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Transport of particles for a spatially periodic stochastic system with correlated noises
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The transport of particles for a spatially periodic stochastic system driven by two multiplicative noises and
one additive noise~between which there are correlations! is investigated for the overdamped and underdamped
cases. It is shown that~i! the probability current can be positive, zero, or negative;~ii ! the movement of the
particles represents the phenomenon of resonance as a function of the additive noise strength. For the under-
damped case, the particles with different mass can be separated by controlling the system or the noise param-
eters. In particular, a reversal of the flux can be induced by controlling the correlations between the additive
and multiplicative noises.
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I. INTRODUCTION

Recently, there has been increasing interest in study
the noise-induced transport of Brownian particles for s
tems with a spatially periodic potential field. It has be
shown that the asymmetry of the potential@1,2#, the asym-
metry of the driving noise@3#, and the input signal~no noise,
time correlation, or constant! @1,4# are ingredients for the
transport.

The recent burst of this work is motivated in part by t
challenge of explaining the unidirectional transport of m
lecular motors in the biological realm@5#. Another source of
motivation arises from the new methods of separation
segregation of Brownian particles@6#, and more recently in
the recognition of the ‘‘ratchet effect’’@1,7#. Now the idea of
noise-caused transport has been applied to biomolecular
tor systems, Brownian motor systems, and quantum syst
@including surface electromigration, Josephson-junction
rays, cold atoms~with an asymmetric optical lattice!, super-
conductors, and semiconductor heterstructures~with rocked
electron ratchets!#.

However, most of the models~classical, not quantum! so
far deal with overdamped Brownian particles in which t
inertial term due to the finite mass of the particles is n
glected. The transport of underdamped particles in syst
driven by noise has been studied only in a few works@8# that
consider the mass of the particle. In this paper, we s
consider a model with a spatially periodic potential driven
one additive noise and two multiplicative noises, which a
correlated, and investigate the transport of particles in
overdamped and underdamped cases.

II. MODEL

We consider a model whose Langevin equation is~in di-
mensionless form!

mẍ1 ẋ5 f ~x!2j1~ t !g1~x!2j2~ t !g2~x!1h~ t !, ~1!

where f (x)52J1 sin(x/2)2J2 sin(x1x0), g1(x)5sin(x/2),
andg2(x)5sin(x1x0). @The common period of the function
f (x), g1(x), and g2(x) is 4p.# The multiplicative noises
j i(t) ( i 51,2) and the additive noiseh(t) represent Gaussia
white noises, andm is the value of dimensionless mass f
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the particle.~Here the viscous friction strength is assumed
equal 1.! In general, we express the influence of intern
fluctuations on the system as additive noise and the effec
external environmental fluctuations on the system as mu
plicative noise. Here we assume that the external envir
mental fluctuations can influence the internal fluctuations.
the additive and multiplicative noises are not independ
~there are correlations between them!. The statistical proper-
ties of j i(t) ( i 51,2) and h(t) are ^j i(t)& f5^h(t)& f50,
^j i(t)j j (t8)& f52Did i j d(t2t8), ^h(t)h(t8)& f52Dd(t2t8),
and ^h(t)j i(t8)& f52l iADDid(t2t8) (21<l i<1), where
^& f represents the average over noise. In this paper, Eq.~1! is
given in dimensionless form, so the variablesx andt and the
parametersD, Di , l i , andm are dimensionless.

Equation~1! can be transformed into

mẍ1 ẋ5 f ~x!1j1~ t !@2sin~x/2!1l1AD/D1#

1j2~ t !@2sin~x1x0!1l2AD/D2#1h8~ t !, ~2!

in which h8(t)5h(t)2l1AD/D1j1(t)2l2AD/D2j2(t).
The statistical properties ofh8(t) are ^h8(t)&50 and
^h8(t)h8(t8)&52D(12l1

22l2
2)d(t2t8). Here the noises

j i(t) andh8(t) are no longer correlated.

III. OVERDAMPED CASE

For the overdamped case, one can use the adiabatic
proximationẍ50. Then Eq.~2! becomes

ẋ5 f ~x!1j1~ t !@2sin~x/2!1l1AD/D1#

1j2~ t !@2sin~x1x0!1l2AD/D2#1h8~ t !. ~3!

The Stratonovich interpretation of the stochastic differen
equation~3! yields the Fokker-Planck equation@9#

] tP~x,t !52]xA~x!P~x,t !1]x
2B~x!P~x,t !, ~4!

where A(x)52J1sin(x/2)2J2sin(x1x0)1(D1/4)sinx1(D2/
2)sin@2(x1x0)#2(l1ADD1/2)cos(x/2)2(l2ADD2)cos(x1x0),
and B(x)5D1sin2(x/2)1D2sin2(x1x0)1D22l1ADD1

3sin(x/2)22l2ADD2sin(x1x0). The periodic boundary
condition for Eq.~4! is P(a,t)5P(a14p,t) ~here we take
a50).
©2001 The American Physical Society13-1



e

JING-HUI LI, JERZY ŁUCZKA, AND PETER HÄNGGI PHYSICAL REVIEW E64 011113
FIG. 1. The average velocity versus the additive noise strength in the overdamped case for the model~1!. ~a! corresponds to the averag
velocity versus the additive noise strength for different values ofJ1 (J150.3, 0.5, 0.7 and 1, respectively! with J251,x05p/2, D15D2

50.3, andl15l250.3; ~b! to that for different values ofJ2 (J250.3, 0.5, 0.7 and 1, respectively! with J151,x05p/2, D15D250.3, and
l15l250.3; ~c! to that for different values ofl1 (l150.9, 0.5,20.5, and20.9, respectively! with J15J251,x05p/2, andD15D2

50.3, andl250.3; ~d! to that for different values ofl2 (l250.9, 0.5,20.5, and20.9, respectively! with J15J251,x05p/2, D15D2

50.3, andl150.3.
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The average velocity is given by

^V~ t !&5^^V~x,t !&x& f5^^ẋ&x& f , ~5!

where^ &x stands for the average overx.
Under periodic boundary conditions, the stationary so

tion of Eq. ~4! is @9#

Ps~x!5N
eF(x)

B~x!
E

0

4p

dx8e2F(x8)2F(4p)u(x2x8). ~6!

Here F(x)5*0
x@A(x8)/B(x8)#dx8, u(x2x8) is the Heavi-

side step function, andN a normalized constant.
From Eqs.~5! and ~6!, we obtain

^V&s5^ẋ&s

5 lim
t→`

1

t E0

t

^^V~x,t!&x& fdt

5^A~x!&s
01111
-

5NE
0

4p

dx
A~x!eF(x)

B~x!
E

0

4p

dx8e2F(x8)2F(4p)u(x2x8)

54pN@12e2F(4p)#. ~7!

The probability current J can be obtained from]xJ
52]xAP1]x

2BP, i.e.,J52AP1]xBP. It is easy to obtain

J5N@12e2F(4p)#5^V&s /~4p!. ~8!

Equations~7! and ~8! show that the condition under whic
the flux changes sign is that the valueF(4p) can vary from
positive to negative or vice versa.

In Fig. 1 we plot the average velocity versus the addit
noise strengthD from Eq. ~7!. The Fig. 1~a! corresponds to
the average velocity versus the additive noise strength
different values ofJ1 (J150.3, 0.5, 0.7 and 1, respectively!
with J251, D15D250.3, andl15l250.3; Fig. 1~b! to
that for different values ofJ2 (J250.3, 0.5, 0.7, and 1, re
spectively! with J151, D15D250.3, andl15l250.3; the
3-2
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TRANSPORT OF PARTICLES FOR A SPATIALLY . . . PHYSICAL REVIEW E64 011113
Fig. 1~c! to that for different values ofl1 (l150.9, 0.5,
20.5, and 20.9, respectively! with J15J251, D15D2
50.3, andl250.3; and Fig. 1~d! to that for different values
of l2 (l250.9, 0.5,20.5, and20.9, respectively! with J1
5J251, D15D250.3, andl150.3. The figures show tha
~a! the absolute value of the average velocity is a nonmo
tonic function of the additive noise strength and has a c
peak value, which is a manifestation of the phenomenon
resonance; and~b! the average velocity may be negativ
zero, or positive.

Here we wish to give some explanation for the origin
the average velocity. First, whenj i(t)50 (i 51,2) no aver-
age velocity can be produced. A nonzero average velo
with j i(t)50 means that only thermal fluctuation is co
verted into work and implies a violation of the second law
thermodynamics. Second, ifl15l250 and the function
f (x) is symmetric, no average velocity can be caused, s
no symmetry breaking happens. So the multiplicative nois
the correlations between the additive and multiplicat
noises, and the asymmetry off (x) @or the asymmetry of the
potential, which isU(x)52*xf (x8)dx8] are ingredients for
the average velocity for the model~1!. The reason for pro-
ducing the average velocity is that the symmetry of the s
tem is broken by the functionf (x), or the correlations be
tween the additive and multiplicative noises. Now t
asymmetry of the system makes the probability of fluct
tions on the two sides of the potential barrier different,
that an average velocity arises. The energy in response to
average velocity stems from the noise.

The phenomenon of resonance happening here is
lyzed below. In Figs. 1~a!–1~d!, the additive noise plays a
twofold role. On one hand, it stimulates directional motion
the particle in response to the asymmetric condition of
system. On the other hand, it reduces the asymmetry of
system, which is the cause of directional motion of the p
ticle. The competition of these two apparently opposite ro
produces a peak at which a phenomenon of resonance
pears.

The characteristics of the constant forceI versus the av-
erage velocity can be calculated from Eq.~7! if A(x)1I is
used to replace A(x) „including A(x8) in F(x)
5*0

x@A(x8)/B(x8)#dx8…. In Figs. 2~a! and 2~b! we plot the
characteristics of the average velocity versus the cons
force for different values of the additive noise strength. F
ure 2~a! corresponds toD50.2, 0.5, 0.7, and 1, and Fig. 2~b!
to D51, 2, 3, and 4@in Fig. 2~b!, the diagonal line is without
noise#. From these figures, we find the following.~a! With
increase of the additive noise strength, the curve for the
erage velocity versus the value of the constant force is ne
and nearer to the one without noise. This is because of
cooperative action of the multiplicative noises, the corre
tions between the additive and multiplicative noises, and
asymmetry of the potential.~b! One can manipulate the be
havior of the average velocity versus the constant force
controlling the additive noise strength. Now one can app
priately adjust the temperature to make the average velo
versus the constant force fit one’s demands~since the ther-
mal additive noise strengthD is proportional to the tempera
ture!. In addition, further study shows that when the const
01111
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force is not zero the average velocity versus the addi
noise strength presents the same phenomena of resonan
in Figs. 1~a!–1~d!.

IV. UNDERDAMPED CASE

In this section we shall consider the transport of partic
in the case ofmÞ0. For the convenience of analysis an
calculation, we write Eq.~1! as

ẋ5y,

ẏ52
1

m
y1 f 8~x!1g1~x!j1~ t !1g2~x!j2~ t !1

1

m
h8~ t !, ~9!

where f 8(x)52(1/m)@J1sin(x/2)1J2sin(x1x0)#, g1(x)
5(1/m)@2sin(x/2)1l1AD/D1#, andg2(x)5(1/m)@2sin(x
1x0)1l2AD/D2#. In the Stratonovich case, the Fokke
Planck equation for the probability densityP(x,y,t) corre-
sponding to Eq.~9! is

FIG. 2. The average velocity versus the constant force in
overdamped case for the model~1!. ~a! corresponds toD50.2, 0.5,
0.7, and 1, and~b! to D51, 2, 3, and 4~ the diagonal line is the
case without noise!, with D15D250.3, x05p/2, l15l250.3,
andJ15J251.
3-3
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FIG. 3. The currentJ versus the additive noise strength in the underdamped case for the model~1!. ~a! is for different values ofJ1

(J150.1,0.7, and 2, respectively! with D15D250.3, J251, x05p/2, l15l250.3, andm55; ~b! is for different values ofJ2 (J2

50.2,0.5, 2 and 10, respectively! with D15D250.3, J151, x05p/2, l15l250.3, andm55; ~c! is for different values ofl1 (l1

520.9,20.5,0.5, and 0.9, respectively! with D15D250.3, x05p/2, J15J251, l250.3, andm55; ~d! is for different values ofl2

(l2520.9, 20.5, 0.5, and 0.9, respectively! with D15D250.3, x05p/2, J15J251, l150.3, andm55.
a
ro
g
u-

f

] tP52y]xP2]yF2
1

m
y1 f 8~x!GP

1H 1

m
D~12l1

22l2
2!1D1@g1~x!#2

1D2@g2~x!#2J ]y
2P. ~10!

Equation~10! cannot be solved analytically even for the st
tionary case since detailed balance is broken and the p
ability flow is not zero, but it can be solved by applyin
numerical methods. In the following we carry out our n
merical simulation directly using the Langevin equation~9!.
From Ref.@10# we can get the numerical algorithm

x~ t1Dt !5x~ t !1yDt,

y~ t1Dt !5y~ t !1S 2
1

m
y~ t !1 f 8„x~ t !…DDt

1x1~ t,Dt !1x2~ t,Dt !, ~11!
01111
-
b-

FIG. 4. The currentJ as a function of the natural logarithm o
the mass withD15D250.3,J15J251,x05p/2,l15l250.3, and
D50.3.
3-4
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where

x1~ t,Dt !5H D1g1„x~ t !…
]g1„x~ t !…

]x
f1

2

1D2g2„x~ t !…
]g2„x~ t !…

]x
f1

2

1AD1D2Fg1„x~ t !…
]g2„x~ t !…

]x

1g2„x~ t !…
]g1„x~ t !…

]x Gf1f2

1ADD1 /m
]

]
g1„x~ t !…ff1

1ADD2 /m
]

]
g1„x~ t !…ff2J Dt,

and

x2~ t,Dt !5g1„x~ t !…A2D1Dtf11g2„x~ t !…A2D2Dtf2

1A2DDt/mf,

with three independent Gaussian random numbersf1 , f2,
and f of zero mean and variance 1. Here we define
currentJ which is averaged over an ensemble of initial co
ditions for the average velocity. Therefore, the current
two different averages. The first average is overM initial
conditions, which we take equally distributed in space~from
x50 to x54p), and with a zero initial velocity. For a fixed
time t j , we can obtain the first averagev j

5(1/M )( i 51
M ẋi(t j ). The second average is a time avera

Since we take a discrete time for the numerical simulati
we have a discrete finite set ofN different timest j . Then the
current is defined asJ5(1/N)( j 51

N v j .
The numerical results are plotted in Figs. 3~a!–3~d! for

the current versus the additive noise strength. Every poin
the figures is calculated by taking the average of
.

.

,

01111
e
-
s

.
,

in
e

M5400 initial conditions and theN5105 different discrete
times ~averaged by 43107 points!. Here the time step is
taken asDt50.01. In order to guarantee that the system is
the stationary state, we take the time average aftet
51000. This average is taken fromt51000 tot52000. The
space from x50 to x54p is divided into 400 (xi
54p i /400, i 51,2, . . .,400). The initial conditions arexi(t
50)50 (i 51,2,3, . . . ,400). From the figures we can se
that ~a! the current can be negative, zero, or positive;~b! for
the transport there are the phenomena of resonance.
interesting that Figs. 3~a!–3~d! and Figs. 1~a!–1~d! ~over-
damped case! have the same characteristics~a! and ~b!. In
addition, they have other similar features@these are less im
portant than the above~a! and ~b!#. ~1! With the increase of
J1 or J2, the peaks move to the right.~2! With increase in the
absolute value ofl1 or l2, the transport can be strengthene
It is also interesting that by varying the value ofl1 or l2 the
flux can be reversed, that can be observed in Figs. 3~c! and
3~d!. If the additive noise strength is large enough, a reve
can also be induced@cf. Fig. 3~c!#. The phenomenon of trans
port and its resonance happening here have the same or
as the ones analyzed in the overdamped case.

Finally, let us consider the transport of particles with d
ferent mass. The result of a simulation for the currentJ ver-
sus the natural logarithm of the mass is depicted in Fig
with the parametersD15D250.3, J15J251, x05p/2, l1
5l250.3, andD50.3. From Fig. 4 we see that with de
creasing mass of the particle, the particle moves more
more quickly. Thus we can separate the particles with diff
ent values of mass by controlling the parameters of the n
~i.e., D, D1 , D2 , l1, andl2) or the parameters of the po
tential ~i.e.,J1 , J2, andx0). For the parameters given in Fig
4, the particles with small inertia move to the negative dire
tion quickly, while the particles with strong inertia mov
slowly or almost remain in the original position.
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