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A study of the dynamics of a tunneling particle in a driven bistable potential which is moderately
to strongly coupled to a bath is presented. Upon restricting the system dynamics to the Hilbert space
spanned by th& lowest energy eigenstates of the bare static potential, a set of coupled non-Markovian
master equations for the diagonal elements of the reduced density matrix, witklisthete variable
representationis derived. The resulting dynamics is in good agreement with predictioak-ofitio
real-time path integral simulations. Numerous results, analytical as well as numerical,doetitem
relaxation rateand for theasymptotic populationare presented. Our method is particularly convenient
to investigate the case of shallow, time-dependent potential barriers and moderate-to-strong damping,
where both a semi-classical and a Redfield-type approach are inappropriateo1 Academic Press
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16 THORWART, GRIFONI, AND HANGGI
I. INTRODUCTION

The sensitivity of tunneling to the influence of the environment has been in the focus of inte
research over the last years [1-5]. A popular model for the investigation of tunneling process
a double-well potential with an energy barrier that separates two energetically degenerate mir
In an idealized system, the barrier can be coherently traversed by a quantum mechanical pe
(coherent tunneling A real physical system, however, experiences the influence of the surround
“outer world.” This coupling disturbs the coherent tunneling process and it constitutes the or
of decoherence and dissipation in the quantum system. To model the dissipative influence
environment is commonly described as an ensemble of harmonic oscillaéatshath reservoil
being at thermal equilibrium at temperature A bilinear coupling between the quantum systen
and the bath mimics phenomenologically the interaction of the system with the “rest of the wor
By this method, the quantum mechanical analogue of the generalized Langevin equation ce
derived.

The spectrum of the uncoupled symmetric bistable potential consists of a ladder of doublets
pairs of energetically nearly degenerate energy eigenstates. The degeneracy is lifted by the tuni
splittings within the single doublets. The doublets themselves are separated by large interdo
energy gaps which are of the order of the related characteristic system frequency scale, the latt
generally orders of magnitude larger than the tunneling splittings.

By now, two different situations have been in the center of detailed investigations on the dissip:
tunneling dynamics in a bistable potential: (i) On the one hand, one considers the regime of
temperatures, i.ekgT is of the order of the energy splitting of the lowest tunneling doublet.
common approach to simplify thepatially continuouglynamics consists then in restricting the
problem to the two lowest energy eigenstates, being the solely significantly thermally populated s
in this deep quantum regime. Coupling the two-level system to a bosonic bath of harmonic oscille
leads to the prominespin-boson probleifd, 3, 5]. (i) On the other hand, the starting pointis classica
rate theorySemiclassicaunneling corrections to the relaxation rate are calculated by use of varic
instanton techniques [2]. This formalism is applicable when the quantized energy levels lie very d
below the barrier, i.e., in cases when the energy barrier is large compared to the characteristic
splitting of the quantum system. Moreovetpaal equilibriumis required, restricting this approach
only to timeindependent systems. By complex-time path integral techniques, the free energ
calculated in a semiclassical steepest-descent method. This leads to the dissipative bounce st
which in turn determines the semiclassical decay rate.

Modern experimental developments have paved the way to study the influence of time-deper
external driving forces like a laser beam or an rf-field. Such time-dependent driving fields have r
interesting implications for quantum systems like, for instance, the effext@rent destruction of
tunneling[6, 7], the effect ofquantum stochastic resonanf&-16], or the occurrence @fuantum
steps in hysteresis loof$3, 17], to name but a few (for recent reviews, see [4, 5, 14, 18]). Sut
driving fields may also be used to control and reduce decoherence in open quantum systems [1¢

The present work deals with tunneling processes in a time-dependent bistable potential
temperature regime where the two-level approximatgpin-boson regimeis invalid. Likewise,
the (possibly) strong time-dependent external fields prevent the so€lassicamethods. Our
analysis therefore bridges those two well established limiting regimes in quantum rate theory.

With this objective in mind, we release the restriction of the bistable potential to its two low
energy eigenstates and extend the model to include more energy eigenstates which are pop
at higher temperatures. This implies an interesting consequence: Since the energy splittings «
higher doublets are larger, tunneling becomes more favorable via the higher doublets. Howeve
the temperature being too large, tunneling is again hampered due to the decoherent influence
environment. This interplay among tunneling, vibrational relaxation (i.e., transitietvgeernthe
doublets), and thermal effects leads to a rich and complex dynamics.
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The specific problem we tackle is the following: Let us consider a quantum particle which
initially localized in one of the two wells of a double-well potential. What is thenrtie with
which the probability of finding the particle in this well decays in the presence of an Ohmic-lil
environment? In addition, what are the asymptotic well populations? An additional manipulati
of the potential barrier, i.e., a static bias or a time-dependent harmonic driving, may be appliec
this work, we provide an analytic method to solve this non-trivial problem—also in the presence
a time-dependent driving field—in a very general manner. We restrict ourselves neither to a I
semiclassical potential barrier, nor to a weak system-bath interaction, nor to weak driving fiel
Our analysis is based on the real-time path integral techniqgue which uses the Feynman—Ve
formulation as a starting basis. By treating the bath induced correlations between quantum p
within a generalized non-interacting cluster approximation, a generalized master equation for
diagonal elements of the reduced density matrix is derived. It turns out that the approximatio
appropriate in the regime of moderate temperature and/or moderate system-bath coupling. A fu
simplification of the integro-differential equation leads to a Markovian approximated master equat
whose rate coefficients are obtained in the form of closed analytical expressions. By comparing
results of the full generalized master equation versus the Markovian approximated master equi
and versus the numerical quasiadiabatic propagator path integral algorithm [21], we conclude
the analytical approximation permits correct predictions for the decay process out of the initie
populated potential well. The rate governing the long-time dynamics of the decay is obtainec
the smallest eigenvaluef the matrix of the (time averaged) rate coefficients. The dependence
this quantum relaxation rate and of the asymptotic population of the metastable well on the vari
physical parameters is investigated in detail.

We stress that the developed methodasrestricted to this specific problem but can be applied
to many different other physical situations where a potential with a discrete energy spectrum ca
assumed. A short summary of this present work has been published in Ref. [22].

Before we proceed, we motivate that the stated problem is not of formal academic nature
in contrast, has several applications to real physical systems. For that purpose, we have colle
numerous experimental works in the following Section I.A. In the subsequent Section 1.B we brie
review the few existing theoretical works and discuss some of their shortcomings and inconsister
which we attempt to overcome by our techniques. The rest of the paper is organized as follow:
Section Il our specific model is introduced. The succeeding Section Ill is devoted to the derivat
of the dissipative real-time path integral which is cast in the discrete variable representation (DV
i.e., the eigenbasis of that system operator which couples to the reservoir. The example of
double-doublet system illustrates this transformation in Section I11.D. In Section IV we introduce
approximation to the so far exact real-time path integral expressions. This approximative treatme
the bath induced path correlations allows for the derivation of a generalized master equation (G\
This is shown in Section V, where also the lowest order expressions for the integral kernels of
GME are given. In Section VI we extract the leading rate for the decay out of one of the two poten
wells. This is possible if one applies an additional Markovian approximation to the GME. A detail
study of the dependence of the quantum relaxation rate on the various model parameter is put for
in Section VII. Moreover, an investigation of the asymptotic well population is presented. Final
our conclusions together with an outlook are presented in Section VIII.

A. Experiments

Several experiments where dissipative multilevel systems are involved have been performe
many different physical systems. We report on four timely examples to motivate the importance
the need for a consistent and general theory for the above stated problem.

The first set of experiments deals with quantum tunneling of magnetization in nanomagnets [
A macroscopic sample of molecular magnets consists of a large number (typicaHyt¥) of
chemically identical magnetic clusters of the same magnetic size. They are regularly arranged
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crystal lattice. The single molecules have usually a large spin quantum number, tygSical,O.
Experiments (see below) indicate a strong uniaxial magnetocrystalline anisotropy. It favors a do
degenerate spin alignment along the c-axis of the crysigl: S, and generates an energy barrier
for the reversal of magnetization. This implies two-fold degenerate excited states corresponding
spin-projectionsns = +(S—1), £(S—2), ..., 0in a double-well potential [24]. At sufficiently low
temperatures, the spins can tunnel through the anisotropy barrier. Two such materials are cur
studied in detail: The firstis referred to as Mracetate. It possesses a tunneling barriexdf/ kg ~
62K (ks denotes the Boltzmann constant). Resonant tunneling of magnetization reveals itse
quantum steps in hysteresis loops which go along with maxima in the relaxation rate for spe
values of an external magnetic field [25]. The second candidate is knowp asdreas the advantage
that the anisotropy barrier is approximately three times smaller than ip (itJ / kg ~ 22K). This
property enhances the observed effect by several orders of magnitude as compared to the cas
Mns,. For the Fg samples several experiments on quantum tunneling of magnetization have t
reported as well [26, 27]. Especially interesting for us are the measurements by Wernstlatfer
[27]; those are performed at non-adiabatic driving fields and at temperatures where many dot
contribute to the dynamics.

A second class of experiments addresses tunneling of the magnetic flux in superconducting
tum interference devices (SQUIDs) [28-36]. The dynamics of the total flux threaded through
SQUID (or the phase difference across a current biased Josephson junction) obeys a collective n
of a macroscopic number of quasiparticles. The classical equation of motion for the flux dynar
maps to that of a particle moving dissipatively in a (symmetric) double-well potential. Its lowest |
(right) well corresponds to one of the two fluxoid states 0 (1) of the SQUID. For sufficiently Ic
temperature, the transition between these states occurs via tunneling through the potential b
Measurements of the relaxation of a fluxoid state initially prepared in an rf-SQUID have addre:
two different physical situations: The results in Ref. [29] have been interpretiedaserent tun-
nelingin a macroscopic two-state systeand those in Ref. [30] have been explainedesonant
tunnelingbetween two quasi-degenerate localized states in different fluxoid wells. The rate of 1
neling out of the metastable well vs the applied external flux exhibits a series of local maxima. T}
occur at those values of the external flux where the adiabatic energy levels of the biased SC
potential form avoided level crossings. By applying a resonant time-dependent external rf-fi
Hanet al.[31] created a population inversion between the two adjacent fluxoid wells. Furthermc
Silvestriniet al.[32] reported the observation of energy level quantization in underdamped Josept
junctionsabovethe crossover temperature which separates the classical from the quantum reg
Hanet al.[33] recently presented evidence for transitions between the fluxoid wells due to casca
two-photon processes. In the latest work of this group, Friedshah[34] report on the realization of
a quantum superposition of macroscopic states in an rf-SQUID. Similar observations were rec
made by the group of Mooij [35, 36] where symmetric and antisymmetric quantum superpositi
of macroscopic states of a dc-SQUID have been created.

Another set of experiments concerns the tunneling dynamics of substitutional defects in solids
For instance, in a crystalline environment tunneling arises from defect ions which do not fit prop
in the sites offered by the host lattice. The symmetry of the host crystal determines a complic
potential energy landscape with several degenerate minima for the defect ion. Gatlding38]
studied the relaxation rates of individual microscopic defects in a mesoscopic disordered Bi-m
Since the sample dimensions were comparable to the phase-breaking length for quantum transp
at low temperatures, the sample’s conductance was highly sensitive to the positions of the scat
centers. Their observations were found to be consistent with predictions of the dissipative two-|
system[1-3] atlow temperatures. However, measurements at higher temperatures [39] have ind
the failure of the two-level theory [40]. Furthermore, the study of thermally assisted tunneling
atomic hydrogen and deuterium in boron-doped crystalline silicon reveals [41] that the relaxa
rate calculated by a path integral centroid formalism differs from experimental measurement
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two orders of magnitude. Finally, Enss and Hunklinger [42] have pointed out several discrepan:
between predictions of a semiclassical tunneling model, where the two wells are approxime
by harmonic oscillatorsh@armonic-well approximatiansee also Appendix E), and experimental
measurements at low temperatures. They proposed an improved approach by taking into acc
elastic interactions among the tunneling systems to resolve these discrepancies.

The last class of experiments concerns systems in chemical physics with the goal of control
of chemical reactions [43—45]. The hydrogen pair transfer in the hydrogen-bonded cyclic dim
of numerous carboxylic acids is used as a prototype system to study the relation between qua
tunneling and chemical kinetics. The measurements show that the free hydrogen-bonded di
possess two energetically degenerate equilibrium configurations. They correspond to the two mil
of a double-well potential. Both quantum tunneling and vibrational excitation are important for t
transfer of the hydrogen pair. This has been studied experimentally in detail in Refs. [43]. A spec
control scheme (“Hydrogen-Subway”) has been proposed [44, 45] to steer intramolecular hydrc
transfer reactions in malonaldehyde by ultrashort laser pulses. The conventionally proposed me
for the transfer consists in applying a laser pulse that lifts an initially localized wavepacket in 1
reactant regiotverthe barrier thus allowing propagation towards the final product configuratio
The new approach in Ref. [45] is to drive the wave packet not ovethbotighthe barrier. This is
achieved by exciting higher lying doublets where tunneling occurs on a much shorter time-scale
in the lower doublets. The advantage of this new proposal is that it requires laser intensities w
are considerably smaller than those used in the conventional approach.

B. Prior Theoretical Approaches

Previous theoretical works dealing with dissipative spatially continuous quantum systems, be
driven or undriven, naturally fall into two classes: Approaches that are more of a numerical
analytical flavor, respectively.

In Ref. [7], the harmonically driven double-well potential has been investigated numerically
the presence of dissipation. For that purpose, a master equation for the reduced density matri
been derived on the basis of the standard Born—Markov assumption [46]. Subsequently, an anal
Floquet approach is used to derive the master equation. In doing so, an improved master equ
has been obtained in Ref. [47]. Here, the Floquet theory is applied on the level of tlueliBger”
equation and the Born—Markov approximation is made for the quasienergy spectrum. In both ce
the system-bath coupling is treated perturbatively. This restricts the method we#kecoupling
regime The same regime of a weak system-bath coupling was treated by Naendbf#5]. Also,
standard Redfield (i.e., weak-coupling) techniques have been applied to derive a master equatior
specific shape of a laser pulse is determined in order to control hydrogen tunneling in a dissipe
environment [45]. In the strong coupling regime, the harmonically driven double-well potential h
been studied in the context of quantum hysteresis and quantum stochastic resonance [11]. Ir
work, the system has been iterated numerically using the tensor multiplication scheme within
guasiadiabatic propagator path integral technique developed by Makri and Makarov [21].

More analytical oriented works in the context of dissipative multilevel bistable systems have b
performed by several groups [48-56].

The starting point in Refs. [48, 49] is a multilevel system with interdoublet transition tern
(vibrational relaxation) which anmeotstrictly derived from aontinuousiouble-well potential; these
are constructed phenomenologically. This leads to the assumption that the vibrational coupling oc
only between vibrational states located inside the same well.

The group of Silbey [48] consideredstaticmultilevel system. Additionally, only tunneling states
differing by one quantum of vibrational excitation are assumed to be connected. Finally, it is assul
that the vibrational coupling within each well is the same for both wells. &lpgori excludes the
case with a static asymmetry of the potential.
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The group of Morillo and Cukier [49] started out from a similar Hamiltonian like in Ref. [48]
They restricted the model further and included onlytthe doubletsvith the lowest energy, i.e., the
so-calleddouble-doublet systerThe authors for the first time included a time-dependent drivin
which couples to a phenomenologically constructed dipole operator of the multilevel system.
system-bath interaction is treated perturbatively within a generalized Redfield approach.

In a sequence of articles [50], Dekker analyzed the real-time dynamics of a quantum partic
the dissipative static double-well potentéd initio by means of a multisite spin-hopping model. He
derives the reduced quantum Liouville equation for the particle, thereby not restricting the dynar
to the lowest doublet only. The interdoublet vibrational dynamics is approximated by coarse-grail
the density matrix elements on a time scale of many vibrational periods. It is further assumed
the localized states in the wells are approximated by the eigenfunctions of a harmonic oscil
(harmonic-well approximation This latter assumption can be justified as long as the barrier heic
is large compared to the interdoublet energy gap. In this parameter regime, however, the applic
of the standard semiclassical rate theory [2] is appropriate, and even simpler to apply. In the
quantum regime with low to intermediate barrier heights, this assumption increasingly beco
invalid and leads to considerable deviations of the approximated wave functions from the exact
(cf. also Appendix E). Also, the eigenenergies of the harmonic potential are considerably diffe
from the exact ones for a shallow energy barrier.

A related problem has been investigated in a series of theoretical works by Ovchinnikov
co-workers [51-56] by applyingemiclassicatechniques. In Ref. [51] Larkin and Ovchinnikov
developed a method to calculate the decay rate of metastable voltage states of Josephson jun
They constructed a kinetic equation for the probabilities of population of many energy levels.
transition probabilities are determined for a cubic potential in semiclassical approximatigedir
system-bath coupling. This procedure assumes a decay into the continuum via quantum tunr
or thermal hopping. However, within confining potentials such as a double-well this assump
may be not justified. The effect of time-dependent driving is included within an approximation. T
low temperature case where tunneling prevails is considered in Ref. [52] for vortices moving
washboard potential being weakly coupled to the environment. Also quasiclassical conditions |
been assumed. The problem of divergent expressions for the decay rate at avoided level cro:
is cured in Ref. [53] where &wo-level approximatiorat the avoided level crossings is invoked.
The authors treat the problem within the harmonic well (i.e., quasiclassical) approximation fc
constant spectral density of the bath modes, and for a weak system-bath coupling. The semicla
expressions of Ref. [51] are applied to Josephson junctions (i) in Ref. [54] to calculate numeric
the decay rate of the zero-voltage state for non-stationary conditions, and (i) in Ref. [55] to st
the influence of temperature for resonant macroscopic quantum tunneling. Finally, the theo
adapted to SQUIDs in Ref. [56] to explain the experimental findings of Ref. [30]. However, |
theoretical results follow qualitatively those obtained from the standard WKB-approximation.
calculated decay rate differs from the experimental results by two-to-four orders of magnitude
small static potential asymmetries, i.e., with still large barriers, where the semiclassical treatr
should yield rather good agreement. In contrast, for large bias asymmetries, one of the two bz
heights becomes rather small so that the semiclassical approximation is expected to yield v
results. The agreement with the experimental data turned out to be of the same order of magn
This inconsistency may be mainly traced back to the fact that the semiclassical treatment is
appropriate for a system in the deep quantum regime when only two to six levels lie below
energy barrier.

In summarynoanalytic treatment exists in the prior literature where tunneling and vibrational 1
laxation is investigated consistently in the regime where a finite number of discrete energy eigens
rules the dissipative dynamics. This is so even for the situation that no time-dependent driving
upon the system. While standard Redfield theory for a weak system-bath coupling is used frequi
the theory for the strong coupling regime for static as well as for driven multilevel systems is ¢
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in its infancy. The main objective of this work is to fill this gap in deriving analytical schemes th
cover the physics in this prominent regime of a moderate-to-strong system-bath coupling.

Il. THE DRIVEN DISSIPATIVE BISTABLE SYSTEM

We consider a quantum particle with maks, position operatog, and momentum operatgr
moving in a one-dimensional double-well potentig{q) which may include a static asymmetry. The
potential experiences a time-dependent external fersia(2t), with field strengths and frequency
Q. Itis described by the Hamiltonian

p2
Hs(t) = Hg — gssinQt = m+vo(q)—qssin§2t, Q)

with

2,4 2
Miawy 4 Mag

2_
6arud T 4 4T 2)

Vo(q) =

being the asymmetric double-well potential. The quantitienotes the static bias force. In absence
of the asymmetrys = 0), AU denotes the barrier height, anglis the angular frequency of classical
oscillations around the well minima.

The energy spectrum &f, follows from the time-independent Sdtihger equation with a static
double-well potentiaVp(q), i.e.,Holn) = &xN), n=1,2,....

In absence of a static bias £ 0) and for energies well below the barrier, the spectrum consists «
a ladder of pairs of energy eigenstatésyblet3. The energy gaps within each doublet generally are
several orders of magnitude smaller than the inter-doublet energy gaps and are responsible fc
tunneling dynamicbketween the two wells. The large energy gaps are of the order of the harmol
oscillator energy gapwg associated with each well. For energies above the barrier, the energy g:
are also of the order dfiwy. Transitions between those largely separated energy eigenstates
termedvibrational relaxation In the presence of a static tilt ¢ 0), no general statement can be
made. Spectra with typical avoided level crossings can occur as well as such with almost eqt
separated energy levels; cf. Fig. 6a in Section VII.B.1.

Following the common approach [1-4, 57] to model the influence of the environment by
ensemble of harmonic oscillators, the bath Hamiltolarfincluding the interaction with the system)

is given by

N 2 2

1| Pj Cj

HB=§1§|:m_Jj+mjwj2(xj_ijw]—2 >] (3)
]:

The whole system is thus described by the Hamiltohé) = Hs(t) + Hg. In the case of a thermal
equilibrium bath, its influence on the system is fully characterized by the spectral density

N o 2

Iw) =5 Y 80— w)). @)

i1 Mjw;

With the numberV" of harmonic oscillators approaching infinity, we arrive at a continuous spectr
density. Throughout this work, we choose an Ohmic spectral density with an exponential cut-
ie.,

J(@) = nw expl-o/w). ()
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Heren = My, withy being the strength of the coupling to the heat bath. Moreaxes; (wo, 2, y)
denotes a cut-off frequency being the largest frequency in the model.

We choose a factorizing initial condition of Feynman—Vernon form [57]. This means that at ti
t = to, the full density operatoW (tp) is given as a product of the initially prepared system densit
operatorpg(tp) and the canonical bath density operator at temperdtusel/ kg g, i.e.,

W(to) = ps(to) Z5 " exp(—BHR). (6)

whereZg = trexp(—pHY) andHS = fozl(l/Z)[p]Z/mj -+ mjofxXt].
In order to describe the dynamics of the system of interest we focus on the time evolution of
reduced density matrix. In position representation it reads

p(qf ) q/flt) = trres<qf HJXJ |U(ta tO)W(tO)U_l(tv t0)|q/f HJXj>7 ( )
7

t
U(t,to)zTexp{—i/hf H(t/)dt/}.

to

Here,7 denotes the time ordering operatdf{ty) is the full density operator at the initial tintg,
and tresindicates the partial trace over the harmonic bath oscillatars

[ll. THE REDUCED DENSITY MATRIX IN THE DISCRETE VARIABLE
REPRESENTATION DVR
A. The Feynman-Vernon Influence Functional

Due to our assumption of a factorizing initial condition in Eq. (6), the partial trace over the bath «
be performed and the reduced density operator be recast according to Feynman and Vernon [*

p@s, 05, t) = /d%/d% G(as, g}, t; Go, g, to)ps(do. Gg, to), (8)

with the propagatoG given by

a(t)=ar q'(t)=q

G(ar, G t; ov G, to) = / Dy DY ALG]A*[q 1 Frvld, o], )
q(to)=0o q'(to)=dy

Here, A[q] = exp{i Ss[q]/ h} denotes the bare system amplitude, v8tfig] being the classical ac-
tion functional of the system variabdgalong a patiy(t). Frv[q, q'] = exp¢rv[d, q']/h) denotes
the Feynman-Vernon influence functional. For our purpose, it is convenient to write the influe
phasepry[q, g'] in terms of relative coordinatégt’) = q(t’) —q'(t’) and center of mass coordinates
x(t) =qt’) + q'(t"), respectively; it reads

t t/ i . .
devlx. £] = /to dt /t AU ER)SE — 1)) +iEE)RE — )3 ()]
t
+E@) / dUEE)SE - ) +i X ()RE - 1)) + s(to){s(t)sa 1)

t L
- / dt'é(t/)s(t'—to)}+iX(t0){§(t)R(t—to)— [ dt’E(t’)R(t’—to)}~ (10)

to
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Herein,S(t) andR(t) denote the real and imaginary part, respectively, of the bath correlation functi
Q), i.e., [3]

Q(t) = S(t) +iR(t) = / do J@ { cothh%ﬂ(l — coswt) + i sina)t}. (11)

We evaluate in the following the reduced density matrix explicitly. It turns out that this is convenien
performed in thealiscreteeigenbasis of the position operatprThis representation is the so-termed
discrete variable representation (DVI§8]. The reason for this basis transformation is that only
then can the influence phase, Eq. (10), be evaluated at the eigenyalofes. This is shown in the
subsequent section.

B. Real-Time Paths in the DVR Basis

The time-independent double-well potentg(q), Eq. (2), possesses a discrete energy spectrun
The interesting temperature regime for us is that in which only a finite and small number of ene
eigenstates is thermally significantly populated. A quantum mechanical description would not
necessary if the temperature is very large compared to the natural energy scale of the systen
assume furthermore that the time-dependent driving does not excite arbitrary high lying ene
eigenstates of the static problem. Then, it is appropriate to consider ory-tliemensional Hilbert
space spanned by thé lowest lying energy eigenstates of the static potential. The problem of
spatially continuous double-well potential is then reduced to a problem of afinite dimengidaat|
system MLS). The case oM = 2 (with ¢ ands being sufficiently small) is the well-known (driven)
spin-boson problem [1, 3, 5], whilél = 4 constitutes, for instance, the double-doublet system [49]
This reduction has been shown to be sensible for the case of the parametrically driven dissip:
guantum harmonic oscillator [59]. There, the spatially continuous potential is appropriately descri
by a discreteM-level system withM = 3toM = 6.

Next we perform a basis transformation to the so-callisdrete variable representatididVR)
[58]. The new basis is chosen as the eigenbasis of that operator which couples the bare system
harmonic bath. In our case this is the position operata¥e define the DVR basigq, )} according
to

(qIJ-|Q|qU> :qﬂgﬂvs I’va:]-v-"s M (12)

This basis follows from the energy eigenbafim)} by inserting the identityfl = Zn“f:1|m)(m|
yielding |q,) = Zm:l(m|qu)|m). This step allows us to transform the description of the dynamic
as transitions between energy eigenstates to a hopping amoi digcrete position eigenvalues
g, of the spatial grid. While for the static symmetric cases 0O, the position eigenvaluep, are
located symmetrically on thg-axis with respect tq = 0, this is no longer the case in the presence
of a static biag # 0.

To describe the dynamics in the DVR basis, we define a quantum mechanicaj(pationg
which the system evolves in time. It starts out at tirne to in the statey(t’ = to) = ¢, and evolves
viaN jumps between thM discrete states into the final sta¢’ = tg) = q,,,. The full time interval
is splitintoN short time intervals such that the jumps happen at timest; . The intermediate states
are labeled by, ;, whereuj = 1,..., M is the quantum state index, and= 1, . , N — 1 denotes
the time index. The full path is assumed to be a sequence of constant path segments according

q(t') = -0, Ot —t) + X_: 0, [O" — 1)) — O" — tj1)] + 4 O — ty), (13)
j=1
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FIG. 1. TheM? states of the reduced density matrix ofrlevel system. Shown are two examples of paths that trave
between two diagonal states of the density matrix (see text). One path (solid line) connects the diagoKabsi@dtee other
(dashed line) travels between the diagonal statde intermittently visited off-diagonal states are markedby

where G(t) is the Heaviside function. Thus, upon switching to the center-of-mass and relat
coordinatesy (t') = q(t’) + q'(t") and&(t) = q(t’) — q'(t'), respectively (cf. Eqg. (14) and Eq. (15)
below), the double path integral over the state pathg(t) andg’(t) in Eq. (9) is visualized as an
integral over asingle path that jumps between thé? states of the reduced density matrix in the
(9, 9)-plane. The total numbeéM of jumps is given by the sum of the number of jumps for the path
gandg,ie,N =N+ N

Figure 1 illustrates this idea for a genekdistate system described by &6 x M density matrix.
Two paths are depicted: one (full line) starts in the diagonal stf€){ = o) and jumps inN' =3
horizontal jumps and itN = 2 vertical jumps to the final diagonal statg (g = gg). It visits four
intermediate off-diagonal states (filled circles). The second path (dashed line) starts in the diag
state ¢, g5 = 02) and travels via two intermediate states to the final diagonal sfatef, = qum).

The paths in the relative and center of mass coordinates read

£(t) =q(t) —d'(t)
N-—-1
= _g,uo\lo@(t/ - tl) + Z g[ijl)] [®(t/ - tJ) - ®(t/ - tJ+l)] + gquN ®(t/ - tN)v (14)
=1
and
x(t) =a(t) +d'(t")
N—1
= —Xuoww Ot —t2) + D Xy [O =) — Ot" = tj12)] + K O —tn).  (15)
=1
Herein, the path weights are given as
gﬂjvj- =0y — q\,;J (16)
and

Xpjvj = Qu; — q:,] (7)

In this discrete notation, the indexrefers to the patly and the index to the primed patly’. The
time intervals in which the system is in a diagonal state of the reduced density matrix are ce
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sojourns They are characterized lgyt’) = 0 andy (t') # 0. The time spans in which the system is
in an off-diagonal state are calletlisters The clusters are characterizeddqy/) # 0 andy (t) # 0.
This is different from the spin-boson problem [1, 3, 5] where the off-diagonal sthligs)(are
characterized bg(t") £ 0 andy(t") = 0. Upon determining the derivatives of the paths with respec
to the time variablé¢’, we find

N
E) =) &8t —t) (18)
=1
and
N
X)) =Y xis(t' —tj). (19)
j=1
Thereby, we have introduced new paths weights according to
gJ = g,u.jl)j - gﬂjflvjfl (20)
and
Xi = Xpjvy — Xpjo1vj-1» (21)
with j =1,..., N.Forj = 0, we definég = &,,,, andxo = x,.v,- HENCE, a path witl transitions
at timesty, tp, ..., ty can be parametrized by two sets of path weidlds x1, x2, ..., xn} @and
{&o, &1, &2, ..., En}. In the influence functional the paths are coupled. The situation mimics the ca

of interacting electrical charges. Thus, the paths weights in Egs. (20), (21) are tenargds In
the discrete notation, the real-time path integral expression (8) assumes the form

&)= EN x(®)=xn
P ® = (A pO]th) = 3 / DYBLX, E1Felt Elpuo. (22)

wovo ¥ €(to)=50 x(to)=xo0

Here,B[x, £] = A[q].A*[d], and the influence phase takes on the form

-1 |—

N N
¢rvlx. E1=—> > &St — )5 —i Y > &R —t)x;. (23)

1=1 j=0 I=1j

=

I
o

C. The Population of the Left Well

Since we are interested in the decay of the population of one (metastable) well of the bist:
potential, say the left well, we define the quantity of interest to be the sum of the populations of th
L DVR-stateqq,), © = 1,..., L, which belong to th@egative position eigenvalueg.g.e., those
which are located to the left from the zero. This yields

L
Ple(t) = Z ,Ow,,(t). (24)
pu=1

In absence of a static bias, i.e.,= 0 in Eq. (1), the energy eigenfunctions occur in pairs of
symmetric and antisymmetric wave functions. This implies a choice for an even nivintifestates.
Then, half of the position eigenvalues is on the left side and the other half is on the right side of
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position point of reflection symmetry, being@t= 0 for Vp(q) in Eq. (2). The consequence is that
for the populationPer(t) of the left well, usuallyL = M /2 DVR-states are relevant. However, in
the case of a finite static asymmetry, no such general statement can be made.

To determinePer(t) in Eq. (24) we focus on the case that the final statg,(y) of the system
will be a diagonal state, i.e.,

UN = [UN- (25)

Since thery(t) = q'(t), it follows thaté(t) = 0 in Eq. (14).

The initially localized wave packet is assumed tosbsuperposition of energy eigenstatébe
transformation to the DVR-basis generates an initial system density npajriwhich generally is
non-diagonal, i.e.,

Vo # [o- (26)

Accordingly, we keep the general initial conditiopsg,,, # 0 in Eq. (22).

We proceed to the explicit evaluation of the path integral in Eq. (22) with the boundary conditi
given in Egs. (25) and (26).

To determine the transition amplitudes of the bare system we consider a discrete path startin
general initial state that ends in a diagonal state. It is described by a sequence of pairs of state

(to, vo) = (m1, v1) = (2, v2) = -+ = (un, VN) = (UN, UN)- (27)

The first symbol of each pair belongs to the horizontal direction and labels the rows of the
duced density matrix. The second symbol corresponds to the vertical direction and labels
columns. This implies that for a horizontal jump the first index remains constantyijey;) —
(#j+1, vj+1) = (1, vj+1), while for a vertical jump the second index is unchanged meanir
(s vj) = (et vira) = (41, v))-

We are interested in the probability amplitude of finding the system in sigte; (vj+1) af-
ter a timeAt = t;;1 —t; having started fromy;, v;). This quantity is given by the time evo-
lution operator of the bare system. We find for a vertical jump, g,y = vj, the amplitude
(u;..l eXp{—iHoAt/h}|q,, ) and forahorizontal jump, i.uj 1 = uj, (d,,..| €xp{+iHoAt/h}lq,,),
respectively. The relevant part of the system Hamiltorkigt) in Eqg. (1) is the time-independent
partHo since we are interested in the casgs, # d,, andq,,,, # d,;. Taking into account the
exponential operator up to linear order in the argument, i.e{JedtpoAt/h} ~ T+ iHoAt/h, and
using the orthogonality relatiof, | gm) = 8im, the result for the transition probability amplitude per
unittime At is obtained asti A /2. Here, the factor of A2 is extracted to have the same conventior
as in the spin-boson-problem. The factarsfor a horizontal jump are defined according to

2
Aj =47y = E(qV1+1|H0|q”i>’ @9

and for a vertical jump

2
Aj = A/th/Lj = ﬁ(q/q+1|H0’qm>, (29)

respectively. Thet+ (—) sign belongs to a horizontal (vertical) transition in the reduced densi
matrix. The different signs for horizontal and vertical direction reflect the fact that the bare transi
amplitudeA[q] belongs to the vertical direction, while the complex conjugate transition amplitu
A*[g'] belongs to the horizontal direction of the reduced density matrix.
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The amplitude to stay in th¢th off-diagonal state lasting from} to t;; depends on the time-
dependent diagonal elements of the bare system Hamiltonian in the DVR-basis. It is given by
so-calledbias factorexp( ft?“ dt'[E,, (t') — E,, (t)]), where

1 1 o
E, )= F](q,LJ.|HS(t’)|q,”) = H(F’“ — @, SsinQt’) (30)

with F,, = (q,,|Holdy,). For the entire evolution frorty to ty, N of these factors are multiplied,
y|eId|ng the overall contribution eXpZ] -0 tt’“ dt'[E,, (t") — E,, (t')]}. This defines the transition

probability amplitudes of the bare system in a unique way.

The functional integration over atlontinuougaths in Eq. (22) turns intodiscretesum over all
possible path configuratior§s jv;} in the DVR basis and an integration over all intermediate time:
{t;}. In formal terms this implies

/:Dg/pxﬂfp{t} (31)

{HJVJ

where we have introduced a compact notation according to

t N t3 t2
D{tj}E/ dtN/ dtn_1- / dtz dtl (32)
fo to to

for the time ordered integration over thetransition timed; in Eq. (22).
Collecting all parts we obtain the dissipative real-time path integral for the diagonal elements
the reduced density matrix of avi-level system in the DVR-basis, i.e.,

Punpn (1) = <qHN|p(t)|qlf-N>
M

-1
= pMZ / D{t}ZeXpi'J /t t[E, () - EUj(t)]}

o,vo=1 [l‘vJVJ

N-1 i\N N &
x [~y <§> A exp{ Do ESt —t)E +i Yy
j=0

I=1 j=0 I1=1 j=0

1-1 -1

&R —tj)x; } (33)

In this expression, the sum over all possible path configurafieqns; } in the spirit of Eq. (27) has
to be performed witld; = 0(1) for a horizontal (vertical) jump.

Several comments on this quite comprehensive path integral expression are apposite: First, the
integral in EqQ. (33) is given in its most general form and is formakgictbecause no approximations,
neither on the form of the system Hamiltonian nor on the type of the system-bath interaction,
made. This method could be applieddny problem where a potential with a discrete spectrum
is given, and where the coupling to the heat bath is mediated via the position operator. The n
ingredients are the matrix elements of the system Hamiltonian, being represented in the DVR-b
and the position eigenvalues via the paths weights. No specific requirements on the shape ¢
external driving have been made; even a stochastic driving force (such as multiplicative noise)
be included.

In the case of only two levels, i.eM = 2, Eq. (33) reduces to the well-known expression for
the (driven) spin-boson problem [1, 3, 5]. There, the problem simplifies due to the fact that the
weights during the time evolution take on only two values, corresponding to the two states locali
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in the left and in the right well of the potential. This means that the path flips between a sojo
and a blip at each jump. This implies that the spin-boson path integral assumes the form of a p
series in the tunneling splitting{ = & — &; of the two lowest levels. This is not necessarily the
case for a generddl-level system where a path can travel around, visiting many off-diagonal stat
before ending in a diagonal state. Certainly, such a path becomes less likely the longer it ren
off-diagonal. This is due to damping.

The path integral is not tractable in its most general form without assuming further approximati
Such an approximation is developed in the following Section IV. However, to gain insight into 1
physics behind the formal expression (33), we introduce in Section I11.D the example of the so-ter
double-doublet systeand discuss the transformation to the DVR-basis. It refers to the case wh
two doublets in a symmetric double-well potential, Eq. (2), are localized below the barrier, i.e.,
caseM = 4.

D. An Example: The Symmetric Double-Doublet System

We illustrate the general method with the example of two doublets below the barrier in the dou
well potential, Eqg. (2). Choosin! = 4 generates the first non-trivial extension to the familia
spin-boson problem.

For the sake of simplicity, but without loss of generality, we consider the symmetric potential; i
weset = 0inEq. (1). Forthe isolated system the energy spectrum follows from the time-indepenc
Schidinger equation aklg|n) = &y|n),n = 1, 2,.... The two lowest doubletbA{ =& -—&
andhA§ = &, — &; are separated by the energy dap = %(54 + &) — %(52 + &1) > hAf. The
interdoublet frequencyy is of the order of the classical oscillation frequeagyand becomes equal
to it in the limit of high barriers when the two intrawell oscillators approach harmonic oscillat
potentials. With the objective of the decay of a localized state in mind, we start from the so-ca
localized basislt is this basis which is favorably used to describe the tunneling dynamics. It folloy
from the energy eigenbasis by a unitary transformation according to

IL1) = 7(|1 2)), [Ry) = 7(|1 ) +12)), (34)

IL2) = 7(|3 4), |R)= 7(|3 ) + 14).

These states are localized in the I¢kt () and in the right|(R;)) well with lower (j = 1) and higher

(j = 2) energy, respectively. The localized states are depicted in Fig. 2a in position space. St
is the double-well potential (thick solid line) for a barrier heighttgf = AU/ hwo = 1.4 (we use

in the figures dimensionless quantities according to the standard scaling defined in the Appenc
Eq. (Al)). The energy eigenvalués, .. ., &, are marked by thin solid horizontal lines. The wave
functions(q | L;) (solid line) and{q | L,) (dashed-dotted line) are localized in the left well, anc
the wave functiongq | R;) (dashed line) andq | Ry) (long dashed line) are localized in the right
well. In the literature [50], these localized states in Eq. (34) are sometimes approximated by
eigenstates of harmonic potentials shifted to the position of the well minima, cf. Appendix E. T
approximation is justified for large barrier heights where, however, semiclassical techniques [:
determine the quantum relaxation rate are already applicable. By use of basic algebra, the mati
the bare system Hamiltonian of the double-doublet system in the localized basis is calculated t

HBBSZ Z

i=1,2

hA¢ _
(IR YLl + L) (R]) + hao(|R2) (Ra| + [L2)(L2]), (3%)

with frequenciesAf and o defined above. The position operator in this localized representati
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a Representation with localized states b Discrete variable representation DVR
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FIG. 2. (a) The first four localized stateg | L1), ..., (g | Rp) of the static symmetric double-well potential, Eq. (2)
with ¢ = s = 0, are shown in position space. They are defined according to Eqg. (34). The barrier height is chosel
be Eg = AU/hwy = 1.4 (we use here and in the following figure captions dimensionless quantities according to t
standard scaling defined in Eq. (Al)). The energy eigenvalues ., £4 are marked by thin solid horizontal lines. (b) The
corresponding four DVR-states are shown, i@.} «1) (solid line),{q | «2) (dashed line){q | B2) (dashed-dotted line), and
(g | 1) (long-dashed line). On thg-axis, the exact eigenvalugg are marked by crosses.

then reads

Q'°°=” aij (IR)(Rj| — ILi)(Ljl) + b(|L1)(Rel + [Re){La| — [Ru)(La| — [L2)(Ral). (36)

i,j=12

whereay; = (1|q|2), az = (3|q[4), a2 = a1 = ((1|q|4) +(2(q|3))/2 andb = ({1]q|4) —(2|q|3))/

2 <« &;.Note that, in clear contrast to the spin-boson ddse 2, the position operator in the localized
basis immondiagonal Since the energies in the Hamiltonian are of different orders of magnitude, .«
hA{ < hAS < hay, the general time evolution of an initial state proceeds on different time scale
The coherent dynamics exhibits transitions between the wells duaneling It occurs in the lower
doublet on a time scale\{)~* and in the upper doublet on a much shorter time scafg (%, being
still long compared to the time scalfgl_of the interdoublet dynamics. The coupling to the heat batt
is mediated by the position operator while the interdoublet transitions are responsible for vibratic
relaxation.

For the following analytical treatment, we simplify the approach by settirg 0 in Eq. (36).
This is for the sake of an illustrative purpose only and has no impact on the path integral formal
introduced above. For specific results, the diagonalization of the position operator is perforr
numerically on the computer with # 0. By means of ordinary diagonalization performed for the
matrix in Eq. (36) the DVR-states read

lea) = v(|L1) —ulL2)),  [B1) = v(IR1) — UIRz)), &7)
laz) = v(ulL1) —IL2)),  |B2) = v(UIR) — |Ry)),

with |ej) (18j)) being localized in the left (right) well, respectively. Hete= 1/+/1+ u? and
U = (a1 + qy,)/a12 = —(az2 + du,)/a12, ando,, = —qg denote the position eigenvalues:

Qurr = [—(B01+ 322) F \/ (11 — a)? + 483, /2. (38)
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The four DVR-states are depicted in Fig. 2b for a barrier heighEpf= AU/hwy = 1.4, i.e.,
(q | a1) (solid line),(q | @2) (dashed line){q | B.) (dashed-dotted line), and | 81) (long-dashed
line). On theg-axis, the exact eigenvalugg are marked by crosses (the eigenvalues are obtain
by numerical diagonalization of the position operator in Eq. (36)). As expected, the DVR-states
localized around their corresponding position eigenvajue

It is suggestive to call transitions between the left and right well, i.e., bet\vepand|8;) as
DVR-tunneling These are characterized by the effective tunneling matrix elements

Aayp = V2(AL + U2AY), Agyp, = V2 (VPAL 4+ AS),
(39)
Adlﬁz = AO62/-‘31 = UZU(A‘E - Ag)’

which constitute dinear combinatiorof the bare tunneling splittings{ andA$. On the other hand,
transitions within one well, i. e., betwegs ) and|«j) and betweeng;) and|gj), may be termed
DVR-vibrational relaxationThose can be characterized by the transition matrix elements

Av = Doy = Apyp, = Dpyp, = AR = 202Uy, (40)

Due to parity symmetry, they assume equal values. The Hamiltonian of the double-doublet sy
in the DVR-basis can thus be written as

1 1
HBBS = = D SN Aup (l00) (B |+ 18} ei) = ShARR+ | h(Fole) i |+ Fy ) (i), (41)

i.j=12 i=1,2

with F,, = Fs, = U?v?wo, Fy, = F, = v2wo. The operatoR accounts for DVR-vibrational relaxa-
tion, i.e.,R = |a1) (2| + |a2) (a1 + | B1) (B2 + | B2) {B1|. Thereby, the time-independent problem is
fully characterized. The time-dependent drivs{t) = ssin(R2t) couples to the position operatgr
The total system Hamiltonian in the DVR-basis thus reads

HEYR(t) = HBYE — ssin(@t) Y~ au, (loa) (s — 1) (Bi)- (42)
i=12

Note that in the DVR-basis the time-dependence enters only in the diagonal elements of
Hamiltonian. So far, we have provided all required parameters for the path integral formalism
veloped in the previous Section Il.C, namely the matrix elements in Eq. (41) of the Hamiltoniar
the DVR-basis, and the position operator eigenvalues in Eq. (38). In the following section, we re
to the dissipative real-time path integral formalism and develop a suitable approximation schen
the exact expression in Eq. (33).

IV. THE GENERALIZED NON-INTERACTING CLUSTER APPROXIMATION

Inthe context of dissipative real-time path integrals, a common strategy of approximative treatr
is as follows: It concerns the treatment of the interactions between different paths which are ind
by the coupling to the heat bath and which are described by the influence functional. The wor
idea behind the strategy [1, 3] is to neglect some of those correlations in order to get tract
expressions. One possible approximation within the spin-boson prolMem @) is the so-termed
non-interacting blip approximation (NIBAL]. There, the interactions between off-diagonal state
(blips) are neglected. In the NIBA the sojourn-blip interactions are disregarded except neighbc
ones, and even those are treated approximately. Within the NIBA, the influence phase simp
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drastically and the path integral seriesin Eq. (33) reduces to terms which are of lowest orderin the |
splitting A{. The NIBA can be justified in the case of Ohmic damping for high enough temperatur
and/or large dissipation strengths. In this regime, the average blip length is small compare
the average sojourn length, and the blip-blip and the blip-sojourn interactions can consequentl
neglected. In fact, for finite temperatures and Ohmic damping, long blips are exponentially suppre:
by the intrablip interactions. The NIBA fails for systems with asymmetry when the friction becom
weak; however, it becomes a systematic weak-damping approximation down to zero temperatur
the case of a symmetric spin-boson system [1-5].

Improved approximations take into account some of the correlations between the blips. One ¢
step of an improved approximation has been denoted amtiiecting blip chain approximation
(IBCA)[60]. There, the interactions of all nearest-neighbor blip pairs and the full interactions of t
nearest-neighbor sojourn-blip pairs are taken into account in addition. This improved approxima
confirms the validity of the NIBA in the stated parameter regime. It is valid also in an extend
parameter regime where the NIBA already breaks down.

The NIBA is applicable for a spin-boson system; i.e., a system with two tight binding sites.
has been generalized to the case with arbitrary many tight binding sites by &gaglef61]. In
their work only tunneling transitions betweaparest-neighbor sitegre considered. The multisite
paths along the discrete states of the reduced density matrix result in a sequsojiofs(time
intervals with the system being in a diagonal state)@unsters(time intervals with the system being
in an off-diagonal state). It turns out that the corresponding path weights of the clusters sum u
zero. Consequently, the clusters can be considered as neutral objects. This suggests to negl
interactions between the clusters yielding tlom-interacting cluster approximation (NICAR the
time-independent problem considered in Ref. [61], the time-integrations over the sojourn times
the path integral appear as convolutions. This feature makes the expression solvable by mea
Laplace transforms.

Motivated by the NICA, we here generalize it to the case with many levels by observing tt
the multilevel problem can be mapped onto the multisite one when tunneling between non-nes
neighbor sites is also considered. Moreover, we generalize the approach in Ref. [61] by tal
into account a time-dependent system Hamiltonian, together with a general initial reduced der
matrix.

The key argument in Ref. [61] refers to the overall neutrality of a cluster because the cumula
chargeis zero. This is also the case for a general multi-level path integral in Eq. (33). To show this
consider a general cluster at a diagonal state (x = u) at timet. It subsequently travels around
among arbitrary many off-diagonal states and re-enters atttimmdiagonal stateu, v = w). The
cumulative charg®\, of this cluster is the sum over all individual path weights defined in Eq. (20]
ie.,

|
We = Z %j

j=k+1

= (O = O = Gy F Aoy) + (Gus = Aoy — Gy + )

t+ot (quk+z ~ Qo = Qs + qw+1) + (qum = Oy = O + qVk)

= Gy — Oy — Oy + Oy

—0, 43)

becauseyx = ux andv, = . In this language, any path is just a sequence of sojourns and cluste
where thet -charges within each cluster sum up to zero.
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In general, the influence functional in Eq. (23) couples ghehargesnside each cluster with
the £-chargesinside all other clusters. Similarly, alf-charges are coupled to each other. Thes
interactions consequently render the path summation intractable.

Since the entire cluster can be seen as a neutral object which is only weakly interacting wit
other clusters which are themselves neutral, it is suggestivegiect all the intercluster interactions
in the influence phase in Eq. (33). However, allithteacluster interactions, as well as all interactions
of a cluster with the preceding sojourn, are fully taken into account (see below). For a path stal
in an off-diagonal state, we call that part of a path which precedes the first sojgemizluster
Within our approximative description, we neglect the interaction of this semi-cluster with all the Iz
clusters but take into account the correlation of the first sojourn with the preceding semi-cluster.
“coarse-graining” is performed for general transitions. We call thigtmeeralized non-interacting
cluster approximation (gNICA).

Before we exploit the consequences of this approximation, we discuss its regime of validity.
gNICA is justified when the average cluster length is small compared to the average sojourn lel
This is fulfilled for high temperatures and/or strong damping. Far excursions from the diagonal s
are damped exponentially; see Eq. (10) for the influence phase. As such, the gNICA begantes
in the limit of high temperatures.

For the case of the spin-boson-system at low temperatusenall frictiony, and no bias§ = 0),
the interblip correlations are only of second order in the coupling strengthile theintrablip ones
are of linear order iry. Hence, the gNICA is a good approximation down to zero temperature [!
However, withM > 2, lowest-order contributions to interblip correlations arise due to the non-ze
diagonal elementE, in Eq. (41). This yields a rough condition of validity for the gNICA; it reads
hAS ., < KeT or AL, <y, whereAf ., = maxA{, AS, ...}. On the other hand, an upper limit for
the allowed values of the damping constant can be extracted by the following argumentation:
damping leads to a level broadening of the unperturbed eigenenergies. This is seen best in the
in Eq. (10) for the influence phase. The damping could be viewed as an additional contribution tc
bare system propagator. The contribution is of stochastic nature and implies the level broadenir
order that a tunneling description make sense, this frictional level broadening should not excee
bare interdoublet level spacing, i.¢.. <K wo. This condition is not really restrictive because friction
strengths of the order of the oscillator frequency, e~ wpy, would indeed strongly suppress
quantum effects.

V. THE GENERALIZED MASTER EQUATION IN THE DISCRETE
VARIABLE REPRESENTATION

A. General Derivation

First, we address the non-driven case. We start by observing that every path which begins
ends in a diagonal state can be seen as a sequenxeladters punctuated by sojourns. For path:s
starting out at an off-diagonal and ending in a diagonal state, also the initial semi-cluster appi
Within the gNICA prescription, it is now straightforward to see that the integrations over the sojol
times in Eq. (33pppear as convolutioh§o use this property effectively, we switch to the Laplace
transformp,,, ., (A). It then follows that the integration over each sojourn contributes a factor
while each cluster yields a factor which depends on the number of charges and on their configur
inside that particular cluster according to Eq. (33). This very point is elucidated with an exampl
Appendix D; there, we present in detail the contribution of one specific path to the full path sum
a second step, we generalize this idea.

We consider transitions from the initial stajey( vo) at timety to the final statein, «n) at time
tn- In doing so, we must distinguish between two cases: (i) the initial state is a diagonal state,
1o = vo and (i) the initial state is an off-diagonal state, i;es,# vo. We separate the contributions
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to the path sum and obtain then for the Laplace transfogg,, (2) = f0°° dte ™ p, . (t) the
expression

M M
IOI‘-NMN()“) = Z IOMOMOIOIJ-NMN«D()\’) + Z IOILOVOIOMNIJ«NvO()")’ (44)
po=1 Ho,vo=1
HoFVo

where p, .0 (Punun,0) denotes the contribution of the diagonal (off-diagonal) initial part,
respectively.

To proceed, we need to consider an arbitrary cluster which begins in the diagonakstate=
wi) at timet; and ends in the diagonal statej(v; = w;) at timet;. We sum ovemrll the path
configurations and denote this collected contributiondlster function b, ,, (). Proceeding as in
Appendix D yields for the cluster function

N () = / dry-- / drm-1exp{—A(t1 + -+ + tm-1)}

m=[i—j|

m-1 g m S\ m
X Z exp{i Z /Z dt,[EMkJr\ (t/) - EUk+i (t/)]} 1_[(_1)51(('_) Ak+i
k=1 /28 k=0 2

1=1T

=2 k=1 1=2 k=1 n=Kk

m -1 m -1 -1
xexp{ E+4i (an>§k+l iy §|+iR<ZTn)Xk+i}, (45)

with the difference timesg, = tx — ty_; and with the conventions and notations taken from Eq. (33)

Each contribution t®,,,.,.0(*) can be viewed as a sequence of sojourns punctuated by cluste
Thus, in the first case (i), we sum up the contributionalbpaths which start ingo, vo = 1) and
end in (N, vn = un) and which contairp clusters starting in some intermediate diagonal state
(ok, ox) and ending ind.1, ok+1), i-€.,

1
P 0@ = D o) My ()P op(x) (46)
(71,02,.“,0‘)
where the sum runs over all possible intermediate diagonal stated, ..., M. The factors 1

are the results of the integration over the sojourns, see Appendix D.

In the second case (ii), where the initial state is an off-diagonal state, we assume that the
travels among off-diagonal ones and hits aftéransitionsfor the first timea diagonal statec(, «q)
at timety. This part of the path is termedsami-clusteand the interaction with all the other clusters
is neglected according to the gNICA. The sum of all such semi-clusters that stagt i)Y and end
in (kq, kg) results in a semi-cluster functiofy,,, .., (). From timety on, the formalism from (i)

is applied. Summing over all possible diagonal states- 1, ..., M yields the contribution to the
path sum
® - 1
'OMZMN o()‘) = Z deKd,/LOVo()‘) Z )\ al Kd ()‘) haz 01()‘) /LN ap()") (47)

Kkg=1 01,02,...,0p
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where the semi-cluster function is given as

feaca.nove(A) = Z/ dTl"'/ drm-1 exp{—A(ty + - -+ + Tm-1)}
m=170 0

k+1

m-1 ] m i\m
x Y exp{i Z/ ) dt'[E,(t') — Evk(t’)]} n(_1)5k<§) Ak
k=1

{ricvic k=1 =1 T
HKFEVk
m -1 -1 m | -1
xeXp{Z §|S<Ztn)§k+iZZ&R(an)Xk}_ (48)
=2 k=1 n=k 1=2 k=1 n—k

Defining thecluster matrix}(2) with the matrix elementk,,; ., (1), we can rewrite Eq. (46) and the
inner sum in Eq. (47) as a matrix product, i.e.,

p
Ao () = % {[@] } : (49)
M p
S OEDY { deKd,Movo()“)% ”@} } } . (50)
Kkg=1 MNKd

In alast step, the summation over all possible numpefclusters within a path has to be performed.
This last sum can be formally recast, yielding

Punin,D(A) = {A—i:;-[(k)} ) (51)
M 1
NN ()‘) = deKd,MOUD()\') {7} } . (52)
Praun Z{ A= HO) ]

We insert this result into Eq. (44), exchange the order of summation in the second term of the r
and end up with

M M
1 1
pain® =Y ool 55 X ] e 69
e /102::1 e A —H(}) N O KdZ:l A —H(}) HUNKd e
with
M

inKd ()\') = Z lo,uol)o deKd,Hovo()")' (54)

o,v0=1

HoFVo

Equation (53) can be viewed as a vector equation with two vector-matrix products on the r.h.s
convenience we introduce a vector-matrix notatiog),,., (1) then appear as elements of a vectol
p(x). The initial populationg,,,,., are arranged in the vectpp and the initial off-diagonal elements
are contained in the vectd;(k) with the elements, ., (1). In this notation, Eq. (53) reads

> 1 . 1 -
50) = 5=y 70+ T (55)
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Multiplying Eq. (55) with the inverse of the matrii% and rearranging the equation, we find
1O — Bo = HM)A() + T(2). (56)

Finally, we perform the inverse Laplace transform and end up with the equation

. t N
At = f AUH(E — YA + Tt —to) (57)

or in the original notation for the single components

M t
prun(t) = Z/ AUH(t — V)pn@) + Lot —to), =1, ..., M. (58)
to

The overdot denotes the derivative with respect to tim€he initial conditions for Eq. (58) are
Puv(to) = pugv,- Equations (57) and (58) are of convolutive form since a tineeependent Hamil-
tonian was assumed. A similar, although technically more involved, line of reasoning must be u
for thedrivencase. We find equations similar to Egs. (57) and (58) Wifh(t — t') ¥ H,,,(t. t')
andl,(t —to) ¥ 1,(t, to). To be explicit, the elements of the rate matkiy, (t, t') are in the general
time-dependent case given as

(t.t) = Z/ Dty Y exp{ Zf t'[E, (")~ E (t”)]} 'ﬁ(_l)sj <i_>NA-
/u) i vj it > j

{jvi}
Vi FVj
N -1 N -1
XEXP{Z S —t)E +1) Y &R _tj)Xj}- (59)
I=1 j=0 I=1 j=0

The inhomogeneity,,(t, to) arises because of the contributions of the non-diagonal initial states; |
explicit form reads

M
Z Provo fMOVOqMM (t. to)

I/L(t»IO) =
Ho,vo=1
HoFEVo
—1
= Z pMZ f Ditj} ) exp{l / t'[E,, (t") - E,, (t”)]}

Ho,vo=1 {iejvi} j=0"t

HoF#Vo HjF#Vj
m—1 i\ m -1 m -1

X 1_[(_1)51 <§> Aj exp{z &St —t))& +i Z &R —tj)x; } . (60)
j=0 I=1 j=0 1=1 j=0

The integro-differential equation (58) is called theneralized master equation (GMB)constitutes
onecentral resultof this work.

In the following, we will see that the inhomogeneity in Eqg. (60) plays an important role at shc
times. However, it will become exponentially suppressed at long times reflecting the fact that
asymptotic state is independent of the initial preparation.
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We note that this integro-differential equation (58) is represented in the DVR-basis for the diag
elements of the reduced density matift). For all practical calculations, the kernels in Eq. (59)
and the inhomogeneities in Eq. (60) have to be determined up to a certaic{i&). In practice,
this means thal = oo as the upper limit of the summations has to be replaced by a finite value

Some comments to elucidate the physical content of the GME (58) are in order: The transform:
of the problem from the localized basis to the DVR-basis maps the dynamics of the particle in
spatially continuous potential onto a hopping process of the particle on a spatially discrete ¢
The grid points are the discrete positions characterized by the eigengalues- 1, ..., M, of the
position operatoq, according to Eq. (12).

Next, we consider the example of the double-doublet system which has already been introd
in Section 111.D. We give the explicit expressions for the kernels in Eq. (59) in the GME up to secc
order inA; and illustrate the damping mechanism further.

B. The Leading Order Approximation

In this section we investigate the GME, Eq. (58), with the kernels in Eq. (59) and the inhor
geneities in Eq. (60) derived to lowest order in the Hamiltonian matrix elendent$o illustrate the
general scheme, we describe the method for the case of the double-doublet systie=witkevels.

As we want to evaluate the relaxation rate of an initially localized wave packet in one of the we
say, the left well, we prepare the system in an equally weighted superposition of symmetric
antisymmetric wave function belonging to tleevestdoublet, i.e.,

p(to) = L1)(Lal, (61)

where|L;) = (1/+/2)(11) — |2)) and|n), n = 1, 2 are the nearly degenerate energy eigenstates
the static, symmetric Hamiltoniad, (cf. Eqg. (2) and Egs. (34)). Transforming this initial state tc
the DVR-basis via Eq. (37), we find

p(to) = v¥(loa) (o] + UP|a2) (er2] + Ulora) (o] + Ulorp) {era) (62)

with the parametera andv defined below Eq. (37). We note that the initially prepared localize
state is characterized bynmndiagonaldensity matrix in the DVR basis. The diagonal elements il
Eq. (62) enter as initial conditions for the first part of the r.h.s. of Eq. (58), while the off-diagor
elements determine the inhomogeneity.

To first order, i.e., with one jump, no transition from an initial diagonal state to a final diagor
state is possible. To achieve this, at least two jumps are necessary. However, transitions start
an off-diagonal state and ending in a diagonal state are possible within one jump. This means
first order contribution appears only in the inhomogeneity of Eq. (58). The relevant transitions
the jumps ending in the diagonal statg,(«1), i.€., @1, @2) — (a1, 1) and @2, a1) — (@1, o1),
and the jumps ending irwg, o), i.e., @1, @2) — (02, @2) and @2, @1) — (a2, a2), respectively.
From Eq. (33), it follows that each path traveling “above” the diagonal has a corresponding mi
path traveling “below” the diagonal. The mirror path yields a contribution to the path sum being
complex conjugate of the upper path. Using this feature and the fagithalto) = o;,,, (to) = uv?,
we obtain for the inhomogeneity the following first-order expression

Ilgl)(tv tO) = ((Sp_al - 5;}.0[2)UU2A&10[2 eXp{—(Qal - qaz)zs(t - tO)}

x sin{ / t 0t [Ee,®') — Eay(t)] = (e — ) Rt — to)}. (63)

to

Here,A,, = (1|HBR|v), u # v, are the off-diagonal matrix elements of the system Hamiltonia
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in Eq. (41); see also Eq. (40). Note tlaly vibrational transitionsvithin the initially populated well
contribute in Eq. (63). Moreover, thig (x = o1, a2) denote the position eigenvalues, see Eq. (38), an
E.(t) = F. — g.ssin(Qt’) are the time-dependent diagonal elements of the system Hamiltonian; <
Egs. (42), (41), and (30). The influence of the bath enters via the real and imaginary part of the tv
integrated bath correlation function, i.&(t) and R(t), respectively; see Eq. (11) and Appendix B.
The conservation of probability is reflected with the opposite signs of the Kronecker syphols
From Eq. (63) it clearly follows that the contribution of the initial off-diagonal states are dampe
exponentially on a time scale determined by the damping congtamd the temperaturé. We
recall that the lowest order of the contribution of the integral part of the GME, Eq. (58), is of seco
order. This implies that the contribution of second order to the inhomogeneity should also be ta
into account for a consistent treatment. However, we refrain from writing down the complicat
second order term which would yield only minor physical insight. It can be neglected anyhow wt
investigating the long-time dynamics in the following sections.

The lowest order for the kernels in the integral part of the GME (58) is the second order, bece
at least two jumps are required starting in a diagonal state to end again in a diagonal state. Wk
once more the feature that each path traveling above the diagonal has a mirror path traveling b
the diagonal, yielding the complex conjugate of the upper path contribution. We then obtain for
GME kernels the leading order results

AZ
HEAE ) = 5" expl—(d — a,)°S(t ~ 1)}

t
x cos{ /t dt[E,(t") — E.(t")] — (0, — 0)2R(t — t’)} . pEv.  (64)

The conservation of probability implies for the diagonal kernels the condition

M
HAM ) ==Y HA.1). (65)

k=1

KF#V

We emphasize here that the lowest-order expression in Eq. (64) is applicalgerteralnumber
M of levels. The explicit example of the system double-doublet Wtk-4 is used for illustrative
purpose only.

Note that thé{ffu) represents the transition probability for a path starting in the diagonal stafe (
then jumping to the off-diagonal state, (+)/(u, v), and finally ending in the diagonal state, ().
In clear contrast to Eq. (63), now tunneling and vibrational relaxation both contribute in Eq. (64)

The structure of the GME with the kerné‘ls;fv) restricted to leading, i.e., second, order is similar
to that one obtained for the driven spin-boson system within the non-interacting blip approximat
(NIBA) [1, 3, 5], and to that one for the dissipative tight-binding model within the non-interactin
cluster approximation (NICA) performed to lowest order [61]. The main difference to these GM
is that in our case the factorg,(— q,)? enter aprefactorsfor the damping constant in S(t) and
R(t), respectively. Since they arise framon-nearest neighbor hoppirgn a non-equally spaced grid
of DVR eigenvalues, they amot equalfor all transitions. This means that transitions between fa
away lying DVR-states are stronger damped and therefore less probable compared to those
close to each other. This insight is especially relevant for the tunneling transitions from one wel
the adjacent. Then, the main contribution to the dynamics comes from those two DVR-states w
lie closest to the barrier within each well.

One remark on the notation should be made: In the following, we use the superscript in the ker
’Hffv) when they are utilized in second order. Whenever this superscript is omitted, the respec
formula is valid to any order df{,,, .
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The generalized master equation (58) is clearly not solvable analytically in closed form, not e
with the kernels and the inhomogeneities approximated to lowest order. Thus, in Appendix C
provide a numerical iteration algorithm to obtain a numerical solution.

C. Comparison with Numerical ab-initio Path Integral Simulations

In this subsection we compare the resultsPpg(t) obtained from the numerical solution of the
GME (58) with those of the numerical iterative algorithm using the method of the quasiadiab
propagator path integral QUAPI of Makri [21]. It is known that the QUAPI technique yields reliab
results for time-dependent spatially continuous confining potentials [59]. Hence, we use it here
reference in order to check the gNICA.

We present results for the double-doublet sysi e 4. Figure 3 depicts the outcome Bl (t)
for the symmetric { =0) and for the asymmetricc & 0.08) system. Each figure contains three
lines: (i) the results of the full generalized master equation (full line), (ii) findings of the QUAI
algorithm which are used as a reference, and (iii) the outcome of a Markovian master equation w
is introduced in the following Section VI. We postpone the discussion of the Markovian results to
following section. We find a very good agreement, both for the symmetric as well as the asymm
system. We note that for the asymmetric case, the full GME is solved only ug &®00 due to
the necessary choice of a very smatl=5 x 102 (for a detailed discussion see Appendix C). The
QUAPI results have been obtained wikh= 4 (the number of memory time steps, see Refs. [21, 5¢
for details) andAt = 0.1 for the symmetric andt = 0.35 for the asymmetric case.

The same very good agreement is found for the case with resonant driving=H.20, Q = wp =
0.815 which is depicted in Fig. 4a far = 0.1. The inset reveals that the agreement is satisfactol
also on a shorter time scale. The QUAPI-parameter&aset andAt = 0.75 for the symmetric, and
At = 0.3 for the asymmetric case, respectively. Also for a higher temperatwré.2 the agreement
is very good; see Fig. 4b.

No driving: s=0
—— GME
--------------- QUAPI T
————— Markov
0.0 ; .
0 1000 2000 3000

FIG. 3. The probabilityPis of finding the particle in the left well as a function of time for the symmetrie-Q) and the
asymmetric £ = 0.08) case. Considered is the system of two doublets Me= 4. We start from an initially fully localized
state in the left well. The barrier height is setig = 1.4. The temperature i = 0.2, the damping constant js=0.1, and
the cut-off frequency i& = 10.0. For this set of parameters, the dynamics is fully incoherent and the Markov approximati

to the GME (58) is rather satisfactory.
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a With driving: s=1.0, Q=0.815 b With driving: s=1.0, Q=0.815
1.0 T T 1.0
0.7 T
T=0.1 T=0.2 EESESESS
0.8 | § o8 |
\\\ e=0 [ Um0 T\ X} &=0 | PITeTionesiveery
206 N\ 400 450 500] o208 N 1200 1250 1300]
"‘\\). T T
04| €008 - - 04| €008 eemrrmeaeed
—— GME — GME
------------ QUAPI T
----- Markov ----- Markov
0.2 . v 0.2 s .
(o] 1000 2000 3000 0 1000 2000 3000

t t

FIG. 4. Same as Fig. 3 in presence of resonant drigfty= ssin(Qt)(s= 1.0, Q = wg = 0.815) forT = 0.1 (a) and for
T =0.2 (b). Insets: enlarged parts of the figures.

All results exhibit asingle exponential decat long times. This reveals that the bath parameter:
have been chosen such that the dynamics is inoleetherentand no quantum coherent oscillations
can be observed. In absence of a static asymmets/), the (averaged) asymptotic population of
the left well is clearly 0.5. This holds for the undrivesx 0) as well as for the driven case (resonant
driving s=1.0, 2 =0.815). However, in presence of a bias=0.08, the (averaged) asymptotic
population of the left well falls below 0.5. The effect of the additional time-dependent driving is
increase the asymptotic population on the left, see Figs. 3 and 4b. The quantum relaxation rate
the asymptotic population of the left well are studied in greater detail in the subsequent Section

VI. THE QUANTUM RELAXATION RATE

The generalized master equation (58) is an integro-differential equation that governs the dece
the population out of one (metastable) well. Howetegextract analytically one single ratavhich
rules the interesting dynamics on the largest time scale, requires further approximations. Motiv
by the numerical fact that the decay of the population is observed to be exponential with one si
exponent (see Section V.C), we proceed by invoking a Markovian approximation for the GME (5
This approximation yields a set of coupled ordinary first-order differential equations. In the abse
of external driving, the corresponding coefficients are time-independent. For a driven system, 1
depend on the actual time varialileVhen the frequency of the periodic external driving is of the
order of the frequency associated with the interdoublet energy gap or I@rgan,, the averaging
of the dynamics over a full driving period is appropriate. After averaging, the coefficients of the -
of coupled first-order differential equations then assume time-independent values. They form
(time-averaged) rate matrifhe smallest real part of the eigenvalues of this rate mafiglds the
relevant ratethe quantum relaxation ratevhich rules the dynamics on the largest time scale.

Itis this novel expression for the quantum relaxation rate which constitutes a second major rest
this work. On one side, we consider shallow barrigt$ = hwg as well as high barrier&U > hawg.
Inthe latter case, the condition for the validity of a semiclassical treatment is met. Put differently, sil
we deal in our approach with discrete energy eigenvalues, the semiclassical limit is reached whe
number of levels below the barrier becomes large. In this case, howeveutiezicalsolution of the
GME becomes intractable. On the other hand, we may consider tempekgtlireshwg, such that
the higher lying energy doublets cannot be neglected, as well as lower tempekaflires hwg.

In fact, our analysis contains the spin-boson solution, being the appropriate limitikgfieg hwg
and in the absence of strong resonant driving. Finally, we can allow for large driving amplituc
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and interdoublet resonant driving frequencies. In this latter case, both the restriction to a two-|
system as well as an equilibrium semiclassical analysis is prohibited.

In the following Section VI.A, we describe the Markov approximation for the generalized mas
equation. In Section VI.B, the quantum relaxation rate is determined as the smallest real part c
eigenvalues of the rate matrix.

A. Markovian Approximation

The starting point is the generalized master equation (58). The inhomogemg(tigs) on the
r.h.s. do not contribute to the long-time dynamics since they decay exponentially with time ¢
rather short time scale; see Eq. (63) for the inhomogeneity in the case of the double-doublet sy
determined within lowest order i j. Hence, this term can be neglected.

We assume furthermore that the characteristic memorytiggof the kernels of Eq. (58) is the
smallest time scale of the probleM#rkovian limif). This means that we can substitute the argumer
of p,, (t") under the integral by the timeand drawp,,, (t) in front of the integral. Moreover, the upper
limit t of the integral can be replaced by. We then obtain thmarkovian approximated generalized
master equation

M
puu(t) = Z F,uv(t)pw(t) (66)
v=1
with the time-dependent rate coefficients

L) = /:C deH,(t, t — 7). (67)

The explicit time-dependence of the rate coefficients reflects the explicit time-dependent e;
nal forcing. In the case without external driving, the rate coefficients in Eq. (67) become tir
independent.

1. Analytic result for the case without driving.To obtain specific results, we investigate the lowes
order for the kerneld{,,,. The time independent rate coefficients then read, to lowest second ort

A2
i = TMfO dz exp{—(d, — )*S(r)} cos[(Fy — Fu)7 — (A — QW)°R(T)].  pu#v.  (68)

The used quantities have been introduced in Egs. (11), (12), (28), (29), and (30). The cons
tion of probability requires for the diagonal elements of the second order rate coefficients
ré@d= -3, T?. The integral in Eq. (68) can be solved numerically by standard integratit
routines [62]. However, an analytical solution can also be derived. In thedighit> oo [3], the
correlation function§(t) andR(t) assume the form in Eq. (B3) for the real p&ft), and in Eq. (B6)
for the imaginary parR(z). After some basic algebra, we obtain for the Markovian approximate
rate coefficients the expression

AZ) h h 10 —)n/7
[‘(23 — MK exp (Fv — FM)_’B ﬂ
" 4we 2 2

IT[(9, — @)*n/27 +ihB(F, — F.)/2r]I?
X
Tl(gu — a)?n/7]

: (69)

with I'(2) being thel-function [63].
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2. High-frequency-driving. To extract an average long-time relaxation rate in the case wit
driving, we choose the external driving frequer@yto be of the order of the interdoublet level
spacingwg ~ wgp. This assumption is met, for instance, if one wishes to pump population from tl
lower to the upper doublet by an interdoublet resonant field. A time-average of the time-depent
rates (Krylov—Bogoliubov scheme) in Eq. (67) over the driving period is then appropriate. In gene
this averaging procedure is reasonable when the driving frequency is much larger than the time s
related to tunneling, i.e., whe@ > A{, A5, ... where theAf are the tunneling splittings of the
doublets.

We insert the explicit shape of the periodic drivis@) =ssin(Qt) in the second order ker-
nels |n Eq. (64). The averaging with respect to the driving frequency rdagst))e = (2/27)
fo dtI,,(t). The integration ovet can be performed if one represents the sine- and cosint
function in terms of Bessel functionk(x) [63]. The only remaining non-zero part is the one which
contains the zeroth Bessel functidgp(x). The time-independent averaged Markovian rate matri
elements to second order emerge as

[‘aV 1(2) — (F(Z)(t))

A2 oo
= % /o d exp(—(g,. — 6,)*S()} Jo <2§S(qﬂ - qv)sin(%r))
x cos[F, — F,)t — (q, — 9,)?R(7)], L, 70

Like in the non-Markovian case, the conservation of probability implies for the diagonal matr
elements the conditioR2/® = —", , T3, This expression reveals that the influence of driving
is differentfor each pair of DVR-states since the explicit distange- ¢, enters in the argument
of the Bessel functions. The averaged rate matrix elements cannot be calculated in closed anal
form as in the undriven case; however, they can be obtained numerically by standard integre
routines [62].

B. The Quantum Relaxation Rate

Since the diagonal elemengg,, (t) obey Eq. (66), the long-time dynamics in this regime is ruled
by asingle exponential decayn the case without driving, the rate mati,, is already time-
independent, and equivalently for the case of high-frequency driving after the averaging proced
Both cases reduce to a structure

M

pun(®) =Y T& (1), (72)

v=1

where the superscript (av) means that the formula holds for the averaged as well as for the t
independent case. This set of coupled ordinary first-order differential equations can be decou
via a diagonalization procedure. If one denotes the elements of the transformation m&yjaioygl

the eigenvalues of the (averaged) rate matrix\hy the diagonalized (averaged) rate matrix reads

M
> (Sl S0 = Audn. (72)

Kl,Kzzl

The general solution of the (averaged) Markov approximated GME is obtained to be

M
;O;m(t) = Z SLU(Sil)VKeAU(titO)pKK(to)' (73)

vk=1
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SinceFl(f‘v") is a stochastic matrix, i.e., the diagonal elements of the (averaged) rate matrix are
negative sum of the matrix elements of the corresponding columns, one eigenvalue equals zer
A1 =0 (conservation of probability). Therefore,

M M
p/L[L(t) = /OZZ + Z Z Sw(gl)weAv(titO)pxk(tO)a (74)

v=2 k=1

with ppo = Z,’E"Zl S..1(S Y1.4p,, (to) being the asymptotic population of the DVR-staig).
The rate which determines the dynamics on the largest time-scale is the smallest non-zero ab
value of the real part of the eigenvalues of the (averaged) rate matrix, i.e.,

@™ = min{|ReA, ;v =2,..., M}. (75)

It is called thequantum relaxation rate
Likewise, the asymptotic populatid?g, of the left well is readily obtained from Eq. (73). It reads

L
Pet =D _ o (76)
n=1

To compare the predictions of the Markovian approximated master equation (66) with the resul
the generalized master equation (58), we recall the outcomes presented in Figs. 3 and 4 of the prt
Section V.C. The Markovian results are indicated by the dashed lines. In all investigated paran
combinations, the agreement among the generalized master equation, the predictions of the Q
algorithm, and the Markovian master equation is very good apart from minor differences. The
of the decay is described accuratelyB§"), as well as the asymptotic population of the left well.
Also in presence of a time-dependent driving, the averaging yields the correct averaged dynal
This allows for the conclusion that, in the investigated range of parameters, the driven dissip:
multi-level system is adequately described by the Markovian approximated master equation wit|
eigenvalues determined from second order gNICA.

VII. RESULTS: QUANTUM RELAXATION RATE AND ASYMPTOTIC POPULATIONS

In this section, we present results for the quantum relaxation¥&teand the asymptotic popula-
tion R inside the left well for the (driven) double-well potential, Eq. (2). Throughout the followin
sections, we choose a set of typical dimensionless parameter values. The corresponding dimens
values follow from the standard scaling procedure described in Appendix A. The barrier heigl
consistently chosen to dez = 1.4. This implies that two doublets lie below the energy barrier ani
the other energy states lie above the barrier; see Fig. 2. Moreover the lower tunneling splittir
A{ =3.60 x 1073, the upper tunneling splitting i45 = 0.121, and the energy gap between the twc
doublets isvg = 0.815. This choice is mainly motivated by the fact that we explicitly want to inves
tigate the intermediate regime between the two-level approximation and the semiclassical rec
Furthermore, such a shallow barrier height is convenient for numerical reasons. The splitting o
lowest doublet decreases exponentially with increasing barrier height.

In the following subsections, we investigate on the one hand the double-doublet system,
M =4, for the barrier heighEg = 1.4. We expect that the results are qualitatively similar for large
barrier heights when more than two doubletshedowthe barrier because the spectrum is thel
similar to the double-doublet case. On the other hand, we study the questionwargencevith
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increasing numbel of energy levels for the case B =1.4. ForM — oo, the multi-level system
is equivalent to the spatially continuous potential.

We consider two typical situations: Thaperturbednergy spectrum in the symmetric case-(0)
exhibitsavoided level crossingsee Fig. 6a in Section VII.B.1. The second case refers to a tilte
potential withe = 0.08 where the energy levels are ratbongly separatedsee Fig. 6a.

The parameters for the time-dependent driving are typically chosen in such a way that the regi
of a weak § = 0.1) and a strongg= 1.0) driving amplitude are covered for both. In the first case,
the potential stays permanently bistable while in the second case the potential assumes interr
ate monostable configurations. Wil = 1.4, the critical amplitude where bistability vanishes is
Sorit = 0.64. The driving frequency is typically chosen either to be in resonance with the interdoub
energy gap, i.eQ = wo = 0.815, or off resonance, i.eQ =0.2.

The typical choice for the temperatureTis= 0.1, being a low to intermediate temperature. We
note that the semiclassical expression for the cross-over temperature [2]iete6.12, keeping
in mind, however, that our choice of the barrier height does not obey the semiclassical conditior

We use an Ohmic spectral density with an exponential cut-off; see Eq. (5). The damping consta
chosento be =0.1; it represents an intermediate damping strength. We note that the dependenc
the results on the damping strength and temperature is exponential. The cut-off frequency is al
fixed to bew. = 10.0.

Finally, we note that in the following symbols sucheandd are used to label individual plots in
the particular figures. Their number is not related to the number of calculated data points, the I
being much larger.

A. Absence of External Driving

We start with the simplest case of the undriven symmetric double-well potestiad,(¢ = 0)
and consider the dependence of the quantum relaxation rate on the ndnoibenergy eigenstates.
M =4 denotes the double-doublet system. Figure 5 shows the result for different damping const
y. A convergence of the raté can be observed for an intermediate damping strepgt0.1 (x).

We recall that the lowest tunneling splitting is two orders of magnitude smallerythamd that
the upper tunneling splitting is of the same order of magnitude. &or a larger damping constant

No driving: s=0, symmetric case: e=0
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FIG. 5. Quantum relaxation rate for the static symmetric double-well potential with barrier heiglat= 1.4 in de-
pendence of the numbé# of energy eigenstates for the damping constants0.1 (x), y = 0.5 (d), andy = 1.0(A). The
temperature is chosen to he= 0.1 and the cut-off frequency is; = 10.0.



44 THORWART, GRIFONI, AND HANGGI

y =0.5 (0), convergence is also obtained. However, for the case of very strong dampidd (A),
the result forM = 8 does not coincide with that fol = 6. This fact is due to the following feature:
As it can be seen from Eq. (64) for the second order kernels of the generalized master equatio
damping constant, which enters vigS(t) and R(t), is multiplied by ¢, — g,)? being the square
of the tunneling distance between the two involved DVR-states. Upon increasing the ndnaber
energy levels, the DVR-eigenvalues lie more dense in position space. Hence, some distances b
small and the multilevel system effectiveflpws to weak dampind@he small effective damping is
no longer sufficient to suppress long intervals in the off-diagonal states. Thus, the gN#&éoind
order is no longer applicable and contributions of higher orders of the integral kernels in the G
have to be taken into account. A more detailed discussion of the effect of the flow to weak dam
is postponed to the Appendix F.

The question of convergence of the quantum relaxation rate with increllsinghe presence of
time-dependent driving is investigated in the sections below.

B. The Influence of External (Time-Dependent) Driving Forces

In this subsection we investigate the role of external driving. This external perturbation car
either a static potential asymmetrids) or a time-dependent periodic drivingg-driving), or
simultaneously both parts are present.

1. Dependence on a static bias, no ac-drivingAdding a static asymmetry renders one (in our
case the left) of the two formerly stable potential minima a metastable minimum. The conseque
for the spectrum of thbaresystem are that avoided level crossings occur for particular values of t
asymmetry; see Fig. 6a. At such avoided level crossings tunneling is usually enhanced. This ¢
is known as resonant tunneling. This situation, however, is modified in the presence of a mod
to strong damping. The case of a strong system-bath coupling is considered in Fig. 6b wher
relaxation rate shows peaks at particular values of the static bias. Their position strongly dep
on temperature. At low temperaturés=0.05 to T =0.15 (full lines), we observe three relative
maxima att =0 and around = 0.12 ands = 0.25. First, we emphasize that the quantum relaxatio
rateinitially decreasesvhen the bias is increased from zero, i.e., when the effective barrier heigh
decreasedrThis feature is a typical quantum mechanical footprint. In a classical system, the relaxa
rategrowswhen the barrier itowered[2]. Second, we note that the two peaks at honzero bias valu

a No driving: s=0. M=4 b No driving: s=0. M=4
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FIG. 6. (a) Spectrum of the unperturbed static0) system Hamiltonian (1) for a barrier height B =1.4 as a
function of the static bias. (b) Quantum relaxation raté according to Eq. (75) as a function of the static kidsr different
temperatured . The barrier height i€g = 1.4 and the number of energy levelsNs= 4. The bath parameters ave=0.1
andwc = 10.0.
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No driving: s=0
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FIG. 7. Quantum relaxation rate as a function of the static biasfor four different combinations of the number of
levels, i.e.,M =6 (®) and M =8 ((J), and different temperatures, i.&.= 0.1 (solid line) andT =0.15 (dashed line). For
the remaining parameters, see Fig. 6.

are shifted to smaller values of the asymmetry compared to those bias strengths where the av
level crossings occur; see Fig. 6a. This indicates that we are no longer in a weak-coupling rec
but encounter already strong incoherent tunneling.

Increasing the temperature results in a decrease of the amplitude of the peal0&5. This
indicates the enhanced destruction of the resonant tunneling phenomenon. Moreover, the
broaden. At an intermediate temperatdre- 0.3 (dashed line) one characteristic peak occurs a
e =0.2. Its height is smaller than in the low temperature cases which indicates that tunneling
reduced compared to the low temperature case. This is mainly due to the enhanced environm
level broadening. However, we still observe a clear decreasevdfen the bias is increased from
zero onwards; therefore we conclude that quantum tunneling still occurs. This, however, is no lor
observable for the high temperature cdse 0.5 (dotted line). A relaxation rate which grows with
increasing bias is a signature of classical behavior.

The question of the convergence of the rate with an increasing nuMbefr energy states is
addressed with Fig. 7. We show four different casesNb=6 (@) andM =8 (0) and T =0.1
(full line) and T = 0.15 (dashed line), respectively. The low temperature Gasé.1 shows a clear
convergence wheM is increased fromM =6 to M =8 for small asymmetries up to=0.15.
For larger asymmetries, the two results, however, do not agree. This behavior can be resolve
follows: For large asymmetries, the left well is strongly lifted above the right well. Moreover, tt
position eigenvalues on the left side move towards each other and are densely located. This
that the tunneling distance of the corresponding transition becomes smaller which in turn redt
the effective damping. Thenfow to weak dampingccurs and the second order gNICA breaks
down. The same explanation holds for the larger temperdtu®.15 where the results fdl =6
andM = 8 show qualitatively a similar behavior up 4e= 0.15.

We investigate in the following the asymptotic populatiB, of the left well determined in
Eq. (76). Forthe symmetric case, it assumes the val2dd presence of a positive asymmetry 0,

P25 is smaller than 22 since the left well is energetically higher. Figure 8 shd®g as a function
of ¢ for two different temperatures (solid line) féd =8. The damping constant is chosen to be
y = 0.1. For comparison we additionally show the asymptotic population obtained from a Boltzma
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No driving: s=0
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FIG.8. Asymptotic populatiorPg; of the left well in absence of time-dependent driving as a function of the asymmet
¢ for two different temperatures (solid line) fM = 8. The parameters af&; = 1.4, y = 0.1, andw. = 10.0. The dashed line
marks the results obtained from a Boltzmann equilibrium distribution for the same parameter®psstthe numbeM of
energy levels for a fixed asymmetry=0.08 (solid line, gNICA in second order; dashed line, with Boltzmann distribution)

equilibrium distribution for the same parameters (dashed line) g(ec) = exp(—Ho/ksT). First,
we note that the asymptotic population decreases exponentially with increasing bias. Secont
emphasize that the often made assumption of a Boltzmann equilibrium distribution is only valid
an infinitesimally small coupling of the system to the environment [64]. The depicted results
M =8 have already been converged and are not distinguishable on our scale frivhatBecase.
This is indicated in the inset of Fig. 8 for a fixed asymmetey 0.08 for two different temperatures.
Convergence is also found for the entire considered parameter randeaifshown). The full line
again shows the result obtained from gNICA in second order while the dashed line marks the re
from a Boltzmann equilibrium distribution.

2. Dependence on the static bias in presence of external ac-drivifige influence of a time-
dependent periodic driving on the quantum relaxation rate is elucidated with Figs. 9-11.

For the case of off-resonant driving, Fig. 9 exhibits a non-monotonic dependence of the aver
relaxation raté"® on the bias. For increasing the results approach each other. However, a comple
convergence as observed in the undriven case (Fig. 7) is not obtained.

Tuning the driving frequenc{2 into resonance, the results in Fig. 10 show for a fixed drivin
strength a characteristic peak, being almost independent of the temp@railine position of the
peak is sensitive to the driving strength. This indicates that the population of the upper doubl
mainly the result of driving and not due to thermal population.

Furthermore, we draw the reader’s attention to the stroraghyX.0) driven symmetric case=0.
The low temperature relaxation rate for=0.1 is larger than for the two other cases with highel
temperatures. This is opposite to the situatidgthoutdriving, see Fig. 6b, wherE is smallerfor
T =0.1 compared td@ =0.5. This is a typical footprint of a quantum effect: The resonant drivini
(£2=0.815) in the symmetric potential transfers population to the upper doublet where tunnelin
enhanced because the tunneling splitting is large and the temperature is not high enough to d
coherence completely.

The problem of convergence of the results with increadihgs addressed in Fig. 11 for the
resonantly driven case. Shown are four different combinationd/fet 6 (®) and M =8 () for
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With off-resonant driving: s=0.1, Q=0.2
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FIG. 9. Averaged quantum relaxation raféV as a function of the static biasin presence of an off-resonant driv-
ing with s=0.1, 2=0.2. Shown are the results for three different numbktsof energy levels. The parameters are
Eg=14,T=01y = 0.1 andwc=10.0. Inset: The corresponding asymptotic populati®gy of the left well as a
function ofe.

two temperature3 = 0.1 (full line) andT =0.15 (dashed line). We ascertain that no convergenc
is obtained upon increasing. The difference between the results tdr=6 andM =8 for this

large driving frequency is larger than in the case of off-resonant driving; see Fig. 9. Obvious
more than only a few energy eigenstates are necessary to describe the resonantly driven double

With resonant driving: Q=0.815 M=4
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FIG. 10. Averaged quantum relaxation rdfé’ as a function of the static biasfor three different temperaturds=0.1
(solid line), T = 0.3 (dashed line), and@ = 0.5 (dotted line) for the resonantly driven double-doublet sysiér 4. Shown
are the cases of weak driviisg= 0.1 (for T = 0.1 only) and strong drivingg= 1.0). For the remaining parameters, cf. Fig. 9.
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With resonant driving: s=0.1, Q=0.815
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FIG.11. T'# asafunction of the static biasor four different combinations of the number of levels, iM.= 6 (®) and
M =8 (d), and different temperatures, i.d.,=0.1 (solid line) andT = 0.15 (dashed line). For the remaining parameters,
see Fig. 9.

potential accurately. This is not astonishing, however, because the driving frequency is in resor
(2 =0.815) and many higher energy levels are excited. Moreover, we stress that the results
within the same order of magnitude.

The asymptotic populatiog; of the left well is shown in Fig. 12 as a function of the static
biase for three different temperatures. The driving frequency is in resonance with the interdou

With resonant driving: Q=0.815
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FIG.12. Asymptotic populatiorPg;; of the left well as a function of the asymmetryor the temperature® = 0.1 (solid
line), T =0.3 (dotted line), and’ = 0.5 (dashed line) for the double-doublet syst&dn=4. Shown are results for strong
driving s=1.0 and for weak driving=0.1 (for T = 0.1 only). For the remaining parameters, see Fig. 9. IM3gi:vs the
static bias for a fixed temperatur& = 0.1 for M =4 (solid line),M =6 (d), andM = 8 (@).
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energy gap. Compared to the strict monotonic behavior of the undriven case, see Fig. 8, the re
with strong driving §=1.0) show a non-monotonic dependence on the static bias with a distin
maximum ate = 0.15 being nearly independent ®f. This maximum has a value & ~ 0.5
indicating an equal population of both the metastable as well as the stable well. The positior
this local maximum is invariant under the choice of the driving strength, as indicated by the we
driving result for 6= 0.1). We note that a net population inversion can be achieved for the parame
combinationgM =4, T =0.1,s=1.0,¢ =0.14. Itis interesting to see that convergenc@®g§ with
increasingM is obtained for asymmetries > 0.2; see inset of Fig. 12. For smaller values of the
bias the qualitative behavior in the casewt= 6 is similar to the case d¥l = 8. However, the local
maximum around = 0.15 in the double-doublet ca$é = 4 vanishes upon increasimg.

3. Dependence on the driving strengthigure 13 depicts the averaged rate as a function of th
amplitudes of the ac-driving field with resonant driving frequerRy= wo = 0.815 for the symmetric
double-doublet systen &0, M =4). Shown are the results for three different temperatures. Th
asterisksx mark the results of an exponential fit to QUAPI results (not shown) and confirm tt
validity of our new analytical approach.

The averaged rate for the case of a high temperdtuze.5 is reduced compared to the undriven
situation wher@®/(=I") has a maximum. Upon decreasing the temperature, the relative maximurn
s ~ 0.9 grows outto a global maximum far= 0.1. This resonance is useful for practical applications
(“Hydrogen subway,” see Section 1.A) if one desires to accelerate the transfer of population fi
the left to the right well. So not only a resonant driving frequeficy: wg but also a suitably chosen
driving strength is important to maximize the transfer. The behavig®6¥s the driving amplitude
is shown in Fig. 14 for an increasing numbdrof energy states (note the logarithmic scale). For
small driving strengths (up te ~ 0.2), the result folM = 10 does not significantly differ from the
case foM = 8, indicating numerical convergence. For intermediate to strong driving, the differenc
increase. However, we stress that the resultdfets 8 andM = 10 remain within the same order of
magnitude.

With driving: 9=0.815, e=0, M=4
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FIG. 13. Averaged quantum relaxation rdté" as a function of the driving amplitudefor three different temperatures
T =0.1 (solid line), T = 0.3 (dashed line), an@l = 0.5 (dotted line) for the driven symmetrie £ 0) double-doublet system
M = 4. The static barrier height i€g = 1.4 and the driving frequency & = wg = 0.815. The bath parameters gre=0.1
andw¢ = 10.0. The asterisks mark the findings of an exponential fit to QUAPI results (not shown).
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With driving: Q=0.815, =0, T=0.1
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FIG. 14. T¥ as a function of the driving amplitudefor an increasing number of levels. The temperature is fixed tc
T =0.1. For the remaining parameters, see Fig. 13.

4. Dependence on the driving frequencyhe dependence of the averaged relaxation rate on ti
driving frequency is shown in Fig. 15 for the symmetric and the asymmetric double-doublet sys
M =4. The results can be viewed as a scan of the spectrum of the driven dissipative double-do
system. At some values 6f the transition from the left to the right well is enhanced. The intermed
ate damping constamt= 0.1 leads to a considerable broadening of the energy levels involved in 1
transitions, as can be deduced from the rather broad resonance lines. The symmetric (asymn

With driving: s=0.1 M=4
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FIG. 15. Averaged quantum relaxation rdf&’ as a function of the driving frequen&y for the driven symmetric (solid
line) and the asymmetric (dashed line) double-doublet system4. The static barrier height i€g = 1.4 and the driving
strength iss=0.1. The bath parameters afe=0.1, y =0.1, andw. = 10.0.
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a Symmetric case: €=0
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FIG. 16. TI'® as a function of the driving frequency for different numbersv
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Asymmetric case: e=0.08

0.06

0.04

0.02 +

of levels. (a) symmetric case=0,

(b) asymmetric case= 0.08. The remaining parameters are as in Fig. 15.

case reveals a distinct peak&at= 0.4 (2 = 0.5) together with sidebands at the corresponding frac
tions ofQ2. The behavior of ' for an increasing numbél of energy levels is depicted in Fig. 16a for

the symmetric case and in Fig. 16b for the asymmetric case. It can be seen that the additional el
levels yield additional resonance lines. However, if one chooses the driving frequency sufficiel

far from any resonance line, convergence can be achieved.
The asymptotic populatioRZ; of the left well as a function of the driving frequengyis depicted

in Fig. 17 for an increasing numb&f of states. Clearly, the results do in general not converge witl
growing M. This confirms our result that for an accurate description of a strongly driven quantt

system more than only a few basis states are required.

With driving: s=0.1, £¢=0.08
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FIG. 17. Asymptotic populatiorP,; of the left well as a function of the driving frequengyfor an increasing number
M of states. The driving amplitude $s= 0.1 and the static bias is= 0.08. The temperature is fixed @t= 0.1, the damping

constant is chosen to he=0.1, and the cut-off igoc = 10.0.
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FIG. 18. (Averaged) Quantum relaxation rafé®) as a function of temperatufE for four different combinations of
the undriven ¢=0) and the resonantly drives £ 0.1, 2 =0.815) case withouts(= 0) and with ¢ =0.08) static bias for
the double-doublet systed = 4. The parameters afeg = 1.4, y =0.1, andwc = 10.0. Inset: Enlarged part of the low
temperature regime for the undriven case0.
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C. Dependence on the Bath Parameters

1. Influence of temperature.The dependence of the quantum relaxation rate on temperature
depicted in Fig. 18 for the case of the double-doublet sydtem4. Shown are four cases without
ac-driving 6 =0), with resonant ac-drivings= 0.1, 2 = 0.815), without bias{ = 0), and with bias
(¢ =0.08). We first concentrate on the undriven case0 (full line). Interestingly enough, we find
in the low temperature regime (see inset of Fig. 18) that the rateléicseaseshen the temperature
isincreasedn the presence of a static bias. This is a characteristic quantum feature: In contrast
classical behavior, the quantum relaxation rate first decreases with increasing temperature due
enhancement of decoherence. Then, however, the rate starts to increase again as soon as the
doublet becomes thermally populated. This typical behavior has also been observed experiment.
the context of tunneling of impurities in solids [37—42] (see also Section IA and especially Ref. [3
For the intermediate temperature regime the comparison between the symmetric and the asymi
case reveals another interesting characteristic: One could argue that the almost linear increase
rate with temperature reveals a classical Arrhenius behavior. This, however, is not the case. W
still in a deep quantum regime, sinEdn the asymmetric case $snallerthan in the symmetric case!
This is again a clear sign of quantum mechanics since the symmetric potentiaka@ticorresponds
to aresonant tunneling situation. A finite biagef 0.08 implies a non-resonant tunneling situation.
There, the transfer via resonant tunneling is suppressed and the rate becomes smaller. In the |
of intermediate to high temperatures, this behavior is inverted, i.e., the rate for the asymmetric
with reduced barrier height is now larger as compared to the symmetric case.

In the presence of a weak resonant ac-driving0.1, 2 =0.815, the quantum relaxation rate
r'# for the symmetric case =0 at low temperature is larger than the corresponding undrive
relaxation rate. Coherent excitations to the upper doublet where tunneling is enhanced domin:
low temperature. The presence of an additional static4#a6.08 renders the averaged relaxation
rate"® almost independent of temperature.

The question of convergence of the rate with increasing the nuivibef energy eigenstates is
addressed in Fig. 19a for the undriven case0 and in Fig. 19b for the off-resonantly driven case
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a No driving: s=0 b With off-resonant driving: s=0.1, Q=0.2
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FIG. 19. I'@) as a function of temperatufe for different numbersv of levels. (a) No ac-driving = 0, (b) with weak
off-resonant ac-driving = 0.1, 2 = 0.2. The remaining parameters are as in Fig. 18.

s=0.1, 2=0.2. In absence of ac-driving, a satisfactory convergence between theNdasésand
M = 8is achieved in the low temperature regime for both the symmetric and the asymmetric poten
Clearly for higher temperatures the agreement is worse because now the higher lying energy <
are not negligible. Also in presence of an off-resonant ac-driving, convergence is achieved at
temperatures.

The asymptotic populatio®Z;, of the left well as a function of the temperatufeis shown
in Fig. 20 for an increasing numbéi of states. The results for the undriven case0 reveal a
satisfactory convergence over the entire temperature regime. For comparison, we also depic
asymptotic population stemming from the assumption of a Boltzmann equilibrium distribution.
similar argumentation as in Section VII.B.I (see Fig. 8) holds to explain the disagreement.

Static bias: e=0.08
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FIG. 20. Asymptotic populationP2 of the left well as a function of temperatufie for an increasing numbev! of
states. The static bias is=0.08. Shown are the case without ac-drivieg O together with the results obtained from a
Boltzmann equilibrium distribution (dashed-dotted line) and the case with off-resonant ac-drivifid, 2 =0.2. The
remaining parameters are as in Fig. 18.
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a No driving: s=0 b With off-resonant driving: s=0.1, Q=0.2
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FIG. 21. (Averaged) Quantum relaxation raté?), respectively, as a function of the damping strengtfor different
numbersM of levels. (a) No ac-driving = 0, (b) with off-resonant ac-driving= 0.1, Q2 = 0.2. Shown are the results for the
cases withouts= 0) and with ¢ = 0.08) static bias. The parameters &ig= 1.4, T =0.1, andw. = 10.0.

2. Influence of damping.Figure 21 depicts the (averaged) rateyvfor an increasing number
M of states. We find for the undriven case-0 in Fig. 21a convergence for > 0.08 for both the
symmetric and the asymmetric potential. However, for smalleotable differences occur which
indicate that the gNICA to second order is not reliable because the effective damping become
weak (effect of flow to weak damping, see discussion in Appendix F). The situation is similar in
presence of an off-resonant ac-drivieg- 0.1, 2 =0.2; see Fig. 21b. The results for the case of ¢
resonant driving2 = wg are qualitatively similar (not shown).

VIIl. CONCLUSIONS AND OUTLOOK

A novelscheme to investigate analytically as well as numerically tunneling and vibrational rel
ation in a strongly driven bistable potential was presented. A necessary first step in our approe
the reduction of the system dynamics to the Hilbert space spanned by tbeest energy eigen-
states of the static bistable potential. Because the coupling to the heat bath is bilinear in the sy
and bath coordinates, the convenient basis to perform calculations consists of the eigenbasis
position operator, i.e., the so-termed discrete variable representation (DVR). It is this DVR b
which permitted us to derive a set of non-Markovian generalized master equations (GME) for
diagonal elements of the reduced density matrix. In the studied regime of temperature and dan
the Markovian approximation to the GME yields novel analytical results. They agree well, b
with those of the full GME and of precisah-initio numerical path integral calculations. In turn,
thequantum relaxation rateould be extracted from the Markovian rate matrix. The dependence
the quantum relaxation on the five most relevant model parameters, namely bias streiniyihg
strengths, driving frequency2, temperaturd , and damping’, was outlined in detail.

We have identified several quantum mechanical footprints in this strongly damped system.
four most pronounced quantum features are:

(i) In absence of ac-driving we find resonant incoherent tunneling. This is demonstratec
striking resonances in the relaxation rate at distinct values of the dc-bias.

(i) We observe a decrease of the relaxation rate as the effective barrier is lowered by a s
bias. This finding is due to a reduction of tunneling since the energy gaps forming the tunne
doublets increase with increasing asymmetry. In contrast, the relaxation rate in a classical sy
always increases for a reduced barrier.
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(i) The ac-driven quantum system shows distinct resonances of the relaxation rate for pal
ular values of the driving amplitude. Especially at low temperature, the relaxation rate is enhar
by driving as compared to the undriven case.

(iv) A non-monotonidependence of the relaxation rate on temperature is observed. Increas
the temperature in a classical system always increases the rate. However, in a quantum syst
higher temperature induces a larger population of the energetically higher lying doublets, wr
tunneling is favored. Increasing temperature further renders the quantum system more incohe
and the relaxation via tunneling is again hampered. The rate therefore decreases before it g
again due to thermal hopping.

Our analysis furthermore permits us to determine the asymptotic population of the left metast:
well. We have shown explicitly that a Boltzmann equilibrium distribution (both in absence and
presence of an ac-field) ot attained for the chosen set of parameters.

The GME in Eq. (58) and its time-inhomogeneous Markov approximation in Eq. (66) treat t
external driving fieldexactlyand are reliable for moderate temperatures and/or moderate dampi
strengths. Indeed, the equations become exact for Ohmic dissipation at high temperatures. -
our approach complements a Redfield-type analysis being appropriate for weak damping. In
trast to semiclassical calculations we can consider shallow potential barriers substaining on
few doublets below the barrier. Moreover, in contrast to semiclassical imaginary-time rate calci
tions, we are not limited by the requirement of thermal equilibrium at adiabatically varying exterr
fields.

A major restriction of the presented method is that the generalized non-interacting cluster
proximation (gNICA) that we used to obtain the GME turns out to be usefotaxi for numerical
purposes only when (i) the numbigt of levels remains moderately smal(< 10), and when (ii)
the truncation of the gNICA kernels in Eq. (59) to lowest ordeﬁm is appropriate; see Eq. (64).
Clearly, the numbeM of levels involved in the dynamics increases with increasing temperatu
and/or for large driving strengtlss and/or for resonant driving frequenci@s

Taking into account a larger numbbt of basis states implies that the position eigenvalues lie
more dense in position space (in the limit of infinitely many energy eigenstates the distance betw
neighboring DVR-points is infinitesimally small). However, we have observed in the precedi
sections that the square of the distance between two DVR-points enters as a prefactor for the t
integrated bath autocorrelation functi@ft) + i R(t) in the second order kernels in Eq. (64) of
the generalized master equation. This implies that upon incredsitihg effective damping of each
transition is reduced and the multi-level system effectiflelys to weak dampingror small effective
damping the noise action does no longer suppress long intervals in the off-diagonal states (clus
and higher than second order transitions start to contribute.

To deal with this effective weak coupling situation (which occurs for ldrigeven when the global
coupling constany =n/M is not small), a procedure similar to the one used by Zwerger [65] an
Grabertet al. [66] to investigate transport in Josephson junctions can be used; see Appendix F.

Due to its very general nature, the newly developed analytical technique contains a large pote
for applications to specific experimental situations. Several possible applications for experime
systems have been discussed in Section |.A.

A prominent question for future work refers to the behavior of the crossover to the classical regil
Our results should merge into those of the quantum Kramers rate [2] for semiclassical barrier hei
i.e., AU/(hwp) = Eg > 1, in the case without ac-driving. Once this regime is explored, the methc
can be generalized to time-dependent semiclassical quantum systems. However, one has to be
that for the driven system a chaotic dynamics generally occur [68]. We expect that the dynan
in the semiclassical regime involves an increasing nunb@af DVR states. Then the effect of the
flow to weak damping occurs. The analysis in Appendix F represents the starting point for fut
investigations towards this challenge.
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APPENDIX A

Scaling to Dimensionless Quantities

For the specific calculations, we introduce in this Appendix dimensionless quantities. They
obtained by scaling the Hamiltonian in Egs. (1) and (2) and the environmental parameters spe
in the Egs. (5) and (6). The relations read

f:a)ot, q(f):\/Ma)o/hq (t = L) s Eg = AU/hwo,
o
§=e/ Mwo/h/hwy,  §=5yMuwo/h/hwy, Q=Q/wo, (A1)

~ kB

)72)//0)0’ Tzh—a)OT’ (DC:a)C/wO~

We omit all the tildes for the sake of better readability.

APPENDIX B

The Bath Correlation Function

In this Appendix we give the explicit expressions for the twice integrated bath correlation funct
Q(t) = S(t) + i R(t) of Eq. (11) with an Ohmic spectral density of Eq. (5); see also [3]. The real pz
S(t) can be evaluated analytically by solving the integral in terms ofytHfeinction. One arrives
after some algebra at the exact expression

_n | |T@+1/hBw
S(t)_;[_' ' (14 1/hBwc)

+2| (l—i—wzt)} (B1)

For finite temperaturdg T < hwc(scaling limif), we obtain with" (1+iy)'(1—iy) = wy/ sinh(ry)
the expression

n mt 1
810~ 2 {1 i) + 20+ 2

At long timeswct — oo the functionS; (t) behaves like

SHI ] In< P sin h—) (B3)
T hp
_n mt hﬂwc
< (5] e e &4

This illustrates that the correlations between the paths are damped out exponentially at long 1
for a low temperature Ohmic bath. The temperature-independent imaginaf(pert Eq. (11) can
be determined exactly. We obtain after the integration aver

R(t) = garctan(oct). (B5)
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For long timeso.t — o0, the arctan-function approaches the Heaviside function, i.e.,
wct—o00 n
R(t) — 500), (B6)

so that the imaginary paR(t) becomes a constant function for all tintes

APPENDIX C

Numerical Iteration Scheme for Solving the Generalized Master Equation

The generalized master equation (58) iset of M coupled integro-differential equations with
inhomogeneitiesk-or the one-dimensional casé¢ =1, the GME would be of \olterra type. For
this case, several standard techniques for a numerical treatment are known [62, 67] and con
numerical libraries [62] supply codes. The genévaldimensional case is far from being standard
and we are not aware of available algorithms in the literature. The non-locality in time deta
us from diagonalizing the kernel rate matrix and thereby decoupling the equations. We deve
in this Appendix a rather simple numerical algorithm for solving the general sbt obupled
inhomogeneous integro-differential equations.

We start by formally integrating the GME (58) once and choose the integration constants s
that the initial conditions are fulfilled. After interchanging the order of integration, we obtain

M t t
Pup(t) = Z/ dt’ICW(t,t’)pw(t/)—i—/ dt'l,,(t', to) + pup(to), (C1)
v=1 "Y1 fo
where we have defined the integrated kernels
t
IC,w(t,t/)zf dt"H,.(t", t). (C2)
v

In the next step, we iterate the integrated GME from tin@ timet + At and split the integrals to
obtain

M

t+At t+At
pun(t + At) = Z/ dt'IC,, (t + AL, ) pu(t) + / dt'l,(t', to) + pu(to)
v=1"1 to

Mt t t
= Z/ dt// At H, (", ) (t) + f dt'1. (', to) + Pyuu(to)

v=1 Yt t to

Mt t+At
#3[a [ a0

v=1"Y1 t

t+At M t+At

[+ Y [ A AL )

t p=1J1

M t t+At
= pm/.(t) + Z/ dt/pvv(t/)f dtNHuv(t//v t/)
v=1 "1 t

t+At M t+At
+ / dt'1,(t' o) + ) f dt'K,(t + At, 1) 0, (). (C3)
t v=1 Y1
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So far, every manipulation was an exact transformation. To proceed, we have to invoke an app
mation for the last term in Eq. (C3), i.e., that one involviGg, (t + At, t'). Itis this term only which
requires the knowledge @f,,(t') in the time interval{, t + At]. All the other terms only neeg,, (t")

up to timet which are known. For that reason, we use in a third step the simplest approximation
for the integral, i.e., the Simpson trapezoid rule, to obtain

M t+At
3 / UKt + AL, V)0 (1)
v=1 Yt
M At
~ Y 5 K+ AL Do) + Kt + AL T+ At + AD}. (€4)
v=1

The corrections are of the order at3. With Eq. (C2), it follows thatC,,, (t + At,t + At)=0and
we arrive at the final iteration scheme

M
At
m At:g w®) 16, + —K,.(t + At t
Pup(t + At) .,:1’0 (){/ + 2 ;L("' )}

M t+At t t+At
+Z/ dt”/ dt/HW(t”,t’)pw(t’)jL/ dt'l,(t', to), (C5)
v=1 Yt to t

where the5,,, is the Kronecker symbol. We note that this iterative procedure requires the knowle
of p,,(t') in the time intervat’ € [ty, t] when propagating from timeto timet + At. Furthermore,
we remark that this iterative algorithm is not restricted to the lowest order for the kétne(s t')
and the inhomogeneitidg (t, to). Finally, we observe that the integrations froho t + At for each
step can be performed numerically to a very high precision such that the only relevant nume
error arises from the splitting in Eq. (C4). Practical calculations reveal that the timastegs to be
chosen rather small since the problem is similar to a stiff differential equation. In praxi, this mea
value of the order ofst = 10-2 or smaller. This rather small value faxt restricts the applicability
of this very simple and straightforward iteration scheme to problems where the decay is not too ¢
More refined numerical algorithms are imaginable which could circumvent this problem.

Because we are interested in the long-time dynamics, iterations up totti®300 can be nec-
essary. Since the kernel matrix elements contain exponentials with asymptotically linearly grov
exponents (see Egs. (11) and (B4) in Appendix B), the memory ranging front tiaekwards to
timety can be cut-off after some fixed time spanThen the memory is only relevant over the time
intervalt — 7, and all exponentially small contributions from the time interygl{ — ;] can be
neglected. This accelerates the iteration considerably and avoids too large arrays for the storage
intermediate values df,, (t'). However, lowering the temperature demands an increasing memt
ranger; .

Once the diagonal elements,,(t) are known, the population of the left welen(t) can be
evaluated according to Eq. (24).

APPENDIX D

Example: A Single Path Subject to Dissipation

The purpose of this Appendix is to illustrate the general derivation of the cluster function, Eq. (¢
within the gNICA scheme introduced in Section IV. This approximation scheme is the basis for
derivation of the generalized master equation presented in Section V. For simplicity, we pick
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FIG. 22. Example of one path consisting of three sojourns and two clusters (see text). (a) Time-resolved represent
of the path jumping between diagonal (dashed line) and off-diagonal states. (b) The same path illustrated i)tp&aae
of the reduced density matrix. The labejis g, of the reduced density matrix are not specified further. Diaméndwsrk the
visited diagonal states and filled circl@mark the visited off-diagonal states.

single path subject to dissipation and starting in the diagonal gtgte.6) = (0., 0, = d.) and ending
afterN =5 jumps in the diagonal statg4, us) = (gn, 0, = 0n). The full path is illustrated in Fig. 22a
in a time-resolved picture and in Fig. 22b as a path jumping between the states of the reduced de
matrix in the @, q')-plane. The path is characterized by the sequence of index pairs

(10, o) = (11, v1) = (2, 2) = (43, v3) — (14, v4) = (is, fi5)
= (Ok. Ok) = (G- a) = (@, o) — (@, dr) — (G- Gn) = (Gns Gn)- (D1)

It contains three sojourns (frotytot;, fromt, to t3 and fromts tot), cf. Fig. 22a. Moreover, the path
contains two clusters (from to t; and fromts to ts). The details of the visited states are illustrated in
Fig. 22b: The diagonal states are marked by diamendsd the visited off-diagonal states by filled
circlese. For our purpose here, itis only important to distinguish between diagonal and off-diagol
states. The specific indices of the states are irrelevant.

We evaluate now the contributidf(t) of this specific path to the full path sum in Eqg. (33).
The product of the factord; in Eqg. (33) yields a proportionality factor which we omit for the
moment for simplicity. For further convenience, we consider the imdependent system, implying
that the diagonal elements, , see Eq. (30), in the Hamiltoniar2'R are constant in time. The
generalization to time-dependent systems is discussed in Section V.A. Therefore, we introduc
short-hand notation in Eq. (33) according to

AEj =E, —E,,

Fijth —tj) = expl& St — t))&; +i& R —tj)x; )

(D2)

The contribution of the specific path to the path sum follows from Eg. (33) as

5

I(t)=/tdt5

to to

t4 t3 t2
dty dtg/ dt dtyexpli[AEi(t —t1) + AE3(ts — t3)
to to to

+ AE4(ts — ta)]} Fr0(ts — to) Fo0(t2 — to) Fo1(to — t1) F30(ts — to)
x Fza(ts — 1) Fz2(t3 — t2) Faolts — to) Fa1(ts — t1) Fa2(ts — t2)
X Fa3(ta — t3)Fs o(ts — t0)Fs,1(ts — t1)Fs5 2(ts — t2) Fs 3(ts — t3)Fs a(ts — ta). (D3)

Equation (D3) is still exact. We apply then the generalized non-interacting cluster approximat
gNICA in different steps.
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(i) Neglect of the intercluster correlations. Let us consider the product
P1 = Faalts — 1) Faats — o) Faalts — 1) Faats — t2) F5a(ts — t1) Fs2(ts — to). (D4)
If we assume a very large cut-off frequency, i — oo, we can approximate the real p&t; —t;)

of the bath correlation function by its linearized form, Eq. (B4), and the imaginanRart-t;) by
the constant valug/2; see Eq. (B6). Therf?; can easily be brought into the form

hic:c> (&1 + Ez)]

[§4hﬂ( —t3) + 55 (ts - t3)i|[§1 + &) } (D5)

Py~ exP{[Ss + &4+ &) [%(ts —t1)é1 + %(ts — )& + g In (

In the last step, we have used the neutrality of each clusteli.¢.&, = 0 andés + &, + & =0
The overall result is that we can set in the influence functional the product with all the couplil
between different clusters equal to 1; i.e., we disregard intercluster correlations.

(i) Neglect of cluster-sojourn correlations. Consider the product

Po = Foltz — to) Faolta — to) Fs,0(ts — to)
= expl&3S(ts — to)éo + £aS(ts — to)éo + &5 S(ts — to)éo
+i[&R(tz — to) xo + E4R(ts — to) xo + &sR(ts — to) xol} (D6)

describing the interaction of the clusters with the initial state characterizegb§pj. Since we start
in a diagonal state, it follows thgg = 0. Moreover, we apply the same argumentation like in (i) fol
the imaginary parR(t) and obtain

Pa= expliles + 8-+ & o = 1 ©)

The corresponding argumentation holds for the third produei(t; — to) F1.0(ts — to).

Steps (i) and (ii) contain all the correlations disregarded within gNICA. In contrast, we entir
keep thentracluster interactiotfs 4(ts — t4) as well as the interactions of the particular clusters witt
the directly preceding sojourn, i.65; 3(ta — t3), Fs 3(ts — t3), andFy 1(t> — t1). After reordering the
integrals we obtain

t ts t
TNCA®) = f dts dt4/ dtzexpli[AE3(ts — t3) + AE4(ts — ta)]} Faz(ts — t3) Fs3(ts — t3)
to 0 to

i3 1o
X Fsats —14) | dtx | dtpexpli AEi(t2 — t1)] Fo1(t2 — t1). (D8)

to to

This expression can be treated more conveniently after a Laplace transformaijonte £ {Z(t)} =
Jo~ dtexp(At)Z(t). Using the propert)Ct{fé dts f (ts — to)} = 1.L¢( f(f)} the integration ovets
yields the factor Li. The remaining functiorf (f) to be Laplace transformed can be recast into th
convolutive formf (f) = /; dtsg(f — te)n(ts) with g(f — ts) = /;, dtu expli [AEa(ts — ta) + AEa(f —
t4)]} Fa,3(ta—t3) Fs,3(f —t3) F5,4(f — ta) and withh(ts) = tts dt; fttz dty expli AEy(t2—t1)] F2 1 (t2—t1).

By application of the convolution theoreuﬁ[{ft dtsgf — ta))h(ts)} = Le{g®)}Le{h(t)} and by



STRONG COUPLING THEORY 61
performing the integration ovés, we obtain the product
ZgN|CA()\') — Et{IgNlCA(t)}

1 f |7 ) . .
= Xﬁf{ / dty | dizexp{i[AEs(ts — t3) + AE4(t — t4)]} Fa3(ts — t3)Fs 3(t — t3)
to to

f
X .7:5,4('? — t4)} %E{{ /t dty expﬂ A E]_(f — t]_)]]'—z,l(f — tl) } (Dg)

The Laplace transforms are the contributions of the full intracluster interactions of the two cluste
Performing the Laplace transforms and transforming to the time differeneet , 1 —t;, we finally
arrive at the expression

1 o0 oo
TNICAR) = i / duy / drsexp{—A(ts + 1a)} expli (AEsts + AE41a)}
0 0

R . 1
X Fa3(t3)Fs53(13 + f4)5’:5,4(f4)x/ dryexp{—Azi} expliA Elfl}fz,l(fl)xv (D10)
0

where the last factor/l appears after the integration over the first sojawra to. Equation (D10)
is an example of a contribution of one specific path to the total path sum in Eq. (45).

APPENDIX E

Harmonic Well Approximation

In this Appendix we give explicit results for an approximation for the energy eigenstates in t
wells of the double-well potential (2) without external forces, ke=,0 ands = 0. The scaling of this
Hamiltonian is performed according to the standard procedure described in the previous Appendi
see Eqg. (Al). In the literature [50], often the assumption is made that the energy eigenvalues an
localized states in the two wells can be approximated by those of a harmonic oscillator potential wt
minimum coincides with the single well minimum. The localized states of the double-well potent
are linear combinations of the symmetric and the antisymmetric energy eigenstate correspondi
one doublet. They have been introduced in Section 111.D, Eq. (34) for the case of the double-dou
system and a generalization to more than two doublets is straightforward.

The eigenenergies and the energy eigenstates of a spatially shifted harmonic potential are (
in dimensionless units by

Ehn=n+1/2 n=01,..., (E1)

and
1
K[fn(Q) = <n | Q) = (2nn!ﬁ)—1/2 exp{_é(q - QO)Z} Hn(q - QO)» n= Ov ..., (EZ)

whereqp, = ++/8Eg is the position of the minima of the double-well potential with barrier heigh
Eg andHn(q) are the Hermite polynomials.

Figure 23 shows the results of this approximation for two cases of a barrier Hgigint the
deep quantum regime, i.eEg = 1.4 (Fig. 23a) with two doublets below the barrier ag = 2.5
(Fig. 23b) with three doublets below the barrier. For comparison the exact (numerically obtain
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FIG.23. (a)Exactlocalized statdg | Ry) and(q | Ry) (fulllines) of the unperturbed system Hamiltonian (2) in position
representation for a barrier heightBg = 1.4. The dashed lines depict the results of the harmonic well approximation. Tt
horizontal lines mark the exact eigenenergies of the double-well potential occurring always in pairs (doublets, the intradc
spacing between the lower lying states is not visible on this scale). Note that the harmonic states are energetically shi
the position of the exact localized states for graphical reasons. (b) Same for a barrieHheigi 5.

wave functions are depicted. In both cases, the agreement is not convincing, as expected. Incre
the barrier height improves the agreement for the lower lying states. The states lying closed t
barrier top show a noticeable disagreement. Especially the part of the wave function which pene
the barrier and which is in turn associated with tunneling is underestimated.

We note that for graphical reasons, the harmonic states are positione@etitmgenenergies of
the double-well potential. However, in the approximation the harmonic eigenenergies are also st
compared to the exact one (cf. scaling on the ordinate). To be specific, the interdoublet energ
in the case ofEg =1.4 is wg=0.815 in contrast tawg = wo =1 for the corresponding harmonic
potential. For the case dig = 2.5 the lower interdoublet splitting i®; = 0.892 and the upper
interdoublet splitting igvg » = 0.805. These values have also to be compared aite wg = 1 for
the corresponding harmonic potential.

The deviations up to 20% are certainly not astonishing since the condition for the applicab
of the harmonic well approximation is a rather high barrier, &g.,>> 1. This is also the relevant
condition where semiclassical methods are applicable to calculate quantum relaxation rate:
They are rather simple compared to existing approaches [50]. For barrier heights of the order ¢
interdoublet spacing, this approximative treatment of the eigenenergies and the wave functio
not applicable.

APPENDIX F

Flow to Weak Damping

In this Appendix we describe the main steps of a proposal of how to deal with the effect of
flow to weak damping. A detailed investigation is still in progress. This part is to be viewed a
starting point for future work (see Section VIII) and should only point out that this behavior can a
be treatedvithin the formalism of real-time path integrals.

To deal with this effective weak-coupling situation, the twice integrated bath autocorrelat
functionS(t)+i R(t) in the asymptotic limit of the scaling limit, i.e., Egs. (B4) and (B6) of Appendix B
may be used. The deviations from the exact form of the autocorrelation function are small for |
temperatures and/or weak damping. We use these approximative expressions in the kernelsin E
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for the generalized master equation and obtain for the discrete influence phase (see also Eq. (2

N -1 N -1
pevix. ==Y D &St —t)5 —i Y Y &R —t)x;
I=1 j=0 1=1 j=0
n N -1 n hﬂa) N -1 n N -1
=-iz S(t—t)é——|n< ) bE —is &x- (F1)
hﬂ;:j:oII o 2 ;J':ol] 2;]=0IJ

We define

=) &, (F2)

and note that each cluster has a cumulative path weight of zero, see Eq. (43)y k€Q. This
allows for an elementary rearrangement of the double sums in order to obtair} with) — tj_; the
expressions

N -1 N N -1 1 N N -1 N-—-1
DX at—tE =Y 5pl DY &E = _EZ DY Exi=—Y_xipj. (F3)
I=1 j=0 j=1 I=1 j=0 = I=1 j=0 j=1

Inserting these equations into the kernels, Eq. (59), it follows that

2 51-271/27'[7'I
ot t>—Z ) H( 1)51( ) Aj 1(h,37;c)

N=2{ujvj}j
Wi

n t N t
X exp(—i%(—l)‘s“g‘j pj)/ dty dtny_p--- dy
t t t
N—1 "
X expl Z {/ dt” Eﬂl(t”) - E, (t”)] hﬂ pj2+1fj+l}} ) (F4)
j=

wheresj =0 (1) for a vertical (horizontal) jump.

In order to evaluate the series of integrals in Eq. (F4), we use the following technique: The ug
limit t of the firstintegral is replaced ky and for compensation the step functi®ft —ty) is added
to the integrand. Then, the order of integration is interchanged and the integrals are transforme
difference coordinates; =t; — t;_;. Like in the previous sections, it is assumed that the driving
frequency< is large and averaging over the driving period is appropriate. In a final stef-the
function in the integrand is represented as a complex integral according to

Ot —ty) = — T el [t o t (F5)
_N_ﬁ/;ioo—s X P —;Tﬁrl— .

The complex integration overcan afterwards be carried out with the help of the calculus of residue
for the residue at = 0. After this tedious but straightforward procedure, one arrives at the final res
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for the averaged Markovian approximated rate matrix elements

oo N s i\N o £2n/27h 0 .

Favz _1 . v A-_ LT on _1 _—

B L DT (5) slig) ool igevan)
HjFVj

x /Ooo dtJo<p12§SSin(%>) exp{—(i [F., —F,]- %p,?)z}, (F6)

whereJy(x) is the zeroth Bessel function.
It is not possible to treat this complicated expression analytically. If one has to determine exp
results, the help of the computer is needed to evaluate the sum over all configujatiofis Then,
in a first step, all paths belonging to a fixed ordieare created numerically by means of recursive
programming. In the next step the sum over all the occurring paths has to be evaluated before or
to go to the next order by increasimy Finally, convergence with respectihas to be obtained.
We summarize this Appendix by concluding that also the effect of the flow to weak damp
can be treated by real-time path integrals although the expressions become much more invc
Equation (F6) constitutes the starting point for the study of the cross-over to the classical reg
One has to be aware, however, that the driven problem is far from being trivial since even a ch:
dynamics may occur.
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