understood in the sense of adding multiples ofp to make
it a continuously growing function of time.

@21# R.L. Stratonovich,Topics in the Theory of Random Nois
~Gordon and Breach, New York, 1967!.

@22# P. Hänggi and P. Riseborough, Am. J. Phys.51, 347 ~1983!.
@23# The statement requires the functionf defined in Eq.~17! to

remain finite forfP5p/21np,nPN; this, however, is no se-
vere restriction.

@24# L.A. Vainstein and D.E. Vakman,Frequency Analysis in the
Theory of Oscillations and Waves~Nauka, Moscow, 1983!.

@25# L. Callenbach,Synchronization Phenomena in Chaotic an
Noisy Oscillatory Systems~Logos-Verlag, Berlin, 2001!.

@26# P. Hänggi and H. Thomas, Phys. Rep.88, 207 ~1982!.
@27# P. Hänggi and P. Jung, Adv. Chem. Phys.89, 239 ~1995!; P.

Hänggi, F. Marchesoni, and P. Grigolini, Z. Phys. B: Conde
Matter 56, 333 ~1984!.

@28# R. Benzi, G. Parisi, and A. Vulpiani, J. Phys. A14, L453
~1981!; C. Nicolis, Sol. Phys.74, 473 ~1981!.

@29# L. Gammaitoni, P. Ha¨nggi, P. Jung, and F. Marchesoni, Re
Mod. Phys.70, 223 ~1998!.

@30# V.S. Anishchenko, A.B. Neiman, F. Moss, and L. Schimansk
Geier, Phys. Usp.42, 7 ~1999!.

@31# The set of diffusion coefficients~71! and ~72 ! are usually
defined with an additional factor of 1/2; in our work here, w
omit this factor by following the convention used by R. L
Stratonovich,Topics in the Theory of Random Noise~Gordon
and Breach, New York, 1967!, Vol. II.

@32# A. Neiman, L. Schimansky-Geier, F. Moss, B. Shulgin, and J
Collins, Phys. Rev. E60, 284 ~1999!.

@33# J.A. Freund, A. Neiman and L. Schimansky-Geier, Europh
Lett. 50, 8 ~2000!.

@34# B. Lindner, M. Kostur and L. Schimansky-Geier, Fluct. Noi
Lett. 1, R25 ~2001!.

@35# A. Neiman, A. Silchenko, V. Anishchenko, and L
Schimansky-Geier, Phys. Rev. E58, 7118~1998!.

@36# J.A. Freund, A. Neiman, and L. Schimansky-Geier, inStochas-
tic Climate Models. Progress in Probability, edited by P. Im-
keller and J. von Storch~Birkhäuser, Boston, 2001!, Vol. 49.
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