PHYSICAL REVIEW A, VOLUME 65, 012309
Decoherence and dissipation during a quantunxOR gate operation
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The dynamics of a generic quantwoRr gate operation involving two interacting qubits being coupled to a
bath of quantum harmonic oscillators is explored. By use of the formally exact quasiadiabatic-propagator
path-integral methodology we study the time-resolved evolution of this interacting and decohering two-qubit
system in presence of time-dependent external fields. The quality ofcthegate operation is monitored by
evaluating the four characteristic gate quantifiers: fidelity, purity, the quantum degree, and the entanglement
capability of the gate. Two different types of errors for th@r operation have been modeled, i.@),bit-flip
errors and(ii) phase errors. The various quantifiers are systematically investigated vs the strength of the
interqubit couplingand vs both, the environmentaimperatureand the(Ohmic-like) bath-interaction strength
Our main findings are that these four gate quantifiers depend only weakly on temperature, but are
extremely sensitiveo the bath-interaction strength. Interestingly enough, however, we find thabthgate
operation deteriorates only weakly upon decreasing the interqubit coupling strength. This generic case study
yields lower bounds on the quality of realistior gate operations.
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[. INTRODUCTION the basis states if the first qubit is in the stfte, this op-
eration is also called thguantum controlledéOT (CNOT)

The basic elements of quantum computation are logigjate. The set of all one-qubit gates together with the quantum
quantum gates, which represent manipulations of quanturRor gate is universal, as has been demonstrated in[BEf.
bits, |0) and|1), according to Boolean algebra. Any arbitrary ~ The main impediment on the roadway to a working quan-
complex logic operation can be build up of only a few basictum computer is decoheren¢g—12]. It disturbs the phase
gates(universal gateg[1] and one can show that almost relation in a quantum superposition state and therefore is
every gate that operates on two or more qubits is a universaffective at the roots where the quantum computer is be-
gate[2]. The explicit construction of quantum networks for lieved to have its most important advantage. Any realistic
elementary arithmetic operations then becomes possiblguantum computer will have some interaction with its envi-
upon appropriately combining such universal gates; see, fatonment, which induces decoherenéagecay of the off-
instance, Refl3] for the explicit construction of the addition diagonal elements of the reduced density mataxd dissi-
or the modular exponentiation. In turn, this permits thepation(change of populations of the reduced density matrix
implementation of Shor’s quantum factorizing algorithi#)  Moreover, other sources for decoherence that are due to im-
in terms of elementary gates. Together with Deutsch’s algoperfect gate operations and cross talks of the qubits within a
rithm [5], these two quantum algorithms are presently theregister need to be considerftD].
most important examples that are known to be superior to Several previous works in the literature deal with the ef-
their classical counterparts and which do justify the currentect of decoherence in quantum information processing sys-
efforts towards a technological realization of a quantumtems. Unruh[7] and Palmaet al. [9] consider a model of a
computer. single qubit, which is represented by the eigenstates of the

In this work we concentrate on one such elementary gateuasispin operatos, and which couples to a bosonic envi-
namely, thequantum exclusiver (XOR) gate. It is a unitary  ronment via itso, component. It describes appropriately the
transformation that propagates an initial sfallg,) of a two-  dephasingdecoherengebut does not include population ex-
qubit system to a final stat o) = Uxor| ¥in)- Represented  change(dissipation. CombiningL noninteractingqubits of
in the computational basi$b;) €{|00),|01),|10),|11)} (i  this type, they estimate the decohererirethe limit of a
=1,...,4), thexor gate operation can be written as large coherence length of the batb increase exponentially

with the lengthL of the register.

Dissipative effectgbit-flip errorg are properly described

by the so-called spin-boson modéi3-16, where the qubit
(1.9 is represented by the, component of the spin 1/2, but the

coupling to the bosonic bath is mediated by thecompo-

nent of the spin-1/2Anote that this refers to the localized

representation In this model, the bath also induces transi-
Since this operation inverts the state of the second qubit aiions between the two system eigenstdtas flips) and—in
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addition to decoherence—energy is exchanged between syswitching time interval. This leads to an extension of the
tem and bath. The general solution of the problem in terms ofomputation time, which is only due to formal mathematical
a generalizednon-Markovian master equation for the entire reasons and which deteriorates the quality of the gate opera-
reduced density matrix for an arbitrary initial preparation intion. Moreover, a systematic study of the dependence of the
the presence of a static bias and also for a time-dependegate quantifiers on the relevant parameters has not been
driving has been given in Rdf16]. In our work, the assump- given.
tion of a Markovian bath and of a weak system-bath interac- In this work, we investigate systematically tker quan-
tion (Bloch-Redfield approaghwhich may restrict the valid- tum gate in presence of an interaction of the qubits with their
ity of the master equatiofsee belowy, is not made. environment. Thereby, we take into account the full time
The previously discussed works concern the investigationlependence of the external fields, which inducextr op-
of decoherence in single qubits or in a register of nonintereration without invoking further approximations on the sys-
acting qubits. Decoherence and dissipation in a system atm Hamiltonian. In particular, we use the numeriahlini-
interacting qubits has been studied only rarely. The dynam-tio technique of the quasiadiabtic-propagator path integral
ics of two coupled two-level systems has been investigateQUAPI) [22] (for other applications, see also Rg33,24)).
by Dubeand Stamg17] by means of a general model for This numerically precise iterative real-time path-integral
coupled Josephson junctions, for coupled nanomagnets, anethod does not suffer from the above-mentioned problem
for interacting Kondo impurities. Each two-level system is of lacking positivity. In order to realize the logiwoR opera-
representedin the tunneling representatipby the o, com-  tion in physical systems, we introduce a generic model
ponent of a spin 1/2. The two spins interact via their  Hamiltonian, which is suitable for studying the@Rr opera-
components. Moreover, theiw, components couple to a tion on a very general and idealized level. We determine the
bosonic bath. By use of real-time path integrals the dynamicguality of the gate by calculating the four characteristic gate
of the relaxation process is determined. Although no specifiquantifiers introduced by Poyatos, Cirac, and Zo[25|;
problem of quantum information processing is investigatednamely, the(i) purity, (ii) fidelity, (iii) quantum degree, and
this is the first work where two interacting spins in a dissi- (iv) entanglement capability. To that end, we consider two
pative bath have been considered. important types of computational errors, i.e., phase errors
A similar model has been studied by Governale, Grifoni,and bit-flip errors. The former can be modeled by coupling
and Scha [18]. Two biased spir{1/2) systems interact via the o, component of each spin to the bath while the later is
their o, components, which is the appropriate coupling forinduced by coupling ther, component of each spin to the
Josephson-junction charge qubifsee below. Moreover, bath. We are mainly interested in the quality of the gate
their o, components couple either to the same or to differenbperation during its time evolution and, most importantly,
bosonic baths. Applying the widely used Bloch-Redfield for-right after it has been completed. We choose three different
malism, the time evolution of the populations of the logical parameter sets for which different coupling constants in the
states is evaluated. This model describes dissipation beingubit Hamiltonian lead to differently long time intervals re-
caused by fluctuations in voltage sources in Josephsomuired for the gate operation.
junction charge qubit{see below. However, no specific So far, we have discussed theoretical aspects of quantum
guantum-information operation has been considered. information processing. However, those refined and highly
A two-qubit quantum gate for quantum information pro- elaborate concepts face the question of how they can be
cessing in coupled quantum dots has been investigated implemented in experimental hardware. Several proposals to
Refs.[11,19. Two spin{1/2) systems are coupled using a build a quantum information processor exist. Prominent can-
time-dependent Heisenberg-type interaction. Moreover, aidates are, for instance, atoms in optical cavities, ions in
coupling of the spins to a bosonic bath has been taken intbnear or Paul traps interacting with laser beams, or nuclear
account. By solving the quantum Liouville equation in the spins in a nuclear magnetic resonance liqua€l]. Although
limit of weak system-bath couplin@Born-Markov approxi- the experimental techniques in those fields of research are
mation for the reduced density operator, the purity and thecurrently most advanced, the problem of upscaling of a
fidelity of the swap operatiotq,,dij)=|ji) (i,j=0,1) is  quantum computer can seemingly only be solved within
calculated as a function of time. However, the authors coneondensed-matter systems that can be embeded in an elec-
sider the time evolution of the quantum systeafter the tronic circuit. Promiment systems for condensed-matter qu-
swap operation has been complet&tie same is true for the bits are flux states of a SQUIDsuperconducting quantum
XOR gate operation in Ref11], where, additionally, a further interference devide(flux qubits [27] (see alsd12]), charge
assumption has been made: The pulse sequence to realize #tates of superconducting islands with Josephson junctions
guantumxor consists of four pulses of the external fields. (charge qubits [12,28, and spin[11,29 or charge[30]
Each pulse is taken to be constant over the correspondingtates in ultrasmall coupled semiconductor quantum dots
time interval. To obtain the solution over the entire time spanquantum-dot qubis Moreover, several realizations of qu-
within the Born-Markov approximation, it is necessary to bits in nucleaf31,32 and electronid¢32,33 spins in semi-
assume a finite time interval between the single pulses. Thisonductor nanostructures have been proposed.
is required because the Born-Markov approximation is The paper is organized as follows: In Sec. Il, we introduce
known to violate positivity of the reduced density operator ata generic model as a starting point for the quantwor
short transient timeg20,21]. This additional time span operation including the interaction with the environment. In
(pulse-to-pulse time has been taken as three times theSec. Ill, we present a brief review on the numerical tech-
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nigue of the QUAPI, which we employ in the following. In le(t) |_|
order to determine the quality of the decohenenk gate, we

use four quantifiers which are introduced in Sec. IV. The X(t)
results and the conclusions are presented in Secs. V and V 2

respectively. B 1z (t) |_|
By (0 [ ] 1

The quantumxor gate is a two-qubit operation that can J(t) [ L [ 1

be modeled by two coupled spifif2) systems represented 0 t, oty oty ts g
by the Pauli operators;=(o7,0Y,07)7, j=1,2. The two o
logical states of each qubit are represented by the two eigen- FIG. 1. Schematic view of a pulse sequence necessary 1o gen-
states of ther, component of each spin, i.60);=|1); and erate the quantumor gate. The parameters are setfto=B*=J
|1>]E|l>j . We assume that the single qubit as well as the™ const_. The_ frequeznglles are given in uqltsBifwhlle t_he tlme is
coupling between the two qubits can be controlled by switchScaled in units Of.B ) . The SW'tCh'ng timeg; are given in the
ing on (local) external fields, for instance, magnetic fields, '€Xt @nd are in this case equal to multiplesm.
This system can generically be descritygd] by the generic
Hamiltonian off in the following way: In order to attain this propagator, a
pulse sequence of the external fields is necessary. For sim-
plicity we assume throughout this work, that the pulses are
switched instantaneously on and off and are constant over
the time spar— t,, during which they are on. This induces
where a'ji=(0'}<+ia'Jy)/2. Moreover, éj(t):(BJX(t),O, time-dependent interaction strength8(t)=B[ O (t—t,,)
Bi(t))", j=1.2 are time-dependent coupling strengtith ~ — O (t—to)] with B=B{*'?, J=const and withO (t) being
the dimension of a frequengyarising from local time- the Heaviside function. Furthermore, we assume that both
dependent external fields at the site of the gpim longitu-  spins are equal and experience local fields of equal strength.
dinal (2) or transversgx) direction. In Eq.(2.1), the coupling  This implies sz: BE/ZE B¥Z. The anglesa and 3 in Eq.
between the two qubits is assumed to be symmetric; further 3) are related to the actual physical propagation time
more, it should be controllable from the outside leading to &ccording to
time-dependent interaction strenglft). The particular form
of the interaction in Eq(2.1) is only one example. We note
that .this generic model dogs not account for_ the partiqu_lar a=B¥% and B=Jt. (2.4)
details of a physical realization of qubits in a specific
condensed-matter system. For each individual system, such
as f!ux qublts or chgrge qubits, the_Hamlltoman looks dlf'fer-_l_he switching times then follow as,=/(2B9), t,=t,
ent in detail. In particular, the coupling term between the two /(2] —tot /(2B ot /(23 _
qubits takes different forms. However, all two-qubit Hamil- + ™ (29),  ta=to+ @/(2B%),  t4=tatm/(2]), ts=t4

7l (B¥), tg=ts+ 7/ (2B?), andtyor=te+ 7/(2B*), where

tonians have a structure that is similar to our generic model” > ]
in Eq. (2.1). The general physical behavior will be similar txor dénotes the total time elapsed during the koR gate

Il. A GENERIC MODEL FOR THE QUANTUM xor GATE

A. The coherentxor operation

tXOR

N ™

2
Hyor(t) = — 121 I§j(t)(;j+ﬁ§k Io o, (2.1

such that our generic model serves as an archetype. operation. An example of this pulse sequence is sketched in
The quantumxor gate (1.1) can be obtained by a se- Fig. 1 for the case oB*=B*=J. The coupling constants are
quence of one- and two-qubit operations accordinfl&] given in units of B* while the time is scaled in units of
(B?) . One immediately observes that the computation time
UXOR:U)é(Z) Ug( B z) Ué(—rr)Ulz( T Ui( _ Z) txor IS extended if thg coupling energies are d.ecreased. .We
2 2 2 2 note that the assumption of rectangular pulses is not required

by the numerical technique we use and is made here only for
Mozl ~ Tz =T (2.9  the sake of simplicity. We could also consider other shapes of
2 1 2 2 2/ . .. e .

the pulses that are more realistic for specific physical sys-
tems, and especially, we could consider imperfect switching
processes as well; the latter would constitute a further source

XUlZ

where

, a _ of decoherence. In this respect, our generic model is minimal
U}( “(a)= exy{ I EUJX z) , =12, since it assumes precise control over the deterministic part of
the time evolution via precise control of the external fields.
Ui(B)=exdiB(o] oy +oy03)] (2.3  More realistic assumptions on the external driving fields like

nonrectangular pulse shapes or imperfect switching would
are the propagators over the single time intervals with theleteriorate our findings as these effects are an additional
external fields in the Hamiltonian, E(R.1), switched on and source of decoherence.
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B. Interaction with the environment where the dimensionless bath-interaction consiéfftchar-

We model the interaction of the qubit system with theactlerizes the stre'ng'th of the intgraction with .the environment.
fluctuating environment by a Hamiltonian, in whiehog(t) 'I_'h|s spectrum mimics the_: enw_ronmenta_llly induced fluctua-
is coupled to a bath of harmonic oscillators, i.e., tions in the external circuit, which fsupphes flux through the

SQUID loops in the flux qubits[12,27]. Moreover,
H(t)=Hyor(t)+Hg+ Han’tZ (2.5 background-charge fluctuations in the voltage sources in Jo-
sephson charge qubit$2,28 also lead to an Ohmic imped-
with anceR. Similarly, electronic states in coupled quantum-dot
qubits experience an Ohmic environment, either for the spin
[11,29 or for the chargg30] degrees of freedom.

1
alaj+5

5| (2.6

N
HB: E ﬁwl
j=1
. IIl. NUMERICAL AB INITIO TECHNIQUE: QUAPI

Here,a/ (a;) denotes the creatiofannihilation operator of In order to describe the dynamics of the two-qubit system
the jth bath oscillator with frequency; . Since we want to  of interest it is sufficient to consider the time evolution of the
investigate the role of bit-flip errors as well as phase errorseduced density operator

we include in our model two different types of interactions.

On the one hand, the* components of the spins couple to p(t) = trpn U(t,00W(0)U ~1(t,0),

the fluctuating environment and the populations of the qubit

states are disturbgit-flip errors. On the other hand, phase t

errors are generated by coupling of thecomponents of the Ll(t,O):Texp[ - i/ﬁf H(t')dt'] : 3.1
spins to the environmental noise. This is conveniently mod- 0

eled by the form Here, U(t,0) is the propagator of the full system plus bath

5 N and 7 denotes the time-ordering operator. Moreovegtr
H?‘/Z=—(a){’2+a)2"2)2 K?‘/Z(af’+a-), (2.7) means the partial trace over the harmonic bath oscillators.
o2 = Due to our assumption that the bath is initially at thermal

equilibrium and decoupled from the system, see i),

WhereK}"Z denotes the coupling strength of thth oscillator  the partial trace over the bath can be performed. We denote
to the system and where the superscrigiz] denotesone or  the matrix elements of the reduced density matrix in the
the other kind of interactiarMe note that we assume here a computational basis withp;;(t)=(b;|p(t)|b;) and rewrite
coupling of the two spins to the same bath. This implies thathem according to Feynman and Vern@4] as
the spins are effectively coupled to each other via the bath. A
coupling of the spins to differeriincorrelateyl baths could
be readily incorporated in the numerical QUAPI technique pii()= 2 Gijm(t,0pmn(0), (3.2
(see below. mn=1

To study the dynamics of this system, we have to specif)(N
the initial conditions. Throughout this work, we assume that
the density operatow(t) of the entire system plus bath at

initial time t=0 factorizes according to G mn(tao):J DXDX! A[XJA* X' 1Fe[x,x']. (3.3

4

ith the propagatoG given by

W(0)=pg0)®pg. 2.8
(©)=psO)@ps 8 The functional A[x] denotes the probability amplitude for

the free system to follow the patk(t) and Fr/[x,x'] de-
notes the Feynman-Vernon influence functiofd#f] (see
Ref.[14] for detailg. The functional integrations in E¢3.3)
extend over paths with end pointg0)=x,,, X(t)=X;,
X"(0)=x,, andx’(t)=X;, which belong to the initial and
final statesp,n(0) andp;;(t), respectively.
The technique that we use to calculate the reduced density
operator, Eq.(3.2), is the iterative tensor multiplication
N scheme derived for the so-called QUAPI. This numerical al-
FX/Z(w):Zﬂ_E (K}"Z)25(w—wj), (2.9 gorithm was developed by Makri and Makarb?@] within
j=1 the context of chemical physics. Since its first applications it
has been succesfully tested and adopted to various problems

p<(0) is the density operator of the system at titee0 and
szzgl exd —Hg/(kgT)] is the canonical equilibrium distri-
bution of the(decoupled bath at temperatur&. Moreover,
Zg=trexd —Hg/(kgT)] and kg denotes the Boltzmann con-
stant.

The influence of the bath is fully characteriZddl] by the
spectral density

which assumes a continuous form if the numbkof oscil-  of open quantum systems, with and without external driving
lators approaches infinity. Throughout this work, we apply an22-24. Because the details of this algorithm have been
Ohmic spectral density with an exponential cutoff, i.e., extensively discussed previously in the literat{ig2—24,
we only mention those prominent ingredients that are of im-
I w)=y"?w exp(— o/ w;), (2.10  portance for our work.
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(i) Symmetric splitting of the short-time propagator: To 4
obtain a numerical iteration scheme, we discretize the time |ai)= > Rij|b;), (3.5
interval [0t] into NV stepsAt, such thatt,=kAt and split =1
symmetrically the full propagator over one time step ) ]
Ultys 1,1 in Eqg.(3.1), according to the Trotter formula, into With the transformation maitrix
a system and an environmental part,

1 1 1 -1
Z/{(tk+1,tk)~eX|i—iHBAt/Zﬁ)US(tHl,tk) R— 1 -1 -1 1 -1 (3 6)
X exp —iH gAt/2h), 2l 01 -1 1 1 '
-1 11 1
i [t
us(tkﬂ,tk):Texp[ 7 k+ldt’ HXOR(t’)J . (3.9 Phase errorsFor the second case that ttre components of
tk each spin couple to the bath in EQ.7), the system part of

Hamiltonian is already diagonal in the computational basis,
The neglect of higher-order terms of the propagator in Eqi.e., (bj|(¢1+ 05)/2|bj)=\;5; with \;=1, X,=0, A\3=0,
(3.4) causes an error of the order aft3. The short-time and As=—1. No additional basis transformation is neces-
propagatoi/s of the bare system is given by the correspond-sary.
ing exact system propagators in EG-3) over a time step
At. At this point, we emphasize that this method is not
plagued by the problem of lacking positivity of the density
operator at short times, as is the case for the usually em- In order to quantify theguality of the quantum gate, we
ployed master-equation approach in the Born-Markov limituse four global parameters that have been defined by Poya-
[11,19. The exactcoherent dynamics of the bare system en-tos, Cirac, and Zollef25]: (i) the gate fidelityF, (ii) the gate
ters and the decomposition of the short-time propagator agurity P,(iii ) the quantum degre@ of the gate, andiv) the
cording to Eq.(3.4) is valid for any arbitrary short time. entanglement capabilit§} of the gate. These four quantifiers
(i) The interaction with the bath induces correlationscan be calculated once the reduced density opegaiorEq.
among the pathémemory that are described by the influ- (3.1) is determined. To this end, 16 unentangled input states
ence functional in Eq(3.3). As long as the temperature of W)Y, j=1,...,16 aredefined according td.)1|¥p)»
the Ohmic bath is finite, these correlations decay exponeng b=1, ... 4), with [41)=10), |¥)=11), |¢3)=(]O)
tially fast with increasing time{14]. This motivates to ne- +]1))/\2, and|¢,)=(|0)+i|1))/\2. They form one pos-
glect such long-time correlations and to break up the influsiple hasis set and span the Hilbert space for the superopera-
ence kernels into small_er pieces of Ieng(_mt, where K tor Vyor, Wherep(tyor) = Vxorp(0), seeRef.[25] for de-
denotes the number of time steps over which the memory igjls. Moreover, these basis states are chosen to be
fully taken into account. ) unentangled states in order to avoid the application of a pre-
The two strategies irti) and (ii) are countercurrent. In ceding two-qubit gate for the preparation of the system state.
step(i) a small time steft is desirable in order to minimize The gate fidelityF is defined as the overlap between the
the error due to the neglected higher-order terms in theyopagation with the ideal propagatdieog, Eq. (1.1), av-
propagator. On the other hand, (i) a large time step is eraged over all 16 initial statd®] ) according to
needed in order to take a long memory range into account. A n

IV. CHARACTERISTIC GATE QUANTIFIERS

compromise between those two errors has to be found in | 16
practice by applying the principle of minimal sensitivi34] F=— > (W UjrpkorU i 4.0
to adjust the two parametefs andK, see discussion below. 16 =1 (¥ inlUxorPorUxorl ¥in)

(i) The third important ingredient is the appropriate
c_hoice_ (_)f basi; repres_entation of the pr_obl_em. For_ the alg_owith ‘ ijQR:p(tXOR)! with initial  condition p(0)
rithm it is required to iterate the dynamics in the eigenbasis- |wIW(Wl].
of that system operator, which couples to the bath. Then the | 3 similar way, the purityP is defined as
influence functional in Eq(3.3) can be evaluated in terms of
the eigenvalues of the coupling operator. In problems where 1 16
the coordinate of a quantum particle in a continuous potential P=— > tr(pkor)?- (4.2)
is damped, the continuous position operator turns into a dis- 16 =
crete set of position eigenvalues. Hence, this representation
has been termed ttdiscrete variable representation This quantity is proportional to thénegative linearized
Bit-flip errors. If the o, components of each spin couple entropy and reflects the effects of decoherence.
to the bath, see Eq2.7), the eigenbasis of the coupling  The third quantity, the quantum degrékof the gate, is
operator is determined b{w| (o} +03)/2|a;)=\; &; with  defined as the maximum of the overlap of all possible output
A1=0, A\,=—1, \3=1, and\,=0. A basis rotation of the states stemming from unentangled states and of all maxi-
computational basis with basis statds) has to be per- mally entangledBell) states| WK ), k=1, ...,4. Informal
formed according to terms, this implies
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Q=max Vi dpkorl Pho- (4.3
i,k

The purpose of this parameter is to quantify the notion of

nonlocality. Bennett and co-workel35] have shown that all

those density operators that have an overlap with a maxin® g4
mally entangled state being larger than the value (2

+34/2)/8~0.78 are nonlocal, i.e., violate the Clauser-
Horne-Shimony-Holt inequality35].

Obviously, F=1, P=1, Q=1 denote the ideal gate op-
eration.

The fourth quantifier is the entanglement capabiditpf

the gate. It denotes the smallest eigenvalue of the partia

transposed density matrip36], which is determined from
pkor for all unentangled input staté®}.). p4or character-
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Time-resolved XOR
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izes an entangled state if and only if the smallest eigenvalue
of the partial transposed density operator is negative. The FIG. 2. Time-resolved dynamics of the quantxor operation

ideal operation has an entanglement capabilitgef—0.5.
V. RESULTS

Having determined the reduced matrix in E8.1) by the

iterative QUAPI algorithm, we investigate the influence of

for the case of equal energies, i.8%=B*=J. Depicted are the
populationsP;; (t)=(ij|p(t)|ij) as a function of time for the initial
conditionp(0)=|11)(11 for three different cases @) no coupling
to the bath,y?=0 (solid line), (i) bit-flip errors with y*=0.01
(long dashed ling and(iii ) phase errors with*=0.01(dotted line.
The time is scaled in units ofB?) ~*. Moreover, we set the tem-
perature tol = 0.1 B% kg and the cutoff frequency te.= 508~

the interaction with the environment systematically. There-
fore, we assume that the two qubits are identical and expgiashed ling and (jii) phase errors withy?=0.01 (dotted

rience external fields of the same strength, iB;=B}
=B* and B{=B%=B”. Moreover, we introduce the follow-

line). The switching times; are equal to multiples of/2 for
this special case of equal energies.

ing dimensionless parameters: We scale the qua_ntities Wit_h The iterative QUAPI algorithm possesses two free param-
respect to the characteristic energy scale of the single qubigters that have to be properly adjusted. We fix the nurikber

which is given by the energy splittinggB* of the single
qubit. This in turn defines a time scalB?) ~*. Consequently,
the temperature is given in units B8%kg (Note thaty*? is
already dimensionlegsFor all following results, we have
used a cutoff frequency ab.=50B% in Eq. (2.10.

A. Time-resolved quantum xOR operation

We first illustrate the time-resolved dynamics of a generic
XOR operation. To this end, we determine the populations o

the four states of the computational basis as a function
time, i.e., P;j(t):=(ij|p(t)[ij) with i,j=0,1 for the initial

condition p(0)=|11)(11]. We choose the pulse sequence

sketched in Fig. 1 with parameteB$= B* andJ=B*. More-

over, we choose for illustrative purpose a rather high tem-

perature ofT=0.14B?%kg. Figure 2 depicts the results for
the three different cases ¢if) no coupling to the bathy*/?
=0 (solid line), (ii) bit-flip errors with v*=0.01 (long

o)

of memory time steps and the lengt of each time step
according to theprinciple of minimal sensitivity{24]. By
applying this method, we obtain the valueat
=0.15B% ! with K=2 (not shown.

As one observes, the final state of the ideal operation

(y*=0) is |¥)=]10). The deviation of the dynamics in
presence of decoherence and dissipation from the ideal case
is clearly visible.
We emphasize here that no additional time intervals be-
E‘ween the switching events have been inserted as it would
have been necessary for the application of Bloch-Redfield-
type master-equation techniques.

B. Quality of different quantum xoRr operations

In order to fix the parameter sets for the numerical simu-
lations in the following investigations, we are guided by
three different physical realizations of condensed-matter qu-

TABLE |. Parameter sets that have been used for the simulations of the quaotugate. They mimic
typical experimental situations for coupled qubit systems. The explcit values for three important solid-state
qubit systems, i.e., flux qubits and charge qubits in superconducting Josephson tateéeand Il and spin
and charge qubits in ultrasmall semiconductor quantum @eslll) have been taken from literatufsee
text). The dimensionless timgogB* the entire gate operation takes is given in the last column.

Set B? BX J T BY/B* J/B* TI/IB* tyorB®
I (Flux qubity 05K 50 mK 25 mK 25 mK 0.1 0.05 0.05 82(2)
Il (Charge qubits 1K 100 mK 5 mK 50 mK 0.1 0.005 0.05 442(2)
Il (Quantum-dot qubits 1 meV 1 meV 0.05meV 125 mK 1 0.05 0.01 46p)
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bits, namely, flux qubitgset |) [27,12], charge qubitgset II) Second, the results faF, P, and Q always are located
[12,28, and qubits realized in coupled semiconductor quanbelow a value of 0.999 85 for bit-flip errors and 0.975 for
tum dots(set 1) [11,29. phase errors. This fact demonstrates that even smaller

The typical situation in superconducting qubiset | and  strengths of the coupling to the envirqnment than the_ used
set I} is that the energy* for the o* components is one =10 ° or y*=10 * are necessary in order to obtain a
order of magnitude smaller than the characteristic ensigy desired value of 0.9999a1]. _ _
of the single qubits. The typical temperature in both cases is AS discussed in the preceding section, set lil should yield
T=0.058%, while the interqubit coupling strength for the the best results since it requires the shortest operation time.
charge qubits is one order of magnitude smaller than for thklowever, as one pb§erves in Fig. 3, this strongly deper_lds.on
flux qubit. Hence the gate operation for set Il takes IongelIhe operator mediating the coupling to the bath. For bit-flip

than for set | and one would expect set Il to be more expose8rror processes, it is the system operator

to decoherence. Therefore, set | should yield better results 01 1 0

than set Il. However, as we shall see below, this depends

strongly on the kind of error induced by the bath, i.e., bit-flip Lo 1001

or phase error. He=5(o1to2)={ 1 0 o 1f: 6.1
In order to reduce the duration of the gate operation in 01 1 0

comparison to set |, we choo®'=B? in a third parameter
set(set Ill). This choice implies that for set Il theor takes
the least time. Moreover, we additionally reduce temperatur
to T=0.01B* compared to set I. The third parameter set

(\_évhich couples to the bath. One readily observes that aJong
pulse, during which the interqubit coupling operator

mimics typical experimental situations for coupled semicon- 0 0 0 O

ductor quantum bits. The parameter sets are summarized in 00 1 0

Table I. The total operation timgog can easily be deter- + o

mined, see discussion below HG.4). Hip=Jojor=Jl o 1 0 o (5.2
The QUAPI parameters are determined by the principle of 0 0 0 O

minimal sensitivity forK =3. We obtain for the case d¢fj,;

e ; ; 7 -1 —

(bit ﬂf) errors for set I[in unEs of (B%) ] At=0.06, for iet is switched on, generates many transitions among different
Il At=0.2, and for set llIAt=0.02, and for the case &fi,  giates. This can be seen by diagonaliZitige inner nonzero
(phase erropsfor set | At=0.013, for set I1At=0.08, and  pjock of) H,, and by transformingd to the resulting eigen-

for set Il At=0.01. basis ofH,,. However, if theB} fields are switched on, then
not as many transitions occur. This can be seen by diagonal-
o _izing the corresponding system Hamiltoniﬁa)f%ajX being
The dependence of the four characteristic gate quantifier§itched on and by transformirig® to the resulting eigen-

. . . . C
on the bath temperatufieis depicted with Fig. 3. In pané®)  pagqjs. This explains why set | with a shortepulse yields

the influence of the random bit flips are investigated whilepetter results than set Il for the case of bit-flip errors, see Fig.
panel (b) depicts the effect of phase errors. The bath-3(g).

1. Dependence on temperature

interaction constant for the bit-flip errors is chosen to)fie For the case of phase errors, it is the system operator
=10"© and for the phase errors we sgt=10"* [12].

First, one observes that all results depend owéyy 100 O
weaklyon temperature. Extrapolating the results to zero tem- 000 O
perature indicates the influence of the nonvanishing quantum szl(O'Z'f' o) = (5.3
fluctuations of absolute zero. This behavior is typical for c 2t T2 000 0Fp
nonseparable quantum systems being bilinearly coupled to a 0 00 -1

harmonic bati37]. Note that even at zero temperature finite

d_amping is present because we do not monitor(tmétary) ]yvhich couples to the bath. If now ttféf fields are switched

the physical subsystem being in contact with the bath. The! for a long time span, many transitions among different

environmental degrees of freedom, which are all traced oui{tates are induced. In_ analogy to the previous dﬂ%«-_:an be

are thus causing dissipation on the relevant system variable gnsformed to the eigenbasis of the corresponding system
At zero temperature, the second moméand even-order HamiltonianB*3 o7 being switched on and the resulting op-
higher ones of the quantum fluctuations acting on the sub-e€rator has many nonzero matrix elements that generate many
system arenot vanishing, and energy of the subsystem cartransitions. On the other hand, lodgulses are less effective

be dissipated even a@t=0. In particular, in clear contrast to sinceH;, andHZ commute. This explains why set IIl with

the classical case, the coupling energy assumes quantum rrEhorterBJX pulses compared to set | yields better results. Put
chanically anonzerovalue atzero temperatureThis cou-  differently, a gate operation that takes longer than another
pling energy then allows to rearrange energy and generatesay nevertheless perform better when subjected to an inter-
decoherence a=0. mittently switched on system Hamiltonian, which is less sen-
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Dependence on temperature Dependence on bath interaction strength
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FIG. 3. Dependence of the fidelty, the purityP, the quantum ol

degreeQ, see Eqgs(4.1)—(4.3), and the entanglement capabilify il 110

on temperaturel for bit-flip errors (@) and phase erroré). The 4t 1 10™

temperature is scaled in units 8% kg . The qubit parameters are A N

given in Table |. The bath-interaction constant for the bit-flip errors R R R 101‘5 107

is set aty*=10"% and for the phase errors af=10"*. b Y

FIG. 4. Dependence of the four gate quantifiers on the dimen-
sitive to decoherence. This qualitative conclusion is robuskjonless bath-interaction strength. Shown are the deviations from
for the treatment of more realistic systems as they may arisge ideal values, i.e.,2F, 1-P, 1-Q, and|—0.5-¢| in a log-
in the future. log representation. Upper par(@): bit-flip errors (y*); lower panel
(b): phase errors¥?). The lower bound of2~0.78 for the Clauser-
Horne-Shimony-Holt inequality turns into an upper bound for the
deviation 1- Q and is indicated by the horizontal dotted-dashed

As shown in the preceding section, the quality of the gat@ine (see text For the remaining parameters, see Table I.
operation cannot be improved by lowering the temperature
of the environment. The second possibility to reduce the inthe desired 10° (see above Moreover, the bath-interaction
fluence of the environment is the shielding of the qubit sys-strengths have to be less than #0n order to obtain values
tem against external noise. This implies that the strengths dbr the quantum degree larger th&=0.78. Only then, the
the bath interactiony*'?, are reduced. The results for the Clauser-Horne-Shimony-Holt inequality is violated and non-
dependence of the four gate quantifiers on the coupling corlecal correlations between the entangled qubits occur.
stantsy*’? are depicted in Fig. 4. As in the previous section, we find again that the results

One observes that the deviations of the four gate quantifor set | yield the best results when bit-flip errors are consid-
fiers from their ideal values depend linearly on the bath-ered and set Il performs best when phase errors are consid-
interaction strengths. However, the prefactor is much largeered. The same argumentation as presented in Sec. VB1
than 1. Although one might have expected a linear increasapplies.
of the deviations with increasing bath interaction in this We note that although the individual results for the gate
small-damping regime, the deviations avet of the same quantifiers appear to be similar, they contain different physi-
order of magnitude as the bath-interaction strengths theneal information. For instance, the purify does not quantify
selves but can be several orders of magnitude larger. Thihe “amount of entanglement” between the two qubits,
demonstrates that the bath-interaction strengths have to lehich, however, is characterized by the entanglement capa-
less than 107 in order to achieve deviations being less thanbility C. In addition, one might also find different limits for

2. Dependence on the bath-interaction strength
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approaching 1, the deviations of the quantifiers from their

a) Bitflip errors  y*=10"° ideal values approach saturation values. Clearly, this “mini-
10° . ; . . . i 10° mal” deviation cannot be avoided, since even in the fastest
10” . 1107 gate operation the influence of the bath is still present.
b g2 . A For set I, we find that for coupling strengtldssmaller
e ] . 1076 than 10 * the deviations increase. For set Ill, however, the
T f 1r e {10°" deviations increase already for larger values.dverall, we
10° | i e 107 summarize this section by noting that ther gate operation
. ) , . . . deteriorates only weakly upon decreasing the interqubit cou-
N ' ' ‘ pling strength.
10" | - 10 1:':
T 1073 VI. CONCLUSIONS
7100 F N N 10°
4 » In this work we have shown that the numerical
T = ] = 10 quasiadiabatic-propagator path-integral metfQWAPI) of
107 102 107 100 10° 1 02 100 10° Makri and Makarov provides an appropriate method to in-
J J vestigate decohering quantum information processes that in-
. s volve time-dependent Hamiltonians in presence of a cou-
o b) Phase errors - v =10 1o pling to an external environment. We have applied this
‘ ' ' ' ' ' iterative algorithm to the example of the quantxor gate
; . — Sett . ; operation and have obtained the full time-resolved evolution
’ 10 77T Setht qp . 10 & of the two-qubit system in presence of time-dependent exter-
- N e nal fields. No further approximations on the time evolution
10 r — 7 I Y of the gate operation such as a Markovian evolution or ex-
tended time spans of the gate operation have been invoked.
: i ; : We have investigated the quality of the quantkor op-
Y eration by numerically determining four characteristic gate
107 4 quantifiers, i.e., the fidelityF, the purity P, the quantum
. i degreeQ, and the entanglement capabiliyof the gate. We
<2 . 1072 have simulated the gate operation for three parameter sets.
) Thereby, we have suceeded in investigating systematically
. the quality of the gate operation as a function of the environ-

10° 107 107

J

mental temperaturd, the bath-interaction strength, and
the strengthl of the interqubit coupling. Two different types

of errors in the qubits have been modeléd:bit-flip errors
@nd (i) phase errors. We have elucidated how the different
physical setups perform under these conditions. We have
demonstrated that the quality of the gate operation does not
only depend on the total operation timg,z. However, one
has to carefully take into account the kind of the induced
errors. In order words, this means that not always the shortest
operation will yield the least deviations from the ideal opera-
tion. As another major finding we establish that the quality of
the gate dependsnly very weakly on temperatulmit rather
strongly on the bath-interaction strengtAlthough the de-
viations from the ideal case increase linearly with increasing
bath-interaction strength, they can be several orders of mag-
nitude larger than the bath-interaction strength itself. More-
over, we have illustrated that the interqubit coupling strength
In the remaining part we address the dependence of thglays an important role and should not be smaller tha&.1
quality of the gate operation on the strengtbf the interqu-  with E, being the typical energy scale of the qubit system.
bit coupling. Physically, one expects that an interqubit couSince perfect switching mechanisms are assumed, these find-
pling strengthJ, which is comparable to the characteristic ings for the deviations from the ideal operation provide a
qubit energyB?, i.e., J~B?, would yield best performance lower bound since a realor gate operation may suffer from
results because of a corresponding minimal gate operatioadditonal errors induced by imperfect field pulses.
time. This is confirmed in Fig. 5 for the two different sets |  In order for a quantum information processor to operate
and Il (set Il is equivalent to se.| Panel(a) illustrates the  optimally, the decoherent influence of the environment needs
results for the bit-flip errors with*=10"°, and correspond- to be suppressed. Therefore, three different approaches are
ingly panel (b) for the phase errors with?=10"%. ForJ  currently discussed: These are the techniques of quantum

FIG. 5. Dependence of the gate quantifiers on the strehgth
the interqubit coupling. Shown are the deviations from the idea
values, i.e., +F, 1-P, 1- Q, and|-0.5-C| in a log-log repre-
sentation wherd is scaled in units oB* Depicted are the results
for parameter sets | and Ill from Table I. The upper paagkhows
the results for the bit-flip error with*=10"° while the lower panel
(b) depicts the results for the phase error wjth=10"“. The hori-
zontal dot-dashed line marks the upper bound ef@~0.22 for
the Clauser-Horne-Shimony-Holt inequality.

the quantifiers being required for a succesfuantumcalcu-
lation.

3. Dependence on interqubit coupling strength
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error correction, fault tolerant quantum computation, and entems [15,39—-42. For example, the application of a time-
tanglement purificatiofi26]. The general idea common to all dependent periodic external field can induce a Floquet
three methods is to use for quantum information processingpectrum with degenerate quasienergy stgt6s39,4Q or it
only a small subset of a larger set of entangled ancilla qubitssan move the qubit out off resonance with certain bath
Although these ideas are very promising for small registeinodes[42] thereby reducing decoherence. The suitability of
lengths, the techniques become increasingly difficult if onesych schemes to a quantum gate operation, however, remains

attempts to realize large qubit registers in physical systemsg pe demonstrated.
Moreover, one has to keep track of the quantum state of the
environment. Whilst these requirements are seemingly fea-

sible for quantum optical information processing systems
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