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Time-scale invariance of relaxation processes of density fluctuation in slow neutron scattering
in liquid cesium
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The realization of the idea of time-scale invariance for relaxation processes in liquids has been performed by
the memory functions formalism. The best agreement with experimental data for the dynamic structure factor
S(k,v) of liquid cesium near melting point in the range of wave vectors (0.4 Å21<k<2.55 Å21) is found
with the assumption of concurrence of relaxation scales for memory functions of third and fourth orders.
Spatial dispersion of the first four points in the spectrum of the statistical parameter of non-Markovitye i(k,v)
at i 51,2,3,4 has allowed us to reveal the non-Markov nature of collective excitations in liquid cesium,
connected with long-range memory effect.
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The dynamic structure factorS(k,v) of liquid metals
~lithium, sodium, rubidium, lead, cesium, aluminum, pota
sium! represents unique information on the collective exc
tions in these systems~see Ref.@1#!. Most of existing theo-
ries for S(k,v) are based on models of the linearized a
generalized hydrodynamics@2#. Despite much effort and
considerable recent progress, understanding of experime
data for liquid metals remains an interesting challenge. H
adequate understanding and explanation of high-freque
collective excitations does not exist. The reason is that
nature of such excitations in liquid metals is not described
any of hydrodynamic models. On account of specific sho
range and oscillatory behavior of ion-ion potential in liqu
metals, the hydrodynamics here is not applicable.

In the present work, for an explanation of a specific nat
of high-frequency collective excitations in liquid cesium@3#
we use one of most fundamental ideas of modern physic
the idea of invariance. In particular, we suggest the idea
time-scale invariance of relaxation processes in liquids.
perimental data onS(k,v) give direct information about re
laxation processes of density fluctuation in liquids. Under
assumption, for any experimentally observable relaxat
process, there corresponds a multilevel hierarchy of interc
nected relaxation processes. Actually, in experiment
‘‘top’’ of its relaxation ‘‘iceberg’’ is observed only. On a
certain relaxation level, an invariance~equiscaling! of two
nearest interconnected relaxation processes can exist.
invariance can be easily taken into account by the mem
functions formalism, which most adequately describes n
equilibrium statistical processes in condensed matter phy

Later we consider a normalized time correlation functi
~TCF! a(t)5^dA* (0)dA(t)&/^udA(0)u2& of particle-density
fluctuation in liquid metal dA(t)5A(t)2^A(t)&, where
dA(t)5N21/2( j 51

N exp(ikr j), k is wave vector, andr j defines
the position of thej th particle of the liquid. With the help o
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Zwanzig and Mori’s projection operators method@4,5# it is
possible to construct the infinite chain of connected n
Markov kinetic equations as follows:

dMi~ t !

dt
52V i 11

2 E
0

t

dtMi 11~ t2t!Mi~t!, i 50,1, . . . ,

~1!

whereM0(t)5a(t). HereMi(t) is a memory function ofi th
order andV i

2 are general relaxation parameters with the
mension of the square of frequency. These parameters
connected with even frequency moments of spectral den
of TCF a(t) by the following relationship@6# V1

25I 2 , V2
2

5I 4I 2
212I 2 , V3

25(I 6I 22I 4
2)/(I 4I 22I 2

3).
Every relaxation process can be described with the hel

a characteristic time scale usually named as relaxation ti
So, for example, the relaxation time for initial TCFa(t) can
be determined as followsta5Re*0

`dta(t). Similarly, relax-
ation time on the second relaxation level@at i 51 in Eqs.~1!#
for memory functionM1(t) would be expressible ast1

5Re*0
`dtM1(t), where the symbol Re means the real part

is convenient to describe long-range memory effects in
underlying system with the help of time scalesta andtM1

.
For example, the presentation of the dimensionless n
Markovity parameter was introduced earlier in Ref.@6#, e1
5t0 /t1, as an criterion of describing of non-Markovity fo
any relaxation processes. As pointed out in Ref.@6# values of
e1 allow to obtain a quantitative and qualitative estimate
non-Markovity effects and statistical memory in relaxati
processes. Parametere1 allows to divide all relaxation pro-
cesses into three important cases. Markovian processes
respond toe1→`, while quasi-Markovian processes are a
propriate in situations withe1@1 and e1.1. The limiting
casee1;1 describes non-Markovian processes. In this c
the time scale of memory processes and correlations~or jun-
ior and senior memory functions! coincide with each other
Thus, the introduced parametere1 characterizes non
Markovity and memory effects for any relaxation process
©2001 The American Physical Society01-1
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The infinite set of values of parameterse i , where i
51,2,3, . . . , wasalso entered on the basis of the simp
formula e i5t i 21 /t i , where t i is a relaxation time of the
memory function ofi th order@7#. The whole set of values o
non-Markovity parametere i forms the statistical spectrum
which is connected with collective and statistical propert
of the system and allows also to estimate in detail the n
Markovian properties of the underlying relaxation proce
In Ref. @8# the conception of non-Markovity parameter f
the frequency-dependent case was generalized . This pa
eter is determined by the following expressione i(v)
5$m i 21(v)/m i(v)%1/2 at the fixed wave vectork. Here i
51,2,3 . . . andm i(v) is the power frequency spectrum o
the i th relaxation level, which is defined in the followin
way m j (v)5@Re*0

`dteivtM j (t)
2.

The appropriate values ofe i(v) ande i will correspond to
every j th equation of the chain~1!. As the chain of the Eq
~1! is infinite, the sets ofe i ande i(v) are also infinite. Now
let us use the approximationMi 11(t)'Mi(t). It means the
approximate equality of relaxation time scales of mem
functions ofi th and (i 11)th orders, i.e.,t i 11't i . Then the
non-Markovity parameter for the whole frequency range
approximately equal to unity,e i 11(v);1 ~and alsoe i 11
;1), and chain~1! becomes closed. Applying Laplace tran
form to the i th equation of the chain~1! we get M̃ i(s)
5@2s1(s214V i 11

2 )1/2#/2V i 11
2 .

The results of experiment for liquid cesium were pu
lished in Ref.@3#. The dynamic structure factorS(k,v) has
been measured by inelastic slow neutron scattering~INS!
near the melting point atT5380 K. The wave vectork
changes in the range from 0.2 Å21 up to 2.55 Å21. The
numerical results forS(k) were obtained from experimenta
data@3# too.

It is well known thatS(k,v) is connected with TCF of
density fluctuation in the following way: S(k,v)
5@S(k)/p# lime→10Re@ ã(k,iv1e)#, where Laplace trans
form ã(k,s)5*0

`dte2sta(k,t) was found by us as follows
We have taken advantage of the correlation approxima
for the fourth order memory function@9#

M4~ t !'M3~ t !. ~2!

From the physical point of view it means the concurren
of time scales of TCF’sM3(t) and M4(t). In this case the
chain of the connected kinetic equations~1! becomes a sys
tem consisting of four equations. Using Laplace transfo
we receive the following equation for the dynamic structu
factor S(k,v):

S~k,v!5
S~k!

2p
V1

2V2
2V3

2~4V4
22v2!1/2$V1

4V3
41v2

3~22V1
2V3

41V1
4V4

22V1
4V3

212V1
2V2

2V4
2

2V1
2V2

2V3
21V2

4V4
2!1v4~V3

422V1
2V4

212V1
2V3

2

22V2
2V4

21V2
2V3

2!1v6~V4
22V3

2!%21. ~3!
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Relaxation frequency parametersV1
2 andV2

2 are defined
as follows@11#:

V1
25KBTk2@mS~k!#21; v1

25V1
2 ; V2

25v2
22v1

2 ;

v2
253v1

2S~k!1v l
2 ;

v l
25N/mVE drg~r !@12cos~kr !#,z

2u~r !. ~4!

In Eqs. ~4! the following designations are introduce
KBT is thermal energy,g(r ) is a radial distribution function
of particles,u(r ) is a pair interparticle potential of interac
tion, and axisz is chosen in the direction of a wave vectork.
Calculating the frequency parameterV2

2 we use the well-
known approximation @10# V2

253V1
2S(k)1vE

2$1
2@3 sin(kR0)/kR0#2@6 cos(kR0)/(kR0)

2#1@6 sin(kR0)/(kR0)
3#%

2V1
2, wherevE is the Einstein frequency. In our casevE has

the following valuevE54.1231012s21 @3#. This frequency
parameters can also be calculated throughI i ( i 52,4).

Theoretical formulas for calculation of relaxation fre
quency parametersV3

2 and V4
2 are also known@11#. How-

ever the final result of these calculations contains some
rors. For example, in paper@11# it is shown that results of
calculated frequency moments in papers@12–14#, vary from
10% to 50%, and the distinction reaches up to 30 times
separate values of the wave vector. Therefore it is more c
venient to obtain these parameters by comparing result
theory and experiment. Relaxation frequency parameterV4

2

is easy to find from comparison of developed theory w
experiment on zero frequency. Namely, it followsV4

2

5p2V1
4V3

4@S(k,0)#2
„@S(k)#2V2

4
…

21 from Eq. ~3! at v→0.
The spectrum ofS(k,v), Eq. ~3!, allows investigations of

collective excitations in liquid cesium to be made in deta
Our analysis show that the position of collective excitati
peakvc(k) in spectrumS(k,v) depends on the combinatio
of frequenciesV1

2 , V2
2 , V3

2, andV4
2. Our numerical calcu-

lations demonstrate thatvc(k) value is most sensitive to re
laxation frequencyV2

2. On the other hand, collective effec
turn out to be connected with non-Markov processes in
uids.

In Fig. 1 the comparison of our theory~solid line! and
experimental data~circles! @3# for S(k,v) for liquid cesium
at T5380 K is shown. From Fig. 1 it is evident that ou
theory absolutely agrees with the experiment in the wh
range of values of wave vectork. It is possible to see the
good qualitative coincidence between the experiment and
theory from Fig. 2. Here dispersion of the frequency of c
lective excitationsvc(k), obtained from the position of lat
eral peaks~the points present experimental data; the circ
are our theoretical values!, is presented. We calculated th
first four points in a statistical spectrum of the frequenc
dependent non-Markovity parametere i(k,v) for the whole
range of values of the wave vectork. The results of such
calculations are shown in Fig. 3. In our opinion, the para
eter e1(k,v) represents special interest. From Fig. 3 it
apparent that this parameter has maxima on frequencies
coincide with collective excitations inS(k,v). The spectrum
1-2
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FIG. 1. Theoretical~solid line! and experimental@3# (s s s s) values of dynamical structure factorS(k,v) for liquid cesium at
T5380 K at various wave vectorsk5uku.
al
s

co
it
lle
n

pr

r

hi
d
a

t

th
e-
r

of
ss

a

e
s

ory
s
, we
nc-
-
d
ve

he

he
-

ure

ed

ve
of S(k,v) falls down smoothly at large values ofk, and the
frequency-dependent non-Markovity parameter also f
down smoothly to zero. Moreover, a ‘‘burst’’ of value
e1(k,v) is observed on common frequencies withS(k,v).
As indicated by Fig. 3, the non-Markovity parametere i(v)
for this range of frequenciesv must satisfy the condition
e i(k,v).1. The non-Markovity parametere1(k,v) has the
distinct expressed maximum on frequencies, relevant to
lective excitations. Proceeding from the received results,
reasonable to speak about the non-Markov nature of co
tive excitations in liquid cesium. This important conclusio
must be taken into account while constructing the appro
ate theories. The behavior ofe i(k,v) for levels i 52,3,4 is
very interesting here. Further calculation shows that the
lationshipe3(k,v)'1 takes place for the highk-value range
1.15 Å21<k<2.55 Å21 and for all frequenciesv. Because
of this, the more simple approximationM3(t)'M2(t) can
be applied for this case. Moreover, there are cases in w
e2(k,v)'1 for all v. It is possible to assume that goo
agreement with the experiment gives correlation approxim
tion for the memory function of the second orderM2(t)
'M1(t) in these cases.

Thus, the frequency-dependent non-Markovity parame
e i(k,v) introduced in Ref.@8# allows us to reveal two im-
portant features. First, its behavior allows us to judge
properties of non-Markovity in the whole range of the fr
quency spectrum and at various values of the wave vectok.
Then, with its help it is possible to judge the applicability
correlation approximation of the junior order, for which le
difficult calculations are required.

The results of this Brief Report can be summarized
follows.

~i! S(k,v) for liquid cesium is found on the basis of th
hypothesis of time-scale invariance of relaxation processe
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liquids. We have assumed that relaxation times of mem
functionsM4(t) and M3(t) are approximately equal in thi
case and relaxation time scales are invariant. Therefore
have used correlation approximation for the memory fu
tion of fourth order,M4(t), for closing the chain of the con
nected kinetic equations~1!. As a result we have receive
good agreement with the experiment for all values of wa
vectork (0.4 Å21<k<2.55 Å21).

~ii ! For the estimation of the received results t
frequency-dependent parameter of non-Markovitye i(v) ( i
51, 2, 3, and 4) was calculated for all the values of t
wave vectork. It turned out that the first point in the spec
trum of non-Markovity parametere1(v) has frequency de-
pendence similar to the behavior of the dynamic struct
factor for liquid cesium. The maximum ofe1(k,v) and
S(k,v) for values of the wave vector 0.4 Å21<k
<2.55 Å21 appear at the same frequencies.

~iii ! On the basis of our calculations we have establish

FIG. 2. Comparison of the values of frequency of collecti
excitations in liquid cesiumvc5vc(k) at T5380 K with calcu-
lated values from experimental data@3# (• • • •) and our theory
(s s s s).
1-3



BRIEF REPORTS PHYSICAL REVIEW E 64 057101
FIG. 3. Frequency dependence of the first four points in statistical spectrum of non-Markovity parametere i5e i(v); (• • • •)
correspond toi 51, (1 1 1 1) relate toi 52, (s s s s) presenti 53, solid line reflects values ati 54. In a wave vector range
0.4 Å21<k<1.1 Å21 collective excitations exist.
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the non-Markov nature of collective excitations at the mic
scopic level in liquid cesium. It should be pointed out th
the developed approach is true, especially for the solutio
nonperturbative problems. Nevertheless, we believe th
systematic and general theoretic approach, such as we
expounded, should play a useful role in analyzing and c
sifying experimental data simulations and more elabor
models. It is especially true for the construction of theor
describing high-frequency and short-range relaxation p
cesses. The calculated frequency parametere1(v) for every
concrete value of wave vectork allows to describe the effect
of amplification or attenuation of non-Markovity within th
e
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whole frequency interval. From the preceding it is clear th
the idea of time-scale invariance has large prospects for
description of high- and short-wave stochastic and relaxa
processes in liquids.
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