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Spatially periodic stochastic system with infinite globally coupled oscillators
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~Received 9 January 2001; published 18 June 2001!

In this paper we study a spatially periodic stochastic system with infinite globally coupled oscillators driven
by a constant forceF. With two typical models we show that whenF50 there is a nonequilibrium transition
between the state with zero mean field (s50) and the state with nonzero mean field (sÞ0). For model I, the
transition is not a phase transition, while for the model II it is~second order!. In addition, we find that for
coupled oscillators driven only by additive noises, whenF50 a transport may emerge if the nonzero mean
field breaks the symmetry of the systems. With varyingF a continuous or discontinuous transition between
states.0 and states,0 will appear. The mean field or current sometimes exhibits hysteresis as a function
of F.

DOI: 10.1103/PhysRevE.64.0611XX PACS number~s!: 05.40.2a, 05.60.2k
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I. INTRODUCTION

Noise-induced nonequilibrium phenomena in nonline
systems have recently attracted a great deal of attention
variety of contexts@1#. In general, these phenomena invol
a response of the system that is not only produced or
hanced by the presence of the noise, but is optimized
certain values of the parameters of the noise. One examp
the phenomenon of stochastic resonance@2#, wherein the re-
sponse of a nonlinear system to a signal is enhanced by
presence of noise, and maximized for certain values of
noise parameters. Another is the ‘‘Brownian motor
wherein for Brownian motion in stochastic spatial period
potentials the spatial asymmetry or noise asymmetry lead
a systematic transport whose magnitude and even direc
can be tuned by the parameters of the noise@3#. A third is the
nonequilibrium transition for systems with finite or infinit
coupled oscillators, which is probably a phase transition~of
first or second order! @4–6# or not @6,7#. For these systems
the most exciting factor is that a reentrant second order ph
transition was found for a general spatially extended mo
by Van den Broecket al. @4#. Afterward, this phenomenon
was found in many systems with coupled oscillators.
fourth such phenomenon is resonant activation@8#. Here the
mean first passage time~MFPT! of a particle driven by~usu-
ally white! noise over a fluctuating potential barrier exhib
a minimum as a function of the parameter of the fluctuat
potential barrier~usually the flipping rate of the fluctuatin
potential barrier!.

In this paper, we will study a spatially periodic syste
with infinite noise-driven overdamped oscillators which a
globally coupled by the mean field and driven by a const
force. The nonequilibrium transition@4–7# and the transpor
@3# that probably occurs will be studied in detail. The set
of the problem is arranged as follows: We first conside
general model consisting of infinite globally coupled oscil
tors. Then, using formulas obtained by us, with two typic
models we study the nonequilibrium transition and transp
of particles.

II. A GENERAL MODEL

We consider a model whose Langevin equations of os
lators are~in dimensionless form!
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ẋi5 f ~xi !1g~xi !es1h i~ t !1F,

f ~xi !52
dU0~xi !

dxi
, i 51,2,3, . . . ~1!

whereU0(xi) is spatially periodic function ofx with a period
L, g(xi) is a linear or nonlinear function ofx, h i(t) are
Gaussian white noises with zero mean and correlation fu
tions ^h i(t)h j (t8)&52Dd i j d(t2t8), e is a positive cou-
pling constant, the mean fields5 limN→`(1/N)( i 51

N f (xi),
andF is the constant force.

A coupling term such as the one in Eq.~1! appeared in
some models for the coupled oscillators@6,7#. Now the cou-
pling between the oscillators is not a constant, but a funct
of x ~linear or nonlinear!. In Sec. V, we will give a reason
why g(x) is taken as a function ofx and not as a constant i
the paper.

In the case ofN→`, all the oscillators have an identica
evolution given by the nonlinear stochastic equation

ẋ5 f ~x!1g~x!es1h~ t !1F, ~2!

wheres(t)5^ f „x(t)…&, which represents the time-depende
order parameter.

The Stratonovich interpretation of Eq.~2! yields the
Fokker-Planck equation@9#

] tP~x,s,t !52]xJ~x,s,t !, ~3!

with the probability currentJ(x,s,t) given by

J~x,s,t !5A~x,s!P~x,s,t !2]xB~x,s!P~x,s,t !, ~4!

whereA(x,s)5 f (x)1g(x)es1F andB(x,s)5D.
In the stationary state, the distributionP(x,s,t)

→P(x,s), and the currentJ(x,s,t)→J(x,s)5const. Then
we have

J5A~x,s!P~x,s!2]xDP~x,s!. ~5!

Below we derive the constant probability current a
the stationary probability density. The effective potent
for Eq. ~2! is U(x,s)5U0(x)1sU11U2, with U0
©2001 The American Physical Society06-1
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52*0
xf(x)dx, U152*0

xeg(x)dx, and U252Fx. From Eq.
~5!, and using the periodic boundary conditionP(0,s)
5P(L,s) andJ(0)5J(L)5J5const, we can easily obtain

J5M $12exp@sU1~L !/D2FL/D#%, ~6!

where M5P(L,s)B(L)/*0
Ldx exp@U(x,s)/D#, which is the

normalization constant for the stationary probability distrib
tion. Here it needs to be explained that the symmetry
asymmetry of the original spatial potentialU0(L) does not
affect the transport, sinceU0(L)50. Substituting Eq.~6!
into Eq. ~5!, and noting thatP(0,s)5P(L,s), we can obtain
the stationary probability density

P~x,s!5M
exp@2U~x!/D#

D R exp@U~x8!/D2U~L !h~x

2x8!/D#dx8. ~7!

In the limit of N→`, the self-consistent Weiss mean-fie
approach of Desai and Zwanzig is valid@4–7,10–12#, and
the Weiss mean field has to comply with the condition

s5E
0

L

f ~x!P~x,s!dx5F̄~s!; ~8!

this is a self-consistency equation, whose solution yields
dependence ofs with the system parameters.

First we consider the case ofF50. In the presence o
spatial symmetry, Eq.~8! always has a solutions50. With
the appearance of multiple solutions, we can findsÞ0. If
U1(L)50, there is a nonequilibrium transition between t
states50 and the statesÞ0, which is not a phase transitio
since the symmetry is not broken; ifU1(L)Þ0, a nonequi-
librium phase transition with symmetry breaking will appe
For the former case, the current is zero; for the lat
case, the current is probably not†the current J5N@1
2exp„U1(L)s/D…#; please see Secs. III and IV‡. In the pres-
ence of spatial asymmetry, Eq.~8! does not have the solutio
s50, but only the solutionsÞ0. So there is not a nonequ
librium transition between the states50 and the statesÞ0
~the system only has a statesÞ0). Now the current of the
transport is also determined byJ5N@12exp(U1(L)s/D)#. @If
U1(L)50, we haveJ50; if U1(L)Þ0, we probably have
JÞ0.#

If the inputting constant force is not zero, the system h
only one statesÞ0 with asymmetry. Now from correspond
ing formulas we can investigate the dynamic characteri
features of the system, including the nonequilibrium tran
tion and the transport of particles~see the studies below!. It
needs to be explained that ifF is large, the effect of the
coupling between oscillators on the system will beco
small, in contrast with the case for a small value ofF.

Below we consider two typical models. One is the ca
when U1(L)50; the other is the one whenU1(L)Þ0. In
order that we can clearly illustrate the effect of the me
field on the system, we only consider the spatially symme
case.
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III. MODEL I: CASE OF U1„L …Ä0

In this section, we focus on the simplest possible e
amples: f (xi)5cosxi and g(xi)52sinxi ~in dimension-
less form!. From corresponding formulas in Sec. II, w
can obtain J50, P(x,s)5N$exp@„2U0(x)/D2sU1(x)…/
D 2 U2(x)/ D# % r exp@U0(x8)/D1sU1(x8) /D1U2(x8) /D#dx8,

and s5r f (x)P(x,s)dx5F̄(x), with U0(x)52sin(x), U1

52(cosx21), andU252Fx.
First we study the case ofF50. It can be verified that the

function F̄(s)5r f (x)P(x,s)dx is a smooth, monotonic, an

odd function. When ]sF̄(s)<1, the function F̄5F̄(s)

crosses the functionF̄5s at s50 ~stable!; when]sF̄.1, the

function F̄5F̄(s) crosses the functionF̄5s at s50 ~un-
stable! ands56s(0) ~stable,s0.0). In Fig. 1~a! we plot the

function F̄5F̄(s) versuss with D50.5, ande51, 5, and
10, respectively. In this figure the diagonal line is determin

by F̄5s. It is clear that the condition that the system trans
from states50 to statesÞ0, or vice versa, is]sF̄(s)us50
51. The transition line is plotted in Fig. 1~b!. The region
below the curve corresponds to the zero mean field state,
that above the curve to the symmetric nonzero mean fi
state. At the transition line there is a bifurcation of the pro
ability density. The nonzero value of the mean field is re
resented in Fig. 1~c! by the equations5r f (x)P(x,s)dx ~the
order parameter of this transition ism5usu). The transition
has the following characteristic features:~1! The transition is
not a phase transition, since there is no symmetry break
even if the order parameter changes continuously.~2! The
state sÞ0 is a bistable one withs56s(0) (s(0).0). ~3!
With the increase of the noise strength~or the coupling con-
stant! the transition occurs at a larger value of the coupli
constant~or the noise strength!.

If FÞ0, superficially the particles will move along th
direction of the force. However, owing to the couplin
among different particles, some anomalous properties, s
as negative mobility, hysteresis, and so on, probably app
@11#. Now the mean field is also determined by the equat
s5r f (x)P(x,s)dx5F̄(x) with the parametersF, e, andD.
We have studied the mean field as a function ofF when the
noise strength is definite but the coupling is varied. Stud
showed that there are two kinds of coupling: in one, t
mean field is a continuous function ofF @see Fig. 2~a!#; in
the other, the mean field is a discontinuous function ofF @to
see Figs. 2~b! and 2~c!#. For the former, there is a continuou
transition from states.0 to states,0, or vice versa@see
Fig. 2~a!#. For the latter, there is a discontinuous transiti
from states.0 to states,0, or vice versa@see Fig. 2~b!#.
The transition diagram~or the transition line! is given in Fig.
3~a!. In the upper region the system is in states.0; in the
lower region it is in states,0; in the shadowed region it is
a state composed ofs.0 ands,0, where hysteresis for the
mean field versus the constant force appears. Below we
the characteristic features of the transitions.~1! There is a
critical valuee0 of the couplinge. Whene,e0 a continuous
transition occurs; while whene.e0 a discontinuous transi
tion occurs. The critical valuee0 for the appearance of th
6-2
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SPATIALLY PERIODIC STOCHASTIC SYSTEM WITH . . . PHYSICAL REVIEW E64 011106
discontinuous transition as a function of the noise strengtD
is depicted in Fig. 3~b!. From this figure we can find tha
increasing the noise strength leads to a raise of the cri
value e0. ~2! The transition is not a phase transition, sin
with the appearance of the transition there is no symm
breaking.~3! The discontinuous transition is doubly unid

FIG. 1. WhenF50 for model I,~a! the functionF̄5F̄(s) vs s
with D50.5 ande51, 5, and 10, respectively~the diagonal line is

determined byF̄5s); ~b! the transition line fore vs D; and~c! the
nonzero mean field vse with D50.5.
01110
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rectional, which can be observed from Fig. 2~b!. The line for
the mean field versus the constant force presents an an
lous hysteresis loop.~4! The transitions from states.0 to
states,0, and vice versa, are symmetric with respect toF
50. ~5! For the discontinuous transition, with increasin
coupling strength the transition requires a greater value
the constant forceF ~correspondingly, the anomalous hyste
esis will grow with the increase of the coupling!. In addition,
if the coupling strength is large enough, in addition to t

FIG. 2. The mean field vsF for model I for different values of
e, ~a! e51, ~b! e53, and~c! e55, with D50.5.
6-3
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original discontinuous transition from states.0 to state
s,0, or vice versa, two other double discontinuous tran
tions will appear which are in states.0 and states,0,
respectively@see Fig. 2~c!#. In the case of largeF, the abso-
lute value of the mean field will become small, and there w
be no doubly discontinuous transition for the mean field.

The transport of particles is also studied for the curr
versus the constant force. It is shown that when the coup
is not large enough, there are no hysteresis and nega
mobility for the current versus the constant force, as
served in Ref.@7# @see Figs. 4~a! and 4~b!#. However, when
the coupling is large enough, normal and anomalous hys
esis will appear@see Figs. 4~c!, 5~a! and 5~b!; Figs. 5~a! and
5~b! are enlargements or the corresponding parts in F
4~c!#, but no negative mobilities appear. From Figs. 2~c!,
4~c!, 5~a!, and 5~b!, we can note that the appearance of t
hysteresis for the current is due to the hysteresis for the m
field, and the direction of the hysteresis for the current
opposite to that for the mean field. In Fig. 2~b!, a hysteresis
for the mean field appears, but owing to the fact that
spatial coupling among different oscillators is not lar
enough, there is no hysteresis for the current. IfF is large,

FIG. 3. FÞ0 for model I. ~a! The transition diagram for the
transition between the states,0 and the states.0, where the
dashed line presents the continuous transition and the solid line
discontinuous one transition.~b! The critical valuee0 vs D for the
appearance of the discontinuous transition.
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the particles will move along the direction of the force, a
there will be no hysteresis for the current.

IV. MODEL II: CASE OF U1„L …Å0

Now we consider the case ofU1(L)Þ0. The special ex-
ample studied by us is~in dimensionless form!

ẋi5cosxi1~2sinxi11!es1h i~ t !1F, ~9!

wherei 51,2,3, . . . , and themean fields and noises$h i(t)%
are the same as those in Eq.~1!. Then we can obtainU0
52sinx, U152e„cosx211x/(2p)…, and U252Fx; here

the

FIG. 4. The probability currentJ vs F for different values ofe.
~a! e51, ~b! e53, and~c! e55, with D50.5 for model I.
6-4



es

.

de
u

,

i

-
th

n
i

ion,
the

t

esis
tant

ga-

be
(
e-

nt
e

t
the
e

in
e-

ired

ri-

al

m-
rs
ld,
the
ys-
for
stant

sly,
of

rce
on,
n-

n-

nd
ec.

not
the
us

.

SPATIALLY PERIODIC STOCHASTIC SYSTEM WITH . . . PHYSICAL REVIEW E64 011106
we have dropped the subscripti for simplicity, since, when
N→`, all the oscillators have an identical evolution.

We now turn to a more detailed analysis of Eq.~8! in the
case ofF50. Obviously, the trivial solutions50 always
exists~the system is in a symmetric state!. With the appear-
ance of multiple solutions, we can find ‘‘ordered’’ phas
with an order parameterm5usuÞ0 ~the symmetry of the
system is broken!. The critical condition should be

F̄8~s50!51. ~10!

In Fig. 6~a!, we plot the phase transition line in light of Eq
~10!. The nonzero mean field is depicted in Fig. 6~b! with
D50.5 ~the dashed line is that of model I!. From Figs. 6~a!
and 6~b! we can observe that the transition line and its or
parameter line are basically similar to those of model I. B
there are differences between them.~1! The former is a phase
transition ~of second order!; while the latter is not.~2! For
the former, in the statesÞ0, the current is probably not zero
while for the latter it is.

The probability current versus the coupling constant
plotted in Fig. 6~c! with different values ofD (D50.5, 2,
and 5, respectively! andF50. The figure shows the follow
ing. ~1! For given values of the noise and coupling streng
the nonzero currentJ does not have a definite sign (J
56J0 , J0.0). One unavoidably wants to ask a questio
i.e., if the noise and the coupling constant are definite, w

FIG. 5. Enlargements for the corresponding parts~surrounded
by dashed lines! in Fig. 4~c!. ~a! corresponds to the left part of Fig
4~c! and 4~b! to the right part.
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the current be positive or negative? To answer this quest
we must first consider the hysteresis or the current versus
constant forceF. In Fig. 6~d!, we plot the line for the curren
as a function of the constant force withD50.5 ande51.5.
From the figure we can see that there is a normal hyster
for the current versus the constant force. Thus, if the cons
force changes from positive to zero, whenF50 we haveJ
.0; otherwise, i.e., if the constant force changes from ne
tive to zero, whenF50 we haveJ,0. If the constant force
F is not added to every oscillator, the net current will
zero. The reason for this is that there are two currentsJe
56J0 , J0.0) produced for the oscillators, and cons
quently the net current must be thatJnet5(J02J0)50. ~2!
Only in the symmetry-breaking phase state (sÞ0) is there a
nonzero current.~3! The current versus the coupling consta
attenuates to zero very quickly. Thus, even if in the stats
Þ0, whene is large enough, the current is almost zero~for
example, whenD50.5, if e.4, the currentJ'0). ~4! In the
phase statesÞ0, the small valuee of the coupling constan
plays a role of destructive influence on the asymmetry of
system, so theuJu-e response curve will have a positiv
slope. However, for a larger value ofe, the central role will
be to produce coherent motion with increases ase increases;
then theuJu-e curve goes down. Thus, finally, we can obta
a peakeduJu-e response curve, at the peak of which a ph
nomenon of resonance will occur.~5! With increasing noise
strength greater values of the coupling constant are requ
to induce the current.

Below we analyze the current that emerges whenF50.
For uncoupled oscillators, we know that, if a spatially pe
odic system is driven by only thermal additive noises~the
temperature is a constant!, no transport can occur@transport
occurring with thermal additive noises means that therm
fluctuation ~only one heat source! is converted into work,
and implies a violation of the second law of thermodyna
ics#. This is only for uncoupled oscillators. If the oscillato
are coupled together globally or locally with the mean fie
and the nonzero mean field can break the symmetry of
system, transport will probably be produced even if the s
tem is only driven by the additive noises. Now the energy
the transport stems from the noises and the nonzero con
force. Superficially, it seems that whenF50, an isolated
system can transfer energy to the surroundings. Obviou
this is very incorrect, since it violates the second law
thermodynamics. For the current to be nonzero whenF50
requires a precondition. This is that the constant fo
changes from nonzero to zero. If there is not this conditi
whenF50 no transport occurs. With the change of the co
stant force, whenF50 there are still some energies co
tained in the system, which are produced whenFÞ0. Thus a
nonzero net jet still exists whenF50. The reason for this
phenomenon occurring here is that whenF50 the nonzero
mean field can break the symmetry of the system.

With varying F, there are still the same continuous a
discontinuous transitions for the mean field as studied in S
III. Here, in order to avoid unnecessary repetition, we do
present corresponding figures that are basically similar to
ones in Sec. III; nor do we give discussions of the continuo
and discontinuous transitions occurring here.
6-5
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FIG. 6. Model II. ~a! The phase transition line whenF50. ~b! The nonzero mean field vse ~the solid line!; the dashed line stands fo
the model I, withD50.5 andF50. ~c! WhenF50, the current vse for different values ofD (D50.5, 2, and 5, respectively!. ~d! The
normal hysteresis for the current vsF with e51.5 andD50.5.
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The transport of particles for the current versus the c
stant force is studied. We find the following.~1! There is no
negative mobility for the current versus the constant for
~2! If the coupling strength is small, there are also no h
teresis.~3! When the coupling strength is near a critical val
e5e1, where whenF50, the absolute value of the curre
has a peak as the function ofe, and a normal hysteresis wi
arise@see Fig. 6~d!#. ~4! When the coupling strength is larg
enough, normal and anomalous hysteresis will appear sim
taneously. We note that for the above features of the cur
versus the constant force of model II, only feature~3! is
different from that of model I. This is because whenF50 a
nonzero current for model II will be produced, owing to th
symmetry breaking induced by the nonzero mean field.

V. CONCLUSION AND DISCUSSION

In conclusion, we have studied a spatially periodic s
chastic system with infinite globally coupled oscillators su
ject to a constant forceF. With two typical models we have
found that whenF50 there is a nonequilibrium transitio
between states50 and statesÞ0. For model I, the transition
01110
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nt

-
-

is not a phase transition, since the symmetry of the sys
has not been broken, even though it is between the ‘‘dis
der’’ state and the ‘‘order’’ state. For model II, the transitio
is second order, since the symmetry of the system has b
broken and the order parameter changes continuously,
possesses features similar to those observed at the se
order equilibrium phase transitions: a divergence of the c
relation length and the susceptibility, a critical slowin
down, and a scaling behavior. In addition, we have fou
that for coupled oscillators, even if they are only driven
additive symmetric noises~in this paper, we set them a
Gaussian white noises!, when F50 a net current for the
particles may emerge if the current versusF has a hysteresis
near F50. With varying F a continuous or discontinuou
transition between states.0 and states,0 will appear.
This transition is not a phase transition, since no symme
breaking occurs even though the order parameter cha
continuously or discontinuously. Moreover, hysteresis
the mean field or the current can sometimes be found
functions of F. This is because a nonzero mean field c
break the symmetry of the system.

Model ~1! given in the paper is theoretically mathematic
6-6
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SPATIALLY PERIODIC STOCHASTIC SYSTEM WITH . . . PHYSICAL REVIEW E64 011106
and physical. It makes us reminiscent of the work of Shi
@12#. In Ref. @12#, Shiino proved theH theorem in an
asymptotic approach, and showed a critical slowing down
order-parameter fluctuations for a bistable ensemble
g(x)51. We suppose that our models also satisfy theH
theorem~we will give the proof elsewhere!. For our model
II, when F50 there is a nonequilibrium second phase tra
sition, which has an interesting feature: a critical slowi
down~since this feature is general for the second order ph
transition!.

In our paper, the functiong(x) is set as a linear or non
linear function ofx. If g(x)5const, Eq.~8! in the case of
F50, has only the trivial solutions50, and there is no
nonequilibrium transition between states50 and state
sÞ0 for the system~see Secs. III and IV!; when FÞ0, al-
thoughs is nonzero and is a function ofF, e, and D, the
appearance of characteristic features such as the discon
ous transition betweens.0 ands,0 and the hysteresis fo
the mean field and the current~see Secs. III and IV! will not
exist; this is because the coupling between the oscillator
too simple, and there is not enough effect on the system w
changingx. We have made a numerical simulation in t
case ofg(x)51, and found no phenomena of discontinuo
transition and hysteresis.

For a single oscillator we can find spontaneous osci
tions ~a running solution!. The effect of the coupling term
@i.e.,esg(x)# on this behavior depends on the structure of
effective potential when adding the coupling. For examp
tt
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in the case of the same period for an effective potential w
coupling and the one without coupling, when adding the c
pling, if the potential barrier becomes lower and the poten
well more shallow, the coupling term can enhance the sp
taneous oscillations; if the barrier becomes higher and
well deeper, the coupling term can weaken this behavior
the external constant force is large, the effective poten
function will have a large average slope, and the spontane
oscillations will become weaker.

The system considered here consists of an infinite num
of globally coupled oscillators driven by noises. When t
oscillators are finite, the features of the system will chan
For example, in Ref.@7#, when the oscillators are finite, th
system has a transition between a state with zero mean
and a state with nonzero mean field. However, when
oscillators are infinite, no transition occurs in the syste
Thus, in our paper, the case when the oscillators are fi
remains to be studied. In addition, the systems we studie
this paper are globally coupled and driven only by addit
noises. If the oscillators are locally coupled, the results
the same. If introducing multiplicative noises in our system
we suppose that the reentrant transition found by Bro
et al. @4# will probably appear.
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