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Abstract

Nonlinear scalar third-order differential equation or jerky dynamics: J(x, x, X¥) have recently attracted considerable
interest since they constitute an important tool to identify and classify elementary chaotic flows. We investigate whether
and under what conditions such systems can be synchronized by various coupling schemes such as the methods of Pecor:
Carroll and Cuomo—-Oppenheim, BK-coupling and active—passive decomposition. In particular, for the latter two schemes, we
present specific, simplified coupling or decomposition approaches that allow for analytical estimates of the rapidity of the
synchronization errof] 2001 Elsevier Science B.V. All rights reserved.

PACS:05.45.Xt; 05.45.Ac; 82.40.Bj
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1. Introduction The signature of synchronization is given by the
time evolution of the difference between drive and

In the broadest sense, synchronization terms the ten-response variables, commonly called the error [1,2],

dency of two or more appropriately coupled dynami-

cal systems to undergo resembling evolution in time. €=Xa =X 1)

As shown in asem_inal_paper by Pecora an(_JI Carr(_)II (1] e(r) — 0 ast — oo, the dynamics of the response

in 1990, synchronization can also be achieved if the gysiem approaches the time evolution of the drive

uncoupled dynamical systems exhibit chaotic time- gy stem and synchronization of these two systems is

evolution. Their basic idea was to take two (identical) guaranteed. Pecora and Carroll [1] demonstrated such

replicas of a three-dimensional dyna_mical system a behavior, e.g., by using the Lorenz flow and, as
V(x) with x = (x, y, 9 and V(x) being the vector .4 pjing scheme, (i) identical dynamics:of andx; ,
field, to use one of them, the drive syst&m=V (xa), and (i) replacement of, by x4 in the y andz compo-

as an unconstraintly developing system and to couple hens of the vector field of the response system.

the second one, the response systgrs V(x;), uni- Achieving synchronization between two chaotic

directionally to the drive system by a suitable replace- gystems, however, is far from being straightforward. It
ment of the dynamical variables in the response sys- ggngitively depends on the considered dynamical sys-

tem. tems and the specific coupling method. In the wake of
the study by Pecora and Carroll, a variety of alterna-

* Corresponding author. tive coupling schemes have been studied (for a review
E-mail addresslinz@physik.uni-augsburg.de (S.J. Linz). see [2]), among them the Cuomo—Oppenheim [3], BK-
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coupling [2,4] schemes and the active passive decom- J(x, X, ¥), we investigate whether the most popu-

position (APD) [5-7], and also extensions to gen- lar synchronization methods, the Pecora—Carroll [1,

eralized synchronization of nonidentical chaotic sys- 2] and the Cuomo-Oppenheim schemes [3] are ap-

tems [2]. Besides the Lorenz model, specific applica- plicable to chaotic jerky dynamics to obtain synchro-

tions of synchronization have been mostly investigated nization (cf. Section 2). Moreover, we show that the

for the Rossler model, the piece-wise Rdssler model BK- and APD-coupling schemes do generally work

and Chua’s oscillator [2]. (cf. Sections 3 and 4) for arbitrary jerky dynamics.
On the other hand, there has been recently progressSecond, we derive general estimates for the decay be-

in identifying and classifying the elementary chaotic havior of simplified versions of the latter two schemes

flows and finding necessary, albeit not sufficient cri- in order to determine criteria for effective, i.e., rather

teria for the emergence of elementary chaotic dynam- rapid synchronization. Third, we demonstrate our gen-

ics. Here, the key point was to start from third-order eral results by applying it to and numerically vali-

differential equationsx = J(x,x,¥) in one scalar dating it for the specific case of the minimal chaotic

variablex(r) [8-15], commonly called jerky dynam-  model with modulus nonlinearity, Eq. (2).

ics because of the direct mechanical interpretation of

x as time rate of change of the acceleratian=

J(x,x,%). Settingy = x andz = ¥, a jerky dynamics 2. Simple synchronization methods

is equivalent to the vector fiebd= V (x) with V(x) =

(y,z, ](x,y’z))T_ Within the last several years, in- In this section we inspect whether the two most

tensive numerical search [9,12,15] and also analyti- €elementary synchronization schemes by Pecora and

cal reduction techniques to jerky dynamics for known Carroll [1,2] and by Cuomo and Oppenheim [3] do

vector fields [10,11] have lead to a fairly complete Work for jerky dynamics. Since a general discussion

list of elementary functional forms of jerky dynam- for arbitrary functional forms of jerky dynamics, =

ics that exhibit chaotic behavior in some parameter J(x, x, X) does not seem to be feasible, we only con-

ranges. These systems are not only restricted to poly-sider here the important subclass of a jerky dynamics

nomial nonlinearities, but also cover piece-wise linear that only possesses nonlinear terms jme.,

forms of jerk functionsJ (x, x, ¥) that fulfill a Lip- e . .

schitz condition, i.e., the corresponding vector field ¥=—Ax—Bitgl) 3

satisfies|V (x1) — V(x2)| < L|x1 — Xo| with L being with g(x) being a nonlinear function af only and

a finite, positive constant. This guarantees local exis- Ed- (2) being a special case. For this class, an extensive

tence and uniqueness of the solutions of the consideredlist of functional forms ofg(x) and parameter values

systems. Particularly the piece-wise linear jerky dy- Oof A and B leading to chaotic behavior of Eg. (3)

namics [12,13] are attractive candidates for synchro- has been recently published [13] and also necessary

nization since they are both functionally simple and (analytical) criteria for the appearance of dissipative

easily realizable as electronic circuits [13]. chaos, most importantig > 0 andB > 0, have been
The most elementary chaotic jerky dynamics with discovered [14].

modulus nonlinearity is determined by the model  Adapting the idea of the synchronization scheme

equation by Linz and Sprott [12] of Pecora and Carroll [1], i.e., keeping the identical
o x-dynamics of the drive and the response system
Y=—AX—x+x[-1 (2) and replacingr, = x; in the remainingy, and z,

that is chaotic, e.g., fat = 0.61. It constitutes a min- ~ dynamics, one obtains for the drive system
imal dissipative chaotic system in the sense that no i1 =Y
term entering in (2) can be omitted without loosing ’
potentially chaotic behavior [14]. The dynamics of Yd =Z2d:
(2) can also be electronically realized with high ac- z;,=—By; — Azq + g(x4), (4)
curacy [13].

The purpose of this Letter is at least three-fold.
First, taking a special form of a jerky dynamigs= Xr = X4,

whereas the response system takes on the form
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Yr =2r,

= —By, — Azy + g(xq). (5)

Since thex-component of the drive and the response
system undergo identical dynamics, only the subsys-
tem of they andz components have to be consid-
ered to obtain the error dynamics. This yields the au-
tonomous linear system

éy =ez,
(6)

Therefore, the error dynamics is determined by the
eigenvalues. of the characteristic equatioii(A +

A) + B] = 0 that are given byx,, = —A/2 +

v/ A2/4 — B. Using the aforementioned necessary con-
ditions for the appearance of chaos in system (3)
(A > 0, B > 0), we conclude that the real parts of
both eigenvalues of the error dynamics are negative
if EQ. (3) displays chaotic dynamics and, as a con-
sequence, the class (3) can be synchronized by the
Pecora—Carroll method.

Applying the Cuomo—Oppenheim scheme [3] to
Eq. (3), i.e., keeping the drive system (4) and substi-
tuting x, by x4 in the corresponding vector field of the
response system, Eq. (5) is replaced by

é; =—Bey — Ae;.

Xr =Yr,
Vr =2,
= —By, — Azy + g(xq). (7)

The corresponding error dynamics is determined by
the autonomous linear system

éy = ey,
éy =ey,
é; = —Bey — Ae;. (8)

As a consequence, the eigenvalues determining the
growth/decay of the errae result from the character-
istic equatiomt[A(A 4+ 1) + B] = 0. Since one eigen-
value is always equal to zero, chaotic synchroniza-
tion of system (3) cannot be achieved by the Cuomo-
Oppenheim method. The modulus of the ererap-
proaches a constant non-zero valueg as oo that is
determined by the initial conditions.

Although the Pecora—Carroll scheme is applica-
ble to achieve synchronization of chaotic models of
type (3), there are at least two drawbacks. First, there
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is no way to speed up the synchronization since the de-
cay rate is bounded by the eigenvalue of (6) with the
largest real part, and, therefore, directly determined by
the control parameter combinations B where (3) is
chaotic. Second, focusing on applications to private
communication, only one component of the drive sys-
tem is transmitted. Even if an informatidriz) is su-
perposed tor,(7), it might be possible to reconstruct
the drive system because of the intimate relation of the
drive variablesy, = x4 andz; = X; with the trans-
mitted signalx,. To avoid these two drawbacks, we
discuss in the next two sections two variants of syn-
chronous coupling schemes that also applaibi-
trary jerky dynamics.

3. BK-coupling

The BK-coupling scheme [2] is a variant of a syn-
chronous substitution scheme where several or all vari-
ables of the drive system are coupled to the response
system. The general idea behind BK-coupling is as
follows [2]: synchronization can be directly achieved
if there is a negative feedback between drive and re-
sponse system, i.ex, = V(X;) + c(Xg — X,) with an
appropriately chosen scalar constarfsuch a scheme,
however, would require the transmission of all three
components of the drive systexry. However, if the
constant is replaced by a matrix of the specific form
BK T with B = (B1, B2, B3)' andK = (K1, K2, K3)T
being vectors with constant and so far arbitrary co-
efficients, the coupling ternBK T (x; — x,) can be
rearranged to yiel(K - x4 — K - x,). The latter
shows that, in principle, only the scalar combination
K - x4 needs to be transmitted to the response sys-
tem to achieve synchronization. The major problem,
however, is to find appropriate combinations of the
six parameters irB and K. The BK-coupling ap-
proach originally stems from control theory and it is
known [16] that, in principle, it works for so-called
Brunowsky canonical forms, i.ezth-order dynamical
systems that can be directly rewrittervak-order dif-
ferential equations in one scalar variable.

Specifically, for a jerky dynamics, the BK-coupling
scheme is determined by the drive system

Xd = Ya,

Yd = 2d,
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2d = J(xa, yd> 2d), 9) ! L b '

and the response system

b = o + Bals — ),
)"r =2r+ Ba(s — 5)’
= J (X, Yszr)+B3(5_§)v (10) -

wheres = K - x4 is the transmitted signal antl=

K -Xx,. The second term on the rhs of the response sys-

tem is the linear feedback term that basically contains

the weighted difference of determined by the drive

system and by the response system. 0
Is there a simple and generally applicable choice of

the coefficients oB andK that ensures SynChroniza- Fig. 1. Numerically computed time evolution of the synchronization

tion for all types of ]erky dynamlcsm the remainder er?or |e| for jerky }c/iynanfics coupled via the BK sch}:ame, Egs. (9)

of thls_sectlon, we will Sh_OW l_)y considering a FEPre-  and (10), the chaotic jerky dynamics, Eq. (3) with= 0.61, and
sentative example and using rigorous mathematical ar- the two representative values of thén the BK-coupling scheme,

guments that the specific form of the matBKT, (a) a = 13 and (b)a = 42. Dashed lines represent corresponding
upper bounds of the error being proportional to exp) in (a) and
a 1 1/a exp(—10r) in (b).
BKT = <a2 a 1 ) , (11)
a® a® a

its error dynamics of Egs. (9) and (10) given by

or, equivalently, the choicB = (a°, at,4?)T andK = e,

(at,a% a~HT, that containonly one adjustable, ap- &= —BK e+ ( e, ) , (12)

propriately chosen real parameterleads to a decay- J(Xq) — J(X,)

ing error dynamics and, therefore, to synchronization. Next, we use the trick to formally rewrite the third
As a representative example, we use in the coupling com[;)onent of the second vector on the rhs of Eq. (12)

scheme (9) and (10) the jerk functiof(x, &, ) of as a scalar product of the errerand a vectonJ~*,

the model equation (2) with the control parameter J7, J5)T containing some real-valued functions that
A = 0.61 (where Eq. (2) displays chaotic behavior) de;oend both omy andx

and two distinct parameter values f@rentering into

B andK, namelya = 13 anda = 42. The numerical J(Xg) — J (%)

computation of the corresponding Euclidean length of ~ _ (Jx(xd %,). J7 (Xg. %, ). TE(Xg. X ))Te (13)
- s NP ) LAY V] s I\r .

the error dynamicge| = /eZ + 2 + 2 as function of

time is depicted in Fig. 1. In both cases we observe a
rapid convergence | to zero with time that decays  x(y 4 ) J(xr, yrozr) — I (xa, yr, 2r)
s N\ ) —

The functions/*, J”, J* are determined by

’

oscillatory, but faster than exponential in time. kee Xr — X4

13 the decay rate is bounded by éxp), whereas for Xd # Xr,

a =42 by exg—10r). Notably, the synchronization is v J(xd, yrszr) — J(Xd, ya, zr)
faster, the larger the value afis. The fact that this 7/~ Xd:Xr) = Y —ya ’
type of synchronization works for these specific cases Vd % vy,

raises the questions whether it applies to any type of J(x — J(x
jerky dynamics and what restrictions on the valuaof ~ J*(Xg, X,) = (. ya. 2r) = I (5d» yd. 2) ,
hold ir —3d
' " A 2d 7 Zr- (14)
To proof the general validity of the synchronization
scheme for the afore-mentioned form of the matrix As a mathematical side-remark we note thatJif
BKT, Eq. (11), andanyjerky dynamics, we consider  fulfills a Lipschitz condition on a subsét c R3 with
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a Lipschitz constank ¢, the functions/*, J> and J* !

are continuous oW = {y = (y1, ..., ys)' € R y1 # + / [€P9Bs) |, ]| 8C) | s, (20)
ya, y2 % ys, y3 % ye}. Moreover,J*, JY, J* can be 0

extended continuously ‘from one side’ approaching

; : 3
R6 — N and are bounded byc on the bounded subset  Where[|A = (a; ;)|lx is the maximum of _7_, |ai |
C x C C RS. This implies thav*, J¥, J* are bounded of the rows of the matriXA. SinceD is diagonal, the

by Lc in the limits x; — x,, ya — vr andza — z, norm ofe™ is bounded by 4, wherey is the eigen-
respectively. value of the matrixA with the largest real part, i.e.,

Using (14), we are in the position to rearrange ¢ <a/3. Therefore, (20) can be recast into
Eq. (12) in the form Hé(’) ” <ot Hé(0> ”

é=Ae+ Be, (15) '
with + / 1B, J8w [ ds. (1)
010 0
A=-BKT + (0 0 1) Multiplying (21) by ¢! and introducing the abbrevia-
0 0O tion £(r) = e7'||&1)||, we obtain
a 0 1la ,
=—|a? 0 16 ) 3
(Zs 2 ) 18 1) = a0 + / F&) BT, ds. 22)
0

being a matrix with time-independent coefficients, and . . N
Since f(¢) is strictly positive, one can apply Gron-

0 0 0 wall's inequality [17] yieldin
s—(o o o a7 quality [17]y g

VATV AR £ ’ .
containing time-dependent contributions via the dy- @) < |&o] exp(/HB (s)”Mds) (23)
namics ofx; andx,. 0

To proceed, we take advantage of the Poincare— Therefore, the transformed error dynamics fulfills
Lyapunov theory for asymptotic stability [17] and

modify it appropriately to find conditions to ensure [&0)| < f(H)e

synchronization. Calculating the eigenvalues of the t
matrix A, given byi; » ~ —0.337 £i0.562, A3 = < &0 exp /(” BT (s) |, —a)ds). (24
—2.3244 and the corresponding eigenvectors, one can

construct the matrig that transformg\ into diagonal 0

form D = S71AS. To estimate the time evolution of  Using the supremum @fg"||, b = sup ||S™1B(z) x
the error dynamics, we can take advantagesads S||um, the error dynamics is bounded by
follows. Multiplying (15) by S~ and introducing the
transformed error dynamiés= S~ leyields

t
' ! EEE exp( / b—a/3) ds) (25)
é=Deé+ Bé (18) 0
with B = S~!BS. Formal integration of (18) leadsto ~ and vanishes asymptotically#f— a/3 is negative. It

. remains to calculaté. An upper bound fob can be

. Dr = D(—5)5 found by splittingB in a sum of three matrices which
&) =e e(0)+/e VB(s)&(s)ds (19) have each only one non-zero component (either/”

0 or J%), multiplying these bys~! (from the left) and
and, after taking the norm, to the inequality S (from the right) and using the fact thdt‘, J~7, J¢

are bounded by the Lipschitz constdit. With the
e | < ™|, 1120 help of computer algebra one obtains that 4L¢
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if the additional conditiona > 1 holds. Therefore, f '

synchronization of (9) and (10) is guaranteed if
a>max{12L¢, 1}. (26)

This is the central result of this section. Moreover, if
one requests that the decay of the error should decay g o5 |
faster thare—¢" with a prescribed constant> 0, then o
the stronger condition

a >max{3(4Lc +¢), 1} (27)
holds.
Several remarks are in order: (i) The different func- 0 " >
tions J*, J¥, J¢ contribute in a different way to the t
constantb. Looking at one of them and neglecting
the others we find the foIIowing behaviof®: b ~ Fig. 2. Numerically computed time evolution of the synchronization

-2 gy 3 -1 I error |¢| (full line) for jerky dynamics (2) withA = 0.61 using the
L(_ja , J7r b~ Lca an_d‘_] tb~Lc. Forq > 1, modified BK-coupling scheme (31) armd= 27. The synchroniza-
this reflects the fact that it is much more difficult to  tjon error decays faster than exgr) (dashed line).

reduce a disturbance githan iny or x. (ii) As a gen-
eralization, the above derivation of the choice of the
parameterz can be extended to other types of cou- €xample for this modified BK-coupling scheme is to
plings that might be nonlinear. Although such a gener- substitute

alized coupling does not, in general, increase the speed
of synchronization, it might be useful for potential
applications of more secure communication schemess = p(X,) = ax, + yr +a "z, + |x| (31)
since it is more difficult to determine all relevant pa-
rameters using autosynchronization for parameter es-
timation [18]. For example, if one transmits a signal
s = p(Xy) instead ofs = Kx; and uses the parameters
(B1, B2, B3) = (1,a, a?), the functionp only has to
satisfy the conditions

s = p(Xq) = axq + ya +a ‘zq + |xal, (30)

in Eq. (10), respectively. This choice ¢f satisfies
inequalities (28). Since only* is non-zero we get
the estimater = 24L ¢ + 3c. For the piecewise linear
jerky dynamics (2) a plot of the numerically calculated
error dynamics vs. time is shown in Fig. 2. Since this
jerky dynamics is piecewise linear the relatibp = 1
\p*ja—1,|p® — 1|, |ap* — 1 < Lc/a (28) holds_fpr all subset€’ c R3 (global synchronization).
Requiring a decay of the error that is faster than
by using the linearized functions®, p”, p* defined  exp(—r), implies thata > 27. In the plot in Fig. 2,
analogously to the/*, J”, J* in Eq. (14). If these 4 = 27 has been used and one consistently recovers
conditions are satisfied we obtain the inequabity the desired decay of this modified BK-coupling.
(44 12)L¢ with b = sup ||S™B(1)S||u. Here, the
term 4L arises from the influence of, whereas the
term 12 reflects the contribution of the nonlinear 4, Active—passive decomposition (APD)
function p. With this bound forb we then obtain the

generalized estimate In a nutshell, active—passive decomposition (APD)
used by Kocarev and Parlitz [5-7] works as follows.
@ > max48Lc +3c, 1} (29) Consider two functionally identical dynamical sys-
for the parameter if the error should decay faster than tems, the active systemy = V(x4,S) and the pas-
e, Looking at inequality (28) we can see that the sive systenx, = V(X,,s). Both systems only differ
influence ofp?, the disturbance of the ‘second deriv- by the entering drive and response variabtgsand
ative’, is larger than the disturbance coming frgrh X, respectively. Otherwise, the functional form of the
for large values ofi, i.e., high decay rates. A simple vector fieldV and the additional coupling, the drive



96 L. Callenbach et al. / Physics Letters A 287 (2001) 90-98

vector s = h(x,), that functionally depends only on T ' | ' '
the drive variables;, are the same. The error dy-
namicsé =V (xy,5 — V(Xg — €,9) linearized about
e=Xqg — X, = 0 obeys the generally nonautonomous
equationé = DV (x4, S) - e with DV (x4, s) being the
Jacobian of the vector fieM (x4, S). Obviously, if the _
specific form of the Jacobian allows for a decay of the =
errore to zero in the long time limit, synchronization
of the active and the passive systems takes place. Since
the active system should be the unconstraintly evolv-
ing, chaotic system, its vector fielé(x4, s(X4)) is just
an appropriate decomposition of the original vector
field V(xy).

Next, we want to adopt this scheme specifically to
chaotic jerky dynamics and, in addition to that, also Fig. 3. Numerically computed time evolution of the synchronization
require that only a purely scalar signdk) is trans- error |e| (full line) for the jerky dynamics (2) withA = 0.61 using

mitted to the passive system. This can be achieved bythe APD-coupling scheme (32)—(34). The parametera ar@.184,
the fOllOWIhg scheme with =5.06, c =39 in (a) anda = 1320,b = 362, ¢ = 33 in (b).

The synchronization error decays faster than(exp in (a) and
exp(—10r) in (b) (dashed line).

0 0.5
t

Xd = Yd,
Yd =2d; show the time evolution of the modulus of the error dy-
g = —axq —byg —czqg +s() (32) namicsle| = |x; — X, | for this model and two represen-

tative sets of adjustable parametéusb, ¢), namely
(2.184,5.06, 3.9) in Fig. 3(a) and(132Q 362 33) in
Fig. 3(b). In both cases, synchronization of the active

for the active system,

Xr = Yr, . .

. and passive system occurs; for the first parameter set
Yr=2r the decay is faster than epr), for the second faster

Zr = —axy — byr —czr +5(1) (33) than exp}—lOt).

The reason why the coupling scheme (32)—(34)
effectively leads to synchronization fany (bounded)
jerky dynamics can be substantiated by looking at the
corresponding error dynamics

for the passive system, and

s(1) = s(Xa)

=J(xXd, Ya,2d) + axq +bya + cza (34)

) ) é=Ae (35)

for the transmitted signal. Hetg b andc are so far ar- ) _
bitrary real constants that have to be suitably adjusted With the matrix
in order to obtain synchronization. Note that (32) is 0 1 0
in fact the dynamical system associated with the jerky A = ( 0O O 1 )
dynamicsx = J(x, x, ¥); the only difference is that —a —-b —c

the same termyx, + bys + czq, has been artificially  gjnce gq. (35) constitutes an autonomous linear prob-
added and subtracted. Moreover, this coupling scheme|em the erroe = x4 — x, approaches the stable equi-

differs from BK-coupling by the fact that not only @ |ipriym e — 0 if A possesses only negative eigenvalues.
linear combination of the drive variableg enters in All the information of the jerk function/ (x, £, £) is

the transmitted signal, but also the full dynamical in- hiqden in the signad = J (xg, va, za) + axa + bya +
formation on the chaotic system, namely the jerk func- .. . | 5oking at the characteristic equation associated
tion J (xd, ya, zd) = Xd. with A,

As in the previous section, we first apply the scheme
to the jerky dynamics (2) wittt = 0.61. In Fig. 3we A3+ cA?+br +a =0, (37)

(36)
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and taking into account that, b, c are freely ad-
justable parameters, it is always possible to choose
these parameters in a way that all eigenvalues afe
negative and smaller than a given valaewith k£ > 0.
Denoting the eigenvalues afby —A1, —A2 and—Ag,

then the specific selection

a = Xr1r2A3,
b=A1A2 + A1A3+ AoA3,
c=A1+A2+ A3 (38)

obviously fulfills Eq. (37). The afore-mentioned repre-
sentative examples have been selected by this method
in Fig. 3(a) the eigenvalues have been chosen to be
—A=-12,—-i>=-13 and—A3 = —1.4, whereas

in Fig. 3(b)—A1 = —10,—A2 = —11 and—x3 = —12
have been used. This corresponds to the chaiee
2.184,b = 5.06, c = 3.9 anda = 1320, b = 362,
c=33.
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Fig. 4. Numerically computed time evolution of the synchronization
error|e| for the jerky dynamics (2) witit = 0.61 using the modified
APD scheme (39) and (43) for different values of the paramgter
in Eq. (43) witha = 2.184,b = 5.06, ¢ = 3.9. The synchronization
error decays faster than gxpr) (solid line) forg = 1. Even if the

The so far discussed decomposition scheme can alsoparametey is larger than 1¢ = 100, the system synchronize with

be generalized by using a nonlinear functiGiix,)

in order to complicate the determination of all rele-
vant parameters using autosynchronization [18] and
to make the corresponding communication schemes
more secure. Then the transmitted signal is given by
s = J(Xg) — G(Xy) and the differential equations for
the drive and response system are determined by

x=y,

y=z,

z2=G(x,y,2)+s. (39)
For the corresponding error dynamicsenf X; — X,
one obtains

0 1 o0
é:( 0 0 1>e (40)
G* G G*

with the functiongG*, G¥ andG* defined analogously
to theJ*, JY, J%in Eq. (14) by exchanging the role of
J andG. Rewriting Eqg. (40) as

é=Ae+Be (42)
with
0 1 0
A=< 0 0 1),
—a —-b —c
0 0 0
B=< 0 0 0 ) (42)
G*'4+a GY+b G*+c

an error which decays faster than éxp).

we can again adapt the Poincare—Lyapunov technique
used in the previous section to obtain estimates of the
parameters, b, ¢ that guarantee synchronization. As a
representative example for the outcome of such a mod-
ified APD for jerky dynamics, we take as nonlinear
function

G (Xq) = —axq — byq — czq + q|x4|/1000 (43)

with a = 2.184,b = 5.06, ¢ = 3.9, the free parame-
ter ¢ and the jerk model (2). Using the Poincare—
Lyapunov technique, one can show that a decay of the
modulus of the errofe| which is faster than exp-r)

is guaranteed fog < 1. As corresponding numerical
calculations ofe| based on Egs. (39) and (43) for dif-
ferent values ofy (shown in Fig. 4) exemplify, the
bound for exponential decay proportional to &xp)

is rather crude and even fgr= 100 still fulfilled. Only

for larger values of, e.g.,¢ = 1000, there is a signif-
icant deviation from an exponential decay.

5. Conclusion
Using a variety of different well-known schemes,

we have investigated if and under what circumstances
elementary flows in form of jerky dynamics can be
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synchronized. Most remarkably, we have shown that trie und Physik” (GRK 283) financed by DFG and the
the BK-coupling scheme and the APD decomposition state of Bavaria.
can be used for that purpose for any functional form
of a chaotic jerky dynamics. By using a specific,
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