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Spatially periodic stochastic system with infinite globally coupled oscillators
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In this paper we study a spatially periodic stochastic system with infinite globally coupled oscillators driven
by a constant forc&. With two typical models we show that whén=0 there is a nonequilibrium transition
between the state with zero mean fiegd=(0) and the state with nonzero mean fie&d~0). For model |, the
transition is not a phase transition, while for the model Il ifsecond order In addition, we find that for
coupled oscillators driven only by additive noises, when0 a transport may emerge if the nonzero mean
field breaks the symmetry of the systems. With varyih@ continuous or discontinuous transition between
states>0 and states<O will appear. The mean field or current sometimes exhibits hysteresis as a function

of F.
DOI: 10.1103/PhysReVE.64.0611XX PACS numer05.40—a, 05.60-k
|. INTRODUCTION N
xi=f(x;)+g(x;)es+ »;(t)+F,
Noise-induced nonequilibrium phenomena in nonlinear dUo(x;)
systems have recently attracted a great deal of attention in a f(x)=——/——, 1=123... (N

variety of contextg1]. In general, these phenomena involve dx;

a response of the system that is not only produced or eNvhereU
hanced by the presence of the noise, but is optimized fo
certain values of the parameters of the noise. One example ) ! X ) .
the phenomenon of stochastic resonaflewherein the re-  >aussian Whlte’n0|ses with zer(,) mean and correlation func-
sponse of a nonlinear system to a signal is enhanced by tHiPNs (7(1) 7;(t'))=2Dg;o(t—t'), e is a poswve cou-
presence of noise, and maximized for certain values of th@ling constant, the mean fielgi=limy_..(1/N)Zi-,f(x),
noise parameters. Another is the “Brownian motor,” andF is the constant force.

wherein for Brownian motion in stochastic spatial periodic A coupling term such as the one in Ed) appeared in
potentials the spatial asymmetry or noise asymmetry leads ®ome models for the coupled oscillatg€s7]. Now the cou-

a systematic transport whose magnitude and even directigpling between the oscillators is not a constant, but a function
can be tuned by the parameters of the np&deA third isthe  of x (linear or nonlinear. In Sec. V, we will give a reason
nonequilibrium transition for systems with finite or infinite why g(x) is taken as a function of and not as a constant in
coupled oscillators, which is probably a phase transit@mn the paper.

first or second ordgf4—6] or not[6,7]. For these systems,  |n the case oN—, all the oscillators have an identical

the most exciting factor is that a reentrant second order phasgolution given by the nonlinear stochastic equation
transition was found for a general spatially extended model

by Van den Broeclet al. [4]. Afterward, this phenomenon x=f(x)+g(x)es+ n(t)+F, )
was found in many systems with coupled oscillators. A

fourth such phenomenon is resonant activafi®h Here the  wheres(t) =(f(x(t))), which represents the time-dependent
mean first passage tiMi®IFPT) of a particle driven byusu-  order parameter.

ally white) noise over a fluctuating potential barrier exhibits  The Stratonovich interpretation of Eq2) yields the

a minimum as a function of the parameter of the ﬂUCt“atingzokker-Planck equatiofo]

potential barriefusually the flipping rate of the fluctuating

potential barrier. P(X,5,t) = — 3, J(X,S,1), (3)
In this paper, we will study a spatially periodic system

with infinite noise-driven overdamped oscillators which arewith the probability currendl(x,s,t) given by

globally coupled by the mean field and driven by a constant

force. The nonequilibrium transitig@—7] and the transport J(x,8,t) = A(X,5)P(x,8,t) = ,B(X,8)P(x,8,t), (4

[3] that probably occurs will be studied in detail. The setup

of the problem is arranged as follows: We first consider avhereA(x,s)=f(x)+g(x)es+F andB(x,s)=D.

general model consisting of infinite globally coupled oscilla- !N the stationary state, the distributiorP(x,s,t)

tors. Then, using formulas obtained by us, with two typical— P(x,s), and the currenti(x,s,t)—J(x,s)=const. Then

models we study the nonequilibrium transition and transpor¥ve have

of particles.

o(X;) is spatially periodic function ot with a period
g(x;) is a linear or nonlinear function of, #»(t) are

J=A(X,s)P(x,s) — d,DP(x,s). (5)

Il. A GENERAL MODEL . -
Below we derive the constant probability current and

We consider a model whose Langevin equations of oscilthe stationary probability density. The effective potential
lators are(in dimensionless formn for Eq. (2) is U(x,8)=Uy(x)+sU;+U,, with Ug,
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=—[5f()dx, U= —[Feg(x)dx, andU,= —Fx. From Eq. lll. MODEL I: CASE OF Uy(L)=0
(5), and using the periodic boundary conditid?(0,s)

~P(L,s) andJ(0)=J(L)=J=const, we can easily obtain In this section, we focus on the simplest possible ex-

amples: f(x;)=cosx and g(x;)=—sinx (in dimension-
less form. From corresponding formulas in Sec. I, we
can obtain J=0, P(x,s)=N{exg(—Uq(x)/D—sU;(x))/
where M=P(L,s)B(L)/ [5dxexdU(xs)/D], which is the D~ Y2(X)/D1}#explUg(x)/D+sUy(x')/D +Uy(x')/D]x,
normalization constant for the stationary probability distribu-2nd s=$f(x)P(x,s)dx=F(x), with Uq(x)=—sin), U,
tion. Here it needs to be explained that the symmetry o= —(€0sx—1), andU,=—Fx.

asymmetry of the original spatial potentidl(L) does not First we study the case &f=0. It can be verified that the
affect the transport, sinctlo(L)=0. Substituting Eq(6)  functionF(s)=¢f(x)P(x,s)dx is a smooth, monotonic, and

into Eq. (5), and noting thaP(0,5)=P(L,s), we can obtain  oqq function. WhendF(s)<1, the function F=F(s)
the stationary probability density

J=M{1—exgsUy(L)/D—FL/D]}, (6)

crosses the functiof=s ats=0 (stablg; when 03E> 1, the

exd —U(x)/D] function F=F(s) crosses the functiolr=s at s=0 (un-
P(x,$)=M———F—— § exg U(x")/D—U(L)7n(x stablg ands= +s© (stable,s°>0). In Fig. Xa) we plot the
function F=F(s) versuss with D=0.5, ande=1, 5, and

—x")/D]dx’. (7) 10, respectively. In this figure the diagonal line is determined

by F=s. Itis clear that the condition that the system transits

from states=0 to states#0, or vice versa, i9F(S)|s—o
=1. The transition line is plotted in Fig.()). The region
below the curve corresponds to the zero mean field state, and
. that above the curve to the symmetric nonzero mean field
S:f f(X)P(X,S)dXIE(S); (8) sta}tg. At theT transition line there is a bifurcation qf thg prob-
0 ability density. The nonzero value of the mean field is rep-
resented in Fig. (t) by the equatiors=¢f(x)P(x,s)dx (the
this is a self-consistency equation, whose solution yields therder parameter of this transition ms=|s|). The transition
dependence o with the system parameters. has the following characteristic featuré$) The transition is
First we consider the case 6=0. In the presence of not a phase transition, since there is no symmetry breaking
spatial symmetry, Eq(8) always has a solutioe=0. With ~ even if the order parameter changes continuougdy.The
the appearance of multiple solutions, we can f@gwl0. If  states#0 is a bistable one witls==s(® (s©>0). (3)
U,(L)=0, there is a nonequilibrium transition between theWith the increase of the noise strengt the coupling con-
states=0 and the state+ 0, which is not a phase transition Stan} the transition occurs at a larger value of the coupling
since the symmetry is not broken; if;(L)#0, a nonequi- constant(or the noise strength
librium phase transition with symmetry breaking will appear. If F#0, superficially the particles will move along the
For the former case, the current is zero; for the lattedirection of the force. However, owing to the coupling
case, the current is probably ndthe currentJ=N[1 among different particles, some anomalous properties, such
—exp(U,(L)s/D)]; please see Secs. Ill and]Mn the pres- ~ as negative mobility, hysteresis, and so on, probably appear
ence of spatial asymmetry, E@) does not have the solution [11]. Now the mean field is also determined by the equation
s=0, but only the solutiors# 0. So there is not a nonequi- s=¢f(x)P(x,s)dx=F(x) with the parameterg, e, andD.
librium transition between the stage=0 and the stats#0  We have studied the mean field as a functior-afthen the
(the system only has a stase=0). Now the current of the noise strength is definite but the coupling is varied. Studies
transport is also determined By= N[ 1—expU4(L)¥D)]. [If showed that there are two kinds of coupling: in one, the
U,(L)=0, we havel=0; if U;(L)#0, we probably have mean field is a continuous function &f [see Fig. 2a)]; in
J#0.] the other, the mean field is a discontinuous functioffr ¢fo
If the inputting constant force is not zero, the system hasee Figs. &) and Zc)]. For the former, there is a continuous
only one states+0 with asymmetry. Now from correspond- transition from states>0 to states<O, or vice versgdsee
ing formulas we can investigate the dynamic characteristiig. 2(@)]. For the latter, there is a discontinuous transition
features of the system, including the nonequilibrium transifrom states>0 to states<O0, or vice versgdsee Fig. 20)].
tion and the transport of particlésee the studies belowit ~ The transition diagrarfor the transition lingis given in Fig.
needs to be explained that i is large, the effect of the 3(a). In the upper region the system is in stateO; in the
coupling between oscillators on the system will becomdower region it is in states<<0; in the shadowed region it is
small, in contrast with the case for a small valueFof a state composed >0 ands<0, where hysteresis for the
Below we consider two typical models. One is the casemean field versus the constant force appears. Below we give
when U,(L)=0; the other is the one whed,(L)#0. In  the characteristic features of the transitiofls. There is a
order that we can clearly illustrate the effect of the mearcritical valuee, of the couplinge. Whene<g, a continuous
field on the system, we only consider the spatially symmetrigransition occurs; while whee>e¢, a discontinuous transi-
case. tion occurs. The critical value, for the appearance of the

In the limit of N— <, the self-consistent Weiss mean-field
approach of Desai and Zwanzig is valid—-7,10-12, and
the Weiss mean field has to comply with the condition
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FIG. 1. WhenF=0 for model I,(a) the functionF=F(s) vs s
with D=0.5 ande=1, 5, and 10, respectivelyhe diagonal line is
determined by =s); (b) the transition line fore vs D; and(c) the
nonzero mean field ve with D=0.5.
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FIG. 2. The mean field vE for model | for different values of
e (a) e=1, (b) e=3, and(c) e=5, with D=0.5.

rectional, which can be observed from FigbR The line for

the mean field versus the constant force presents an anoma-
lous hysteresis loop4) The transitions from state>0 to
discontinuous transition as a function of the noise strebgth states<<0, and vice versa, are symmetric with respeckto

is depicted in Fig. &). From this figure we can find that =0. (5) For the discontinuous transition, with increasing
increasing the noise strength leads to a raise of the criticadoupling strength the transition requires a greater value of
value g;. (2) The transition is not a phase transition, sincethe constant forc& (correspondingly, the anomalous hyster-
with the appearance of the transition there is no symmetrgsis will grow with the increase of the couplingn addition,
breaking.(3) The discontinuous transition is doubly unidi- if the coupling strength is large enough, in addition to the
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FIG. 3. F#0 for model I.(a) The transition diagram for the (c)
transition between the staw<0 and the states>0, where the 02 s 7
dashed line presents the continuous transition and the solid lines the E
discontinuous one transitiob) The critical valueg, vs D for the ok foo=s aas .
appearance of the discontinuous transition. - H
=021 b
original discontinuous transition from state>0 to state
s<0, or vice versa, two other double discontinuous transi- 04l il
tions will appear which are in state>0 and states<O, , , , , ,

respectively{see Fig. Zc)]. In the case of larg€, the abso- 4 -2 0 2 4

lute value of the mean field will become small, and there will

be no doubly discontinuous transition for the mean field.
The transport of particles is also studied for the current FIG. 4. The probability currend vs F for different values ok.

versus the constant force. It is shown that when the coupling®) €=1. (b) e=3, and(c) e=5, with D=0.5 for model I.

is not large enough, there are no hysteresis and negative

mobility for the current versus the constant force, as obihe particles will move along the direction of the force, and

served in Ref[7] [see Figs. &) and 4b)]. However, when there will be no hysteresis for the current.

the coupling is large enough, normal and anomalous hyster-

esis will appeafsee Figs. &), 5(a) and %b); Figs. 5a) and IV. MODEL II: CASE OF U,(L)#0

5(b) are enlargements or the corresponding parts in Fig. Now we consider the case bf,(L)0. The special ex-

4(c)], but no negative mobilities appear. From Fig$c)2 . L ;
4(c), 5(a), and 3b), we can note that the appearance of theample studied by us in dimensionless forin

hysteresis for the current is due to the hysteresis for the mean .

field, and the direction of the hysteresis for the current is Xj=cosX;+ (—sinx;+1)es+ »;(t) +F, 9
opposite to that for the mean field. In Figh® a hysteresis

for the mean field appears, but owing to the fact that thevherei=1,2,3 ..., and themean fields and noiseq »;(t)}
spatial coupling among different oscillators is not largeare the same as those in Ed). Then we can obtaitJ,
enough, there is no hysteresis for the currenf i large, = —sinx, U;=—e(cosx—1+x/(27)), and U,=—FXx; here

F
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' ' ' ' ' ' ' ' the current be positive or negative? To answer this question,

we must first consider the hysteresis or the current versus the

@) 8 constant forcé-. In Fig. 6d), we plot the line for the current

as a function of the constant force with=0.5 ande=1.5.

From the figure we can see that there is a normal hysteresis

- for the current versus the constant force. Thus, if the constant

0.0002 force changes from positive to zero, whEr-0 we havel

>0; otherwise, i.e., if the constant force changes from nega-

tive to zero, wher-=0 we havel<O. If the constant force

F is not added to every oscillator, the net current will be

O— . ] zero. The reason for this is that there are two curredts (
09 L1 12 13 14 15 16 ==*Jy, Jo>0) produced for the oscillators, and conse-

quently the net current must be that..=(Jo—Jg) =0. (2)

Only in the symmetry-breaking phase stase=(Q) is there a

' T T T T ¥ T nonzero current3) The current versus the coupling constant

ok attenuates to zero very quickly. Thus, even if in the sgate

#0, whene is large enough, the current is almost zéiar

example, wheD =0.5, if e>4, the currenfi~0). (4) In the

~0.0002 phase state#0, the small value of the coupling constant

—- plays a role of destructive influence on the asymmetry of the

system, so thgJ|-e response curve will have a positive

slope. However, for a larger value ef the central role will

0.0004

—

00004 be to produce coherent motion with increaseg awreases;
then the|J|-e curve goes down. Thus, finally, we can obtain
~0.0006 | | . . . . . ] a peakedJ|-e response curve, at the peak of which a phe-
16 —-15 -14 -13 -12 11 -1 nomenon of resonance will occuys) With increasing noise
strength greater values of the coupling constant are required
F to induce the current.
FIG. 5. Enlargements for the corresponding pasisrrounded Below we analyze the current that emerges wken0.
by dashed linesin Fig. 4(c). (a) corresponds to the left part of Fig. FOr uncoupled oscillators, we know that, if a spatially peri-
4(c) and 4b) to the right part. odic system is driven by only thermal additive noigése

temperature is a constanho transport can occytransport
we have dropped the subscripfor simplicity, since, when occurring with thermal additive noises means that thermal
N— oo, all the oscillators have an identical evolution. fluctuation (only one heat sourges converted into work,
We now turn to a more detailed analysis of Eg).in the  and implies a violation of the second law of thermodynam-
case ofF=0. Obviously, the trivial solutiors=0 always ics]. This is only for uncoupled oscillators. If the oscillators
exists(the system is in a symmetric stat®Vith the appear- are coupled together globally or locally with the mean field,
ance of multiple solutions, we can find “ordered” phasesand the nonzero mean field can break the symmetry of the
with an order parametem=|s|#0 (the symmetry of the system, transport will probably be produced even if the sys-

system is broken The critical condition should be tem is only driven by the additive noises. Now the energy for
o the transport stems from the noises and the nonzero constant
F'(s=0)=1. (10) force. Superficially, it seems that whéf=0, an isolated

system can transfer energy to the surroundings. Obviously,
In Fig. 6@, we plot the phase transition line in light of Eq. this is very incorrect, since it violates the second law of
(10). The nonzero mean field is depicted in Figbpwith  thermodynamics. For the current to be nonzero when0
D=0.5 (the dashed line is that of model From Figs. 6a) requires a precondition. This is that the constant force
and Gb) we can observe that the transition line and its orderchanges from nonzero to zero. If there is not this condition,
parameter line are basically similar to those of model I. ButwhenF =0 no transport occurs. With the change of the con-
there are differences between thef). The former is a phase stant force, wherF=0 there are still some energies con-
transition (of second ordgr while the latter is not(2) For  tained in the system, which are produced wkef0. Thus a
the former, in the state+ 0, the current is probably not zero, nonzero net jet still exists wheR=0. The reason for this

while for the latter it is. phenomenon occurring here is that whHer 0 the nonzero
The probability current versus the coupling constant ismean field can break the symmetry of the system.
plotted in Fig. &c) with different values oD (D=0.5, 2, With varying F, there are still the same continuous and

and 5, respective)yandF=0. The figure shows the follow- discontinuous transitions for the mean field as studied in Sec.
ing. (1) For given values of the noise and coupling strength|ll. Here, in order to avoid unnecessary repetition, we do not
the nonzero current! does not have a definite sign) (  present corresponding figures that are basically similar to the
==*Jy, Jo>0). One unavoidably wants to ask a question,ones in Sec. llI; nor do we give discussions of the continuous
i.e., if the noise and the coupling constant are definite, willand discontinuous transitions occurring here.
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FIG. 6. Model Il.(a) The phase transition line whdh=0. (b) The nonzero mean field es(the solid ling; the dashed line stands for
the model I, withD=0.5 andF=0. (c) WhenF =0, the current ve for different values oD (D=0.5, 2, and 5, respectively(d) The
normal hysteresis for the current #swith e=1.5 andD =0.5.

The transport of particles for the current versus the conis not a phase transition, since the symmetry of the system
stant force is studied. We find the followin@) There is no  has not been broken, even though it is between the “disor-
negative mobility for the current versus the constant forceder” state and the “order” state. For model Il, the transition
(2) If the coupling strength is small, there are also no hys4s second order, since the symmetry of the system has been
teresis(3) When the coupling strength is near a critical valueproken and the order parameter changes continuously, and
e=e;, where wherF=0, the absolute value of the current possesses features similar to those observed at the second
has a peak as the function efand a normal hysteresis will orger equilibrium phase transitions: a divergence of the cor-
arise[see Fig. €d)]. (4) When the coupling strength is large yejation length and the susceptibility, a critical slowing
enough, normal and anomalous hysteresis will appear simujown, and a scaling behavior. In addition, we have found
taneously. We note that for the above features of the currenhat for coupled oscillators, even if they are only driven by
versus the constant force of model I, only featB is  gdditive symmetric noisegin this paper, we set them as
different from that of model I. This is because wher0 a  Gaussian white noiseswhen F=0 a net current for the
nonzero current_for _model Il will be produced, owing to the particles may emerge if the current vergubas a hysteresis
symmetry breaking induced by the nonzero mean field.  nearF=0. With varying F a continuous or discontinuous
transition between state>0 and states<O will appear.
This transition is not a phase transition, since no symmetry
breaking occurs even though the order parameter changes

In conclusion, we have studied a spatially periodic sto-continuously or discontinuously. Moreover, hysteresis for
chastic system with infinite globally coupled oscillators sub-the mean field or the current can sometimes be found as
ject to a constant force. With two typical models we have functions of F. This is because a nonzero mean field can
found that whenF=0 there is a nonequilibrium transition break the symmetry of the system.
between state=0 and states# 0. For model I, the transition Model (1) given in the paper is theoretically mathematical

V. CONCLUSION AND DISCUSSION

011106-6



SPATIALLY PERIODIC STOCHASTIC SYSTEM WITH ... PHYSICAL REVIEW B4 011106

and physical. It makes us reminiscent of the work of Shiinoin the case of the same period for an effective potential with
[12]. In Ref. [12], Shiino proved theH theorem in an coupling and the one without coupling, when adding the cou-
asymptotic approach, and showed a critical slowing down ofpling, if the potential barrier becomes lower and the potential
order-parameter fluctuations for a bistable ensemble andell more shallow, the coupling term can enhance the spon-
g(x)=1. We suppose that our models also satisfy Bhe taneous oscillations; if the barrier becomes higher and the
theorem(we will give the proof elsewhejeFor our model  well deeper, the coupling term can weaken this behavior. If
II, when F=0 there is a nonequilibrium second phase tran-the external constant force is large, the effective potential
sition, which has an interesting feature: a critical slowingfunction will have a large average slope, and the spontaneous
down (since this feature is general for the second order phasescillations will become weaker.
transition. The system considered here consists of an infinite number
In our paper, the functiog(x) is set as a linear or non- of globally coupled oscillators driven by noises. When the
linear function ofx. If g(x)=const, Eq.(8) in the case of oscillators are finite, the features of the system will change.
F=0, has only the trivial solutiors=0, and there is no For example, in Ref[7], when the oscillators are finite, the
nonequilibrium transition between state=0 and state System has a transition between a state with zero mean field
s#0 for the systen(see Secs. lll and Iy whenF#0, al- and a state with nonzero mean field. However, when the
thoughs is nonzero and is a function @f, e, andD, the  oscillators are infinite, no transition occurs in the system.
appearance of characteristic features such as the discontinlihus, in our paper, the case when the oscillators are finite
ous transition betwees>0 ands<0 and the hysteresis for remains to be studied. In addition, the systems we studied in
the mean field and the currefstiee Secs. Il and IWwill not  this paper are globally coupled and driven only by additive
exist; this is because the coupling between the oscillators iBoises. If the oscillators are locally coupled, the results are
too simple, and there is not enough effect on the system witkhe same. If introducing multiplicative noises in our systems,
changingx. We have made a numerical simulation in thewe suppose that the reentrant transition found by Broeck
case ofg(x)=1, and found no phenomena of discontinuouset al. [4] will probably appear.
transition and hysteresis.
_ For a smgle oscnlz_:ltor we can find spontaneous oscilla- ACKNOWLEDGMENT
tions (a running solutioh The effect of the coupling term
[i.e.,esgx)] on this behavior depends on the structure of the This work was supported by the Alexander von Humboldt
effective potential when adding the coupling. For example Foundation.
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