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Amorphous thin film growth: Effects of density inhomogeneities
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A nonlinear stochastic growth equation for the spatiotemporal evolution of the surface morphology of
amorphous thin films in the presence of potential density variations is derived from the relevant physical
symmetries and compared to recent experimental results. Numerical simulations of the growth equation exhibit
a saturation of the surface morphology for large film thickness originating from the inclusion of the density
inhomogeneities. Furthermore, we argue why moundlike surface structures observed on vapor deposited amor-
phous films are not the result of the Grinfeld instability.
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I. INTRODUCTION

Recently, there has been increasing interest in the un
standing of the kinetics of surface growth processes~e.g., see
in Ref. @1#!. The evolution of the surface morphology, as
appears in molecular beam epitaxy or physical vapor de
sition experiments is determined by the interplay of t
deposition of particles and surface diffusion effects that
sult in a competition between surface roughening a
smoothening processes@2–6#. Experimental studies on
amorphous thin filmsdeposited by electron beam evapor
tion exhibit the formation of a moundlike surface structu
on a mesoscopic length scale@7–11#. Despite the complexity
of the growth process on an atomic scale, this indicates
continuum models based on stochastic field equations@1#
serve as a useful tool for the understanding of the kinetic
amorphous thin film growth.

The typical form of such a stochastic growth equation
given by

] tH5G@¹W H#1F1h, ~1!

whereH(xW ,t) represents the height of the surface abov
given substrate positionxW ~see Fig. 1!. G@¹W H# comprises all
surface relaxation processes,F denotes the mean depositio
rate, andh is the deposition noise that represents the fl
tuations of the deposition around its meanF. These fluctua-
tions are assumed to be Gaussian white, i.e.,

^h~xW ,t !&50; ^h~xW ,t !h~yW ,t8!&52Dd2~xW2yW !d~ t2t8!,
~2!

where the brackets denote ensemble averaging andD the
fluctuation strength. Transformation in a frame comovi
with the deposition rateF, h(xW ,t)5H(xW ,t)2Ft, yields the
equation

] th5G@¹W h#1h. ~3!

The functional form ofG@¹W h# can be obtained by using th
physical symmetries governing the growth process. In
context ofamorphousthin film growth, these symmetries ar
translational invariance in space and time and rotational
mirror invariance in the plane perpendicular to the grow
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direction, cf. Fig. 1. An additional symmetry principle th
we have applied in a recent study@12# was the condition of
no excess velocity. This means that the functionalG@¹W h#

can be written in the formG@¹W h#52¹W • jW. By using these
symmetries we proposed the stochastic growth equa
@12,13#

] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h!21h, ~4!

with a1 , a2 , a3 being negative as the minimal model equ
tion for amorphous thin film growth in the absence of exce
velocity.

In the light of a recent comparison to experimental d
@14# the condition of no excess velocity needs to be reexa
ined. It is only fulfilled if ~i! particle desorption does no
occur, i.e., no particles leave the surface, and if~ii ! the film
growth takes place with constant densityr0. While in fact
particle desorption is negligible during the growth of amo
phous films since it requires much higher energies, the
sumption of film growth with density variations cannot b
excludeda priori. Moreover, a careful comparison of Eq.~4!
with experimental results for amorphous Zr65Al7.5Cu27.5 film
growth @14# has indicated the necessity of the inclusion
density inhomogeneities. These density variations resul
an additional term of Kardar-Parisi-Zhang form@15# in the
deposition equation, yielding

FIG. 1. Sketch of the vapor deposition of an amorphous film
a substrate.
©2001 The American Physical Society06-1
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] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h!21a4~¹W h!21h, ~5!

with a4 being positive@12,13#.
The previous work@12# was restricted to a detailed anal

sis of Eq.~4! and our comparison of Eq.~5! with the experi-
mental results@14# was also limited by the available data an
the chosen material. Hence, there is a need for a thoro
investigation of Eq.~5! with the inclusion of density inho-
mogeneities. In the Appendix, we also address the ques
whether the pattern forming processes in vapor depos
amorphous films might be, alternatively, interpreted as
consequence of a Grinfeld instability.

II. MODEL

In this section, we first present a coherent derivation
the simplest functional form of the stochastic field equat
using the symmetry principles governing the growth
amorphous films. Subsequently, we relate the constituen
this equation to the underlying microscopic processes.

The absence of particle desorption implies a bala
equation

] tc5r0@2¹W • jW1F1h#, ~6!

wherec(xW ,t) denotes the number of atoms of the amorpho
film per substrate area above a given substrate positioxW .
Here, the currentjW is given by the combination of all surfac
relaxation processes. Mass transport inside the amorp
material can be neglected. Invariance under translation
time and space rules out any explicit appearance of timt,
space coordinatexW or heightH in 2¹W • jW. Therefore, the cor-
responding functionalGc@¹W H#52¹W • jW for the concentra-
tion c depends only on gradients and higher spatial der
tives of the height functionH(xW ,t). Moreover, the isotropy of
the amorphous phase implies rotational and mirror inv
ance in the plane perpendicular to the growth direction,
Fig. 1. Therefore,Gc@¹W H# must be a scalar under thes
transformations. By using the afore-mentioned symmet
we expand the possible terms ofGc@¹W H# in a power series
of ¹W and¹W H up to O„¹W 3,(¹W H)2

… and obtain the functiona
form

Gc~¹W H !5a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !21a5M ~7!

with

M5detS ]x
2H ]y]xH

]x]yH ]y
2H

D , ~8!

or, equivalently the continuity equation

] tc5r0@a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !21a5M1F1h#.
~9!

Allowing for density variations depending on the surfa
inclination, the rate of change ofc is related to the rate o
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change ofH by ] tc5r(¹W H)] tH. Herer(¹W H) denotes the
density of the film close to the surface. Dividing Eq.~9! by
r(¹W H) leads to

] tH5
r0

r~¹W H !
@a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !2

1a5M1F1h#. ~10!

The density variations can then be expanded in the gr
ents of H yielding @r(¹W H)#215r0

21@11(a4 /F)(¹W H)2

1O„(¹W H)4
…# with a4 being necessarily positive due to th

additional volume increase at oblique particle inciden
Then, expanding the deterministic part on the right-hand s
~RHS! of Eq. ~10! up to the orderO„¹W 3,(¹W H)2

… and neglect-
ing all corrections to the deposition noise yields

] tH5a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !21a4~¹W H !2

1a5M1F1h. ~11!

Finally, using the transformationh(xW ,t)5H(xW ,t)2Ft
with h(xW ,t) being the surface profile in the comoving fram
one obtains the stochastic growth equation

] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h!21a4~¹W h!21a5M1h.
~12!

The first and the fifth term on the RHS of Eq.~12! are
related to the deflection of the initially perpendicular incide
particles caused by interatomic attraction. When the partic
are close to the surface their trajectories are bent towards
surface. As a consequence, more particles arrive at pl
with ¹W 2h,0 than at places with¹W 2h.0 @16#. In a simpli-
fied model, this deflection~in a direction perpendicular to th
surface! happens instantaneously when a particle arrives
distanceb from the surface, as shown in the upper part
Fig. 2. b characterizes the typical range of the interatom
force. A detailed mathematical analysis of this simplifi
model yields the explicit relationsa152Fb and a55Fb2

@12#. Sinceb is very small~typically of the order 1021 nm)
compared to the radius of the surface curvature the t
proportional toa5 in Eq. ~12! can safely be neglected. On th
other hand, the negative coefficienta1 represents the growth
instability that results in the experimentally observed mou
like surface structure on vapor deposited amorphous fi
@7–11#.

The second term on the RHS of Eq.~12! represents the
surface diffusion suggested by Mullins@17#. The particles
arrive at the surface, diffuse there and relax at surface s
that offer a sufficiently strong binding. Because these bi
ing places are more frequent on surface areas with pos
curvature¹W 2h, the surface diffusion results in a current
the form jW;¹W (¹W 2h), as shown in the middle part of Fig. 2
This surface current adds the term2¹W • jW;2¹W 4h to the
growth equation. Therefore, the sign ofa2 is negative. Rost
@18# has recently suggested the explicit expressiona25
22l 2ln(l/a)F(Vg/e0) wherel denotes the diffusion length o
6-2
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AMORPHOUS THIN FILM GROWTH: EFFECTS OF . . . PHYSICAL REVIEW E 64 031506
the particles,a the average distance of the potential minim
seen by the diffusing particles,V the atomic volume,g the
surface tension, ande0 the width of the distribution of the
depths of the potential wells.

The third term on the RHS of Eq.~12! is related to the
equilibration of the inhomogeneous concentration of the
fusing particles on the surface, as suggested in@3,19#. If only
the just deposited particles diffuse before their relaxati
their surface concentration is weighted by the surface in

nation,n;1/A11(¹W h)2'12(¹W h)2/2 @19#, as shown in the
lower part of Fig. 2. This causes a diffusion current of t
type jW;2¹W n;¹W (¹W h)2 and leads to thea3¹W 2(¹W h)2 term
with a3,0. A detailed discussion of the concentration equ
bration@12# yields the explicit relationa352Fl 2/8 wherel 2

represents the mean square of the diffusion length of
particles.

The term proportional toa4 is related to the afore
mentioned density variations. It is the only term in the det
ministic part of the RHS of Eq.~12! that cannot be written in
the form2¹W • jW. Therefore, it leads to a nonzero excess
locity, i.e., there is a nonlinear relation between the me

FIG. 2. Microscopic effects of amorphous thin film growth. U
per part: Deflection of particles due to interatomic forces. Mid
part: Surface diffusion of deposited particles to places with lar
curvature. Lower part: Equilibration of the inhomogeneous part
concentration due to the geometry of the surface.
03150
-

,
i-

-

e

-

-
n

layer thicknesŝH&(t)5^(1/L2)*d2xH(xW ,t)& and time

^H&~ t !5Ft1E
0

t

dt8K 1

L2E d2xa4~¹W H !2U
xW ,t8

L . ~13!

By neglecting the term proportional toa5 we obtain themini-
mal deposition equation for amorphous thin film growth
the presence of significant density variations@12,13#

] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h!21a4~¹W h!21h,
~14!

with a1 , a2 , a3 being negative anda4 being positive.
A comparison with experimental data for amorpho

Zr65Al7.5Cu27.5 film growth @14# has recently shown a goo
quantitative agreement between this model equation~14! and
the experiment for a layer thickness up to 480 nm. For t
specific system at room temperature, the coefficients ente
in Eq. ~14! at a deposition rate ofF50.79 nm/s have been
identified as@14#

a1520.0826 nm2/s, a2520.319 nm4/s,

a3520.10 nm3/s, a450.055 nm/s, ~15!

D50.0174 nm4/s.

Using the relationsa152Fb, a2522l 2ln(l/a)F(Vg/e0),
a352Fl 2/8, @r(¹W h)#215r0

21@11(a4 /F)(¹W h)2#, and 2D
5FV @12#, one can infer that every coefficient given in E
~15! has a realistic order. Therefore, Eq.~14! constitutes a
reliable theoretical model for amorphous thin film growth,
least for the considered range of the layer thickness.

III. RESULTS

A. Comparison with experimental results

In this section, we carry on our comparison@14# with the
experimental results on the surface morphology of am
phous Zr65Al7.5Cu27.5 films prepared by electron beam
evaporation@7–10#. The correlation lengthRc(t) and the sur-
face roughnessw(t) are determined by the experimental
accessible height-height correlation function

C~r ,t !5K K 1

L2E d2x@h~xW ,t !2h̄~ t !#@h~xW1rW,t !

2h̄~ t !#L L
urWu5r

, ~16!

whereh̄(t)5(1/L2)*d2xh(xW ,t) denotes the spatially averag
of the height, and̂^•••&& urWu5r denotes a combined ensemb
and radial average. Specifically,Rc(t) is given by the first
maximum ofC(r ,t) occuring at nonzero values ofr and the
square of the surface roughness results from taking the l
r 50 in C(r ,t), i.e.,w2(t)5C(0,t). The quantitiesw(t) and
Rc(t) characterize the typical height and periodicity leng

r
e
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scales of the surface structure. Another related quantity is
height-difference correlation function

H~r ,t !5K K 1

L2E d2x@h~xW ,t !2h~xW1rW,t !#2L L
urWu5r

.

~17!

Since the relation

H~r ,t !52w2~ t !22C~r ,t ! ~18!

holds, it connects the two different correlation functions a
moreoverH(r ,t)→2w2(t) results in the limit of large radii
r→`.

In the afore-mentioned comparison with experimental
sults @14#, a quantitative agreement ofRc(t) and w(t) be-
tween the model equation~14! and the experimental data ha
been achieved up to a layer thickness of 480 nm by using
coefficients given in Eq.~15!. Here, we extend this investi
gation by comparing theoretical data onH(r ,t) obtained by
numerical simulations of Eq.~14! with the coefficients~15!
using the method explained in Appendix C of@12# and cor-
responding experimental data@7,9,10#. The height-difference
correlation functionH(r ,t) resulting from Eq.~14! for vari-
ous values ofFt is shown in Fig. 3. Note that, despite th
presence of a nonzero excess velocity, the difference betw
the mean layer thickness^H& andFt is less than 1.1% even
for the largest layer thickness. Therefore, the different val
of Ft in Fig. 3 represent the mean film thickness^H& in first
approximation. We obtain a good quantitative agreem
with the experimentally observed height-difference corre
tion functionH(r ,t) on amorphous Zr65Al7.5Cu27.5 films ~cf.
Fig. 6 in @7#, Fig. 3 in @9#, and Fig. 5 in@10#!. For large radii,
this agreement is a result of the coincidence of the surf
roughnessesw(t) since H(r ,t) saturates at 2w2(t) for r

FIG. 3. Height-difference correlation functionH(r ,t) for vari-
ous values ofFt calculated from the nonlinear stochastic grow
equation~14! on an interval@0,L#2 of the lengthL5200 nm sub-
ject to periodic boundary conditions. The parameters are give
Eq. ~15!. For reference, the dashed lines indicate the differ
power-law behaviors.
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→`. More interesting is the behavior ofH(r ,t) for small
radii r. From the numerical results in Fig. 3 one can infer th
the increase ofH(r ,t) follows a power-law behavior

H~r ,t !;r k(^H&), ~19!

where the exponentk explicitly depends on the layer thick
ness and increasesmonotonically from k51 for ^H&
'5 nm up tok51.8 for ^H&'480 nm. A similar behavior
can also be read off from the experimental results in R
@9,10# where the corresponding exponentk varies fromk
51.4 for ^H&'100 nm tok51.6 for ^H&'480 nm. More-
over, also the nonmonotonic crossover ofH(r ,t) to a satu-
ration for larger in form of a local maximum and a subse
quent minimum~over and undershooting! coincides with the
experimental finding@9,10#. C(r ,t) possesses a first max
mum atr 5Rc(t). Therefore, using Eq.~18!, the position of
the first local minimum ofH(r ,t) is determined by the cor
relation length Rc(t). From the experimental data fo
Zr65Al7.5Cu27.5 films obtained by scanning tunneling micro
copy, also direct visualizations of the surface morphology
individual samples at different stages of growth proces
have been obtained@8–10#, cf. also the right row in Fig. 4.
For comparison, the surface morphology resulting from
numerical integration of Eq.~14! with the coefficients~15!
for one individualgrowth process starting from a flat sub
strateh(xW,0)50 is shown in the left row of Fig. 4. Obvi-
ously, the visual comparison of the evolution of the surfa
structures between theory and experiment shows a stri
similarity. In particular, the evolution of the moundlike stru
tures and their typical length scale are caused by the com
tition between the growth instabilitya1¹W 2h and the surface
diffusion represented by thea2¹W 4h term. Only for the largest
layer thickness 480 nm the calculated surface morpholog
a little bit coarser than the experimentally observed struct
despite the coincidence of the correlation lengthRc(t) @14#.

B. Effects of density inhomogeneities at larger film thicknesses

The good agreement between numerical simulations
Eq. ~14! and the available experimental data o
Zr65Al7.5Cu27.5films for a layer thickness up to 480 nm rais
the question whether the growth process has already rea
the asymptotic time evolution or not. In order to investiga
this point in detail, we perform numerical simulations of th
nonlinear stochastic growth equation~14! up to a layer thick-
ness of approximately 5000 nm. We also discuss the imp
of both nonlinear terms in Eq.~14!.

The solid lines in Fig. 5 correspond to the resulting c
relation lengthRc(t) and surface roughnessw(t) using the
coefficients given in Eq.~15!. As a general consequence, th
nonlinear terms lead to a drastic slow down of the increas
the surface roughnessw(t) above the largest experimental
observed film thicknesŝH&5480 nm. We find a growth
behavior of the surface roughness given byw(t);t0.045 in
the thickness interval 480 nm<^H&<5000 nm. For small
layer thicknesseŝH&<240 nm the linear parts of Eq.~14!
dominate the growth behavior and result in an exponen
growth of w(t) due to the presence of a linear instabili

in
t
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FIG. 4. Left row: Surface mor-
phologies for Ft5100 nm, 200
nm, 360 nm, 480 nm~from top to
bottom! calculated from Eq.~14!
on an interval@0,L#2 of the size
L5200 nm subject to periodic
boundary conditions. The param
eters are given in Eq.~15!. Right
row: Experimentally recorded sur
face morphologies of vapor de
posited amorphous Zr65Al7.5Cu27.5

films of ^H&5100 nm, 200 nm,
360 nm, 480 nm thickness~from
top to bottom!, taken from
@8–10#. The maxima~minima! of
the height profiles h(xW ,t) are
marked in white~black!.
at
til
s
la

e

.

@14#. The correlation lengthRc(t) possesses a maximum
^H&'360 nm followed by an initially strong decrease un
it saturates in a very slow decrease for layer thicknes
^H&>600 nm. At these later stages the value of the corre
03150
es
-

tion lengthRc(t) lies in the range of the wavelength of th
most unstable mode 2pA2a2 /a1517.5 nm. By settinga3
50 we observe that the slow down of the increase ofw(t)
occurs at a larger value ofw(t), see the dashed line in Fig. 5
6-5
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In this case, the growth behavior ofw(t) at large film thick-
nesses 480 nm<^H&<5000 nm is given byw(t);t0.06. In
addition, we note that the correlation lengthRc(t) now
ceases to exist abovêH&'300 nm ~not shown!, because
the first maximum of the height-height correlation functi
C(r ,t) vanishes.

To demonstrate the important impact of the terma4(¹W h)2

that represents the potential density variations on the ev
tion of the surface structure we present, for comparison,
sults by settinga450, given by the solid lines in Fig. 6. In
this case, we obtain a linear increase of the surface rough
w(t);t and an algebraic growth lawRc(t);At for the cor-
relation length@12#. This behavior can be attributed to
coarsening of the moundlike surface structure, that ends
final state with onlyonemound on any finite interval@0,L#2

subject to periodic bounding conditions@12#. Figure 6 also
shows the correlation lengthRc(t) and roughnessw(t) that
result from Eq.~14! using various different values of th
coefficienta4, while the other parameters are kept at th
values given in Eq.~15!. As a general result, we observe th
decreasinga4 increases the values ofRc(t) andw(t) at large
layer thicknesses. At the smallest nonzeroa4 , a4
50.0016 nm/s, a saturation ofRc(t) and w(t) has not yet
happened at the end of the simulation.

FIG. 5. Correlation lengthRc and surface roughnessw as func-
tions of the layer thickness calculated from the nonlinear gro
equation~14! using the parameters given in Eq.~15! ~solid lines!.
To demonstrate the significant influence of the nonlinear gro

term }¹W 2(¹W h)2, we show for comparison the surface roughnesw
that results by settinga350 ~dashed line!.
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The height-difference correlation functionH(r ,t) result-
ing from Eq. ~14! including the nonlinear terma4(¹W h)2 is
shown in Fig. 7 and exhibits a saturation at small radiir,

H~r ,t !;r 1.8. ~20!

The increase ofH(r ,t) with time at large radii correspond
to the very slow increase of the surface roughnessw(t)
above a film thickness of̂H&'480 nm as shown in Fig. 5

In Fig. 8 the different evolutions of the surface morphol
gies with and without the impact of the density inhomogen
ities are compared by visualizing the images of the hei
profiles being calculated from Eqs.~14! and ~4!. Again, the
coefficients given in Eq.~15! were used. Settinga4 equals
zero the moundlike surface structure coarsens with time
develops into a final state~not shown! that possesses onl
one mound on the interval@0,L#2 @12#. Moreover, the height
profile at Ft5480 nm now looks rather different from it
experimentally observed counterpart that is shown in Fig
For nonzeroa4 the surface morphology becomes stationa
above a film thickness of approximately 480 nm at a typi
mound size that is independent from the sizeL of the interval

h

h

FIG. 6. Correlation lengthRc and surface roughnessw as func-
tions of the layer thickness calculated from the nonlinear grow

equation~4! without the inclusion of thea4(¹W h)2 term~solid lines!.
To demonstrate the significant influence of the nonlinear te

(¹W h)2, we show for comparison the prediction that results from E
~14! using various values ofa450.0016 nm/s, 0.016 nm/s, an
0.055 nm/s~dash-dotted lines, from top to bottom!. All other pa-
rameters are as given in Eq.~15!. The dashed lines are calculate
from Rc;At andw;t.
6-6
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AMORPHOUS THIN FILM GROWTH: EFFECTS OF . . . PHYSICAL REVIEW E 64 031506
@0,L#2 and is basically given by the critical waveleng
2pA2a2 /a1. Yet the spatial distribution of individua
mounds and valleys is always in change. The latter isnot a
consequence of the deposition noiseh. Similar to the related
Kuramoto-Sivashinsky equation, ] th5a1¹W 2h1a2¹W 4h

1a4(¹W h)2, the irregular change of the moundlike surfa
structure results from the nonlinear terma4(¹W h)2 @20#. If
Eq. ~14! is applied small mounds vanish and large moun
grow at the expense of their smaller neighbors, until th
split into smaller mounds. On the other hand, in the abse
of the term proportional toa4 the large mounds do not spli

To estimate the impact of the deposition noiseh, we in-
tegrated Eq.~14! using the parameters given in Eq.~15!, but
we ‘‘switched off’’ the noise termh at Ft5100 nm. We
obtained the same irregularly changing moundlike surf
structure. As only significant difference, the mounds th
look smoother on a smaller length scale. The difference
the behavior ofRc(t), w(t), andH(r ,t) are only quantita-
tive, but not qualitative: the surface roughnessw(t) is about
7% smaller and the correlation lengthRc(t) is about 5%
larger than in the stochastic case at layer thicknesses^H&
>800 nm. The small influence of the deposition noise is
too surprising due to the smallness of the coupling cons
g54Da4

2/a1
3520.378, that results from the paramete

given in Eq.~15!.
Next, we investigate the size of the density variations

sulting from Eqs.~14! and ~15! and their temporal evolu
tions. On an inclined surface area the local density is
creased by

r~¹W h!5r0 /g with g511~a4 /F !~¹W h!2, ~21!

wherea4 /F is in the range of about 0.07 if the experime
tally determined parametersF50.79 nm/s and a4

FIG. 7. Height-difference correlation functionH(r ,t) for vari-
ous values ofFt calculated from the nonlinear stochastic grow
equation~14! on an interval@0,L#2 of the lengthL5200 nm sub-
ject to periodic boundary conditions. The parameters are give
Eq. ~15!.
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FIG. 8. Surface morphologies forFt5100 nm, 480 nm, 1000
nm, 2000 nm, and 5000 nm~from top to bottom! calculated from
Eq. ~14! ~left row! and Eq.~4! ~right row! on an interval@0,L#2 of
the sizeL5200 nm subject to periodic boundary conditions. T
parameters are given in Eq.~15!. The maxima~minima! of the
height profilesh(xW ,t) are marked in white~black!.
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50.055 nm/s are used. In Fig. 9 we show the density red
tion averaged over the surface

^g&s215 K ~1/L2!E d2x~a4 /F !~¹W h!2L ~22!

and averaged over the entire film

^g&215^H&/~Ft !21, ~23!

that result from Eq.~14! with and without the inclusion of
the other nonlinearitya3¹W 2(¹W h)2. Similar to the roughness
w(t) the density reduction̂g&s21 first rapidly increases an
then remains constant in the interval 700 nm<^H&
<5000 nm. This also leads to a slow down of the incre
of ^g&21 since the evolution of̂g&21 is delayed in com-
parison with the evolution of̂g&s21. The nonlinear term
a3¹W 2(¹W h)2 lessens the density reduction. We also find t
the standard deviation ofg on the surface (Š@g
2^g&s#

2
‹s)

1/2 first increases and later, at film thickness

FIG. 9. Upper part: Density reductiong215(a4 /F)(¹W h)2 cal-
culated from Eq.~14! averaged over the surface~dashed line! and
averaged over the entire film~solid line!. The coefficients are given

in Eq. ~15!. Lower part: Density reductiong215(a4 /F)(¹W h)2

that results from Eq.~14! by settinga350, averaged over the sur
face~dashed line! and averaged over the entire film~solid line!. All
other coefficients are as given in Eq.~15!.
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480 nm<^H&<5000 nm, reaches a constant value of 0.0
with and 0.047 without the inclusion of the term proportion
to a3.

Finally we ascertain that even for the smallest nonz
value of a4 that was applied in this study,a4
50.0016 nm/s~see Fig. 6!, a saturation of the surface mo
phology will occur. Therefore, we numerically solved E
~14! using this value ofa4 and the other parameters given
Eq. ~15! on an interval@0,L#2 of the sizeL5400 nm subject
to periodic boundary conditions. In order to accelerate
calculation we now ‘‘switched off’’ the deposition noiseh at
Ft5100 nm. We obtained a drastic slow down of the i
crease of the roughnessw(t) and the correlation lengthRc(t)
at very large layer thicknesses 20 000 nm<^H&
<120 000 nm~not shown!. Hence the smallness ofa4 re-
sults in a delay of the saturation of the moundlike surfa
morphology. In addition, we note that at these later stages
correlation length~and typical mound size! Rc(t) is in the
range ofRc(t)'46 nm and is therefore larger than the cri
cal wavelength 2pA2a2 /a1517.5 nm.

C. Discussion

The numerical simulations of Eq.~14! using the experi-
mentally determined parameters given in Eq.~15! indicate
that the nonlinear terma4(¹W h)2 basically leads to a satura
tion of the surface structure, at least within the investiga
range of time. The surface morphology consists of mou
that change irregularly in time and space. Their typical si
however, is given by the wavelength of the most unsta
mode 2pA2a2 /a1 if a4 is not too small. It might be possible
that the surface still roughens on length scales larger than
mound size, as in the case of the Kuramoto-Sivashin
equation@20#.

It has not been rigorously proven yet that a saturation
the typical mound size occurs forany positive valuea4.
However, this seems reasonable since at large length sc
the terma4(¹W h)2 becomes much larger in comparison to t
other nonlinearitya3¹W 2(¹W h)2 which is responsible for the
coarsening process~see the right row in Fig. 8!. If a4 is
small, the nonlinear terma4(¹W h)2 does not become relevan
before a coarsening of the moundlike surface morpholo
has occured. This explains why the surface structure s
rates at later stages and larger length scales ifa4 is small.
The growth behavior of the solutions of Eq.~14! depends
basically on the dimensionless constantn5(a2a4)/(a1a3).

The previous considerations hold in the physically r
evant case, i.e.,a1 anda2 are negative anda3 anda4 have
opposite signs. On the other hand, ifa3 anda4 had the same
signs, the two nonlinear terms in Eq.~14! would compensate
each other at the wavelength 2pAa3 /a4. If, additionally, the
absolute value ofa4 was small enough, this wavelengt
would be larger than 2pAa2 /a1 and would therefore belong
to an unstable mode. Then, the surface roughnessw(t)
would increase at least exponentially.

IV. CONCLUSIONS

In this study, we have presented a nonlinear stocha
field equation~14! for amorphous film growth that can serv
6-8
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as a minimal model if the possibility of density inhomog
neities is taken into account. Starting from the condition
no particle desorption, using the symmetries relevant
amorphous film growth and allowing for density variatio
depending on the surface slope we derived the simplest f
tional form of an equation capable for describing the grow
of amorphous films. A detailed comparison of available e
perimental data with the numerical simulations of the sta
tical measures of the surface morphology,Rc(t), w(t), and
the height-difference correlation functionH(r ,t) and also
with direct visualizations of the surface evolution reveals
very good agreement in the considered range of the la
thickness. For the not yet experimentally explored range
layer thicknesseŝH&>480 nm, we gave detailed predic
tions for the expected surface morphology on the basis
Eqs. ~14! and ~15!. Most remarkably, the suggested dens
variations that are represented by a nonlinear term pro
tional to (¹W h)2 in Eq. ~14! stabilize the surface morpholog
to a typical moundlike structure. We hope that our stu
motivates further experimental studies on amorphous
growth.
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APPENDIX: AMORPHOUS SURFACE GROWTH: THE
ROLE OF THE GRINFELD INSTABILITY

As experiments@19# show, the growth of vapor deposite
amorphous transition metal alloy films is accompanied w
the occurrence of lateral stresses of the orderp'1 GPa.
This poses the question if the formation of the experim
tally observed moundlike surface structure on the amorph
films can be the result of an elastic instability, namely t
Grinfeld instability@21–23,18#. Here, we show that this pos
sibility is not taking place by comparing the decrease of
elastic energy and the increase of the surface energy tha
caused by the occurrence of the moundlike surface struc
at the observed wavelength.

Amorphous films grow under lateral stresses, implying
first approximation that the corresponding stress tensors ik
possesses only two nonzero componentssxx5syy5p. If the
amorphous film has an uneven surface, however, this s
tensors ik does not fulfill the boundary conditions on th
surface and needs to be supplemented by a correctiont ik .
Then, the boundary conditions on the surface are determ
by

~s ik1t ik!nk5g¹W •S ¹W h

A11~¹h!2D ni ~A1!

for i 51,2,3, where
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nW 5
1

A11~¹h!2
S 2¹W h

1
D ~A2!

denotes the unit vector perpendicular to the surface and
RHS of Eq.~A1! represents the surface tension. The corr
tion t ik depends in lowest order linearly on the gradient¹W h.
If only such terms in Eq.~A1! that are linear in¹W h are taken
into consideration one obtains the simplified boundary c
ditions

2p
]h

]x
1txz50 for i 5x, ~A3!

2p
]h

]y
1tyz50 for i 5y, ~A4!

tzz5g¹W 2h for i 5z. ~A5!

If the viscosity of the amorphous material is not too larg
the additional stress fieldt ik leads to motion inside the film
Due to energy dissipation these motions quickly fade aw
to a state where the mechanical stresses compensate
other. Therefore, the additional stress fieldt ik fulfills the
conditions

]t ik

]xk
50 i 51,2,3 ~A6!

inside the film and follows quasistatically the alterations
the height profileh(xW ,t).

The additional stress fieldt ik is related to an additiona
deformationui by Hooke’s law

t ik5Kull d ik12mS uik2
1

3
ull d ikD , ~A7!

where the strain tensoruik is defined by

uik5
1

2 S ]ui

]xk
1

]uk

]xi
D . ~A8!

Since the interface between the film and the substrat
even, the componentstxz , tyz , tzz, ux , uy , and uz are
continuous functions on this interface.

By using the boundary conditions on the surface~A3!–
~A5! and on the film-substrate interface and the Eqs.~A6!–
~A8!, one can determine the deformationui and the stress
field t ik inside the film@24#. To simplify the calculation we
assume that the elastic moduliK andm have the same value
in the film and in the substrate@18#. Note that the surface
morphologies on vapor deposited Zr65Al7.5Cu27.5 films were
found to be independent from the details of the substr
even if the substrate consisted of a relaxed Zr65Al7.5Cu27.5
film ~prepared at higher temperature! @8,19#.

Since Eqs.~A3!–~A8! are linear they can be solved by
Fourier transformation in thex andy coordinates
6-9
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t̃ ik~kx ,ky ,z,t !5E
0

L

dxE
0

L

dyt ik~x,y,z,t !exp@2 i ~kxx

1kyy!#, ~A9!

ũi(kx ,ky ,z,t) and ũik(kx ,ky ,z,t) are given by analogou
definitions. Next, we put thex axis in the direction of the
wave vectorkW5(kx ,ky), yielding kx5k and ky50. Then,
the resulting deformation in Fourier space is given byũy
50 and

S ũx

ũz
D 5

p

2m S i
K14m/3

K1m/3
1 ikz

2
m

K1m/3
1kz

D h̃ekz

1
gk

2m S i
m

K1m/3
1 ikz

2
K14m/3

K1m/3
1kz

D h̃ekz. ~A10!

Using Eq.~A8! we obtain the strain tensor

ũxx52
p

2m S K14m/3

K1m/3
1kzD kh̃ekz2

gk

2m S m

K1m/3

1kzD kh̃ekz, ~A11!

ũzz5
p

2m S K22m/3

K1m/3
1kzD kh̃ekz1

gk

2m S 2
m

K1m/3

1kzD kh̃ekz, ~A12!

ũxz5
ip

2m
~11kz!kh̃ekz1

igk

2m
k2zh̃ekz, ~A13!

ũyy5ũxy5ũyz50. ~A14!

Finally, Eq. ~A7! yields the additional stress field

t̃xx52p~21kz!kh̃ekz2gk~11kz!kh̃ekz, ~A15!

t̃yy52~p1gk!
K22m/3

K1m/3
kh̃ekz, ~A16!

t̃zz5pk2zh̃ekz1gk~211kz!kh̃ekz, ~A17!

t̃xz5 ip~11kz!kh̃ekz1 igk3zh̃ekz, ~A18!

t̃xy5 t̃yz50. ~A19!

One can verify that this stress tensor fulfills the Eqs.~A3!–
~A6! in Fourier space. Note that in this calculation the orig
of the z axis (z50) coincides with the mean surface heigh
03150
.

The additional stress and strain fieldst ik anduik result in
an additional elastic energy per volume,s ikuik1t ikuik/2. In-
sertion of the solutions given in Eqs.~A11!–~A19! and inte-
gration over the film yields the change of the elastic ener
that is caused by the height variationsh(xW ,t) on an interval
@0,L#2 subject to periodic boundary conditions@24#

Eel~ t !5
1

L2 (
kW

F2E
11s

12s
a2k1

g2k3

E
~12s2!G uh̃~kW ,t !u2.

~A20!

Here, h̃(kW ,t)5*d2xh(xW ,t)exp(2ikW•xW) denotes the heigh
profile in Fourier space,E denotes Young’s modulus,s
P@0,1/2# the Poisson number,a5uxx

0 5uyy
0 5(12s)p/E

the lateral deformation in the case of an even surface,g the
surface tension, andk5ukW u52p/l the wave number. The
negative term on the RHS of Eq.~A20! is caused by the
lateral stressp and represents the Grinfeld instability.

On the other hand, an uneven surface results in an
crease of the surface energy

Es f~ t !5
1

L2 (
kW

1

2
gk2uh̃~kW ,t !u2. ~A21!

The addition of elastic energy and surface energy yields
total change of the free energy of the film resulting from t
occurrence of an uneven surface profile on the inter
@0,L#2

E~ t !5Es f~ t !1Eel~ t !5
1

L2 (
kW

1

2
B~k!uh̃~kW ,t !u2

~A22!

with

B~k!5gk222E
11s

12s
a2k1

2g2k3

E
~12s2!. ~A23!

This expression forB(k) is different from a similar expres
sion that has been suggested in@18#. From Eq.~A23! it can
be seen, that the free energy of the film is decreased,
E(t) is negative, if the film possesses a periodic surface p
file with a sufficiently large wavelengthl or small wave
number k. On the other hand,B(k) is positive if the
condition

k.
2E

g

11s

12s
a2 ~A24!

is fulfilled. Insertion of the experimental parametersg
'2 J/m2 @19#, E'100 GPa@19#, p'1 GPa @19#, s50,
anda5(12s)p/E'0.01 in Eq.~A24! yields the condition
k.107/m or equivalentlyl,630 nm. Note that inserting a
nonzero Poisson numbers would decrease the lateral defo
mation a and the RHS of Eq.~A24! and would thereby
6-10
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expand the range of the wavelengths with positiveB(k).
Since the experimentally observed surface morphologies
amorphous Zr65Al7.5Cu27.5 films have a typical wave length
of only l'20 nm @7–10#, B(k).0 holds at this wave-
length. Hence, the free energy of the amorphous films
increased by the observed moundlike surface struct
5

m

nd
C.

K

03150
n

is
e,

E(t).0. We estimate that the increase of the surface ene
is at least one order of magnitude larger than the decreas
the elastic energy at the experimentally observed wa
length. Therefore, the moundlike surface structures seen
vapor deposited amorphous films cannot be interpreted
consequence of an elastic instability.
E.
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