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The basic scientific point of this paper is to draw the attention of researchers to new possibilities of
differentiation of similar signals having different nature. One example of such kinds of signals is presented by
seismograms containing recordings of earthquakes~EQ’s! and technogenic explosions~TE’s!. EQ’s are among
the most dramatic phenomena in nature. We propose here a discrete stochastic model for possible solution of
a problem of strong EQ forecasting and differentiation of TE’s from the weak EQ’s. Theoretical analysis is
performed by two independent methods: by using statistical theory of discrete non-Markov stochastic pro-
cesses@Phys. Rev. E62, 6178 ~2000!# and the local Hurst exponent. The following Earth states have been
considered among them: before~Ib! and during~I! strong EQ, during weak EQ~II ! and during TE~III !, and in
a calm state of Earth’s core~IV !. The estimation of states I, II, and III has been made on the particular
examples of Turkey~1999! EQ’s, state IV has been taken as an example of Earth’s state before underground
TE. Time recordings of seismic signals of the first four dynamic orthogonal collective variables, six various
planes of phase portrait of four-dimensional phase space of orthogonal variables and the local Hurst exponent
have been calculated for the dynamic analysis of states of systems I–IV. The analysis of statistical properties
of seismic time series I–IV has been realized with the help of a set of discrete time-dependent functions~time
correlation function and first three memory functions!, their power spectra, and the first three points in the
statistical spectrum of non-Markovity parameters. In all systems studied we have found a bizarre combination
of the following spectral characteristics: the fractal frequency spectra adjustable by phenomena of usual and
restricted self-organized criticality, spectra of white and color noises and unusual alternation of Markov and
non-Markov effects of long-range memory, detected earlier@J. Phys. A27, 5363 ~1994!# only for hydrody-
namic systems. Our research demonstrates that discrete non-Markov stochastic processes and long-range
memory effects play a crucial role in the behavior of seismic systems I–IV. The approaches, permitting us to
obtain an algorithm of strong EQ forecasting and to differentiate TE’s from weak EQ’s, have been developed.

DOI: 10.1103/PhysRevE.64.066132 PACS number~s!: 02.50.2r, 05.40.2a, 05.65.1b
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I. INTRODUCTION

Earthquakes are among the most mysterious and dram
phenomena occurring in nature. As a result of sets and br
ups of the terrestrial cortex or higher part of the mantle, o
hundreds of thousands of underground pushes and fluc
tions of the Earth’s surface occur annually. They propag
over long distances in the form of elastic seismic wav
Nearly thousands of them are registered by people. Annu
nearly a hundred earthquakes~EQ’s! cause catastrophic con
sequences: they affect large communities of people and
to great economic losses.

For the study of the basic mechanisms underlying its
ture, modern numerical and statistical methods are used
in modeling and understanding the EQ phenomenon. In
pers @1,2# the modified renormalization group theory wi
complex critical exponents has been studied for implicati
of EQ predictions. Long-periodic corrections found fit we
the experimental data. Then universal long-periodic corr
tions based on the modified renormalization group the
have been used successfully@3# for possible predictions o

*Email address: rmy@dtp.ksu.ras.ru
†Email address: gfm@dtp.ksu.ras.ru
1063-651X/2001/64~6!/066132~14!/$20.00 64 0661
tic
k-
r
a-

te
.

ly,

ad

-
w

a-

s

c-
y

the failure stress phenomenon foregoing an EQ. The fai
stress data are in a good reliability with acoustic emiss
measurements. In paper@4# it has been shown that the long
periodic corrections are of a general nature; they are rela
to the discrete scale invariance and complex fractal dim
sion. This idea has been checked in Refs.@5,6# for diffusion-
limited-aggregate clusters. The paradox of the expected t
until the next EQ with an attempt to find acceptable dis
bution is discussed in Ref.@7#. A new explanation of
Guttenberg-Richter power law related to the roughness of
fractured solid surfaces has been outlined in Ref.@8#. Recent
achievements and progress in understanding of the com
EQ phenomena from different points of view are discuss
in the recent review@9#. New numerical methods such a
wavelets and multiscale singular-spectrum analysis in
treatment of seismic data are considered in Ref.@10#.

All these previous methods have been developed for
derstanding the statistical and nonstationary properties
EQ’s and technogenic explosions~TE’s!. But in this paper
we would like to demonstrate some possibilities related
tially to differentiation of EQ’s from TE’s. This problem ha
not only scientific significance related to recognition of sim
lar signals having physical origin, but in recent times it h
been related also to some political problems associated
testing of nuclear explosions.
©2001 The American Physical Society32-1
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Seismic data are an object of careful analysis and num
ous methods of their treatment are used, especially for
forecasting of EQ’s with strong magnitudes. In spite of
wide application of approaches based on nonlinear dynam
methods, the Fourier and wavelet transformations, etc.,
have essential limitations, which narrow down the range
applicability of the results obtained. One of the main limit
tions is that the discrete character of the seismic signal
istration is not taken into account. Another factor, whi
should be taken into account, is related to the influence
local time effects. Alongside the discreteness and the lo
behavior of the seismic signals considered here exists
third peculiarity, viz, the influence of long-range memo
effects.

In this paper, we present one of the possible solution
forecasting strong EQ’s and differentiating TE’s from we
EQ’s. In this presentation we consider three important fac
for seismic signals registered in the form of seismogra
discreteness, long-range memory, and local time beha
Two methods are used to analyze these three factors.
first one is based on seismograms considered in the form
a discrete non-Markov statistical process along with anal
of corresponding phase portraits, memory functions, and
non-Markovity parameters. The second method is based
the generalized conception of the Hurst exponent. Th
methods have been used for a careful analysis of seismic
and to differentiate EQ’s from TE’s. The results obtain
with the use of these methods are useful in the recognitio
specific features of EQ’s and TE’s and can be used for str
EQ forecasting.

The paper is organized as follows. In Sec. II we descr
in brief the stochastic dynamics of time correlation in co
plex systems containing seismic signals by the discrete n
Markov kinetic equations. The local fractal dimension a
the corresponding Hurst exponent are defined in the Sec
The real data treatment with the use of non-Markov conc
tions has been realized in the Sec. IV. Section V conta
some results obtained by the local Hurst exponent meth
The basic conclusions are discussed in the final Sec. VI

II. THE KINETIC DESCRIPTION OF DISCRETE
NON-MARKOV RANDOM PROCESSES

In a recent paper@11# the statistical theory of discret
non-Markov random processes has been developed. The
sic elements, which are necessary for an understandin
other sections, are presented in brief here. In accordance
Refs. @11–13# the fluctuations of random variabledxj
5dx(T1 j t), j 50,1, . . . ,N21 of a complex system can b
represented ask-component state vector

Ak
0~0!5~dx0 ,dx1 ,dx2 , . . . ,dxk21!

5„dx~T!,dx~T1t!…, . . . ,dx„T1~k21!t…. ~1!

Here t is a finite discretization time,dxj and ^x& define
fluctuations and mean value correspondingly, andT is the
beginning of the time series. They are defined by conv
tional relationships
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dxj5xj2^x&, ^x&5
1

N (
j 50

N21

x~T1 j t!. ~2!

The set of state vectors forms a finite-dimensional Euclid
space, where the scalar product of two vectors can be defi
as

^A•B&5 (
j 50

k21

AjBj . ~3!

The time dependence of the vectorA can be defined as resu
of discretem-step shift

Am1k
m ~ t !5$dxm ,dxm11 ,dxm12 , . . . ,dxm1k21%

5$dx~T1mt!,dx„T1~m11!t…,

dx„T1~m12!t…, . . . ,dx„T1~m1k21!t…%,

~4!

where t5mt and t is a finite time step. Statistical param
eters~absolute and relative variances! can be expressed b
means of the scalar product of two vectors as follows:

s25
1

N
^AN

0
•AN

0 &5N21$AN
0 %2,

d25
^AN

0
•AN

0 &

N^X&2
.

We define the evolution operator for the description of ev
lution of the variablesdxj as follows:

dxj 11„T1~ j 11!t…5U„T1~ j 11!t,T1 j t…dxj~T1 j t!

5U~t!dxj . ~5!

One can write formally the discrete equation of motion
the use of evolution operatorU(t) in the form

Dx~ t !

Dt
5

x~ t1t!2x~ t !

t
5

1

t
$U~ t1t,t !21%x~ t !. ~6!

The normalized time correlation function~TCF! can be rep-
resented by Eqs.~1! and ~4! ~wheret5mt is discrete time!
as follows:

a~ t !5
^Ak

0
•Am1k

m &

^Ak
0
•Ak

0&
5

^Ak
0~0!•Am1k

m ~ t !&

^Ak
0~0!2&

. ~7!

From the last equation~7! one can see that TCFa(t) is
obtained by projection of the final state vectorAm1k

m (t) ~4!
on the initial state vectorAk

0(0). Because of this property
one can write the projection operator in the linear space
state vectors

PAm1k
m ~ t !5Ak

0~0!
^Ak

0~0!Am1k
m ~ t !&

^uAk
0~0!u2&

5Ak
0~0!a~ t !. ~8!
2-2
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The projection operatorP has the following properties:

P5
uAk

0~0!&^Ak
0~0!u

^uAk
0~0!u2&

, P25P, P512P,

P25P, PP50, PP50. ~9!

The projection operatorsP andP are idempotent and mutu
ally complementary. ProjectorP projects on the direction o
initial state vectorAk

0(0), while the projectorP projects all
vectors on the direction that is orthogonal to the previo
one. Let us apply the projection technique in the state vec
space for deduction of the discrete finite-difference equa
of motion

D

Dt
Am1k

m ~ t !5 i L̂ ~ t,t!Am1k
m ~ t !,

L̂~ t,t!5~ i t!21$U~ t1t,t !21%. ~10!

The first expression defines the Liouville’s quasioperatoL̂
and the second expression defines the evolution ope
U(t). Transferring from vectorsAm1k

m to a scalar value of the
TCF a(t) by means of suitable projection procedure one c
obtain the closed finite-difference equation for the init
TCF,

Da~ t !

Dt
5l1a~ t !2tL1 (

j 50

m21

M1~ j t!a~ t2 j t!. ~11!

HereL1 is the relaxation parameter while the frequencyl1

defines the eigenspectrum of Liouville’s quasioperatorL̂ in
the following way:

l15 i
^Ak

0~0!L̂Ak
0~0!&

^uAk
0~0!u2&

, L15
^Ak

0L̂12L̂21Ak
0~0!&

^uAk
0~0!u2&

.

~12!

The standard equation of motion is obtained easily from E
~6! and ~10! by means of the limitt→0. In this case Liou-
ville’s quasioperatorL̂ is reduced to a classical or quantu
ua
e
f
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Liouvillian and is defined correspondingly by the classical
quantum Hamiltonian of the system considered. The giv
approach is true for non-Hamiltonian systems of arbitra
nature when the Hamiltonian cannot be written together w
conventional equations of motion. The functionM1( j t) on
the right-hand side of Eq.~11! is the first order memory
function

M1~ j t!5
^Ak

0~0!L̂12$11 i tL̂22%
j L̂21Ak

0~0!&

^Ak
0~0!L̂12L̂21Ak

0~0!&
, M1~0!51.

~13!

Here we use the following notation for the matrix elemen
of the splittable Liouvillian quasioperatorL̂ i , j5P i L̂P j , i , j
51,2, P15P, P25P, L̂115PL̂P, L̂125PL̂P, L̂21

5PL̂P, L̂225PL̂P. Equation~11! can be considered as th
first equation of the finite-difference kinetic equations cha
with memory for the discrete TCFa(t). In paper@11# it has
been demonstrated that using Gramm-Schmidt orthogo
ization procedure one can define the dynamic orthogo
variablesWn(t) by means of the following recurrence rela
tionships:

W05Ak
0~0!, W15$ i L̂ 2l1%W0 ,

Wn5$ i L̂ 2ln21%Wn211Ln21Wn22 1¯, n.1.
~14!

Here we introduce the fundamental eigenvaluesln and re-
laxationLn parameters as follows:

ln5 i
^WnL̂Wn&

^uWnu2&
, Ln52

^Wn21~ i L̂ 2ln11!Wn&

^uWn21u2&
.

~15!

Parametersln are very similar to Lyapunov’s exponents.
all parameters of Eq.~14! for W except forln21 andLn21
are equal to zero, arbitrary orthogonal variablesWn can be
expressed directly via the initial variableW05Ak

0(0) by
means of Eq.~14! in the generalized form
Wn5U ~ i L̂ 2l1! L1
1/2 0 . . . 0

L1
1/2

~ i L̂ 2l2! L2
1/2 . . . 0

0 L2
1/2

~ i L̂ 2l3! . . . 0

0 0 0 . . . ~ i L̂ 2ln21!
UW0 . ~16!
en-
ari-
The physical sense of the new variablesWn can be inter-
preted as follows. For example, the local density of fluct
tions in the physics of continuous media can be identifi
with the initial variableW0. In this case the fluctuations o
-
d

the local current density, local energy density, and local
ergy current density can be associated with the dynamic v
ablesWn with numbersn51,2,3, correspondingly.

One can relate to the set of projection operatorsPn to the
2-3
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set of orthogonal variables~14!. The last ones project a
arbitrary dynamic variable~viz. a state vector! Y on the cor-
responding initial state vectorWn

Pn5
uWn&^Wn* u

^uWnu2&
, Pn

25Pn , Pn512Pn ,

Pn
25Pn , PnPn50,

PnPm5dn,mPn , PnPm5dn,mPn , PnPn50. ~17!

Acting successively by projection operatorsPn and Pn on
the finite-difference equations~10! for the normalized dis-
crete memory functions

Mn~ t !5
^Wn@11 i tL̂22

(n)#mWn&

^uWn~0!u2&
, ~18!

one can obtain a chain of the coupled non-Markov fini
difference kinetic equations of the following type:

DMn~ t !

Dt
5ln11Mn~ t !2tLn11 (

j 50

m21

Mn11~ j t!Mn~ t2 j t!.

~19!

Hereln is the eigenvalue spectrum of Liouville’s operat
i L̂ , while Ln is the general relaxation parameter,

ln5 i
^Wn* LWn&

^uWnu2&
, Ln52

^Wn21~ i L̂ 2ln11!Wn&

^uWn21u2&
,

which were defined before by relationships~15!. One can
consider the set of the functionsMn(t) together with the
initial TCF (n50),

M0~ t !5a~ t !5
^Ak

0~0!Am1k
m ~ t !&

^uAk
0~0!u2&

, t5mt,

as functions characterizing the statistical memory of
complex system with discrete time. The initial TCFa(t) and
the setMn(t) of discrete memory functions appearing fro
Eqs.~19! are playing an important role for the description
non-Markov and long-range memory effects. Now it is co
venient to rewrite the set of Eqs.~19! as the chain of the
coupled non-Markov discrete equations for initial discre
TCF a(t)(t5mt) and represent them in the form

Da~ t !

Dt
5l1a~ t !2tL1 (

j 50

m21

M1~ j t!a~ t2 j t!,

DM1~ t !

Dt
5l2M1~ t !2tL2 (

j 50

m21

M2~ j t!M1~ t2 j t!,

DM2~ t !

Dt
5l3M2~ t !2tL3 (

j 50

m21

M3~ j t!M2~ t2 j t!.

~20!
06613
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The kinetic finite-difference Eqs.~19! and~20! are analogous
to the well-known chain of kinetic equations of the Zwanzi
Mori type. These equations are playing a fundamental role
the modern statistical mechanics of nonequilibrium pheno
ena with continuous time. One can consider the kinetic eq
tions ~20! as a discrete-difference analogy of hydrodynam
equations for physical phenomena with discrete time. On
basis of the initial set of the experimental data one can fi
the set of orthogonal variablesWn in the following way:

Ŵ05Ak
0 , Ŵ15S D

Dt
2l1DAk

0 ,

Ŵ25S D

Dt
2l2DW11L1Ak

0

5H S D

Dt D
2

2
D

Dt
~l11l2!1l1l21L1J Ak

0 ,

Ŵ35S D

Dt
2l3DW21L2S D

Dt
2l1DAk

0 . ~21!

It seems to us that one could suggest a more physical in
pretation of the different terms in the right-hand side of t
three Eqs.~21!. For example, term (DA)/Dt can be associ-
ated with dissipation, term (D2A)/Dt2 is similar to inertia,
and termL1A(t) is related to restoring force. Then the thir
finite-difference derivative (D3A)/Dt3 is associated with the
finite-difference form of the Abraham-Lorenz force corr
sponding to dissipation feedback due to radiative losses
seen from recent experimental evidence in frictional syste
@11#.

In concrete applications it is necessary to take into
count that the dimension of new state vectorsWn is gradu-
ally decreasing with the increase of the numbern. If the
initial vector Ak

0 has dimensionk then the vectorsW1 , W2,
and W3 will have the dimensionsk21, k22, and k23,
correspondingly.

Solving the chain of Eqs.~19! under the assumption tha
all ls50, one can find recurrence formulas for memo
functions of arbitrary order in the following form:

Ms~mt!52 (
j 50

m21

Ms~ j t!Ms21@~m112 j !t#

1«s
21$Ms21@~m11!t#2Ms21@~m12!t#%,

«s5t2Ls , s51,2,3, . . . . ~22!

By analogy with Ref.@11# it is convenient to define the gen
eralized non-Markov parameter for frequency-depend
case as follows:

e i~v!5H m i 21~v!

m i~v! J 1/2

, ~23!

where i 51,2, . . . , andm i(v) is the power spectrum of the
i th memory function. It is convenient to use this parame
2-4
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for quantitative description of long-range memory effects
the system considered together with memory functions
fined above.

The set of new parameters describes the discrete stru
of the system considered and allows one to extract additio
information related to non-Markov properties of the comp
~non-Hamilton! systems.

III. LOCAL HURST DIMENSION ANALYSIS
OF SEISMIC DATA

The Hurst exponent. Typical seismic data are seism
wave registration written in the form of vibrations of th
Earth’s surface. Many observations as seismograms lea
random series registrations: technogenic noises, gravim
cal, economical, meteorological, and other data. Some p
erties of such random series can be characterized by
Hurst exponentH @14,15#. Let j i define thei th value of the
observable variable,̂jt& define its mean value on the se
ment containingt registered points. For the cumulative a
erage value we haveX(t,t)5( i 51

t (j i2^j& r). The rangeR
for the given sampling of the random series considered
defined as follows:

R~t!5maxX~ t,t!2minX~ t,t!, ~24!

at 1,t,t, wheret is discrete time accepting integer valu
andt is a length of the time sampling considered.

Normalizing the rangeR on the standard deviationS for
the chosen samplingj i

S~t!5S 1

t (
i 51

t

$j~ t !2^j&t%
2D 1/2

, ~25!

and analyzing the variations of the normalized range, Hu
@14,15# obtained the following empirical relationship:

R~t!

S~t!
5tH, ~26!

whereR is the range,S is the normalized variance, andH is
the so-called Hurst exponent for the sampling of the giv
lengthj. The valueH50.5 corresponds to the normal distr
bution sampling, other values correspond to the various
grees of correlations, which can be interpreted in terms of
persistent coefficient. One can use the normalized ra
method for the definition of the Hurst exponent, but it wor
well for large samplings containing 1000–10 000 registe
points.

The calculation of the Hurst exponent for seismic da.
One can obtain easily the Hurst exponent for long~1000–
10 000 registered points! samplings@16# by means of the
method of the normalized range (R/S analysis!. The Hurst
exponent restoration accuracy calculated on the model
is located in the interval~0.1–1%!. For example, if the mode
Hurst exponent was chosen as 0.7 then in the result of
R/S analysis the restored value is equal to 0.69 with
changeable third decimal point. The calculated Hurst ex
nent for the initial seismic noise without an ‘‘event’’~earth-
06613
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quake or explosion! accepted the values 0.9620.98. The ob-
tained values show the high level of persistency a
correlation. However, these values can be referred to
whole series and cannot reflect the peculiarities of the ev
In other words, the values of the Hurst exponents calcula
for the whole series cannot provide information about p
sible EQ’s or TE’s, which can be characterized by other v
ues of persistency. In this situation it is necessary to ge
alize this parameter and define the notion of the local Hu
exponent.

The local Hurst exponent. The generalized~local! Hurst
exponent can be a sensitive indicator, which gives additio
information about the regular component in the sampl
considered. But the reason for changing the Hurst expon
H is not only the presence of the signal in the sampl
considered, but slow~for natural processes! variations of the
correlated noise itself.

If one considers random series for a relatively long time
is logically appropriate to cut the series into short segme
and calculate the Hurst exponentH for each of them. In such
a manner, one can detect the variations ofH on time or in
some spatial coordinates. It is better to use the shortest in
vals possible for calculating the local exponentH(t). A suf-
ficientnumber of registered points can serve as a criterion
choosing the minimal interval for that kind of statistical ca
culation of the local exponentH. So by analogy with the
conventional definition of the local temperature in statisti
physics one can generalize the conception of the Hurst
ponent and use it for short samplings. The reasons for cha
ing the Hurst exponents can be the following:~a! slow
changing of the type of correlations inside the noises;~b! the
presence of the regular signal inside the noises. So, in c
crete applications the local Hurst exponent can serve a
quantitativecharacteristic reflecting the fractal properties
the EQ or TE event. It is obvious that the usage of lo
intervals ~1000 registered points and more! for the calcula-
tion of the local Hurst exponents becomes useless and
important question is choosing the acceptable interval
calculating this parameter with high accuracy. The usualR/S
analysis does not give the acceptable accuracy for the l
Hurst exponent related to short samplings containing 10
120 points. So it is necessary to change the method of
culation of the local Hurst exponent for short samplings. T
reliable calculation of the Hurst exponent averaged o
short samplings turned out to be a nontrivial procedure
required elaboration of stable algorithms adjusted for av
aging of short segments of the given samplings.

We used another definition for the Hurst exponent@16#,
which turned out to be more effective for short sampling
The best results have been achieved in the usage of the
pression for the normalized dispersion, which relates diff
ences of a random function to retardation timet,

V~t!5
^@BH~ t1t!2BH~ t !#2&

^BH
2 ~ t !&

5t2H; ~27!

here BH(t)5( i 51
t j i is an integral random function. As

result of numerical experiments it has become possible
2-5
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FIG. 1. The temporal dynam-
ics of the first four dynamic vari-
ables W0(t), W1(t), W2(t),
W3(t): ~a!–~d! before strong EQ;
~e!–~h! during strong EQ. During
strong EQ fluctuation scale in
creases drastically. It makes u
2.53103 for the initial variable
W0(t), 102 for the first orthogonal
variableW1(t), 10 for W2(t), and
2 for W3(t). The existent trend
vanishes gradually at transitio
from the initial variableW0(t) to
the third orthogonal variable
W3(t). The fluctuation scale de
creases sharply during the stron
EQ.
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calculate the local Hurst exponent with acceptable accur
~4–5 decimal points! for samplings containing about 80–12
registered points.

IV. NON-MARKOV DISCRETE ANALYSIS
OF SEISMIC DATA

Here we will apply the discrete non-Markov procedu
developed in Sec. II for the analysis of the real seismic d
The basic problems, which we are trying to solve in th
analysis, are the following. The first problem relates to
possibility of seismic activity description by statistical p
rameters and functions of non-Markov nature. The sec
problem relates to distinctive parameters and functions
differentiation of weak EQ’s~with small magnitudes! from
TE’s. The third problem is the most important one and
lates to strong EQ’s forecasting. With this aim in mind w
analyzed three parts of the real seismogram: before the e
~EQ and TE!, during the event and after the event. A typic
seismogram contains 4000 registered points. The comp
analysis includes the following information: phase portra
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of junior dynamical variables, power spectra of four juni
memory functions, and three first points of statistical sp
trum of non-Markovity parameter. We took into account al
the values of numerical parameters characterizing the s
mic activity. To analyze time functions we used also t
power spectra obtained by the fast Fourier transform. T
complete analysis exhibits great variety of data.

We used four types of available experimental data cou
ously given by the Laboratory of Geophysics and Seism
ogy ~Amman, Jordan! for the following seismic phenomena
strong EQ in Turkey~I! ~summer 1999!, a weak local EQ in
Jordan~II ! ~summer 1998!. As a TE we had the local under
ground explosion~III !. The case~IV ! corresponds to the
calm state of the Earth before the explosion. All data cor
spond to transverse seismic displacements. The real temp
step of digitizationt between registered points of seism
activity has the following values, viz,t50,02s for the case I,
andt50,01s for the cases II–IV. The graphical informatio
is classified as follows:

Figures 1–6 are referred to the case I; Figs. 7 and 8
respond to the cases II and III considered together; Fig
-
-

.
e

-
-

s

FIG. 2. The phase portrait pro
jections on the planes of orthogo
nal variablesW0 ,W1 ~a!, W0 ,W2

~b!, W0 ,W3 ~c! before the strong
EQ ~Ib! and W0 ,W1 ~d!, W0 ,W2

~e!, W0 ,W3 ~f! during the strong
EQ ~I!. The sharp difference is
distinct for seismic states Ib and I
The randomization of the phas
portrait for state I begins from
plane W0 ,W2. Together with the
difference of the scale of fluctua
tion, one can observe the asym
metric distribution of phase cloud
everywhere.
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FIG. 3. The phase portrait pro
jections on the planes of orthogo
nal variablesW1 ,W2 ~a!, W1 ,W3

~b!, W2 ,W3 ~c! before the strong
EQ ~Ib! and on planesW1 ,W2 ~d!,
W1 ,W3 ~e!, W2 ,W3 ~f! during of
strong EQ~I!. All phase clouds for
seismic state Ib are symmetrica
as opposed to Figs. 2. Sharp
marked asymmetry and stratifica
tion of phase clouds, what re
sembles known situation for myo
cardial infarction in cardiology,
are observed for state I@~d!, ~e!,
and ~f!#.

FIG. 4. The power spectra o
the two first memory functionsm0

and m1: ~a!,~b! before the strong
EQ ~Ib!, ~c!,~d! during the strong
EQ ~I!. For the cases~a!, ~c!, and
~d! we observe fractality and self
organized criticality~SOC!. SOC
exists for the whole frequency
range for state Ib. However, we
observe restricted SOC in~c! and
~d! cases only in frequency rang
down to 2.531023 units of
(2p/t). Restricted SOC is charac
terized by sharp decreasing of in
tensity on two orders for~c! and
~d! cases. One can see colo
noises nearby 0.1 and 0.2 f.u. fo
m1 in state Ib.

FIG. 5. The spectra of two
memory functions m2 and m3:
~a!,~b! before the strong EQ,
~c!,~d! and during the strong EQ
One can observe color noises
cases~a!, ~b!, and~d!. Fractal-like
spectrum on ultralow frequencie
is appreciable in addition to case
~c! and ~d!. The spectra for states
Ib and I are sharply different from
each other both to intensity and t
spectral peaks positioning.
066132-7
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FIG. 6. Frequency spectra of the first three points of non-Markovity parameterse1,e2 ,e3: ~a!–~c! before the strong EQ,~d!–~f! during
the strong EQ. Markov and quasi-Markov behavior of seismic signals is observed only fore1 in state Ib. All remaining cases~b!, ~c!, ~d!,
and~e! relate to non-Markov processes. Strong non-Markovity is typical for cases~b!,~c! ~state Ib! and for case~d! ~state I!. In the behavior
of e2(v) ande3(v) one can see a transition from quasi-Markovity~at low frequencies! to strong non-Markovity~at high frequencies!.
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and 10 illustrate the case IV. At first we consider the figur
which were obtained from the recordings corresponding
the states defined asbefore and during strong earthquake
~EQ!. Figures 1~a!–1~d! ~before EQ, state Ib! and Figs. 1~e!–
1~h! ~during EQ, state I! demonstrate the temporal dynami
of four variablesW0(t),W1(t),W2(t),W3(t), which were
calculated in accordance with Eqs.~14! and~16!. Let us note,
that for convenience we use throughout initial variab
W0(t) as a dimensionless variable. From these figures it
lows that for variableW0 the scale difference achieves th
value more than 2500@compare Figs. 1~a! and 1~c!#. In com-
parison with the cases Figs. 1~b! and 1~c! the Figs. 1~f! and
1~g! reveal the long-range and low-frequency oscillations
variablesW1 and W2. One can calculate phase portraits
four-dimensional space of the obtained four dynamical v
ables W0 ,W1 ,W2 ,W3 as well. Figures 2 and 3 show si
projections on various two-dimensional planes of states:
06613
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fore @Figs. 2~a!–2~c! and Figs. 3~a!–3~c!# and during@Figs.
2~d!–2~f! and Figs. 3~d!–3~f!# EQ.

The phase portraits of the system analyzed demons
strong variations. The last arise owing to the transformat
of the strained state of the earth before the EQ to the s
during the EQ. The most dramatic changes emerge in
phase plane (W1 ,W0) @see Figs. 2~a! and 2~d!#, plane
(W2 ,W0) @Figs. 2~b! and 2~e!#, plane (W2 ,W1) @Figs. 3~b!
and 3~e!#, and (W3 ,W1) @Figs.3~a! and 3~d!#. One can notice
strong qualitative variations in the structure of phase p
traits in the following planes: (W1 ,W0), (W2 ,W0), and
(W2 ,W1). Besides, we can see the quantitative change
space scales of dynamic orthogonal variables. The plane
jection (W0 ,W1) remind a strange attractor. The changes
phase portraits in other planes are less noticeable@compare
Figs. 2~c! and 2~f!, Figs. 3~b!, 3~c!, 3~e!, and 3~f!#. The
weakest change is revealed in the phase portrait in the p
r

a
-
-
-

FIG. 7. The power spectra fo
the two first memory functionsm0

and m1: ~a!,~b! during weak EQ,
~c!,~d! during technogenic explo-
sion. In cases Ib and I the spectr
are characterized by strong differ
ences especially on ultralow fre
quencies. They have very low in
tensity form0 on low frequencies
@cases~a! and ~c!# and colorlike
behavior form1 for states II and
III @cases~b! and~d!#. Unexpected
peaks exist in system III in LFR.
The color and intensity distribu-
tion of the spectra is different for
states II and III.
2-8
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FIG. 8. The frequency spectra of the first three points in statistical spectrum of non-Markovity parameterse1 ,e2 ,e3: ~a!–~c! during weak
EQ, ~d!–~f! during TE. All spectra are characterized by strong expressed non-Markovity (e i;1) for the whole frequency range. Wea
quasi-Markovity is observed near zero frequency for cases~a! and~d! (e1 vary from 0.5 up to 6.5!. A noticeable difference for states II an
III exists in behaviore1(v) in point v50. Due to this fact, one can develop a reliable approach to differentiation between weak EQ
underground TE’s.
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(W3 ,W2). Probably, this phase portrait is less informati
and encloses quasi-invariant part of the total phase port
Besides the spatial scales change of the orthogonal varia
W3 and W2, other essential deformations of this phase p
trait were not observed.

As it has been mentioned above it is convenient to a
lyze the power spectra for comparison of memory functio
One can divide these spectra into the following regions:
tralow frequency range~ULFR!, low-frequency range~LFR!,
middle-frequency range~MFR!, and high-frequency rang
~HFR!. Figures 4 and 5 demonstrate spectra of four mem
functions M0 ,M1 ,M2 ,M3 before and during EQ. Before
@Fig. 4~a!# and during EQ@Fig. 4~c!# the power spectrum o
the initial TCF M0 has a fractal form 1/va in double-log
scale. One can observe a peak in ULFR@Fig. 4~c!# during
EQ. The power spectra of the first and second memory fu
06613
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tions during EQ@Figs. 4~d! and 5~c!# have also the fracta
structure. The last one reflects the existence of linear
quency dependence in double-log scale within the LF
MFR, and HFR. The similar fractal-like behavior for th
Turkish strong EQ is preserved for the third memory fun
tion for the state during EQ@see Fig. 5~d!#.

Figure 6 demonstrates the power spectra of the first th
points of the statistical spectrum of non-Markovity parame
for the states before Figs. 6~a!–6~c! and during Figs. 6~e!–
6~g! the strong EQ. One can make the following conclusio
from Figs. 6~a!–6~d!. On the first level of relaxation proces
@see, Fig. 6~a!# the strained state of the Earth’s crust befo
EQ can be associated with Markov and quasi-Markov beh
ior in ULFR and LFR, correspondingly. The influence
non-Markov effects is reinforced in MFR with 531022

f.u.,v,1021 f.u., ~1 f.u.52p/t!. Strong non-Markovity of
f
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r
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FIG. 9. The power spectra o
memory functions m0(v),
m1(v), m2(v), andm3(v) for the
calm state of the Earth before ex
plosion. All functions m i(v), i
50,1,2,3 have approximately
similar fractal behavior with re-
stricted SOC and color noise
close to 0.2 and 0.4 f.u. The max
mum of intensity emerges close t
the frequency 431023 f.u. A
slight change and redistribution o
intensity of power spectra occu
with the increase of order o
memory function.
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FIG. 10. The power spectra of the first three points in statistical spectrum of non-Markovity parametere1 ,e2 ,e3 for calm state of the
Earth before explosion~IV !. Due to similar frequency behavior of all memory functionsm i(v) the functionse i(v), i 51, 2, and 3 have
approximately similar frequency behavior and, therefore, demonstrate strong non-Markovity on all levels. The initial parametere1(v) is
non-Markovian with the exception of slight quasi-Markovity close to low frequencies below 0.1 f.u. As a result of this the possibility a
for forecasting the strong EQ’s by registration of disappearance of strong non-Markovity and appearance of pronounced Markov tim
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the processes considered for«1(v) takes place in HFR with
1021 f.u.,v,0.5 f.u. Simultaneously we have the numeric
values«2(v),«3(v);1 in the whole frequency region@see,
Figs. 6~b! and 6~c!#. But this behavior implies that stron
non-Markovity effects are observed in these cases.

The similar picture becomes unrecognizable for seis
state during the strong EQ@see, Figs. 6~d!–6~f!#. First, it is
immediately obvious that«1(v);1 on first relaxation level.
Second, the second and third relaxation levels are n
Markovian @see, Figs. 6~e! and 6~f!#. Thus, the behavior o
seismic signals during the strong EQ is characterized
strong non-Markovity on the whole frequency region.

Figure 7 depicts power spectra of MF,M0, and M1 for
seismic states II and III. Figure 8 shows spectra of the fi
three points of non-Markovity parameter« i(v),i 51,2,3.
The preliminary results suggest that there is remarkable
ference between weak EQ’s and TE’s especially in the a
of low frequencies.

The analysis of the phase portrait for weak EQ’s and
derground TE’s leads to the following conclusions. Fir
these portraits cannot be differentiated. It can be seen f
the range of spatial scales of the dynamical variablesWi and
Wj and from the analysis of the phase points distribut
forms. Second, it is necessary to remark some peculiaritie
power spectra ofm i(v), i 50,1 ~see, Fig. 7! for the cases II
and III. All these spectra have distinctive similarities for t
memory functionsMi(t) with numbersi 50, 1. The charac-
ter and the form of the spectra considered for the cases II
III are very similar to each other. The same similarity
observed for the three non-Markovity parameterse i(v), i
51,2,3 ~see Fig. 8!.

Nevertheless, the analysis of the power frequency spe
allows to extract distinctive specific features between
weak EQ’s and the TE’s. Such quantitative criteria can
associated with frequency spectra of memory functio
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m i(v) characterizing the long-range memory effects in se
mic activity. This new criterion allows to tell definitely a
weak EQ from a TE, viz, to differentiate case II from ca
III.

A close examination of Figs. 8~a! and 8~d! shows that this
distinction appear in frequency behavior of the first point
non-Markovity parameter«1(v) close to the zero pointv
50. Specifically, the ratio of values«1(0) for weak EQ and
TE equal«1

II (0)/«1
III (0)50.92/0.5751.61.

Let us to analyze the results of seismic activity charac
izing the calm earth state. Figures 9 and 10 present the
sults of this analysis. They will be useful for the comparis
with the results obtained for EQ’s and TE’s. The projectio
of the phase cloud on all six planes (Wi ,Wj ), iÞ j exhibit
approximately the similar distribution of phase points. T
power spectra for the memory functions with the same pa
~see, Fig. 9! have a similar form. For example, for even ord
functionsm0(v) andm2(v) one can notice sharp peaks ne
the frequency 0.2 f.u.@see, Figs. 9 and 9~c!#. In the spectrum
of the senior functionm2(v) @see Fig. 9~c!# additional peaks
in HFR appears. One can notice two groups of character
peaks near 0.2 f.u. and 0.4 f.u in odd memory functio
m1(v) andm3(v) @Figs. 9~b! and 9~d!#. With the increase of
order of the memory function the pumping over effect
peak intensities from the MFR to the HFR takes place. T
frequency behavior of the three points of non-Markov p
rameterse1(v), e2(v), ande3(v) appeared to be practicall
the same. The behavior of the functionse i(v) exhibits the
typical non-Markov character with small oscillations of ra
dom nature at LFR. The spectral characteristics of the sys
IV are very useful in comparison to the results obtained
the system I~before strong EQ!.

Our observation shows that the zero point values of n
Markovity parameters for calm earth state are eq
2-10
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FIG. 11. The typical tempora
behavior of the Hurst exponen
H(t) calculated for EQ’s. One can
see sharp decreasing ofH(t) on
15% during EQ. After that a
gradual restoring of the Hurst ex
ponentH(t) to normal value'1
takes place.
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IV(0):«2

IV(0):«3
IV(0)'4.99:0.947:0.861. These values a

convenient for the comparison with similar values for t
earth seismic state before the strong E
«1

I (0):«2
I (0):«3

I (0)'214.3:0.624:0.727. The change of rat
of the two first non-Markovity parameters«1(0)/«2(0) is
particularly striking . This ratio is equal to 5.27 for the cal
earth state, then it comes into particular prominence for
state before strong EQ:«1

I (0)/«2
I (0)'343.4. Thus, this ratio

changes approximately in 60 times. Hence, the behavio
this numerical parameter is operable as a reliable diagno
tool for the strong EQ prediction. The foregoing proves th
the indicated value drastically increases in process of nea
to strong EQ.

Finishing this section, we give some preliminary sugg
tions relating to the strong EQ forecasting. They are rela
in comparison of frequency spectra obtained for the ca
Earth ~Figs. 9 and 10! and seismic activity data registere
beforea strong EQ@see Figs. 2~a!–2~c!; 3~a!–3~c!; 4~a! and
4~b!; 5~a! and 5~b!; and 6~a! and 6~b!#. The comparison of
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the phase portraits demonstrates the following peculiarit
In the phase portraits calculated for the senior dynam
variables (W2 ,W1), (W3 ,W1), and (W3 ,W2) obtained for
cases I and IV the distinctions are not noticeable@see Figs.
3~a! and 3~b!#. These distinctions become noticeable in t
phase portraits of junior variables (W1 ,W0), (W2 ,W0), and
(W3 ,W0) @see Figs. 2~a!–2~c!#. One can observe a gradu
stratification of the phase clouds with the growth of elas
deformations before the strong EQ. It is necessary to re
the double frequency difference for systems I and IV wh
comparing the frequency plots. The dependencem0(v),
m1(v), m2(v), andm3(v) for systems I and IV@see Figs.
4~a!, 4~b!, 5~a!, 5~b!, and 9~a!–9~d!#, is approximately simi-
lar, and qualitative difference is not noticeable. One can
tice some visual difference only for two spectra: for the th
memory function spectrumm3(v) and for the ULFR of the
memory functionm0(v). So the power spectra of memor
functions can be used for the strong EQ forecasting. One
notice the similar changes in the behavior of the functio
t

e

.
to
i-
FIG. 12. The comparative
analysis of the Hurst exponen
H(t) behavior during the weak
EQ ~a!,~c! and for the TE~b!,~d!.
During the weak EQ’s one can se
sharp decreasing ofH(t) on 15%
and almost 90% during the TE
These observations enable us
develop an approach to different
ate the TE’s from weak EQ’s.
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TABLE I. Set of kinetic non-Markov parameters of discrete stochastic processes in various seismic

Before strong During strong During weak During TE, Calm state o
EQ, Ib EQ, I EQ, II III Earth, IV

l1 ~units of t21) 20.0052275 20.00010709 20.32465 20.17203 20.22972
l2 ~units of t21) 20.61788 20.00058654 20.81717 20.84403 20.96049
l3 ~units of t21) 20.85737 20.20212 21.0147 21.0076 20.99313
L1 ~units of t22) 0.0040768 0.00011576 0.14726 0.059232 0.02113
L2 ~units of t22) 0.31541 4.5948e-005 20.034187 20.032079 0.11266
«1(0) 214.3 1.52 0.92 0.57 4.99
«2(0) 0.624 8.67 1.02 1.008 0.947
«3(0) 0.727 6.77 1.02 1.007 0.861
t(s) 0.02 0.02 0.01 0.01 0.01
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e1(v), e2(v) and e3(v) @see Figs. 6~a!–6~c! and 10~a!–
10~c!#. So one can conclude that careful investigations
frequency behavior of memory functionsm i(v) and func-
tions e i(v) describing the statistical non-Markovity param
eters provide an accurate quantitative method of the str
EQ forecasting. It is necessary to investigate carefully
power spectra with the accurate localization of an object
source, generating seismic signals, for further elaboratio
this method.

For a more complete understanding of non-Markov pr
erties of seismic signals we give some kinetic parameter
our theory in Tables I–III. In Table I the full sets of kineti
parameters describing non-Markov stochastic processe
five various seismic states have been presented: before s
EQ ~Ib!, during strong EQ~I!, during weak EQ~II !, during
TE ~III !, and for the calm Earth state~IV !. The data cited in
this table are indicative of nonequilibrium properties~param-
etersl1 , l2, and l3), long-range memory effects~param-
etersL1 andL2), and non-Markov peculiarities@parameters
«1(0), «2(0), and«3(0)#. The differences under observatio
for various seismic states are sufficient to allow definite c
clusions.

For purposes of clarity, Table II illustrates the comparis
of specific kinetic non-Markov parameters for two seism
states: before strong EQ~Ib! and calm Earth states~IV !. As
will be seen from Table II, differences of parameters
these two states vary within a broad range: from 2.8~param-
eter L2) to 44.0 @for parameter«1(0)#. Similarly, Table III
contains comparison data for the other two seismic sta
during weak EQ~II ! and during underground TE~IV !. Differ-
ences of parameters in this case are established within m
narrow limits: from 2.486~for parameterL1) to 1.614@for
parameter«1(0)#.

Thus, the existence of discreteness and long-ra

TABLE II. Comparison of kinetic non-Markov parameters fo
two seismic states: before strong EQ~Ib! and calm Earth state~IV !.

Ratio of «1
Ib(0)/«1

IV(0) l1
Ib/l1

IV L1
Ib/L1

IV L2
Ib/L2

IV

parameters

Numerical 42.94 1:22.0 1:1.3 1:0.7
value
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memory in the behavior of seismic signals opens up n
fields of use in the analysis of the Earth’s seismic activ
We can state with assurance that the differences under ob
vation favor the view that the non-Markov parameters of o
theory will be available for strong EQ forecasting and diffe
entiation of TE’s from weak EQ’s.

V. LOCAL HURST EXPONENT CALCULATIONS
FOR AVAILABLE EARTHQUAKES AND TECHNOGENIC

EXPLOSIONS DATA

Available data for the calculation of the local Hurst exp
nents contains 3000–5000 registered points describing
visible part of a wavelet. This number of the recorded poi
allows one to use the procedure of the local Hurst expon
H(t) calculation. For the realization of the procedure d
scribed in Sec. III it is necessary to divide the whole sa
pling containing 25 000 points into small intervals of 100
200 points, where the local Hurst exponent is supposed to
constant. In Fig. 11 we show a typical plot of the functio
H(t) calculated for a typical EQ. The same features ofH(t)
behavior are conserved for a wide class of available w
EQ’s. Then we obtained the calculated values of the lo
Hurst exponentsH(t) for available EQ’s and explosions
Figure 12 exhibits the typical behavior of these function
The sharp decreasing (0.1) of the local Hurst function dur
‘‘an event’’ is typical for explosions. Then the values of th
function H(t) are relaxing slowly to their initial values. Fo
EQ’s one can notice a more gradual change ofH(t) before
the event. The relaxation ofH(t) starts from higher (0.85)
values and it comes back faster to its initial values in co
parison with explosions. Such behavior is preserved for w
signals, when the ratioS/N decreases. For these cases

TABLE III. Comparison of kinetic non-Markov parameters fo
two seismic states: during weak EQ~II ! and during underground TE
~III !.

Ratio of L1
II /L1

III l1
II /l1

III «1
II (0)/«1

III (0)
parameters

Numerical 2.486 1.887 1.614
value
2-12
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POSSIBILITY BETWEEN EARTHQUAKE AND . . . PHYSICAL REVIEW E64 066132
criterion of EQ or TE distinction is related to the amplitud
of the Hurst exponent change during the analyzed event.
necessary to increase the number of registered points per
of real time in order to obtain a more distinctive pictur
which can be more useful in differentiation of these events
is related to the fact that the sensitivity of correlations o
random fractal value changing is associated with the lo
temporal limit of the corresponding measurements. T
smoothed change ofH(t) obtained for EQ’s opens a poss
bility of more accurate registration ofH(t) before the visual
wavelet of EQ’s.

VI. CONCLUSION

We want to stress here again that these presented me
have been applied successfully for differentiation of EQ
from TE’s. We hope that the results of this analysis can
applied to a set of phenomena related with differentiation
similar signals of different nature. With the result of th
analysis we received a new possibility of forecasting stro
EQ’s approaching, analyzing only seismograms recorded
transverse seismic waves. Second, we received a suffi
amount of information for the definite differentiation of wea
EQ’s from TE’s.

In this paper we have presented the results of applica
of two methods for the study of dynamic, kinetic, and sp
tral properties of seismic signals depicting EQ and TE mo
lation. By the discrete non-Markov stochastic processes
the local Hurst exponent analysis we have found explic
some features of several different states of the Earth’s cr
states of the Earthbeforeandduring strong and weak EQ’s
during TE’s. The used methods allow us to present the s
mogram analyzed in the form of a set non-Markov variab
and parameters. They contain a great amount of the qua
tive and quantitative information about seismic activity.

The dynamic information is contained in time recordin
of new orthogonal dynamic variables, different plane proj
tions of the multidimensional phase portrait, and the ti
dependence of local Hurst exponent. The information on
kinetic, spectral, and statistical properties of the system
expressed through time dependence of the initial T
memory functions of junior orders, their power, and fr
quency spectra of the first three points of the statistical sp
trum of the non-Markovity parameter.
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The main advantage of our two methods is a great amo
of supplementary information about the properties of seis
signals. The problem is its correct application. What kinds
possibilities can one expect? It is possible to answer as
lows. First, our preliminary study, convincingly demonstrat
that the relevant and valuable information on non-Mark
and discrete properties of the system considered is conta
in seismic signals. In all the studied systems~I–IV ! we have
found out unique manifestations of Markov, quasi-Marko
and non-Markov processes on the particular behavior of
signals in a broad range of frequencies.

Similar results cannot be obtained, in principle, by oth
methods used in the analysis of seismic activity.

Second, in the nonlinear non-Markov characteristics so
of well-known spectral effects are evident. Among them t
following effects are exhibited noticeably: fractal spec
with an exponential functionv2a, which are connected to
the phenomenon of usual~SOC! and restricted~RSOC! self-
organized criticality@17–19#, behavior of some frequenc
spectra in the form of white and color noises. Third, t
frequency spectra introduced above are characterized by
particular alternation of Markov~fractal! and non-Markov
spectra~such as color or white noises!. The similar alterna-
tion resembles in particular the peculiar alternation of effe
of a Markov and non-Markov behavior for hydrodynam
systems in the statistical physics of condensed matter
tected in papers@20,21# for the first time. The fine specifica
tion of such alternation appears essentially different for st
ied states I–IV. These features allow us to vie
optimistically the solution of the problem of forecastin
strong EQ’s and differentiation TE’s from weak EQ’s.
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