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Amorphous thin film growth: Effects of density inhomogeneities
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A nonlinear stochastic growth equation for the spatiotemporal evolution of the surface morphology of
amorphous thin films in the presence of potential density variations is derived from the relevant physical
symmetries and compared to recent experimental results. Numerical simulations of the growth equation exhibit
a saturation of the surface morphology for large film thickness originating from the inclusion of the density
inhomogeneities. Furthermore, we argue why moundlike surface structures observed on vapor deposited amor-
phous films are not the result of the Grinfeld instability.
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I. INTRODUCTION direction, cf. Fig. 1. An additional symmetry principle that
we have applied in a recent stuffi2] was the condition of

Recently, there has been increasing interest in the undefio excess velocity. This means that the functio@@ﬁh]
standing of the kinetics of surface growth procedees., see can be written in the fornG[ﬁh]z _V. f By using these

in Ref.[1]). The evolution of the surface morphology, as it symmetries we proposed the stochastic growth equation
appears in molecular beam epitaxy or physical vapor depq:lz 13

sition experiments is determined by the interplay of the

deposition of particles and surface diffusion effects that re- . . .

sult in a competition between surface roughening and dth=a,V*h+a,V*h+asV?(Vh)*+ 7, 4
smoothening processef2—6|. Experimental studies on

amorphous thin filmsleposited by electron beam evapora-with a,, a,, a; being negative as the minimal model equa-
tion exhibit the formation of a moundlike surface structuretion for amorphous thin film growth in the absence of excess
on a mesoscopic length scéle-11]. Despite the complexity velocity.

of the growth process on an atomic scale, this indicates that In the light of a recent comparison to experimental data
continuum models based on stochastic field equat[dhs [14] the condition of no excess velocity needs to be reexam-
serve as a useful tool for the understanding of the kinetics aihed. It is only fulfilled if (i) particle desorption does not

amorphous thin film growth. occur, i.e., no particles leave the surface, andijfthe film
The typical form of such a stochastic growth equation isgrowth takes place with constant density. While in fact
given by particle desorption is negligible during the growth of amor-
) phous films since it requires much higher energies, the as-
dH=G[VH]+F+ 7, (1) sumption of film growth with density variations cannot be

excludeda priori. Moreover, a careful comparison of Ed)
where H(X,t) represents the height of the surface above awith experimental results for amorphous;Zl; sCu,- s film
given substrate positiofi (see Fig. L G[V_)H] comprises all  growth[14] has indicated the necessity of the inclusion of
surface relaxation processésgdenotes the mean deposition density inhomogeneities. These density variations result in
rate, andy is the deposition noise that represents the flucan additional term of Kardar-Parisi-Zhang foifrb5] in the
tuations of the deposition around its me@nThese fluctua- deposition equation, yielding
tions are assumed to be Gaussian white, i.e.,

(n(X,0)=0; (n(Xt)n(y,t"))=2D (X~ 9)5(t—t')(,2)

where the brackets denote ensemble averaging larie
fluctuation strength. Transformation in a frame comoving
with the deposition ratd, h(X,t)=H(X,t) —Ft, yields the
equation

vapor particle beam

dh=G[Vh]+ 7. 3)
amorphous film H(x,y.t)
The functional form ofG[ Vh] can be obtained by using the .
physical symmetries governing the growth process. In the substrate X

context ofamorphoughin film growth, these symmetries are
translational invariance in space and time and rotational and FIG. 1. Sketch of the vapor deposition of an amorphous film on
mirror invariance in the plane perpendicular to the growtha substrate.
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gh=a,V2h+a,V*h+asV3(Vh)2+a,(Vh)2+7, (5) change ofH by gc=p(VH)dH. Here p(VH) denotes the
density of the film close to the surface. Dividing E§) by

with a, being positive[12,13. p(VH) leads to
The previous work12] was restricted to a detailed analy-
sis of Eq.(4) and our comparison of E@5) with the experi- Po . . .
mental result§14] was also limited by the available data and dH=——=—[a;V*H+a,V'H+a3V*(VH)?
the chosen material. Hence, there is a need for a thorough p(VH)
investigation of Eq.(5) with the inclusion of density inho- +asM+F+ 7). (10)

mogeneities. In the Appendix, we also address the question
whether the pattern forming processes in vapor deposited The density variations can then be expanded in the gradi-

amorphous films might be, alternatively, interpreted as the,nts of H yielding [p(V*H)]—lzpal[lJr(a4/F)(V*H)2

consequence of a Grinfeld instability. +O((€H)4)] with a, being necessarily positive due to the

additional volume increase at oblique particle incidence.
Il. MODEL Then, expanding the deterministic part on the right-hand side

In this section, we first present a coherent derivation of RHS) of Eq. (10) up to the orde©(V?,(VH)?) and neglect-
the simplest functional form of the stochastic field equationing all corrections to the deposition noise yields
using the symmetry principles governing the growth of R . . .
amorphous films. Subsequently, we relate the constituents of ~ dH=a;V?H+a,V*H+asV3(VH)?+a,(VH)?
this equation to the underlying microscopic processes.

The absence of particle desorption implies a balance
equation

+asM+F+ 7. (11)

Finally, using the transformatiorh(X,t)=H(X,t)—Ft
.o with h(X,t) being the surface profile in the comoving frame,
9C=po[ —V-j+F+7], (6)  one obtains the stochastic growth equation

wherec(X,t) denotes the number of atoms of the amorphous ; b — 5 V2h + a,V4h + azV2(Vh)2+a,(Vh)2+asM + 7.
film per substrate area above a given substrate posiion (12)

Here, the curren is given by the combination of all surface _ ]

relaxation processes. Mass transport inside the amorphous The first and the fifth term on the RHS of EQ.2) are
material can be neglected. Invariance under translation ifelated to the deflection of the initially perpendicular incident
time and space rules out any explicit appearance of time particles caused by interatomic attraction. When the particles
space coordinaté or heightH in —ﬁf Therefore, the cor- &€ close to the surface their trajectories are bent towards the

. . = S s surface. As a consequence, more particles arrive at places
responding functional5 [VH]=—V-.j for the concentra- d P P

. -’2 . "2 . .
tion ¢ depends only on gradients and higher spatial deriva‘-’.‘”th V°h<0 t_han at pl_ac_es W'.w h>0 [16]. In_a simpli-
tives of the height functiokl (X,t). Moreover, the isotropy of fied model, this deflectiofin a direction perpendicular to the

the amorphous phase implies rotational and mirror inVari_surface) happens instantaneously when a particle arrives at a

ance in the plane perpendicular to the growth direction, Cfd!stanceb from the surface, as shown in the upper part of

. > Fig. 2. b characterizes the typical range of the interatomic
Fig. 1. Therefore,G/[VH] must be a scalar under these g P g

. . .  force. A detailed mathematical analysis of this simplified
transformations. By using the afore-mentioned symmetries, 4| yields the explicit relationa,= — Fb and as=Fb?

we expand the possible terms GE[VH] in a power series  [12]. Sinceb is very small(typically of the order 10* nm)
of V. andVH up to O(V3,(VH)?) and obtain the functional compared to the radius of the surface curvature the term
form proportional toag in Eq. (12) can safely be neglected. On the
other hand, the negative coefficiemt represents the growth
G.(VH)=a,V?H+a,V*H+a3V3(VH)2+a;M (7) instability that results in the experimentally observed mound-
like surface structure on vapor deposited amorphous films
with [7-11].
The second term on the RHS of E{.2) represents the

(9)2(H dydxH surface diffusion suggested by Mullifd7]. The particles
M=de Y 2 | (8) arrive at the surface, diffuse there and relax at surface sites
Ixdy dy that offer a sufficiently strong binding. Because these bind-

ing places are more frequent on surface areas with positive
curvatureV2h, the surface diffusion results in a current of
9= po[a,V2H + 8, H + aV2(VH) 2+ agM + F + 7]. the formj~V(V2h), as shown in the middle part of Fig. 2.
(9)  This surface current adds the termV-j~—V*h to the
growth equation. Therefore, the sign &f is negative. Rost
Allowing for density variations depending on the surface[18] has recently suggested the explicit expressi=
inclination, the rate of change afis related to the rate of — 2l12In(l/a)F(Q2y/e;) wherel denotes the diffusion length of

or, equivalently the continuity equation
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layer thicknesgH)(t)=((1/L?)fd?xH(X,t)) and time

>. 1
Xt/

By neglecting the term proportional &; we obtain themini-
mal deposition equation for amorphous thin film growth in
the presence of significant density variatigag,13]

(H)(t)=Ft+ Jotdt’<éf d?xa,(VH)?

ah=a,V?h+a,V*h+asV3(Vh)2+a,(Vh)%+ 7,
\ 14
with a,, a,, az being negative and, being positive.

A comparison with experimental data for amorphous
ZrgsAl; Clyy 5 film growth [14] has recently shown a good
guantitative agreement between this model equdtidhand
the experiment for a layer thickness up to 480 nm. For this
specific system at room temperature, the coefficients entering
in Eq. (14) at a deposition rate dF=0.79 nm/s have been
identified aq 14]

amorphous film

‘ TaTOFI PTrtidT b‘ea‘m‘ ’ a;=—0.0826 nm/s, a,=—0.319 nnd/s,

az;=-0.10 nni/s, a,=0.055 nm/s, (15)
D=0.0174 nrfi/s.

Using the relationsa;=—Fb, a,=—2I2In(l/a)F(Qv/ep),

az=—FI2/8, [p(Vh)] *=py [1+(as/F)(Vh)?], and D

=FQ [12], one can infer that every coefficient given in Eq.

(15) has a realistic order. Therefore, Hd4) constitutes a
FIG. 2. Microscopic effects of amorphous thin film growth. Up- reliable theoretical model for amorphous thin film growth, at

per part: Deflection of particles due to interatomic forces. Middle!€@st for the considered range of the layer thickness.

part: Surface diffusion of deposited particles to places with larger

curvature. Lower part: Equilibration of the inhomogeneous particle IIl. RESULTS

concentration due to the geometry of the surface.

amorphous
film

A. Comparison with experimental results
the particlesa the average distance of the potential minima
seen by the diffusing particle$) the atomic volumejy the
surface tension, ane, the width of the distribution of the

depths of the potential wells. evaporatiorj7—10. The correlation lengtR(t) and the sur-

The third term on the RHS of Eq12) is related to the - .
equilibration of the inhomogeneous concentration of the dif-face roughnessi(t) are determined by the experimentally

fusing particles on the surface, as suggestd@,ib9]. If only accessible height-height correlation function
the just deposited particles diffuse before their relaxation, 1
their surface concentration is weighted by the surface incli- C(r,t)=< <_J dzx[h(i,t)—ﬁ(t)][h(iJr Ft)
; / 5 )2 S 1) 2 ; L2
nation,n~1/y/1+(Vh)*~1—(Vh)</2[19], as shown in the
lower part of Fig. 2. This causes a diffusion current of the B
- h(t)]> > :
IFj=r

In this section, we carry on our comparisfd] with the
experimental results on the surface morphology of amor-
phous ZgsAl; Cuy75 films prepared by electron beam

type |~—Vn~V(Vh)? and leads to th@zV%(Vh)? term
with a;<<0. A detailed discussion of the concentration equili-
bration[12] yields the explicit relatiorm; = — F12/8 wherel 2 B
represents the mean square of the diffusion length of thevhereh(t)=(1/L2)fd?xh(X,t) denotes the spatially average
particles. of the height, and(- - -))r—, denotes a combined ensemble
The term proportional toa, is related to the afore- and radial average. SpecificallR.(t) is given by the first
mentioned density variations. It is the only term in the determaximum ofC(r,t) occuring at nonzero values ofand the
ministic part of the RHS of Eq12) that cannot be written in  square of the surface roughness results from taking the limit
the form —V - j. Therefore, it leads to a nonzero excess ve+ =0 in C(r,t), i.e.,w?(t)=C(0}). The quantitiesv(t) and
locity, i.e., there is a nonlinear relation between the mearR.(t) characterize the typical height and periodicity length

(16)
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—o0, More interesting is the behavior ¢i(r,t) for small

480nm radii r. From the numerical results in Fig. 3 one can infer that

360nm the increase oH(r,t) follows a power-law behavior

240nm K

200nm H(r,t)~r <), (19)
where the exponent explicitly depends on the layer thick-

100nm ness and increasemonotonically from =1 for (H)

60nm ~5 nm up tox=1.8 for(H)~480 nm. A similar behavior

30nm can also be read off from the experimental results in Ref.

15nm 1 [9,10] where the corresponding exponentvaries from «

=1.4for(H)~100 nm tox=1.6 for(H)~480 nm. More-

over, also the nonmonotonic crossovertbfr,t) to a satu-

ration for larger in form of a local maximum and a subse-

, quent minimum(over and undershootingoincides with the

1 10 100 1000 experimental findind9,10]. C(r,t) possesses a first maxi-
r [nm] mum atr = R.(t). Therefore, using Eq18), the position of

the first local minimum oH(r,t) is determined by the cor-

ous values of~t calculated from the nonlinear stochastic growth relation Iength Re(t). From the experlmental_ dat"’? for
equation(14) on an interva[ O,L]? of the lengthL=200 nm sub-  ZTesAl7.5Clz7 .5 films obtained by scanning tunneling micros-
ject to periodic boundary conditions. The parameters are given ifOPY, also direct visualizations of the surface morphology of

Eq. (15). For reference, the dashed lines indicate the differenindividual samples at different stages of growth processes
power-law behaviors. have been obtaine@—10, cf. also the right row in Fig. 4.

For comparison, the surface morphology resulting from a
scales of the surface structure. Another related quantity is theumerical integration of Eq(14) with the coefficients(15)
height-difference correlation function for one individualgrowth process starting from a flat sub-

strateh(i,O)zO is shown in the left row of Fig. 4. Obvi-

1 ) . I ously, the visual comparison of the evolution of the surface
H(r,t)= Ff d™X[h(X,t) —h(X+F,1)] ' structures between theory and experiment shows a striking
[rl=r similarity. In particular, the evolution of the moundlike struc-
17 tures and their typical length scale are caused by the compe-
Since the relation tition between the growth instabilitylﬁzh and the surface
diffusion represented by thzaﬁ“h term. Only for the largest
H(r,t)=2w?(t)—2C(r,t) (18)  layer thickness 480 nm the calculated surface morphology is
a little bit coarser than the experimentally observed structure
despite the coincidence of the correlation lenBg(t) [14].

5nm

FIG. 3. Height-difference correlation functidd(r,t) for vari-

holds, it connects the two different correlation functions and
moreoverH (r,t)—2w?(t) results in the limit of large radii

[—. - . ) .
In the afore-mentioned comparison with experimental re- B. Effects of density inhomogeneities at larger film thicknesses
sults[14], a quantitative agreement &.(t) and w(t) be- The good agreement between numerical simulations of

tween the model equatiqi4) and the experimental data has Eq. (14) and the available experimental data on
been achieved up to a layer thickness of 480 nm by using th&rgsAl; sCuyy 5 films for a layer thickness up to 480 nm raises
coefficients given in Eq(15). Here, we extend this investi- the question whether the growth process has already reached
gation by comparing theoretical data bi{r,t) obtained by the asymptotic time evolution or not. In order to investigate
numerical simulations of Eq14) with the coefficientg15)  this point in detail, we perform numerical simulations of the
using the method explained in Appendix C[d2] and cor- nonlinear stochastic growth equati@¥) up to a layer thick-
responding experimental ddta,9,10. The height-difference ness of approximately 5000 nm. We also discuss the impact
correlation functiorH (r,t) resulting from Eq(14) for vari-  of both nonlinear terms in Eq14).

ous values of-t is shown in Fig. 3. Note that, despite the  The solid lines in Fig. 5 correspond to the resulting cor-
presence of a nonzero excess velocity, the difference betwedalation lengthR.(t) and surface roughnessg(t) using the

the mean layer thickneg$i) andFt is less than 1.1% even coefficients given in Eq(15). As a general consequence, the
for the largest layer thickness. Therefore, the different valuesonlinear terms lead to a drastic slow down of the increase of
of Ft in Fig. 3 represent the mean film thicknd$$) in first  the surface roughnesg(t) above the largest experimentally
approximation. We obtain a good quantitative agreementbserved film thicknesgH)=480 nm. We find a growth
with the experimentally observed height-difference correlabehavior of the surface roughness givenaft) ~t%945 in

tion functionH(r,t) on amorphous ZtAl; :Cuy7 5 films (cf.  the thickness interval 480 ns{H)<5000 nm. For small
Fig. 6 in[7], Fig. 3in[9], and Fig. 5in10]). For large radii, layer thicknesseéH)<240 nm the linear parts of Eql4)

this agreement is a result of the coincidence of the surfacdominate the growth behavior and result in an exponential
roughnessesv(t) since H(r,t) saturates at ®2(t) for r growth of w(t) due to the presence of a linear instability
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FIG. 4. Left row: Surface mor-
phologies for Ft=100 nm, 200
nm, 360 nm, 480 nnifrom top to
bottom calculated from Eq(14)
on an interval[0,L]? of the size
L=200 nm subject to periodic
boundary conditions. The param-
eters are given in Eq15). Right
row: Experimentally recorded sur-
face morphologies of vapor de-
posited amorphous ZJAl; sCuy7 5
6 films of (H)=100 nm, 200 nm,
360 nm, 480 nm thicknesdrom
top to bottom), taken from
2 [8—-10. The maxima(minima) of
o the height profilesh(X,t) are
marked in white(black).

8
5
4
3
2
1
0

[nm]

[14]. The correlation lengtiR.(t) possesses a maximum at tion lengthR.(t) lies in the range of the wavelength of the
(H)=~360 nm followed by an initially strong decrease until most unstable modey2a,/a;=17.5 nm. By settinga,
it saturates in a very slow decrease for layer thicknesses-0 we observe that the slow down of the increasav(f)
(H)=600 nm. At these later stages the value of the correlaeccurs at a larger value @f(t), see the dashed line in Fig. 5.
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FIG. 5. Correlation lengtiR; and surface roughnessgas func- FIG. 6. Correlation lengtiR, and surface roughnessas func-

tions of the layer thickness calculated from the nonlinear growthjons of the layer thickness calculated from the nonlinear growth

equation(14) using the_ pa_r_amete_rs given in EHQ5) (SO|!d lines. equation(4) without the inclusion of tha,(Vh)? term(solid lines.

To derrlonﬁtrate the significant influence of the nonlinear grOWthI'o demonstrate the significant influence of the nonlinear term

term o« V2(Vh)*, we sho;/v for companson the surface roughness (ﬁh)z, we show for comparison the prediction that results from Eq.

that results by setting;=0 (dashed ling (14) using various values 08,=0.0016 nm/s, 0.016 nm/s, and
0.055 nm/s(dash-dotted lines, from top to bottonAll other pa-

In this case, the growth behavior wf(t) at large film thick- rameters are as given in E(L5). The dashed lines are calculated

nesses 480 nm(H)<5000 nm is given byw(t)~t%% In  from Re~\t andw~t.

addition, we note that the correlation lengky(t) now

ceases to exist abowd)~300 nm (not shown, because The height-difference correlation functid(r,t) result-

the first maximum of the height-height correlation functioning from Eg. (14) including the nonlinear terna,(Vh)? is
C(r,t) vanishes. shown in Fig. 7 and exhibits a saturation at small radii

To demonstrate the important impact of the te;n;(lvﬁh)2 H(r t)~rt8 (20)
that represents the potential density variations on the evolu- ’ '
tion of the surface structure we present, for comparison, rerpe increase oH(r,t) with time at large radii corresponds
sults by settinga,=0, given by the solid lines in Fig. 6. In {5 the very slow increase of the surface roughnegs)
this case, we obtain a linear increase of the surface roughneggoye a film thickness afH)~480 nm as shown in Fig. 5.
w(t)~t and an algebraic growth laRq(t)~ 't for the cor- In Fig. 8 the different evolutions of the surface morpholo-
relation length[12]. This behavior can be attributed to a gies with and without the impact of the density inhomogene-
coarsening of the moundlike surface structure, that ends in gies are compared by visualizing the images of the height
final state with onlyonemound on any finite intervdlo,L ]2 profiles being calculated from Eq&l4) and (4). Again, the
subject to periodic bounding conditiof$2]. Figure 6 also coefficients given in Eq(15) were used. Setting, equals
shows the correlation lengtR.(t) and roughnesw/(t) that  zero the moundlike surface structure coarsens with time and
result from Eq.(14) using various different values of the develops into a final statéhot shown that possesses only
coefficienta,, while the other parameters are kept at theirone mound on the interv&D,L]? [12]. Moreover, the height
values given in Eq(15). As a general result, we observe that profile at Ft=480 nm now looks rather different from its
decreasin@, increases the values Bf(t) andw(t) at large  experimentally observed counterpart that is shown in Fig. 4.
layer thicknesses. At the smallest nonzemy, a4 For nonzeroa, the surface morphology becomes stationary
=0.0016 nm/s, a saturation &;(t) andw(t) has not yet above a film thickness of approximately 480 nm at a typical
happened at the end of the simulation. mound size that is independent from the dizef the interval
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10

1 10 100 1000
r [nm]

FIG. 7. Height-difference correlation functidd(r,t) for vari-
ous values of~t calculated from the nonlinear stochastic growth
equation(14) on an interva[ 0,L]? of the lengthL=200 nm sub-
ject to periodic boundary conditions. The parameters are given in
Eq. (15).

[0L]? and is basically given by the critical wavelength
2mw\2a,/a,. Yet the spatial distribution of individual
mounds and valleys is always in change. The latterosa
consequence of the deposition noigeSimilar to the related

Kuramoto-Sivashinsky  equation, d;h=a;V?h+a,V*h
+a4(ﬁh)2, the irregular change of the moundlike surface

structure results from the nonlinear temy(Vh)? [20]. If
Eq. (14) is applied small mounds vanish and large mounds
grow at the expense of their smaller neighbors, until they
split into smaller mounds. On the other hand, in the absence
of the term proportional ta, the large mounds do not split.
To estimate the impact of the deposition noigewe in-
tegrated Eq(14) using the parameters given in E45), but
we “switched off” the noise termn at Ft=100 nm. We
obtained the same irregularly changing moundlike surface
structure. As only significant difference, the mounds then
look smoother on a smaller length scale. The differences in
the behavior ofR;(t), w(t), andH(r,t) are only quantita-
tive, but not qualitative: the surface roughnegg) is about
7% smaller and the correlation lengRy(t) is about 5%
larger than in the stochastic case at layer thickneg¢kgs
=800 nm. The small influence of the deposition noise is not
too surprising due to the smallness of the coupling constan’ ..
g=4Da%/a}=—0.378, that results from the parameters & "
given in Eq.(15). 3
Next, we investigate the size of the density variations re-
sulting from Egs.(14) and (15) and their temporal evolu-
tions. On an inclined surface area the local density is de-
creased by FIG. 8. Surface morphologies fd¥t=100 nm, 480 nm, 1000
. . nm, 2000 nm, and 5000 niffrom top to bottom calculated from
p(Vh)=poly with y=1+(a,/F)(Vh)?, (21 Eq. (14) (left row) and Eq.(4) (right row) on an interva[ 0,L]? of
the sizeL=200 nm subject to periodic boundary conditions. The
wherea,/F is in the range of about 0.07 if the experimen- parameters are given in E¢l5). The maxima(minima) of the
tally determined parametersF=0.79 nm/s and a, height profilesh(X,t) are marked in whitéblack).
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0.03 ' ' 480 nm=(H)<5000 nm, reaches a constant value of 0.017
with and 0.047 without the inclusion of the term proportional
to as.

Finally we ascertain that even for the smallest nonzero
value of a, that was applied in this study,a,
=0.0016 nm/gsee Fig. 6, a saturation of the surface mor-
phology will occur. Therefore, we numerically solved Eq.
(14) using this value of, and the other parameters given in
Eq.(15) on an interva[ 0,L ]2 of the sizeL =400 nm subject
to periodic boundary conditions. In order to accelerate the
calculation we now “switched off” the deposition noisgat
Ft=100 nm. We obtained a drastic slow down of the in-
crease of the roughneggt) and the correlation lengtR.(t)
at very large layer thicknesses 20000 s(H)
<120000 nm(not shown. Hence the smallness af; re-
0.06 ; ; sults in a delay of the saturation of the moundlike surface
morphology. In addition, we note that at these later stages the
correlation length(and typical mound si2eR.(t) is in the
range ofR.(t)~46 nm and is therefore larger than the criti-
cal wavelength zr\2a,/a;=17.5 nm.

0.02

0.01

0.00

0 2000 4000 6000
layer thickness [nm]

0.04

C. Discussion

The numerical simulations of Eq14) using the experi-
mentally determined parameters given in Ef5) indicate
that the nonlinear term4(Veh)2 basically leads to a satura-
tion of the surface structure, at least within the investigated
range of time. The surface morphology consists of mounds
that change irregularly in time and space. Their typical size,
however, is given by the wavelength of the most unstable

FIG. 9. Upper part: Density reductiop— 1= (a,/F)(Vh)? cal- mode 27+/2a,/a; if a, is not too small. It might be possible
culated from Eq(14) averaged over the surfa¢dashed lingand  that the surface still roughens on length scales larger than the
averaged over the entire filtsolid ling). The coefficients are given Mound size, as in the case of the Kuramoto-Sivashinsky

0.02 r

0.00

0 2000 4000 6000
layer thickness [nm]

in Eq. (15). Lower part: Density reductior’y—1:(a4/l:)(V‘h)2 equation[20]. . .

that results from Eq(14) by settingas=0, averaged over the sur- |t Nas not been rigorously proven yet that a saturation of
face(dashed lingand averaged over the entire filgolid ling). Al the typical mound size occurs fany positive valuea,.

other coefficients are as given in E45). However, this seems reasonable since at large length scales

the terma4(ﬁ h)? becomes much larger in comparison to the

—0.055 nm/s are used. In Fig. 9 we show the density reducether nonlinearitya;V2(Vh)2 which is responsible for the
tion averaged over the surface coarsening procesgee the right row in Fig. 8 If a, is
small, the nonlinear terr&4(V9h)2 does not become relevant
R before a coarsening of the moundlike surface morphology
<7>s_1:<(1/L2)J de(a4/F)(Vh)2> (220 has occured. This explains why the surface structure satu-
rates at later stages and larger length scales, ifts small.
The growth behavior of the solutions of EQL4) depends
basically on the dimensionless constant (a,a,)/(a;az).

The previous considerations hold in the physically rel-
(y)—1=(H)/(Ft)—1, (23)  evant case, i.eq, anda, are negative and; anda, have
opposite signs. On the other handaif anda, had the same
signs, the two nonlinear terms in Ed.4) would compensate
each other at the wavelengthr2az/a,. If, additionally, the
absolute value ofa, was small enough, this wavelength
would be larger than 2a,/a; and would therefore belong
éo an unstable mode. Then, the surface roughne&y
would increase at least exponentially.

and averaged over the entire film

that result from Eq(14) with and without the inclusion of

the other nonlinearity;V2(Vh)2. Similar to the roughness
w(t) the density reductiofiy)s— 1 first rapidly increases and
then remains constant in the interval 700 =)
<5000 nm. This also leads to a slow down of the increas
of (y)—1 since the evolution ofy)—1 is delayed in com-
parison with the evolution ofy)s—1. The nonlinear term

azV2(Vh)? lessens the density reduction. We also find that

the standard deviation ofy on the surface {((vy In this study, we have presented a nonlinear stochastic
—(y)s]%)s)Y? first increases and later, at film thicknessesfield equation(14) for amorphous film growth that can serve

IV. CONCLUSIONS

031506-8
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as a minimal model if the possibility of density inhomoge- 1 _%h
neities is taken into account. Starting from the condition of A= —— ) (A2)
no particle desorption, using the symmetries relevant for Vi+(Vvh)2\ 1

amorphous film growth and allowing for density variations

depending on the surface slope we derived the simplest funelenotes the unit vector perpendicular to the surface and the
tional form of an equation capable for describing the growthRHS of Eq.(Al) represents the surface tension. The correc-
of amorphous films. A detailed comparison of available ex+jon 7., depends in lowest order linearly on the gradigii
perimental data with the numerical simulations of the statisy only such terms in EqA1) that are linear irvh are taken

tical measures of the surface.morphol_o@g(t), w(t), and into consideration one obtains the simplified boundary con-
the height-difference correlation functiad(r,t) and also ditions

with direct visualizations of the surface evolution reveals a
very good agreement in the considered range of the layer

thickness. For the not yet experimentally explored range of — p@qu ,=0 for i=x, (A3)
layer thicknessegH)=480 nm, we gave detailed predic- X

tions for the expected surface morphology on the basis of

Egs. (14) and (15). Most remarkably, the suggested density dh —0 f . Ad
variations that are represented by a nonlinear term propor- _pEJr Tyz— or 1=y, (A4)
tional to (Vh)?2 in Eq. (14) stabilize the surface morphology

to a typical moundlike structure. We hope that our study 7,,=yV?h for i=z (A5)
motivates further experimental studies on amorphous film

growth. If the viscosity of the amorphous material is not too large,

the additional stress field, leads to motion inside the film.

Due to energy dissipation these motions quickly fade away

to a state where the mechanical stresses compensate each
This work has been supported by the DFG-other. Therefore, the additional stress fietd fulfills the

Sonderforschungsbereich 438~ Minen/Augsburg, TP Al. conditions

We also thank S. G. Mayr, M. Moske, and K. Samwer for

insightful discussions and providing files of previously pub- ITik

lished data. e =0 =123 (AB)
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inside the film and follows quasistatically the alterations of
the height profileh(X,t).

The additional stress field;, is related to an additional

As experiment$19] show, the growth of vapor deposited deformationu; by Hooke’s law
amorphous transition metal alloy films is accompanied with
the occurrence of lateral stresses of the orgderl GPa.
This poses the question if the formation of the experimen-
tally observed moundlike surface structure on the amorphous
films can be the result of an elastic instability, namely thewhere the strain tensar, is defined by
Grinfeld instability[21-23,18. Here, we show that this pos-
sibility is not taking place by comparing the decrease of the 1({du; duy
elastic energy and the increase of the surface energy that are uikzz(_ —>
caused by the occurrence of the moundlike surface structure
at the observed wavelength.

Amorphous films grow under lateral stresses, implying in
first approximation that the corresponding stress temsgr
possesses only two nonzero components= oy, = p. If the

amorphous film has an uneven surface, however, this stre%RS) and on the film-substrate interface and the E4&)—

tensor gy does not fulfill the boundary conditions on the (A8), one can determine the deformatian and the stress

surface and needs to be supplemented by a correefion gﬁd 7. inside the film[24]. To simplify the calculation we

ghen, the boundary conditions on the surface are determine Lsume that the elastic modKliand z have the same values
y in the film and in the substrae 8]. Note that the surface
morphologies on vapor depositedgZkl; sCuy; 5 films were
Vh found to be independent from the details of the substrate,

m n; (A1) even if the substrate consisted of a relaxegs&Xlr; Cuy; 5

film (prepared at higher temperatuf&,19].
Since Eqs(A3)—(A8) are linear they can be solved by a
fori=1,2,3, where Fourier transformation in the andy coordinates

APPENDIX: AMORPHOUS SURFACE GROWTH: THE
ROLE OF THE GRINFELD INSTABILITY

Tik= KUy S+ 21

1
Uik—§U||5ik), (A7)

(9Xk (9Xi (A8)

Since the interface between the film and the substrate is
even, the components,,, 7,,, 7,;, Uy, Uy, andu, are
continuous functions on this interface.

By using the boundary conditions on the surf4é8)—

(it i)=YV -

031506-9
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~ L L
Ti(Ky Ky ,Z,t) = fo dxfO dy7i(X,y,z,t)exd —i(kyx

tky)l, (A9)

U; (ke Ky ,z,t) and uy (ke ky,2z,t) are given by analogous

definitions. Next, we put th& axis in the direction of the
wave vectorl2=(kx,ky), yielding k,=k and k,=0. Then,

the resulting deformation in Fourier space is givenﬁq/y
=0 and

] K+4/J,/3+_k
~ | ——5 +ikz
(ux _ P K+ ul/3 F ok
Y 2
u, M _ M
K+M/3+kz
.M .
X K |K+M/3+|kz - o
S e (A0
B K+ ul/3 z
Using Eq.(A8) we obtain the strain tensor
- K+4u/3 ~ k
Bom — o | | KRk | M
2u\ K+ pul/3 2u\K+pul/3
+kz|Khe?, (A1)
~ p [K—2ul3 ~ . YK “
Uzz—ﬂ —K+,U«/3 +kz|khe +ﬂ _—K+,LL/3
+kz|Khek?, (A12)
u =i—p(1+ kz)khek?+ %wz”hekz (A13)
Xz ZM 2/-"’ ’
Uyy=Uyy=Uy,=0. (A14)
Finally, Eq. (A7) yields the additional stress field
o= — P(2+kz)khe"*— yk(1+kz)khek?,  (A15)
Ty ) K211 ke A6
Tyy=—(P+y )K+—M/3 e, (A16)
T,,= pk2zhe*?+ yk(— 1+ kz)khek?, (A17)
T,=ip(1+kz)khe*?+iyk3zhek?, (A18)
Tey=Tyz=0. (A19)

One can verify that this stress tensor fulfills the E@s3)—

PHYSICAL REVIEW E64 031506

The additional stress and strain fielglg andu;, result in
an additional elastic energy per volunmag,u;, + 7, U /2. In-
sertion of the solutions given in EqgA11)—(A19) and inte-
gration over the film yields the change of the elastic energy,
that is caused by the height variationg,t) on an interval
[0,L]? subject to periodic boundary conditiof4]

1 1+o ¥’k
=— — 2y L
Ee(t) |_22g Ei— o’k —

(1-0?) |[R(k,1)|2.
(A20)

Here, hi(k,t) = fd?xh(X,t)exp(—ik-X) denotes the height
profile in Fourier spaceE denotes Young's modulusy
€[0,1/2] the Poisson numbera=ug,=u) =(1-o)p/E
the lateral deformation in the case of an even surfacthe
surface tension, anl=|k|=2m/\ the wave number. The
negative term on the RHS of E@gA20) is caused by the
lateral stresp and represents the Grinfeld instability.

On the other hand, an uneven surface results in an in-
crease of the surface energy

1 -
Esi(t)= 5 > — k2K % (A21)
k

N| -

The addition of elastic energy and surface energy yields the
total change of the free energy of the film resulting from the

occurrence of an uneven surface profile on the interval
[0.L]?

1 1 ~
E(H)=Esi() +Ea(t)= 5 X 5B(0[R(KI?
k
(A22)

with

1+o 2y%k3
k2 2
B(k) = yk 2E1_0a k+ £

(1—0?). (A23)

This expression foB(k) is different from a similar expres-
sion that has been suggested 18]. From Eq.(A23) it can

be seen, that the free energy of the film is decreased, i.e.,
E(t) is negative, if the film possesses a periodic surface pro-
file with a sufficiently large wavelengtih or small wave
number k. On the other handB(k) is positive if the
condition

2El+o
>— —u« (A24)
v 1-0o

is fulfilled. Insertion of the experimental parametefs
~2 Jin? [19], E~100 GPa[19], p~1 GPa[19], 0=0,

anda=(1—-0)p/E~0.01 in Eq.(A24) yields the condition
k>10"/m or equivalently\ <630 nm. Note that inserting a

(A6) in Fourier space. Note that in this calculation the originnonzero Poisson numberwould decrease the lateral defor-
of thez axis (z=0) coincides with the mean surface height. mation « and the RHS of Eq(A24) and would thereby

031506-10
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expand the range of the wavelengths with positBgk). E(t)>0. We estimate that the increase of the surface energy
Since the experimentally observed surface morphologies ois at least one order of magnitude larger than the decrease of
amorphous ZgAl; sCuyy 5 films have a typical wave length the elastic energy at the experimentally observed wave-
of only A\=20 nm [7-10Q, B(k)>0 holds at this wave- length. Therefore, the moundlike surface structures seen on
length. Hence, the free energy of the amorphous films ivapor deposited amorphous films cannot be interpreted as a
increased by the observed moundlike surface structuresonsequence of an elastic instability.
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