
PHYSICAL REVIEW A, VOLUME 65, 012309
Decoherence and dissipation during a quantumXOR gate operation
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The dynamics of a generic quantumXOR gate operation involving two interacting qubits being coupled to a
bath of quantum harmonic oscillators is explored. By use of the formally exact quasiadiabatic-propagator
path-integral methodology we study the time-resolved evolution of this interacting and decohering two-qubit
system in presence of time-dependent external fields. The quality of theXOR gate operation is monitored by
evaluating the four characteristic gate quantifiers: fidelity, purity, the quantum degree, and the entanglement
capability of the gate. Two different types of errors for theXOR operation have been modeled, i.e.,~i! bit-flip
errors and~ii ! phase errors. The various quantifiers are systematically investigated vs the strength of the
interqubit couplingand vs both, the environmentaltemperatureand the~Ohmic-like! bath-interaction strength.
Our main findings are that these four gate quantifiers depend only veryweakly on temperature, but are
extremely sensitiveto the bath-interaction strength. Interestingly enough, however, we find that theXOR gate
operation deteriorates only weakly upon decreasing the interqubit coupling strength. This generic case study
yields lower bounds on the quality of realisticXOR gate operations.
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I. INTRODUCTION

The basic elements of quantum computation are lo
quantum gates, which represent manipulations of quan
bits, u0& andu1&, according to Boolean algebra. Any arbitra
complex logic operation can be build up of only a few ba
gates~universal gates! @1# and one can show that almo
every gate that operates on two or more qubits is a unive
gate@2#. The explicit construction of quantum networks f
elementary arithmetic operations then becomes poss
upon appropriately combining such universal gates; see
instance, Ref.@3# for the explicit construction of the additio
or the modular exponentiation. In turn, this permits t
implementation of Shor’s quantum factorizing algorithm@4#
in terms of elementary gates. Together with Deutsch’s al
rithm @5#, these two quantum algorithms are presently
most important examples that are known to be superio
their classical counterparts and which do justify the curr
efforts towards a technological realization of a quant
computer.

In this work we concentrate on one such elementary g
namely, thequantum exclusiveOR ~XOR! gate. It is a unitary
transformation that propagates an initial stateuC in& of a two-
qubit system to a final stateuCout&5UXORuC in&. Represented
in the computational basisubi&P$u00&,u01&,u10&,u11&% ( i
51, . . . ,4), theXOR gate operation can be written as

UXOR5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D . ~1.1!

Since this operation inverts the state of the second qub
1050-2947/2001/65~1!/012309~11!/$20.00 65 0123
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the basis states if the first qubit is in the stateu1&, this op-
eration is also called thequantum controlled-NOT ~CNOT!
gate. The set of all one-qubit gates together with the quan
XOR gate is universal, as has been demonstrated in Ref.@6#.

The main impediment on the roadway to a working qua
tum computer is decoherence@7–12#. It disturbs the phase
relation in a quantum superposition state and therefore
effective at the roots where the quantum computer is
lieved to have its most important advantage. Any realis
quantum computer will have some interaction with its en
ronment, which induces decoherence~decay of the off-
diagonal elements of the reduced density matrix! and dissi-
pation~change of populations of the reduced density matr!.
Moreover, other sources for decoherence that are due to
perfect gate operations and cross talks of the qubits with
register need to be considered@10#.

Several previous works in the literature deal with the
fect of decoherence in quantum information processing s
tems. Unruh@7# and Palmaet al. @9# consider a model of a
single qubit, which is represented by the eigenstates of
quasispin operatorsz and which couples to a bosonic env
ronment via itssz component. It describes appropriately th
dephasing~decoherence! but does not include population ex
change~dissipation!. CombiningL noninteractingqubits of
this type, they estimate the decoherence~in the limit of a
large coherence length of the bath! to increase exponentially
with the lengthL of the register.

Dissipative effects~bit-flip errors! are properly described
by the so-called spin-boson model@13–16#, where the qubit
is represented by thesx component of the spin 1/2, but th
coupling to the bosonic bath is mediated by thesz compo-
nent of the spin-1/2~note that this refers to the localize
representation!. In this model, the bath also induces tran
tions between the two system eigenstates~bit flips! and—in
©2001 The American Physical Society09-1
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addition to decoherence—energy is exchanged between
tem and bath. The general solution of the problem in term
a generalized~non-Markovian! master equation for the entir
reduced density matrix for an arbitrary initial preparation
the presence of a static bias and also for a time-depen
driving has been given in Ref.@16#. In our work, the assump
tion of a Markovian bath and of a weak system-bath inter
tion ~Bloch-Redfield approach!, which may restrict the valid-
ity of the master equation~see below!, is not made.

The previously discussed works concern the investiga
of decoherence in single qubits or in a register of nonin
acting qubits. Decoherence and dissipation in a system
interactingqubits has been studied only rarely. The dyna
ics of two coupled two-level systems has been investiga
by Dubéand Stamp@17# by means of a general model fo
coupled Josephson junctions, for coupled nanomagnets
for interacting Kondo impurities. Each two-level system
represented~in the tunneling representation! by thesx com-
ponent of a spin 1/2. The two spins interact via theirsz
components. Moreover, theirsz components couple to
bosonic bath. By use of real-time path integrals the dynam
of the relaxation process is determined. Although no spec
problem of quantum information processing is investigat
this is the first work where two interacting spins in a dis
pative bath have been considered.

A similar model has been studied by Governale, Grifo
and Scho¨n @18#. Two biased spin-~1/2! systems interact via
their sy components, which is the appropriate coupling
Josephson-junction charge qubits~see below!. Moreover,
their sz components couple either to the same or to differ
bosonic baths. Applying the widely used Bloch-Redfield f
malism, the time evolution of the populations of the logic
states is evaluated. This model describes dissipation b
caused by fluctuations in voltage sources in Joseph
junction charge qubits~see below!. However, no specific
quantum-information operation has been considered.

A two-qubit quantum gate for quantum information pr
cessing in coupled quantum dots has been investigate
Refs. @11,19#. Two spin-~1/2! systems are coupled using
time-dependent Heisenberg-type interaction. Moreover
coupling of the spins to a bosonic bath has been taken
account. By solving the quantum Liouville equation in t
limit of weak system-bath coupling~Born-Markov approxi-
mation! for the reduced density operator, the purity and
fidelity of the swap operationUswapu i j &5u j i & ( i , j 50,1) is
calculated as a function of time. However, the authors c
sider the time evolution of the quantum systemafter the
swap operation has been completed. The same is true for the
XOR gate operation in Ref.@11#, where, additionally, a furthe
assumption has been made: The pulse sequence to realiz
quantumXOR consists of four pulses of the external field
Each pulse is taken to be constant over the correspon
time interval. To obtain the solution over the entire time sp
within the Born-Markov approximation, it is necessary
assume a finite time interval between the single pulses. T
is required because the Born-Markov approximation
known to violate positivity of the reduced density operator
short transient times@20,21#. This additional time span
~pulse-to-pulse time! has been taken as three times t
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switching time interval. This leads to an extension of t
computation time, which is only due to formal mathematic
reasons and which deteriorates the quality of the gate op
tion. Moreover, a systematic study of the dependence of
gate quantifiers on the relevant parameters has not b
given.

In this work, we investigate systematically theXOR quan-
tum gate in presence of an interaction of the qubits with th
environment. Thereby, we take into account the full tim
dependence of the external fields, which induce theXOR op-
eration without invoking further approximations on the sy
tem Hamiltonian. In particular, we use the numericalab ini-
tio technique of the quasiadiabtic-propagator path integ
~QUAPI! @22# ~for other applications, see also Refs.@23,24#!.
This numerically precise iterative real-time path-integ
method does not suffer from the above-mentioned prob
of lacking positivity. In order to realize the logicXOR opera-
tion in physical systems, we introduce a generic mo
Hamiltonian, which is suitable for studying theXOR opera-
tion on a very general and idealized level. We determine
quality of the gate by calculating the four characteristic g
quantifiers introduced by Poyatos, Cirac, and Zoller@25#;
namely, the~i! purity, ~ii ! fidelity, ~iii ! quantum degree, and
~iv! entanglement capability. To that end, we consider t
important types of computational errors, i.e., phase err
and bit-flip errors. The former can be modeled by coupli
the sz component of each spin to the bath while the later
induced by coupling thesx component of each spin to th
bath. We are mainly interested in the quality of the ga
operation during its time evolution and, most important
right after it has been completed. We choose three differ
parameter sets for which different coupling constants in
qubit Hamiltonian lead to differently long time intervals re
quired for the gate operation.

So far, we have discussed theoretical aspects of quan
information processing. However, those refined and hig
elaborate concepts face the question of how they can
implemented in experimental hardware. Several proposa
build a quantum information processor exist. Prominent c
didates are, for instance, atoms in optical cavities, ions
linear or Paul traps interacting with laser beams, or nucl
spins in a nuclear magnetic resonance liquid@26#. Although
the experimental techniques in those fields of research
currently most advanced, the problem of upscaling o
quantum computer can seemingly only be solved wit
condensed-matter systems that can be embeded in an
tronic circuit. Promiment systems for condensed-matter
bits are flux states of a SQUID~superconducting quantum
interference device! ~flux qubits! @27# ~see also@12#!, charge
states of superconducting islands with Josephson junct
~charge qubits! @12,28#, and spin @11,29# or charge @30#
states in ultrasmall coupled semiconductor quantum d
~quantum-dot qubits!. Moreover, several realizations of qu
bits in nuclear@31,32# and electronic@32,33# spins in semi-
conductor nanostructures have been proposed.

The paper is organized as follows: In Sec. II, we introdu
a generic model as a starting point for the quantumXOR

operation including the interaction with the environment.
Sec. III, we present a brief review on the numerical tec
9-2
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DECOHERENCE AND DISSIPATION DURING A . . . PHYSICAL REVIEW A65 012309
nique of the QUAPI, which we employ in the following. I
order to determine the quality of the decoherentXOR gate, we
use four quantifiers which are introduced in Sec. IV. T
results and the conclusions are presented in Secs. V and
respectively.

II. A GENERIC MODEL FOR THE QUANTUM XOR GATE

A. The coherent XOR operation

The quantumXOR gate is a two-qubit operation that ca
be modeled by two coupled spin-~1/2! systems represente
by the Pauli operatorssW j5(s j

x ,s j
y ,s j

z)T, j 51,2. The two
logical states of each qubit are represented by the two ei
states of thesz component of each spin, i.e.,u0& j[u↑& j and
u1& j[u↓& j . We assume that the single qubit as well as
coupling between the two qubits can be controlled by swit
ing on ~local! external fields, for instance, magnetic field
This system can generically be described@12# by the generic
Hamiltonian

HXOR~ t !52
\

2 (
j 51

2

BW j~ t !sW j1\(
j 5” k

J~ t !s j
1sk

2 , ~2.1!

where s j
65(s j

x1 is j
y)/2. Moreover, BW j (t)5„Bj

x(t),0,
Bj

z(t)…T, j 51,2 are time-dependent coupling strengths~with
the dimension of a frequency! arising from local time-
dependent external fields at the site of the spinj in longitu-
dinal ~z! or transverse~x! direction. In Eq.~2.1!, the coupling
between the two qubits is assumed to be symmetric; furt
more, it should be controllable from the outside leading t
time-dependent interaction strengthJ(t). The particular form
of the interaction in Eq.~2.1! is only one example. We not
that this generic model does not account for the particu
details of a physical realization of qubits in a speci
condensed-matter system. For each individual system,
as flux qubits or charge qubits, the Hamiltonian looks diff
ent in detail. In particular, the coupling term between the t
qubits takes different forms. However, all two-qubit Ham
tonians have a structure that is similar to our generic mo
in Eq. ~2.1!. The general physical behavior will be simila
such that our generic model serves as an archetype.

The quantumXOR gate ~1.1! can be obtained by a se
quence of one- and two-qubit operations according to@12#

UXOR5U2
xS p

2 DU2
zS 2

p

2 DU2
x~2p!U12S 2

p

2 DU1
xS 2

p

2 D
3U12S p

2 DU1
zS 2

p

2 DU2
zS 2

p

2 D , ~2.2!

where

U j
x/z~a!5expS i

a

2
s j

x/zD , j 51,2,

U12~b!5exp@ ib~s1
1s2

21s1
2s2

1!# ~2.3!

are the propagators over the single time intervals with
external fields in the Hamiltonian, Eq.~2.1!, switched on and
01230
VI,
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off in the following way: In order to attain this propagator,
pulse sequence of the external fields is necessary. For
plicity we assume throughout this work, that the pulses
switched instantaneously on and off and are constant o
the time spantoff2ton during which they are on. This induce
time-dependent interaction strengthsB(t)5B@Q(t2ton)
2Q(t2toff)# with B5Bj

(x/z) , J5const and withQ(t) being
the Heaviside function. Furthermore, we assume that b
spins are equal and experience local fields of equal stren
This implies B1

x/z5B2
x/z[Bx/z. The anglesa and b in Eq.

~2.3! are related to the actual physical propagation timt
according to

a5Bx/zt and b5Jt. ~2.4!

The switching times then follow ast15p/(2Bz), t25t1

1p/(2J), t35t21p/(2Bx), t45t31p/(2J), t55t4

1p/(Bx), t65t51p/(2Bz), andtXOR5t61p/(2Bx), where
tXOR denotes the total time elapsed during the fullXOR gate
operation. An example of this pulse sequence is sketche
Fig. 1 for the case ofBx5Bz5J. The coupling constants ar
given in units of Bz while the time is scaled in units o
(Bz)21. One immediately observes that the computation ti
tXOR is extended if the coupling energies are decreased.
note that the assumption of rectangular pulses is not requ
by the numerical technique we use and is made here only
the sake of simplicity. We could also consider other shape
the pulses that are more realistic for specific physical s
tems, and especially, we could consider imperfect switch
processes as well; the latter would constitute a further sou
of decoherence. In this respect, our generic model is mini
since it assumes precise control over the deterministic pa
the time evolution via precise control of the external field
More realistic assumptions on the external driving fields l
nonrectangular pulse shapes or imperfect switching wo
deteriorate our findings as these effects are an additio
source of decoherence.

FIG. 1. Schematic view of a pulse sequence necessary to
erate the quantumXOR gate. The parameters are set toBx5Bz5J
5const. The frequencies are given in units ofBz while the time is
scaled in units of (Bz)21. The switching timest j are given in the
text and are in this case equal to multiples ofp/2.
9-3



he

or
s

to
b
e

od

a
ha
h.

ue

cif
ha
t

-

-

a

nt.
a-

he

Jo-
-
ot
pin

em
he

th

ors.
al

ote
the

r

sity

al-

s it
lems
ing
en

im-

MICHAEL THORWART AND PETER HÄNGGI PHYSICAL REVIEW A 65 012309
B. Interaction with the environment

We model the interaction of the qubit system with t
fluctuating environment by a Hamiltonian, in whichHXOR(t)
is coupled to a bath of harmonic oscillators, i.e.,

H~ t !5HXOR~ t !1HB1H int
x/z ~2.5!

with

HB5(
j 51

N

\v j S aj
†aj1

1

2D . ~2.6!

Here,aj
† (aj ) denotes the creation~annihilation! operator of

the j th bath oscillator with frequencyv j . Since we want to
investigate the role of bit-flip errors as well as phase err
we include in our model two different types of interaction
On the one hand, thesx components of the spins couple
the fluctuating environment and the populations of the qu
states are disturbed~bit-flip errors!. On the other hand, phas
errors are generated by coupling of thesz components of the
spins to the environmental noise. This is conveniently m
eled by the form

H int
x/z5

\

2
~s1

x/z1s2
x/z!(

j 51

N

k j
x/z~aj

11aj !, ~2.7!

wherek j
x/z denotes the coupling strength of thej th oscillator

to the system and where the superscript (x/z) denotesone or
the other kind of interaction. We note that we assume here
coupling of the two spins to the same bath. This implies t
the spins are effectively coupled to each other via the bat
coupling of the spins to different~uncorrelated! baths could
be readily incorporated in the numerical QUAPI techniq
~see below!.

To study the dynamics of this system, we have to spe
the initial conditions. Throughout this work, we assume t
the density operatorW(t) of the entire system plus bath a
initial time t50 factorizes according to

W~0!5rS~0! ^ rB . ~2.8!

rS(0) is the density operator of the system at timet50 and
rB5ZB

21 exp@2HB /(kBT)# is the canonical equilibrium distri
bution of the~decoupled! bath at temperatureT. Moreover,
ZB5tr exp@2HB /(kBT)# and kB denotes the Boltzmann con
stant.

The influence of the bath is fully characterized@14# by the
spectral density

Gx/z~v!52p(
j 51

N

~k j
x/z!2d~v2v j !, ~2.9!

which assumes a continuous form if the numberN of oscil-
lators approaches infinity. Throughout this work, we apply
Ohmic spectral density with an exponential cutoff, i.e.,

Gx/z~v!5gx/zv exp~2v/vc!, ~2.10!
01230
s
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where the dimensionless bath-interaction constantgx/z char-
acterizes the strength of the interaction with the environme
This spectrum mimics the environmentally induced fluctu
tions in the external circuit, which supplies flux through t
SQUID loops in the flux qubits @12,27#. Moreover,
background-charge fluctuations in the voltage sources in
sephson charge qubits@12,28# also lead to an Ohmic imped
anceR. Similarly, electronic states in coupled quantum-d
qubits experience an Ohmic environment, either for the s
@11,29# or for the charge@30# degrees of freedom.

III. NUMERICAL AB INITIO TECHNIQUE: QUAPI

In order to describe the dynamics of the two-qubit syst
of interest it is sufficient to consider the time evolution of t
reduced density operator

r~ t !5trbath_U~ t,0!W~0!U 21~ t,0!,

U~ t,0!5T expH 2 i /\E
0

t

H~ t8!dt8J . ~3.1!

Here,U(t,0) is the propagator of the full system plus ba
and T denotes the time-ordering operator. Moreover, trbath
means the partial trace over the harmonic bath oscillat
Due to our assumption that the bath is initially at therm
equilibrium and decoupled from the system, see Eq.~2.8!,
the partial trace over the bath can be performed. We den
the matrix elements of the reduced density matrix in
computational basis withr i j (t)[^bi ur(t)ubj& and rewrite
them according to Feynman and Vernon@34# as

r i j ~ t !5 (
m,n51

4

Gi j ,mn~ t,0!rmn~0!, ~3.2!

with the propagatorG given by

Gi j ,mn~ t,0!5E DxDx8A@x#A* @x8#FFV@x,x8#. ~3.3!

The functionalA@x# denotes the probability amplitude fo
the free system to follow the pathx(t) and FFV@x,x8# de-
notes the Feynman-Vernon influence functional@34# ~see
Ref. @14# for details!. The functional integrations in Eq.~3.3!
extend over paths with end pointsx(0)5xm , x(t)5xi ,
x8(0)5xn , and x8(t)5xj , which belong to the initial and
final states,rmn(0) andr i j (t), respectively.

The technique that we use to calculate the reduced den
operator, Eq.~3.2!, is the iterative tensor multiplication
scheme derived for the so-called QUAPI. This numerical
gorithm was developed by Makri and Makarov@22# within
the context of chemical physics. Since its first application
has been succesfully tested and adopted to various prob
of open quantum systems, with and without external driv
@22–24#. Because the details of this algorithm have be
extensively discussed previously in the literature@22–24#,
we only mention those prominent ingredients that are of
portance for our work.
9-4
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DECOHERENCE AND DISSIPATION DURING A . . . PHYSICAL REVIEW A65 012309
~i! Symmetric splitting of the short-time propagator: T
obtain a numerical iteration scheme, we discretize the t
interval @0,t# into N stepsDt, such thattk5kDt and split
symmetrically the full propagator over one time st
U(tk11 ,tk) in Eq. ~3.1!, according to the Trotter formula, int
a system and an environmental part,

U~ tk11 ,tk!'exp~2 iH BDt/2\!US~ tk11 ,tk!

3exp~2 iH BDt/2\!,

US~ tk11 ,tk!5T expH 2
i

\Etk

tk11
dt8HXOR~ t8!J . ~3.4!

The neglect of higher-order terms of the propagator in
~3.4! causes an error of the order ofDt3. The short-time
propagatorUS of the bare system is given by the correspon
ing exact system propagators in Eq.~2.3! over a time step
Dt. At this point, we emphasize that this method is n
plagued by the problem of lacking positivity of the dens
operator at short times, as is the case for the usually
ployed master-equation approach in the Born-Markov lim
@11,19#. Theexactcoherent dynamics of the bare system e
ters and the decomposition of the short-time propagator
cording to Eq.~3.4! is valid for any arbitrary short time.

~ii ! The interaction with the bath induces correlatio
among the paths~memory! that are described by the influ
ence functional in Eq.~3.3!. As long as the temperature o
the Ohmic bath is finite, these correlations decay expon
tially fast with increasing time@14#. This motivates to ne-
glect such long-time correlations and to break up the in
ence kernels into smaller pieces of lengthKDt, where K
denotes the number of time steps over which the memor
fully taken into account.

The two strategies in~i! and ~ii ! are countercurrent. In
step~i! a small time stepDt is desirable in order to minimize
the error due to the neglected higher-order terms in
propagator. On the other hand, in~ii ! a large time step is
needed in order to take a long memory range into accoun
compromise between those two errors has to be found
practice by applying the principle of minimal sensitivity@24#
to adjust the two parametersDt andK, see discussion below

~iii ! The third important ingredient is the appropria
choice of basis representation of the problem. For the a
rithm it is required to iterate the dynamics in the eigenba
of that system operator, which couples to the bath. Then
influence functional in Eq.~3.3! can be evaluated in terms o
the eigenvalues of the coupling operator. In problems wh
the coordinate of a quantum particle in a continuous poten
is damped, the continuous position operator turns into a
crete set of position eigenvalues. Hence, this representa
has been termed thediscrete variable representation.

Bit-flip errors. If the sx components of each spin coup
to the bath, see Eq.~2.7!, the eigenbasis of the couplin
operator is determined bŷa i u(s1

x1s2
x)/2ua j&5l i d i j with

l150, l2521, l351, andl450. A basis rotation of the
computational basis with basis statesubj& has to be per-
formed according to
01230
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Ri j ubj&, ~3.5!

with the transformation matrix

R5
1

2 S 1 1 1 21

21 21 1 21

1 21 1 1

21 1 1 1

D . ~3.6!

Phase errors. For the second case that thesz components of
each spin couple to the bath in Eq.~2.7!, the system part of
Hamiltonian is already diagonal in the computational bas
i.e., ^bi u(s1

z1s2
z)/2ubj&5l id i j with l151, l250, l350,

and l4521. No additional basis transformation is nece
sary.

IV. CHARACTERISTIC GATE QUANTIFIERS

In order to quantify thequality of the quantum gate, we
use four global parameters that have been defined by P
tos, Cirac, and Zoller@25#: ~i! the gate fidelityF, ~ii ! the gate
purity P,~iii ! the quantum degreeQ of the gate, and~iv! the
entanglement capabilityC of the gate. These four quantifier
can be calculated once the reduced density operatorr in Eq.
~3.1! is determined. To this end, 16 unentangled input sta
uC in

j &, j 51, . . . ,16 aredefined according touca&1ucb&2

(a,b51, . . . ,4), with uc1&5u0&, uc2&5u1&, uc3&5(u0&
1u1&)/A2, anduc4&5(u0&1 i u1&)/A2. They form one pos-
sible basis set and span the Hilbert space for the superop
tor VXOR, wherer(tXOR)5VXORr(0), seeRef. @25# for de-
tails. Moreover, these basis states are chosen to
unentangled states in order to avoid the application of a p
ceding two-qubit gate for the preparation of the system st

The gate fidelityF is defined as the overlap between t
propagation with the ideal propagatorUXOR, Eq. ~1.1!, av-
eraged over all 16 initial statesuC in

j & according to

F5
1

16 (
j 51

16

^C in
j uUXOR

1 rXOR
j UXORuC in

j & ~4.1!

with rXOR
j 5r(tXOR), with initial condition r(0)

5uC in
j &^C in

j u.
In a similar way, the purityP is defined as

P5
1

16 (
j 51

16

tr~rXOR
j !2. ~4.2!

This quantity is proportional to the~negative! linearized
entropy and reflects the effects of decoherence.

The third quantity, the quantum degreeQ of the gate, is
defined as the maximum of the overlap of all possible out
states stemming from unentangled states and of all m
mally entangled~Bell! statesuCme

k &, k51, . . . ,4. Informal
terms, this implies
9-5
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Q5max
j ,k

^Cme
k urXOR

j uCme
k &. ~4.3!

The purpose of this parameter is to quantify the notion
nonlocality. Bennett and co-workers@35# have shown that all
those density operators that have an overlap with a m
mally entangled state being larger than the value
13A2)/8'0.78 are nonlocal, i.e., violate the Clause
Horne-Shimony-Holt inequality@35#.

Obviously,F51, P51, Q51 denote the ideal gate op
eration.

The fourth quantifier is the entanglement capabilityC of
the gate. It denotes the smallest eigenvalue of the pa
transposed density matrix@36#, which is determined from
rXOR

j for all unentangled input statesuC in
j &. rXOR

j character-
izes an entangled state if and only if the smallest eigenva
of the partial transposed density operator is negative.
ideal operation has an entanglement capability ofC520.5.

V. RESULTS

Having determined the reduced matrix in Eq.~3.1! by the
iterative QUAPI algorithm, we investigate the influence
the interaction with the environment systematically. The
fore, we assume that the two qubits are identical and ex
rience external fields of the same strength, i.e.,B1

x5B2
x

5Bx and B1
z5B2

z5Bz. Moreover, we introduce the follow
ing dimensionless parameters: We scale the quantities
respect to the characteristic energy scale of the single q
which is given by the energy splitting\Bz of the single
qubit. This in turn defines a time scale (Bz)21. Consequently,
the temperature is given in units of\Bz/kB ~Note thatgx/z is
already dimensionless!. For all following results, we have
used a cutoff frequency ofvc550Bz in Eq. ~2.10!.

A. Time-resolved quantum XOR operation

We first illustrate the time-resolved dynamics of a gene
XOR operation. To this end, we determine the populations
the four states of the computational basis as a function
time, i.e., Pi j (t)ª^ i j ur(t)u i j & with i , j 50,1 for the initial
condition r(0)5u11&^11u. We choose the pulse sequen
sketched in Fig. 1 with parametersBx5Bz andJ5Bz. More-
over, we choose for illustrative purpose a rather high te
perature ofT50.1\Bz/kB . Figure 2 depicts the results fo
the three different cases of~i! no coupling to the bath,gx/z

50 ~solid line!, ~ii ! bit-flip errors with gx50.01 ~long
01230
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e
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c
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dashed line!, and ~iii ! phase errors withgz50.01 ~dotted
line!. The switching timest j are equal to multiples ofp/2 for
this special case of equal energies.

The iterative QUAPI algorithm possesses two free para
eters that have to be properly adjusted. We fix the numbeK
of memory time steps and the lengthDt of each time step
according to theprinciple of minimal sensitivity@24#. By
applying this method, we obtain the valuesDt
50.15(Bz)21 with K52 ~not shown!.

As one observes, the final state of the ideal operat
(gx/z50) is uC&5u10&. The deviation of the dynamics in
presence of decoherence and dissipation from the ideal
is clearly visible.

We emphasize here that no additional time intervals
tween the switching events have been inserted as it wo
have been necessary for the application of Bloch-Redfie
type master-equation techniques.

B. Quality of different quantum XOR operations

In order to fix the parameter sets for the numerical sim
lations in the following investigations, we are guided b
three different physical realizations of condensed-matter

FIG. 2. Time-resolved dynamics of the quantumXOR operation
for the case of equal energies, i.e.,Bx5Bz5J. Depicted are the
populationsPi j (t)5^ i j ur(t)u i j & as a function of time for the initial
conditionr(0)5u11&^11u for three different cases of~i! no coupling
to the bath,gx/z50 ~solid line!, ~ii ! bit-flip errors with gx50.01
~long dashed line!, and~iii ! phase errors withgz50.01~dotted line!.
The time is scaled in units of (Bz)21. Moreover, we set the tem
perature toT50.1\Bz/kB and the cutoff frequency tovc550Bz.
-state

TABLE I. Parameter sets that have been used for the simulations of the quantumXOR gate. They mimic

typical experimental situations for coupled qubit systems. The explcit values for three important solid
qubit systems, i.e., flux qubits and charge qubits in superconducting Josephson devices~sets I and II! and spin
and charge qubits in ultrasmall semiconductor quantum dots~set III! have been taken from literature~see
text!. The dimensionless timetXORBz the entire gate operation takes is given in the last column.

Set Bz Bx J T Bx/Bz J/Bz T/Bz tXORBz

I ~Flux qubits! 0.5 K 50 mK 25 mK 25 mK 0.1 0.05 0.05 82(p/2)
II ~Charge qubits! 1 K 100 mK 5 mK 50 mK 0.1 0.005 0.05 442(p/2)
III ~Quantum-dot qubits! 1 meV 1 meV 0.05 meV 125 mK 1 0.05 0.01 46(p/2)
9-6
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bits, namely, flux qubits~set I! @27,12#, charge qubits~set II!
@12,28#, and qubits realized in coupled semiconductor qu
tum dots~set III! @11,29#.

The typical situation in superconducting qubits~set I and
set II! is that the energyBx for the sx components is one
order of magnitude smaller than the characteristic energyBz

of the single qubits. The typical temperature in both case
T50.05Bz, while the interqubit coupling strengthJ for the
charge qubits is one order of magnitude smaller than for
flux qubit. Hence the gate operation for set II takes lon
than for set I and one would expect set II to be more expo
to decoherence. Therefore, set I should yield better res
than set II. However, as we shall see below, this depe
strongly on the kind of error induced by the bath, i.e., bit-fl
or phase error.

In order to reduce the duration of the gate operation
comparison to set I, we chooseBx5Bz in a third parameter
set~set III!. This choice implies that for set III theXOR takes
the least time. Moreover, we additionally reduce tempera
to T50.01Bz compared to set I. The third parameter s
mimics typical experimental situations for coupled semico
ductor quantum bits. The parameter sets are summarize
Table I. The total operation timetXOR can easily be deter
mined, see discussion below Eq.~2.4!.

The QUAPI parameters are determined by the principle
minimal sensitivity forK53. We obtain for the case ofH int

x

~bit flip errors! for set I@in units of (Bz)21] Dt50.06, for set
II Dt50.2, and for set IIIDt50.02, and for the case ofH int

z

~phase errors! for set I Dt50.013, for set IIDt50.08, and
for set III Dt50.01.

1. Dependence on temperature

The dependence of the four characteristic gate quanti
on the bath temperatureT is depicted with Fig. 3. In panel~a!
the influence of the random bit flips are investigated wh
panel ~b! depicts the effect of phase errors. The ba
interaction constant for the bit-flip errors is chosen to begx

51026 and for the phase errors we setgz51024 @12#.
First, one observes that all results depend onlyvery

weaklyon temperature. Extrapolating the results to zero te
perature indicates the influence of the nonvanishing quan
fluctuations of absolute zero. This behavior is typical
nonseparable quantum systems being bilinearly coupled
harmonic bath@37#. Note that even at zero temperature fin
damping is present because we do not monitor the~unitary!
time evolution of the total system plus bath, but rather tha
the physical subsystem being in contact with the bath. T
environmental degrees of freedom, which are all traced
are thus causing dissipation on the relevant system varia
At zero temperature, the second moment~and even-order
higher ones! of the quantum fluctuations acting on the su
system arenot vanishing, and energy of the subsystem c
be dissipated even atT50. In particular, in clear contrast t
the classical case, the coupling energy assumes quantum
chanically anonzerovalue atzero temperature. This cou-
pling energy then allows to rearrange energy and gener
decoherence atT50.
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Second, the results forF, P, andQ always are located
below a value of 0.999 85 for bit-flip errors and 0.975 f
phase errors. This fact demonstrates that even sm
strengths of the coupling to the environment than the u
gx51026 or gz51024 are necessary in order to obtain
desired value of 0.999 99@11#.

As discussed in the preceding section, set III should yi
the best results since it requires the shortest operation t
However, as one observes in Fig. 3, this strongly depend
the operator mediating the coupling to the bath. For bit-fl
error processes, it is the system operator

Hc
x5

1

2
~s1

x1s2
x!5S 0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0
D , ~5.1!

which couples to the bath. One readily observes that a lonJ
pulse, during which the interqubit coupling operator

H125Js j
1sk

25JS 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0
D ~5.2!

is switched on, generates many transitions among diffe
states. This can be seen by diagonalizing~the inner nonzero
block of! H12 and by transformingHc

x to the resulting eigen-
basis ofH12. However, if theBj

x fields are switched on, then
not as many transitions occur. This can be seen by diago

izing the corresponding system HamiltonianBx 1
2 s j

x being
switched on and by transformingHc

x to the resulting eigen-
basis. This explains why set I with a shorterJ pulse yields
better results than set II for the case of bit-flip errors, see F
3~a!.

For the case of phase errors, it is the system operator

Hc
z5

1

2
~s1

z1s2
z!5S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21
D , ~5.3!

which couples to the bath. If now theBj
x fields are switched

on for a long time span, many transitions among differe
states are induced. In analogy to the previous case,Hc

z can be
transformed to the eigenbasis of the corresponding sys

HamiltonianBx 1
2 s j

x being switched on and the resulting o
erator has many nonzero matrix elements that generate m
transitions. On the other hand, longJ pulses are less effectiv
sinceH12 and Hc

z commute. This explains why set III with
shorterBj

x pulses compared to set I yields better results.
differently, a gate operation that takes longer than anot
may nevertheless perform better when subjected to an in
mittently switched on system Hamiltonian, which is less se
9-7
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sitive to decoherence. This qualitative conclusion is rob
for the treatment of more realistic systems as they may a
in the future.

2. Dependence on the bath-interaction strength

As shown in the preceding section, the quality of the g
operation cannot be improved by lowering the temperat
of the environment. The second possibility to reduce the
fluence of the environment is the shielding of the qubit s
tem against external noise. This implies that the strength
the bath interaction,gx/z, are reduced. The results for th
dependence of the four gate quantifiers on the coupling c
stantsgx/z are depicted in Fig. 4.

One observes that the deviations of the four gate qua
fiers from their ideal values depend linearly on the ba
interaction strengths. However, the prefactor is much lar
than 1. Although one might have expected a linear incre
of the deviations with increasing bath interaction in th
small-damping regime, the deviations arenot of the same
order of magnitude as the bath-interaction strengths th
selves but can be several orders of magnitude larger.
demonstrates that the bath-interaction strengths have t
less than 1027 in order to achieve deviations being less th

FIG. 3. Dependence of the fideltyF, the purityP, the quantum
degreeQ, see Eqs.~4.1!–~4.3!, and the entanglement capabilityC
on temperatureT for bit-flip errors ~a! and phase errors~b!. The
temperature is scaled in units of\Bz/kB . The qubit parameters ar
given in Table I. The bath-interaction constant for the bit-flip erro
is set atgx51026 and for the phase errors atgz51024.
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the desired 1025 ~see above!. Moreover, the bath-interaction
strengths have to be less than 1023 in order to obtain values
for the quantum degree larger thanQ'0.78. Only then, the
Clauser-Horne-Shimony-Holt inequality is violated and no
local correlations between the entangled qubits occur.

As in the previous section, we find again that the resu
for set I yield the best results when bit-flip errors are cons
ered and set III performs best when phase errors are con
ered. The same argumentation as presented in Sec. V
applies.

We note that although the individual results for the ga
quantifiers appear to be similar, they contain different phy
cal information. For instance, the purityP does not quantify
the ‘‘amount of entanglement’’ between the two qubi
which, however, is characterized by the entanglement ca
bility C. In addition, one might also find different limits fo

FIG. 4. Dependence of the four gate quantifiers on the dim
sionless bath-interaction strength. Shown are the deviations f
the ideal values, i.e., 12F, 12P, 12Q, and u20.52Cu in a log-
log representation. Upper panel~a!: bit-flip errors (gx); lower panel
~b!: phase errors (gz). The lower bound ofQ'0.78 for the Clauser-
Horne-Shimony-Holt inequality turns into an upper bound for t
deviation 12Q and is indicated by the horizontal dotted-dash
line ~see text!. For the remaining parameters, see Table I.
9-8
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the quantifiers being required for a succesfulquantumcalcu-
lation.

3. Dependence on interqubit coupling strength

In the remaining part we address the dependence of
quality of the gate operation on the strengthJ of the interqu-
bit coupling. Physically, one expects that an interqubit c
pling strengthJ, which is comparable to the characteris
qubit energyBz, i.e., J'Bz, would yield best performance
results because of a corresponding minimal gate opera
time. This is confirmed in Fig. 5 for the two different sets
and III ~set II is equivalent to set I!. Panel~a! illustrates the
results for the bit-flip errors withgx51026, and correspond-
ingly panel ~b! for the phase errors withgz51024. For J

FIG. 5. Dependence of the gate quantifiers on the strengthJ of
the interqubit coupling. Shown are the deviations from the id
values, i.e., 12F, 12P, 12Q, andu20.52Cu in a log-log repre-
sentation whereJ is scaled in units ofBz. Depicted are the result
for parameter sets I and III from Table I. The upper panel~a! shows
the results for the bit-flip error withgx51026 while the lower panel
~b! depicts the results for the phase error withgz51024. The hori-
zontal dot-dashed line marks the upper bound of 12Q'0.22 for
the Clauser-Horne-Shimony-Holt inequality.
01230
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approaching 1, the deviations of the quantifiers from th
ideal values approach saturation values. Clearly, this ‘‘m
mal’’ deviation cannot be avoided, since even in the fast
gate operation the influence of the bath is still present.

For set I, we find that for coupling strengthsJ smaller
than 1021 the deviations increase. For set III, however, t
deviations increase already for larger values ofJ. Overall, we
summarize this section by noting that theXOR gate operation
deteriorates only weakly upon decreasing the interqubit c
pling strength.

VI. CONCLUSIONS

In this work we have shown that the numeric
quasiadiabatic-propagator path-integral method~QUAPI! of
Makri and Makarov provides an appropriate method to
vestigate decohering quantum information processes tha
volve time-dependent Hamiltonians in presence of a c
pling to an external environment. We have applied t
iterative algorithm to the example of the quantumXOR gate
operation and have obtained the full time-resolved evolut
of the two-qubit system in presence of time-dependent ex
nal fields. No further approximations on the time evoluti
of the gate operation such as a Markovian evolution or
tended time spans of the gate operation have been invo

We have investigated the quality of the quantumXOR op-
eration by numerically determining four characteristic ga
quantifiers, i.e., the fidelityF, the purity P, the quantum
degreeQ, and the entanglement capabilityC of the gate. We
have simulated the gate operation for three parameter
Thereby, we have suceeded in investigating systematic
the quality of the gate operation as a function of the envir
mental temperatureT, the bath-interaction strengthg, and
the strengthJ of the interqubit coupling. Two different type
of errors in the qubits have been modeled:~i! bit-flip errors
and ~ii ! phase errors. We have elucidated how the differ
physical setups perform under these conditions. We h
demonstrated that the quality of the gate operation does
only depend on the total operation timetXOR. However, one
has to carefully take into account the kind of the induc
errors. In order words, this means that not always the sho
operation will yield the least deviations from the ideal ope
tion. As another major finding we establish that the quality
the gate dependsonly very weakly on temperaturebut rather
strongly on the bath-interaction strength. Although the de-
viations from the ideal case increase linearly with increas
bath-interaction strength, they can be several orders of m
nitude larger than the bath-interaction strength itself. Mo
over, we have illustrated that the interqubit coupling stren
plays an important role and should not be smaller than 0.E0
with E0 being the typical energy scale of the qubit syste
Since perfect switching mechanisms are assumed, these
ings for the deviations from the ideal operation provide
lower bound since a realXOR gate operation may suffer from
additonal errors induced by imperfect field pulses.

In order for a quantum information processor to oper
optimally, the decoherent influence of the environment ne
to be suppressed. Therefore, three different approaches
currently discussed: These are the techniques of quan

l

9-9
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error correction, fault tolerant quantum computation, and
tanglement purification@26#. The general idea common to a
three methods is to use for quantum information process
only a small subset of a larger set of entangled ancilla qub
Although these ideas are very promising for small regis
lengths, the techniques become increasingly difficult if o
attempts to realize large qubit registers in physical syste
Moreover, one has to keep track of the quantum state of
environment. Whilst these requirements are seemingly
sible for quantum optical information processing syste
@38#, they appear insufficient for condensed-matter syste
with their characteristic huge number of environmental
grees of freedom.

An alternative approach consists in minimizing the occ
rence of errors bycontrolling decoherencevia the applica-
tion of tailored time-dependent external fields to qubit s
.
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tems @15,39–42#. For example, the application of a time
dependent periodic external field can induce a Floq
spectrum with degenerate quasienergy states@15,39,40# or it
can move the qubit out off resonance with certain b
modes@42# thereby reducing decoherence. The suitability
such schemes to a quantum gate operation, however, rem
to be demonstrated.
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