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The basic scientific point of this paper is to draw the attention of researchers to new possibilities of
differentiation of similar signals having different nature. One example of such kinds of signals is presented by
seismograms containing recordings of earthquak€¥s) and technogenic explosiofiEE’s). EQ’s are among
the most dramatic phenomena in nature. We propose here a discrete stochastic model for possible solution of
a problem of strong EQ forecasting and differentiation of TE's from the weak EQ’s. Theoretical analysis is
performed by two independent methods: by using statistical theory of discrete non-Markov stochastic pro-
cessegPhys. Rev. 62, 6178 (2000] and the local Hurst exponent. The following Earth states have been
considered among them: befdite) and during(l) strong EQ, during weak EQI) and during TEIll ), and in
a calm state of Earth’s cor@V). The estimation of states I, Il, and Ill has been made on the particular
examples of Turkey1999 EQ's, state IV has been taken as an example of Earth’s state before underground
TE. Time recordings of seismic signals of the first four dynamic orthogonal collective variables, six various
planes of phase portrait of four-dimensional phase space of orthogonal variables and the local Hurst exponent
have been calculated for the dynamic analysis of states of systems I-IV. The analysis of statistical properties
of seismic time series I-I1V has been realized with the help of a set of discrete time-dependent futioci®ns
correlation function and first three memory functipntheir power spectra, and the first three points in the
statistical spectrum of non-Markovity parameters. In all systems studied we have found a bizarre combination
of the following spectral characteristics: the fractal frequency spectra adjustable by phenomena of usual and
restricted self-organized criticality, spectra of white and color noises and unusual alternation of Markov and
non-Markov effects of long-range memory, detected eafliePhys. A27, 5363(1994] only for hydrody-
namic systems. Our research demonstrates that discrete non-Markov stochastic processes and long-range
memory effects play a crucial role in the behavior of seismic systems I-1V. The approaches, permitting us to
obtain an algorithm of strong EQ forecasting and to differentiate TE’s from weak EQ’s, have been developed.
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[. INTRODUCTION the failure stress phenomenon foregoing an EQ. The failure
stress data are in a good reliability with acoustic emission
Earthquakes are among the most mysterious and dramatimeasurements. In papgt] it has been shown that the long-
phenomena occurring in nature. As a result of sets and brealperiodic corrections are of a general nature; they are related
ups of the terrestrial cortex or higher part of the mantle, oveto the discrete scale invariance and complex fractal dimen-
hundreds of thousands of underground pushes and fluctugion. This idea has been checked in REFs6] for diffusion-
tions of the Earth's surface occur annually. They propagatéimited-aggregate clusters. The paradox of the expected time
over long distances in the form of elastic seismic wavesuntil the next EQ with an attempt to find acceptable distri-
Nearly thousands of them are registered by people. Annuallfpution is discussed in Refl7]. A new explanation of
nearly a hundred earthquak@sQ’s) cause catastrophic con- Guttenberg-Richter power law related to the roughness of the
sequences: they affect large communities of people and ledeactured solid surfaces has been outlined in R&ff. Recent
to great economic losses. achievements and progress in understanding of the complex
For the study of the basic mechanisms underlying its naEQ phenomena from different points of view are discussed
ture, modern numerical and statistical methods are used noim the recent review9]. New numerical methods such as
in modeling and understanding the EQ phenomenon. In pawvavelets and multiscale singular-spectrum analysis in the
pers[1,2] the modified renormalization group theory with treatment of seismic data are considered in REd].
complex critical exponents has been studied for implications All these previous methods have been developed for un-
of EQ predictions. Long-periodic corrections found fit well derstanding the statistical and nonstationary properties of
the experimental data. Then universal long-periodic correcEQ’s and technogenic explosiofi§E’s). But in this paper
tions based on the modified renormalization group theorywe would like to demonstrate some possibilities related ini-
have been used successfulB] for possible predictions of tially to differentiation of EQ’s from TE’s. This problem has
not only scientific significance related to recognition of simi-
lar signals having physical origin, but in recent times it has
*Email address: rmy@dtp.ksu.ras.ru been related also to some political problems associated with
"Email address: gfm@dtp.ksu.ras.ru testing of nuclear explosions.
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Seismic data are an object of careful analysis and numer- N-1
ous methods of their treatment are used, especially for the Xj=Xx;—(x), (X)= N E X(T+j7). (2
forecasting of EQ’'s with strong magnitudes. In spite of a =0
wide application of approaches based on nonlinear dynami
methods, the Fourier and wavelet transformations, etc., wi
have essential limitations, which narrow down the range of
applicability of the results obtained. One of the main limita-
tions is that the discrete character of the seismic signal reg- k-1
istration is not taken into account. Another factor, which (A-B)=>, AB;. 3
should be taken into account, is related to the influence of i=
local time effects. Alongside the discreteness and the local
behavior of the seismic signals considered here exists th&he time dependence of the vectorcan be defined as result
third peculiarity, viz, the influence of long-range memory Of discretem-step shift

he set of state vectors forms a finite-dimensional Euclidean
pace, where the scalar product of two vectors can be defined

effects.

In this paper, we present one of the possible solutions to A0 ={%m, X1, Xme2s -+ - ik}
forecasting strong EQ’s and differ_entiating '_I'E’s from weak = [SX(T+mr), x(T+(m+1)7),
EQ’s. In this presentation we consider three important factors
for seismic signals registered in the form of seismograms: X(T+(m+2)7), ...,0x(T+(m+k—-1)7)},
discreteness, long-range memory, and local time behavior. @)

Two methods are used to analyze these three factors. The
first one is based on seismograms considered in the form Qfheret=ms and = is a finite time step. Statistical param-

a discrete non_-Markov statistic_al process along yvith a”aWSi%ters(absolute and relative variangesan be expressed by
of corresponding phase portraits, memory functions, and thg,eans of the scalar product of two vectors as follows:
non-Markovity parameters. The second method is based on

the generalized conception of the Hurst exponent. These , 1 0% 012
methods have been used for a careful analysis of seismic data o = (AN AR =NTHAR,
and to differentiate EQ’s from TE'’s. The results obtained

with the use of these methods are useful in the recognition of (A9 AY)
specific features of EQ’s and TE’s and can be used for strong 2 VN TN

EQ forecasting. N(X)?2

The paper is organized as follows. In Sec. Il we describe
in brief the stochastic dynamics of time correlation in com-\We define the evolution operator for the description of evo-
plex systems containing seismic signals by the discrete norution of the variablessx; as follows:
Markov kinetic equations. The local fractal dimension and ) ) . ,
the corresponding Hurst exponent are defined in the Sec. lll. #+1(T (1 +1)D=UT+(j+1) 7 T+[n)éx(T+]j7)
The real data treatment with the use of non-Markov concep- =U(7)8x; . (5)
tions has been realized in the Sec. IV. Section V contains J

some results obtained by the local Hurst exponent methone can write formally the discrete equation of motion by
The basic conclusions are discussed in the final Sec. VI.  the use of evolution operatdf(7) in the form

II. THE KINETIC DESCRIPTION OF DISCRETE AX(D) _ x(t+ ) =x(®) _ E{U(H nO—1x(t). ()
;

NON-MARKOV RANDOM PROCESSES At T

In a recent papefll] the statistical theory of discrete The normalized time correlation functidCF) can be rep-
non-Markov random processes has been developed. The ba&sented by Eqg1) and (4) (wheret=mr is discrete timg
sic elements, which are necessary for an understanding @fs follows:
other sections, are presented in brief here. In accordance with
Refs. [11-13 the fluctuations of random variabléx; (A2-AM Y (AX0)-ATL (D)
=6x(T+j7), j=0,1,... N—1 of a complex system can be a(t)= <A°~A°> - <A°(0)2> : ™
represented als-component state vector kK K

0 From the last equatiori7) one can see that TCE(t) is
A(0)=(6Xg,6X1,0%z, . .. ,OXk-1) obtained by projection of the final state vec®f,. (t) (4)
= (X(T),8X(T+7), ... .oX(T+(k=1)7). (1) on the initial state vectoA(k’(O). Because of this property
one can write the projection operator in the linear space of

. o RV , state vectors
Here 7 is a finite discretization timegx; and (x) define

fluctuations and mean value correspondingly, dni the (Aﬁ(O)Am (D)

beginning of the time series. They are defined by conven-  IIA™, (t)=A2(0) me =A20)a(t). (8
m+k k 0 12 k

tional relationships (|A0)[%)
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The projection operatadrl has the following properties: Liouvillian and is defined correspondingly by the classical or
quantum Hamiltonian of the system considered. The given
) approach is true for non-Hamiltonian systems of arbitrary
' =II, P=1-1I, nature when the Hamiltonian cannot be written together with
conventional equations of motion. The functitdy(j 7) on
9) the right-hand side of Eq(ll) is the first order memory
function

_ IAO)AO)|
(IAR0)?)
P2=P, IIP=0, PII=0.

The projection operatord andP are idempotent and mutu-

ally complementary. Projectdl projects on the direction of o (AAO0)L 41 +i7L 1L ,5,A%0)) B

initial state vectorA‘,z(O), while the projectorP projects all Ma(j7)= AYOV L A%O , My(0)=1.
. . . . < k( ) 12-21 k( )>

vectors on the direction that is orthogonal to the previous (13)

one. Let us apply the projection technique in the state vectors
space for deduction of the discrete finite-difference equatiotHere we use the following notation for the matrix elements

of motion of the splittable Liouvillian quasioperatdr; j=TI,LIT;, i,j
A . =1,2, II;=II, TI,=P, L ;=IILI, L,=IILP, L[y
EAm+k(t):iL(t'T)Am+k(t)' =PLII, L,,=PLP. Equation(11) can be considered as the
first equation of the finite-difference kinetic equations chain
L(t,r)=(n"Hu(t+nt)—1}. (10) with memory for the discrete TCE&(t). In paper[11] it has

been demonstrated that using Gramm-Schmidt orthogonal-

The first expression defines the Liouville’s quasioperdtor 1Zation procedure one can define the dynamic orthogonal
and the second expression defines the evolution operatdgiablesW,(t) by means of the following recurrence rela-
U(t). Transferring from vectorA™, , to a scalar value of the tiONShips:

TCF a(t) by means of suitable projection procedure one can o -

obtain the closed finite-difference equation for the initial Wo=A(0), Wi={iL —\;1}Wy,

TCF,

Wo={iL =Ny JWp_1+ Ay (W, o +--, n>1

m—1

Aa(t) (14

T_Ma(t)—mljgo Mi(jna(t—jn. (11
Here we introduce the fundamental eigenvaldgsand re-
Here A is the relaxation parameter while the frequengy laxation A, parameters as follows:
defines the eigenspectrum of Liouville’s quasioperatdn

the following way: B <Wn|:Wn> B <Wﬂ*1(i|:_)\n+l)wn>
)\n—I—W 2 A=— Wi )
. (AO)LAR(0)) :<AE£12£21AE(0)> (1w, n-1 s
R T (AP

(12) Parametera.,, are very similar to Lyapunov’s exponents. If
all parameters of Eq.14) for W except forn,_; andA,,_
The standard equation of motion is obtained easily from Eqsare equal to zero, arbitrary orthogonal variabl#s can be
(6) and (10) by means of the limitr—0. In this case Liou- expressed directly via the initial variabM/,=Ap(0) by
ville’s quasioperatoL_ is reduced to a classical or quantum means of Eq(14) in the generalized form

(iC—xp)  AF? 0 0
A% Eny) AT 0
W,= 0 A;/z (il = \s) 0 Wy. (16
0 0 0 (iL—Ap_1)

The physical sense of the new variabMk, can be inter- the local current density, local energy density, and local en-
preted as follows. For example, the local density of fluctua-ergy current density can be associated with the dynamic vari-
tions in the physics of continuous media can be identifiecablesW,, with numbersn=1,2,3, correspondingly.

with the initial variableW,,. In this case the fluctuations of One can relate to the set of projection operaidfsto the
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set of orthogonal variable€l4). The last ones project an The kinetic finite-difference Eq$19) and(20) are analogous
arbitrary dynamic variabléviz. a state vectorY on the cor-  to the well-known chain of kinetic equations of the Zwanzig-
responding initial state vectaW,, Mori type. These equations are playing a fundamental role in

the modern statistical mechanics of nonequilibrium phenom-
) ena with continuous time. One can consider the kinetic equa-
n=1lh,  Py=1-1I,, tions (20) as a discrete-difference analogy of hydrodynamic
equations for physical phenomena with discrete time. On the
basis of the initial set of the experimental data one can find
the set of orthogonal variabl&¥,, in the following way:

W wy|
W)

P2=pP,, II,P,=0,

HpIly=6nmlln,  PaPm=0nmPn, Pnll,=0. (17 R A 0
. . . Wo=A7, W1:<E_7\1)A ,
Acting successively by projection operatdds, and P,, on
the finite-difference equationd0) for the normalized dis-

crete memory functions W ( A LW+ A LA

1 17k
(W [1+i7L5)1™W )
M (1) = — e (18) _ B A
(JW,(0)]%) = (N1+Np) F AN+ A AD,

one can obtain a chain of the coupled non-Markov finite- A

difference kinetic equations of the following type: Wsz(m s | Wt A o~ )\1>A° 1)

AM (1) e . .

At MneaMa(D)- TA”“,ZO Mps1(JIMp(t=j7). It seems to us that one could suggest a more physical inter-

(19 pretation of the different terms in the right-hand side of the
three Eqs(21). For example, termXA)/At can be associ-

Here\, is the eigenvalue spectrum of Liouville’s operator atedd ert:AdE(SI;)atlonl teLmA(ZA)/AtZ 'st'm”a_I[htO mr?rtw;] §
it while A is the general relaxation parameter, and termA ;A(t) is related to restoring force. Then the thir
L, while A i 9 xation p finite-difference derivative 3A)/At? is associated with the

. finite-difference form of the Abraham-Lorenz force corre-
WELW — . o -
Z=i M o= (Wh_4(iL )\“+1)W”>, sponding to dissipation feedback due to radiative losses as
(IW,|?) (IW,_4]?) seen from recent experimental evidence in frictional systems

: : N [11].
which were defined before by relationshif5). One can In concrete applications it is necessary to take into ac-
consider the set of the functiorld ,(t) together with the count that the dimension of new state vectas is gradu-

initial TCF (n=0), ally decreasing with the increase of the numberlf the

(A (A" (1)) initial vectorAE has dimensiork then the vector§V,, W,,

Mo(t)=a(t) = —m“‘, —mr, and W3 will have the dimensionk—1, k=2, andk—3,
(|A2(0)]?) correspondingly.

Solving the chain of Eqg.19) under the assumption that
as functions characterizing the statistical memory of theall \;=0, one can find recurrence formulas for memory
complex system with discrete time. The initial T@R) and  functions of arbitrary order in the following form:
the setM,(t) of discrete memory functions appearing from
Eqgs.(19) are playing an important role for the description of
non-Markov and long-range memory effects. Now it is con- Ms(mM7)=— Z Ms(jT)Ms-a[(m+1—j)7]
venient to rewrite the set of Eq$19) as the chain of the =0

m—1

coupled non-Markov discrete equations for initial discrete +teg YMo i [(M+1)7]—Mg_ [ (Mm+2) 7]},
TCF a(t)(t=m7) and represent them in the form
Aa(t) m-1 ss=1°Ag, S=1,23... . (22)

At Ma(t) =iy E Ma(jna(t=jz), By analogy with Ref[11] it is convenient to define the gen-

eralized non-Markov parameter for frequency-dependent
AM (t) m-1 case as follows:

1(t _ .
T:xzmlm—ngo Mo(j )M (t—j7),

_ 172
ei<w)=[“';(“’)] , @3
m-1 Hi(w)
AM2D | Ma(0— A5 S, Ma(iIMa(t—j7)
At 2 3, MUV wherei=1,2, ..., andu;(w) is the power spectrum of the

(20 ith memory function. It is convenient to use this parameter
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for quantitative description of long-range memory effects inquake or explosionaccepted the values 0.9%.98. The ob-

the system considered together with memory functions detained values show the high level of persistency and

fined above. correlation. However, these values can be referred to the
The set of new parameters describes the discrete structuvghole series and cannot reflect the peculiarities of the event.

of the system considered and allows one to extract additiondh other words, the values of the Hurst exponents calculated

information related to non-Markov properties of the complexfor the whole series cannot provide information about pos-

(non-Hamilton systems. sible EQ's or TE’s, which can be characterized by other val-
ues of persistency. In this situation it is necessary to gener-
IIl. LOCAL HURST DIMENSION ANALYSIS alize this parameter and define the notion of the local Hurst

OF SEISMIC DATA exponent.

The local Hurst exponeniThe generalizedlocal) Hurst
The Hurst exponentTypical seismic data are seismic €XPonent can be a sensitive indicator, which gives additional
wave registration written in the form of vibrations of the information about the regular component in the sampling
Earth’'s surface. Many observations as seismograms lead f®nsidered. But the reason for changing the Hurst exponent
random series registrations: technogenic noises, gravimetrid 1S not only the presence of the signal in the sampling
cal, economical, meteorological, and other data. Some progonsidered, but slowfor natural processgsariations of the
erties of such random series can be characterized by tf@rrelated noise itself.

Hurst exponent [14,15. Let & define theith value of the If one considers random series for a relatively long time it
observable variable/¢,) define its mean value on the seg- is logically appropriate to cut the series into short segments

ment containingr registered points. For the cumulative av- 2"d calculate the Hurst exponerifor each of them. In such
erage value we havi(t T)_Et (&—(£),). The rangeR a manner, one can detect the variationdHobn time or in
1) T “~i=1\6i r).

for the given sampling of the random series considered jSome spgtial coordinates.. It is better to use the shortest inter-
defined as follows: vals possible for calculating the local exponéttt). A suf-
ficientnumber of registered points can serve as a criterion for
R(7)=maxX(t,7) —min X(t, 7), (24) choosing the minimal interval for that kind of statistical cal-
culation of the local exponeril. So by analogy with the
at 1<t<r, wheret is discrete time accepting integer values conventional definition of the local temperature in statistical

and 7 is a length of the time sampling considered. physics one can generalize the conception of the Hurst ex-
Normalizing the rangéR on the standard deviatiocBfor =~ ponent and use it for short samplings. The reasons for chang-
the chosen sampling ing the Hurst exponents can be the followin@ slow

changing of the type of correlations inside the noigbsthe

1< 5 presence of the regular signal inside the noises. So, in con-
S(n)=|~ 2’1 {&O—(&4°] (25 crete applications the local Hurst exponent can serve as a
quantitativecharacteristic reflecting the fractal properties of

and analyzing the variations of the normalized range, Hursth® EQ or TE event. It is obvious that the usage of long
[14,15 obtained the following empirical relationship: intervals (1000 registered points and mor®r the calcula-
tion of the local Hurst exponents becomes useless and the

R(7) important question is choosing the acceptable interval for
S (26)  calculating this parameter with high accuracy. The ugus
analysis does not give the acceptable accuracy for the local

whereR is the rangeS s the normalized variance, amtlis ~ Hurst exponent related to short samplings containing 100—
the so-called Hurst exponent for the sampling of the givenl20 points. So it is necessary to change the method of cal-
length&. The valueH = 0.5 corresponds to the normal distri- culation of the local Hurst exponent for short samplings. The
bution sampling, other values correspond to the various de€liable calculation of the Hurst exponent averaged over
grees of correlations, which can be interpreted in terms of thghort samplings turned out to be a nontrivial procedure and
persistent coefficient. One can use the normalized rangeéquired elaboration of stable algorithms adjusted for aver-
method for the definition of the Hurst exponent, but it works@ging of short segments of the given samplings.

well for large samplings containing 1000—10 000 registered We used another definition for the Hurst expongif],

1/2

points. which turned out to be more effective for short samplings.
The calculation of the Hurst exponent for seismic data The best results have been achieved in the usage of the ex-
One can obtain easily the Hurst exponent for Iqagoo—  Pression for the normalized dispersion, which relates differ-

10000 registered pointssamplings[16] by means of the ences of a random function to retardation time
method of the normalized rang®/S analysi$. The Hurst

exponent restoration accuracy calculated on the model data ([Bu(t+7)—Bu(1)1%

) . . . H H 2H.

is located in the interval0.1-1%. For example, if the model V()= B2 (1 =7 (27)
Hurst exponent was chosen as 0.7 then in the result of the (Bh(1)

R/S analysis the restored value is equal to 0.69 with the
changeable third decimal point. The calculated Hurst expohere By (t)==!_,& is an integral random function. As a
nent for the initial seismic noise without an “evenf®arth-  result of numerical experiments it has become possible to
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FIG. 1. The temporal dynam-
ics of the first four dynamic vari-
ables Wy(t), Wy(t), Wo(t),
W;(t): (@)—(d) before strong EQ;
(e)—(h) during strong EQ. During
strong EQ fluctuation scale in-
creases drastically. It makes up

-6
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tir tfg

o

-5
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oo oo 2.5x10° for the initial variable

W, (t), 10 for the first orthogonal

variableW,(t), 10 for W,(t), and

2 for W5(t). The existent trend
vanishes gradually at transition
from the initial variableWy(t) to
the third orthogonal variable
WSs(t). The fluctuation scale de-
creases sharply during the strong

-0. -1
2000 4000 0 2000 4000 0
t[d t[d

-1
2000 4000 0 2000 4000 EQ.
tfg] t[g]

calculate the local Hurst exponent with acceptable accuracgf junior dynamical variables, power spectra of four junior
(4-5 decimal pointsfor samplings containing about 80—120 memory functions, and three first points of statistical spec-

registered points.

IV. NON-MARKOV DISCRETE ANALYSIS
OF SEISMIC DATA

Here we will apply the discrete non-Markov procedure

trum of non-Markovity parameter. We took into account also
the values of numerical parameters characterizing the seis-
mic activity. To analyze time functions we used also the
power spectra obtained by the fast Fourier transform. The
complete analysis exhibits great variety of data.

We used four types of available experimental data courte-

developed in Sec. Il for the analysis of the real seismic dataously given by the Laboratory of Geophysics and Seismol-
The basic problems, which we are trying to solve in thisogy (Amman, Jordanfor the following seismic phenomena:
analysis, are the following. The first problem relates to astrong EQ in Turkeyl) (summer 1998 a weak local EQ in
possibility of seismic activity description by statistical pa- Jordan(ll) (summer 1998 As a TE we had the local under-
rameters and functions of non-Markov nature. The secondround explosion(lll). The case(lV) corresponds to the

problem relates to distinctive parameters and functions focalm state of the Earth before the explosion. All data corre-
differentiation of weak EQ'qwith small magnitudesfrom  spond to transverse seismic displacements. The real temporal
TE’s. The third problem is the most important one and re-step of digitizationr between registered points of seismic
lates to strong EQ's forecasting. With this aim in mind we activity has the following values, viz;= 0,0 for the case I,
analyzed three parts of the real seismogram: before the eveahd 7= 0,01s for the cases II-IV. The graphical information
(EQ and TH, during the event and after the event. A typical is classified as follows:

seismogram contains 4000 registered points. The complete Figures 1-6 are referred to the case I; Figs. 7 and 8 cor-
analysis includes the following information: phase portraitsrespond to the cases Il and Ill considered together; Figs. 9

]

W,
1
o
=)
&

-0.15

-20 -10 10 20

Zo

20 -20 -10
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FIG. 2. The phase portrait pro-
jections on the planes of orthogo-
nal variablesW,, W, (a), Wy, W,
(b), Wy,W; (c) before the strong
EQ (Ib) and Wy, W, (d), Wy, W,
(e), Wy, W5 (f) during the strong
EQ (I). The sharp difference is
distinct for seismic states Ib and I.
The randomization of the phase
portrait for state | begins from
plane Wy, W,. Together with the
difference of the scale of fluctua-
tion, one can observe the asym-
metric distribution of phase clouds
everywhere.
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FIG. 3. The phase portrait pro-
jections on the planes of orthogo-
nal variablesW, , W, (a), Wy,Wj;
(b), W,,W; (c) before the strong
EQ (Ib) and on planesV, ,W, (d),
Wy, W3 (e), W5, Wj (f) during of
strong EQ(I). All phase clouds for
seismic state Ib are symmetrical
as opposed to Figs. 2. Sharply
marked asymmetry and stratifica-
tion of phase clouds, what re-
sembles known situation for myo-
cardial infarction in cardiology,
are observed for state[(d), (e),
and(f)].

FIG. 4. The power spectra of
the two first memory functiongg
and uq: (a),(b) before the strong
EQ (Ib), (c),(d) during the strong
EQ (I). For the case$a), (c), and
(d) we observe fractality and self-
organized criticality(SOQ. SOC
exists for the whole frequency
range for state Ib. However, we
observe restricted SOC i) and
(d) cases only in frequency range
down to 2.5<10°% units of
(27l 7). Restricted SOC is charac-
terized by sharp decreasing of in-
tensity on two orders fofc) and
(d) cases. One can see color
noises nearby 0.1 and 0.2 f.u. for
M1 in state Ib.

FIG. 5. The spectra of two
memory functions u, and us:
(a),(b) before the strong EQ,
(c),(d) and during the strong EQ.
One can observe color noises in
caseqa), (b), and(d). Fractal-like
spectrum on ultralow frequencies
is appreciable in addition to cases
(c) and(d). The spectra for states
Ib and | are sharply different from
each other both to intensity and to
spectral peaks positioning.
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FIG. 6. Frequency spectra of the first three points of non-Markovity parametgts e;: (8)—(c) before the strong EQg)—(f) during
the strong EQ. Markov and quasi-Markov behavior of seismic signals is observed orly ifostate Ib. All remaining case®), (c), (d),
and(e) relate to non-Markov processes. Strong non-Markovity is typical for cdsgse) (state I and for casd€d) (state ). In the behavior
of e,(w) and e3(w) one can see a transition from quasi-Markouiy low frequenciesto strong non-Markovityat high frequencies

and 10 illustrate the case IV. At first we consider the figuresfore [Figs. 2a)—2(c) and Figs. 8a)—3(c)] and during[Figs.
which were obtained from the recordings corresponding t®(d)—2(f) and Figs. 8)-3(f)] EQ.

the states defined dsefore and during strong earthquake The phase portraits of the system analyzed demonstrate
(EQ). Figures 1a)—1(d) (before EQ, state lband Figs. 1e)— strong variations. The last arise owing to the transformation
1(h) (during EQ, state)ldemonstrate the temporal dynamics of the strained state of the earth before the EQ to the state
of four variables Wy(t),W;(t),W,(t),W5(t), which were during the EQ. The most dramatic changes emerge in the
calculated in accordance with Eq$4) and(16). Let us note, phase plane W,,W,) [see Figs. @) and 2d)], plane

that for convenience we use throughout initial variable(W,,W;) [Figs. 2b) and 2e)], plane W,,W;) [Figs. 3b)
W,(t) as a dimensionless variable. From these figures it foland 3e)], and W53, W,;) [Figs.3a) and 3d)]. One can notice
lows that for variableW, the scale difference achieves the strong qualitative variations in the structure of phase por-
value more than 250compare Figs. @) and Xc)]. In com-  traits in the following planes: W;,Wy), (W,,W;), and
parison with the cases Figs(h} and Xc) the Figs. If) and  (W,,W,). Besides, we can see the quantitative change of
1(g) reveal the long-range and low-frequency oscillations forspace scales of dynamic orthogonal variables. The plane pro-
variablesWw; and W,. One can calculate phase portraits in jection (W, W;) remind a strange attractor. The changes of
four-dimensional space of the obtained four dynamical variphase portraits in other planes are less noticeptnenpare
ables Wy, W, ,W,,W; as well. Figures 2 and 3 show six Figs. 4c) and Zf), Figs. 3b), 3(c), 3(e), and 3f)]. The
projections on various two-dimensional planes of states: beweakest change is revealed in the phase portrait in the plane

FIG. 7. The power spectra for
the two first memory functiongg
and u4: (a),(b) during weak EQ,
(c),(d) during technogenic explo-
sion. In cases Ib and | the spectra
are characterized by strong differ-
i . ] ences especially on ultralow fre-
2] o quencies. They have very low in-
tensity for g on low frequencies
[cases(a) and (c)] and colorlike
behavior foru, for states Il and
Il [casegb) and(d)]. Unexpected
peaks exist in system Il in LFR.
The color and intensity distribu-
tion of the spectra is different for
states Il and lIl.

¢)

1072 107! 10° 0 0.1 0.2 0.3 0.4 0.5
w[2 71 o [2 n/1]
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FIG. 8. The frequency spectra of the first three points in statistical spectrum of non-Markovity paramgtere;: (a)—(c) during weak
EQ, (d)—(f) during TE. All spectra are characterized by strong expressed non-Markayityl] for the whole frequency range. Weak
quasi-Markovity is observed near zero frequency for céageand(d) (e; vary from 0.5 up to 6.5 A noticeable difference for states Il and
Il exists in behaviore;(w) in point w=0. Due to this fact, one can develop a reliable approach to differentiation between weak EQ’s and
underground TE's.

(W3,W,). Probably, this phase portrait is less informativetions during EQ[Figs. 4d) and 5c)]| have also the fractal
and encloses quasi-invariant part of the total phase portraistructure. The last one reflects the existence of linear fre-
Besides the spatial scales change of the orthogonal variablgsiency dependence in double-log scale within the LFR,
W3 andW,, other essential deformations of this phase porMFR, and HFR. The similar fractal-like behavior for the
trait were not observed. Turkish strong EQ is preserved for the third memory func-
As it has been mentioned above it is convenient to anation for the state during EQsee Fig. &d)].
lyze the power spectra for comparison of memory functions. Figure 6 demonstrates the power spectra of the first three
One can divide these spectra into the following regions: ulpoints of the statistical spectrum of non-Markovity parameter
tralow frequency rang@JLFR), low-frequency rangéLFR),  for the states before Figs(&—6(c) and during Figs. @ —
middle-frequency rangéMFR), and high-frequency range 6(g) the strong EQ. One can make the following conclusions
(HFR). Figures 4 and 5 demonstrate spectra of four memoryrom Figs. &a)—6(d). On the first level of relaxation process
functions My,M,,M,,M; before and during EQ. Before [see, Fig. €a)] the strained state of the Earth’s crust before
[Fig. 4@)] and during EJFig. 4(c)] the power spectrum of EQ can be associated with Markov and quasi-Markov behav-
the initial TCF M, has a fractal form 1® in double-log ior in ULFR and LFR, correspondingly. The influence of
scale. One can observe a peak in ULARg. 4(c)] during  non-Markov effects is reinforced in MFR with >510 2
EQ. The power spectra of the first and second memory fund:u.<w<10"1 f.u., (1 f.u=2#/7). Strong non-Markovity of

10 120
a) 100 o) 1
el ] @ ] FIG. 9. The power spectra of
© € memory  functions  ug(w),
= = #1(0), p2(0), andus(w) for the
10 1 40 1 calm state of the Earth before ex-
2OL 1 plosion. All functions u;(w), i
102 ol PR =0,1,2,3 have approximately
107 10° o2 107 10’ 0 o o2 oe 05 similar fractal behavior with re-
- . 200 ‘ , ‘ ‘ stricted SOC and color noise_s
9 d) close to 0.2 and 0.4 f.u. The maxi-
150 | mum of intensity emerges close to
1 I the frequency 103 fu. A
% %100 ] slight change and redistribution of
Ey | @ intensity of power spectra occur
50 . with the increase of order of
o . . OL o ALJ““‘ Ll memory function.
107 1072 107! 10° 0 0.1 02 03 0.4 0.5
w2 w [2 /7]

066132-9



RENAT YULMETYEV et al. PHYSICAL REVIEW E 64 066132

0 0.1 0.2 0.3 0.4 05 o 0.1 0.2 0.3 0.4 0.5
w [2 7/ w [2 w/1]

0.1 0.2 0.3 0.4 0.5
w[2 x/)

FIG. 10. The power spectra of the first three points in statistical spectrum of non-Markovity parametgi; for calm state of the
Earth before explosioflV). Due to similar frequency behavior of all memory functigng ) the functionse;(w), i=1, 2, and 3 have
approximately similar frequency behavior and, therefore, demonstrate strong non-Markovity on all levels. The initial pagptisr
non-Markovian with the exception of slight quasi-Markovity close to low frequencies below 0.1 f.u. As a result of this the possibility appears
for forecasting the strong EQ’s by registration of disappearance of strong non-Markovity and appearance of pronounced Markov time effects.

the processes considered o) w) takes place in HFR with  u;(w) characterizing the long-range memory effects in seis-

10! f.u.<w<0.5 f.u. Simultaneously we have the numerical mic activity. This new criterion allows to tell definitely a

valuese,(w),e3(w)~1 in the whole frequency regidsee, weak EQ from a TE, viz, to differentiate case Il from case

Figs. @b) and Gc)]. But this behavior implies that strong |lI.

non-Markovity effects are observed in these cases. A close examination of Figs.(8 and &d) shows that this
The similar picture becomes unrecognizable for seismigjistinction appear in frequency behavior of the first point of

state during the strong E@3ee, Figs. @))—6(f)]. First, itis  non-Markovity parametee,(w) close to the zero poini

immediately obvious that,(w)~1 on first relaxation level. _q Specifically, the ratio of values,;(0) for weak EQ and
Second, the second and third relaxation levels are nonrp equale! (0)/¢'(0)=0.92/0.571.61

Markovian[see, Figs. @) and &f)]. Thus, the behavior of

seismic signals during the strong EQ is characterized b

strong non-Markovity on the whole frequency region.
Figure 7 depicts power spectra of MM, and M, for

Let us to analyze the results of seismic activity character-
Yzing the calm earth state. Figures 9 and 10 present the re-
sults of this analysis. They will be useful for the comparison

seismic states Il and lll. Figure 8 shows spectra of the firsi’vIth the results obtained for. EQ's and TE's. The_ propgnons
three points of non-Markovity parameter(w),i=1,2,3. ©f the phase cloud on all six planew/(,W;), i#] exhibit
The preliminary results suggest that there is remarkable dif@PProximately the similar distribution of phase points. The
ference between weak EQ’s and TE’s especially in the areBOWer spectra for the memory functions with the same parity
of low frequencies. (see, Fig. 9have a similar form. For example, for even order
The analysis of the phase portrait for weak EQ’s and unfunctionsuo(w) andu,(w) one can notice sharp peaks near
derground TE's leads to the following conclusions. First,the frequency 0.2 f.Usee, Figs. 9 and(§)]. In the spectrum
these portraits cannot be differentiated. It can be seen frorf the senior functionu,(w) [see Fig. &)] additional peaks
the range of spatial scales of the dynamical varialdlesand  in HFR appears. One can notice two groups of characteristic
W; and from the analysis of the phase points distributionpeaks near 0.2 f.u. and 0.4 f.u in odd memory functions
forms. Second, it is necessary to remark some peculiarities ip,(®) and uz(w) [Figs. 9b) and 9d)]. With the increase of
power spectra of;(w), i=0,1 (see, Fig. 7 for the cases Il order of the memory function the pumping over effect of
and lIl. All these spectra have distinctive similarities for the peak intensities from the MFR to the HFR takes place. The
memory functiondM;(t) with numbersi=0, 1. The charac- frequency behavior of the three points of non-Markov pa-
ter and the form of the spectra considered for the cases Il anémeters,(w), e,(w), andez(w) appeared to be practically
[ll are very similar to each other. The same similarity isthe same. The behavior of the functioggw) exhibits the
observed for the three non-Markovity parametefw), i typical non-Markov character with small oscillations of ran-
=1,2,3(see Fig. & dom nature at LFR. The spectral characteristics of the system
Nevertheless, the analysis of the power frequency spectily are very useful in comparison to the results obtained for
allows to extract distinctive specific features between théhe system (before strong EQ
weak EQ’'s and the TE's. Such quantitative criteria can be Our observation shows that the zero point values of non-
associated with frequency spectra of memory functiondVarkovity parameters for calm earth state are equal
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7 FIG. 11. The typical temporal
= behavior of the Hurst exponent
H(t) calculated for EQ’s. One can
see sharp decreasing &f(t) on
15% during EQ. After that a
gradual restoring of the Hurst ex-
ponentH(t) to normal value~1
takes place.

8000
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0.9

0.85 | | | | |
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e1V(0):¢1Y(0):£5/(0)~4.99:0.947:0.861. These values arethe phase portraits demonstrates the following peculiarities.
convenient for the comparison with similar values for theln the phase portraits calculated for the senior dynamical
earth seismic state before the strong EQ:variables W, ,W;), (W5,W;), and W5,W,) obtained for
£1(0):e5(0):85(0)~214.3:0.624:0.727. The change of ratio cases | and IV the distinctions are not noticedlsiee Figs.
of the two first non-Markovity parameters,(0)/e,(0) is  3(a) and 3b)]. These distinctions become noticeable in the
particularly striking . This ratio is equal to 5.27 for the calm phase portraits of junior variable®\W; ,Wy), (W,,W;), and
earth state, then it comes into particular prominence for th¢ W;,W,) [see Figs. @)—2(c)]. One can observe a gradual
state before strong EQ@? (0)/e5(0)~343.4. Thus, this ratio  stratification of the phase clouds with the growth of elastic
changes approximately in 60 times. Hence, the behavior afleformations before the strong EQ. It is necessary to recall
this numerical parameter is operable as a reliable diagnostitie double frequency difference for systems | and IV when
tool for the strong EQ prediction. The foregoing proves thatcomparing the frequency plots. The dependenggw),
the indicated value drastically increases in process of nearing,(w), w,(w), and uz(w) for systems | and I\{see Figs.
to strong EQ. 4(a), 4(b), 5(a), 5(b), and 9a)—Ad)], is approximately simi-
Finishing this section, we give some preliminary suggesiar, and qualitative difference is not noticeable. One can no-
tions relating to the strong EQ forecasting. They are relatedice some visual difference only for two spectra: for the third
in comparison of frequency spectra obtained for the calmmemory function spectrunz;(w) and for the ULFR of the
Earth (Figs. 9 and 1pand seismic activity data registered memory functionug(w). So the power spectra of memory
beforea strong EQ see Figs. @)—2(c); 3(a)—3(c); 4(a) and  functions can be used for the strong EQ forecasting. One can
4(b); 5(a) and 3b); and &a) and Gb)]. The comparison of notice the similar changes in the behavior of the functions

x107°
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0.005

N
=

FIG. 12. The comparative
analysis of the Hurst exponent
H(t) behavior during the weak
. . 2000 4000 6000 8000 10000 EQ (@),(c) and for the TE(b),(d).
tl X 10° thl During the weak EQ's one can see
15 . . , , sharp decreasing dfi(t) on 15%

d) and almost 90% during the TE.

These observations enable us to
develop an approach to differenti-

¥ ate the TE's from weak EQ’s.
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TABLE |. Set of kinetic non-Markov parameters of discrete stochastic processes in various seismic states.

Before strong During strong During weak  During TE, Calm state of

EQ, Ib EQ, | EQ, Il i Earth, IV
N1 (units of 7~ l) —0.0052275 —0.00010709 —0.32465 —0.17203 —0.22972
N\, (units of 7-*1) —0.61788 —0.00058654 —-0.81717 —0.84403 —0.96049
N3 (units of 7-*1) —0.85737 —0.20212 —1.0147 —1.0076 —0.99313
A (units of 72 0.0040768 0.00011576 0.14726 0.059232 0.021134
A5 (units of 7’2) 0.31541 4.5948e-005 —0.034187 —0.032079 0.11266
£1(0) 214.3 1.52 0.92 0.57 4.99
£5(0) 0.624 8.67 1.02 1.008 0.947
£5(0) 0.727 6.77 1.02 1.007 0.861
7(S) 0.02 0.02 0.01 0.01 0.01
€1(w), e(w) and e3(w) [see Figs. @)—6(c) and 1@a)— memory in the behavior of seismic signals opens up new

10(c)]. So one can conclude that careful investigations offields of use in the analysis of the Earth’s seismic activity.
frequency behavior of memory functions(w) and func- We can state with assurance that the differences under obser-
tions €;(w) describing the statistical non-Markovity param- vation favor the view that the non-Markov parameters of our
eters provide an accurate guantitative method of the strontheory will be available for strong EQ forecasting and differ-
EQ forecasting. It is necessary to investigate carefully theentiation of TE’s from weak EQ's.
power spectra with the accurate localization of an object and
source, generating seismic signals, for further elaboration of
this method.

For a more complete understanding of non-Markov prop-
erties of seismic signals we give some kinetic parameters of
our theory in Tables I-Ill. In Table | the full sets of kinetic  Available data for the calculation of the local Hurst expo-
parameters describing non-Markov stochastic processes iments contains 3000—5000 registered points describing the
five various seismic states have been presented: before stromgible part of a wavelet. This number of the recorded points
EQ (Ib), during strong EQI), during weak EQ(l), during  allows one to use the procedure of the local Hurst exponent
TE (lll), and for the calm Earth stat¢/). The data cited in  H(t) calculation. For the realization of the procedure de-
this table are indicative of nonequilibrium propertiparam-  scribed in Sec. Il it is necessary to divide the whole sam-
etershy, A,, and\3), long-range memory effectaram-  pling containing 25000 points into small intervals of 100—
etersA, andA,), and non-Markov peculiaritielpparameters 200 points, where the local Hurst exponent is supposed to be
£1(0), £,5(0), ande3(0)]. The differences under observation constant. In Fig. 11 we show a typical plot of the function
for various seismic states are sufficient to allow definite conH(t) calculated for a typical EQ. The same feature$i¢f)
clusions. behavior are conserved for a wide class of available weak

For purposes of clarity, Table Il illustrates the comparisonEQ’s. Then we obtained the calculated values of the local
of specific kinetic non-Markov parameters for two seismicHurst exponentsH(t) for available EQ's and explosions.
states: before strong EQb) and calm Earth state$V). As  Figure 12 exhibits the typical behavior of these functions.
will be seen from Table Il, differences of parameters forThe sharp decreasing (0.1) of the local Hurst function during
these two states vary within a broad range: from@®&am-  “an event” is typical for explosions. Then the values of the
eter A,) to 44.0[for parameter1(0)]. Similarly, Table Il function H(t) are relaxing slowly to their initial values. For
contains comparison data for the other two seismic state€£Q’s one can notice a more gradual changeH¢f) before
during weak EQII) and during underground T&). Differ-  the event. The relaxation ¢ (t) starts from higher (0.85)
ences of parameters in this case are established within mot@lues and it comes back faster to its initial values in com-
narrow limits: from 2.486(for parameterA ;) to 1.614[for  parison with explosions. Such behavior is preserved for weak
parametek(0)]. signals, when the rati®/N decreases. For these cases the

Thus, the existence of discreteness and long-range

V. LOCAL HURST EXPONENT CALCULATIONS
FOR AVAILABLE EARTHQUAKES AND TECHNOGENIC
EXPLOSIONS DATA

TABLE Ill. Comparison of kinetic non-Markov parameters for
TABLE Il. Comparison of kinetic non-Markov parameters for two seismic states: during weak E@) and during underground TE
two seismic states: before strong E®) and calm Earth stat@V). ().

Ratio of eP(0)/eY(0) AP APIAY  ARIAY Ratio of AYIAY A 1 (0)/e}'(0)
parameters parameters

Numerical 42.94 1:22.0 1:1.3 1:.0.7 Numerical 2.486 1.887 1.614
value value
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criterion of EQ or TE distinction is related to the amplitude = The main advantage of our two methods is a great amount
of the Hurst exponent change during the analyzed event. It isf supplementary information about the properties of seismic
necessary to increase the number of registered points per usignals. The problem is its correct application. What kinds of
of real time in order to obtain a more distinctive picture, possibilities can one expect? It is possible to answer as fol-
which can be more useful in differentiation of these events. fows. First, our preliminary study, convincingly demonstrates
is related to the fact that the SenSitiVity of correlations of athat the re'evant and Va'uable information on non_MarkOV
random fractal value changing is associated with the lowepnq giscrete properties of the system considered is contained
temporal limit of the corresponding measurements. Thg, seismic signals. In all the studied systefhslV) we have
smoothed change df(t) obtained for EQ's opens a possi- tqng out unique manifestations of Markov, quasi-Markov,
bility of more accurate registration ¢f(t) before the visual ;.4 hon-Markov processes on the particular behavior of the
wavelet of EQ's. signals in a broad range of frequencies.

Similar results cannot be obtained, in principle, by other
methods used in the analysis of seismic activity.

We want to stress here again that these presented methodssecond, in the nonlinear non-Markov characteristics some
have been applied successfully for differentiation of EQ'sOf well-known spectral effects are evident. Among them the
from TE’s. We hope that the results of this analysis can bdollowing effects are exhibited noticeably: fractal spectra
applied to a set of phenomena related with differentiation ofvith an exponential functiow™“, which are connected to
similar signals of different nature. With the result of this the phenomenon of usuébOQ and restrictedRSOQ self-
analysis we received a new possibility of forecasting strongrganized criticality[17—19, behavior of some frequency
EQ’s approaching, analyzing only seismograms recorded fogpectra in the form of white and color noises. Third, the
transverse seismic waves. Second, we received a sufficieflequency spectra introduced above are characterized by the
amount of information for the definite differentiation of weak particular alternation of Markovfracta) and non-Markov
EQ’s from TE's. spectra(such as color or white noisesThe similar alterna-

In this paper we have presented the results of applicatiofon resembles in particular the peculiar alternation of effects
of two methods for the study of dynamic, kinetic, and spec-of a Markov and non-Markov behavior for hydrodynamic
tral properties of seismic signals depicting EQ and TE modusystems in the statistical physics of condensed matter de-
lation. By the discrete non-Markov stochastic processes anggcted in paperf20,21] for the first time. The fine specifica-
the local Hurst exponent analysis we have found explicitlytion of such alternation appears essentially different for stud-
some features of several different states of the Earth’s crusigd states 1-IV. These features allow us to view
states of the Eartheforeandduring strong and weak EQ's, gptimistically the solution of the problem of forecasting

during TE's. The used methods allow us to present the seisstrong EQ's and differentiation TE's from weak EQ’s.
mogram analyzed in the form of a set non-Markov variables

and parameters. They contain a great amount of the qualita-
tive and quant'ita'tive infqrma_tion abqut sejsmic activity._ ACKNOWLEDGMENTS
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