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Giant Acceleration of Free Diffusion by Use of Tilted Periodic Potentials
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The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is
calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise
are identified near the threshold tilt where deterministic running solutions set in. In this regime the dif-
fusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental
setup, an enhancement of up to 14 orders of magnitude.
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Thermal diffusion in a tilted periodic potential plays
a prominent role in Josephson junctions [1], rotating
dipoles in external fields [2], superionic conductors [3],
charge density waves [4], synchronization phenomena
[5], diffusion on crystal surfaces [6], particle separation
by electrophoresis [7], and biophysical processes such as
intracellular transport [8], to name just a few [9]. Also
the Brownian motion in a “traveling periodic potential”
V �x 2 yt� can be readily mapped onto a static tilted peri-
odic potential [10].

In many cases of interest, the diffusion can be modeled
as overdamped Brownian motion in 1D:

h �x�t� � 2V 0���x�t���� 1 F 1
p

2hkT j�t� , (1)

where h is the viscous friction coefficient (static mobility),
V �x� is a periodic potential,

V �x 1 L� � V �x� , (2)

F is a static “tilting force,” and k is Boltzmann’s constant.
The thermal fluctuations at temperature T are modeled
[9,11] by the unbiased d-correlated Gaussian noise j�t�.

The first basic quantity of interest is the particle cur-
rent � �x� :� limt!`�x�t���t. Its analytical solution [see
Eq. (7) below] goes back to Stratonovich [12] and has sub-
sequently been rederived many times [9]. In this Letter,
the quantity of foremost interest is the effective diffusion
coefficient

D :� limt!`

�x2�t�� 2 �x�t��2

2t
. (3)

For V 0�x� � 0 and arbitrary F, the diffusion coefficient
is given by Einstein’s result D0 :� kT�h, whereas for
F � 0 and arbitrary V �x�, an analytical prediction for D is
due to [13]. In this Letter we derive an analytical formula
for D when both V�x� and F are arbitrary, analogous to
Stratonovich’s landmark result for � �x�. Specifically, near
the threshold tilt where deterministic running solutions set
in, we find that diffusion is greatly enhanced and that it
obeys a specific universal scaling relation.
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Our starting point is the following exact expressions for
the particle current and for the diffusion coefficient:

� �x� �
L

�t�x0 ! x0 1 L��
, (4)

D �
L2

2
�t2�x0 ! x0 1 L�� 2 �t�x0 ! x0 1 L��2

�t�x0 ! x0 1 L��3 , (5)

where x0 is an arbitrary reference point, �tn�a ! b�� is
the nth moment of the first passage time from a to b . a
for a stochastic trajectory obeying (1), and where it is as-
sumed that F . 0 in order to keep those moments finite.
Such relations have been previously proposed for certain
random processes in discrete space [14,15] and have been
anticipated without proof in [16] also for the present con-
tinuous dynamics (1). A proof will be given at the end of
this Letter (see also [17]).

For the dynamics (1), the moments of the first passage
time are given by the well-known closed analytical recur-
sion (see, e.g., section 7 in [11], and further references
therein)

�tn�a ! b�� �
Z b

a
dx

Z x

2`

dy
D0

n�tn21� y ! b��

3 exp��V �x� 2 V� y� 2 �x 2 y�F	�kT

(6)

for n � 1, 2, . . . , with �t0� y ! b�� :� 1. By introducing
(6) into (4) and (5), one finds, after somewhat tedious
manipulations, the result

� �x� �
1 2 e2LF�kTRx01L
x0

dx
L I1�x�

, (7)

D � D0

Rx01L
x0

dx
L I2

1�x�I2�x�

�
Rx01L

x0

dx
L I1�x�	3

, (8)

where we have introduced

I6�x� :�
Z L

0

dy

D0
e�6V �x�7V �x7y�2yF
�kT. (9)
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The so far excluded case F , 0 can be readily reduced
to an equivalent dynamics with F . 0, yielding exactly
the same result [(7) and (8)]. Finally, the case F � 0
follows by continuation, in agreement with [13]. Note that
(2) implies I6�x� � I6�x 1 L� and hence the choice of
x0 is indeed irrelevant in (7) and (8). Further, Einstein’s
relation D � D0 is readily recovered by observing that
I6�x� � const in the special case V 0�x� � 0.

Equation (7) is Stratonovich’s exact expression for the
particle current [12], while the corresponding general for-
mula for the diffusion coefficient (8) is the first central
result of this Letter. Figure 1 exemplifies its excellent
agreement with accurate numerical simulations, while an
approximate result from [18] captures only the qualitative
behavior. The most interesting feature in Fig. 1 is the peak
near the “critical tilt” Fc, which gets more and more pro-
nounced as kT (or D0 � kT�h) decreases. This brings
us to our second main preoccupation, namely, the case of
weak noise �kT ø LFc� in combination with a tilt F close
to the “critical” threshold value Fc beyond which deter-
ministically running solutions appear in (1). The resulting
diffusion depends crucially on the form of the potential
around its “dynamical bottleneck” xc. Without loss of gen-
erality, we focus on xc � 0 and we assume the following
small x behavior:

V �x� 2 xF � 2mxjxjq21 2 ex , (10)

with m . 0, q . 1 (to guarantee differentiability at
x � 0), and small e :� F 2 Fc. In the remainder of the

0

5

1 0

1 5

2 0

0,6 0,8 1 1,2 1,4

D
/D

0

F

FIG. 1. Diffusion coefficient (3) versus the tilt F for the sto-
chastic dynamics (1) with a sinusoidal periodic potential V�x� �
U0 sin�2px�L�. Using dimensionless units, the parameter val-
ues are h � U0 � 1, L � 2p , and kT � D0 � 0.1. Note that
the critical tilt [onset of deterministically running solutions in
(1)] occurs at F � Fc � 1. Solid line: analytical prediction
(8). Filled dots: numerical simulations with an estimated rela-
tive uncertainty of 0.01. Dashed line: analytical approximation
D � kTd��x��dF from [18]. Dash-dotted line, filled squares,
and dotted line: same as solid line, filled dots, and dashed line,
respectively, but now for kT � D0 � 0.01.
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interval �2L�2, L�2	, the “total potential” V �x� 2 xF in
(1) is assumed to be strictly monotonically decreasing (i.e.,
“tilted to the right” with Fc . 0). Outside �2L�2, L�2	
the behavior of V �x� is fixed by the periodicity (2). Note
that q � 3 in the generic case [e.g., an analytic V �x� such
as in Fig. 1]. Other q values can be readily realized experi-
mentally by tailoring the form of V �x�.

To get an intuitive feeling about the role of the exponent
q, it is instructive to study the deterministic motion (1) in
a critical �e � 0� potential (10) extending over the entire
x axis, i.e., �x�t� � ajx�t�jq21 with a :� mq�h . 0.
A straightforward calculation then shows that it takes
an infinite amount of time to travel from any xi , 0 to
xf � 0 when q $ 2, while a finite time is sufficient for
1 , q , 2. On the other hand, finite time suffices to go
from xi � 2` to any xf , 0 for q . 2, while this trav-
eling time diverges for q # 2. Complementary results are
found for the traveling times in the region x $ 0. We thus
expect that for q . 2, with sufficiently small (but finite)
kT and sufficiently small e, the motion of the particle is
dominated by the passage through the bottleneck region in
the vicinity of x � 0, where the potential is well approxi-
mated by the form given in (10). On the other hand, for
2 $ q . 1, the form of V�x� outside a small neighbor-
hood of x � 0 is also expected to come into play.

With this insight in mind, we turn to the evaluation of
(8) when q . 2. First, it is convenient to make the special
choice x0 � 2L�2. Second, in the vicinity of x � 0 the
approximation (10) can be introduced into (9). Third, due
to our above considerations we can extend this approxima-
tion to the entire interval �2L�2, L�2	 and finally extend
this integration domain to �2`, `	 without notably chang-
ing the values of the integrals in (8). Closer inspection
shows that this approximation in fact becomes asymptoti-
cally exact as e and kT tend to zero. In this way, one ob-
tains for q . 2 the result

D � D0

µ
Lqm

kT

∂2�q
R

dx K2�x, g�K�2x, g�
�
R

dx K�x, g�	3
, (11)

where integration limits 6` have been omitted and

g :� e��m1�q�kT�121�q	 , (12)

K�x, g� :�
Z `

0
dy e�2xjxjq211�x2y� jx2yjq212gy
. (13)

Note that both fractions in (11) as well as the “scaled
tilt” g are dimensionless and that K�x, g� is a dimension-
less function of its (dimensionless) arguments x and g.
Hence, (11) has the form of a scaling law with a universal
scaling function and specific critical exponents depending
on q . 2. The most remarkable feature is the divergence
of D�D0 when kT tends to zero for any fixed g value, i.e.,
we recover (cf. Fig. 1) a huge enhancement of thermal dif-
fusion. For q � 3, the scaling function appearing in (11) is
depicted in Fig. 2. From this plot it follows that the asymp-
totic scaling form (11) is already rather well satisfied for
moderately small kT values and that the enhancement of
010602-2
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FIG. 2. Bold solid line: dimensionless scaling function
G�g� :�

R
dx K2�x, g�K�2x, g���

R
dx K�x, g�	3 in (11) for

q � 3 versus its dimensionless argument g from (12). Solid
and dash-dotted lines: same as the respective lines in Fig. 1,
but now plotted in the form �D�D0� �kT�Lqm�2�q [cf. (11)]
versus g [cf. (12)] with q � 3.

diffusion is most pronounced for jgj # O �1�. Similar be-
havior is recovered for any other q . 2. In other words,
the diffusion coefficient as a function of F exhibits a pro-
nounced “resonance” peak at F � Fc.

The basic physical mechanism behind this effect may
be explained as follows. As discussed above, the noisy
dynamics (1) is, for e � 0 and small kT , dominated by
the passage through the dynamical bottleneck at x � 0
[cf. (10)]. Since e � 0, a very small perturbation due
to thermal noise is already sufficient to kick the particle
across the point x � 0. This small variation in compari-
son with an unperturbed particle is subsequently greatly
enhanced by the further dynamical evolution. The result
is a huge dispersion for a statistical ensemble of particles
subjected to different realizations of the noise.

Finally, we briefly turn to the case q # 2. The region
outside a small neighborhood of x � 0 is then no longer
negligible for the passage time from 2L�2 to L�2, ren-
dering the analysis more complicated. For simplicity, we
restrict ourselves to the interesting situation of a poten-
tial given by (10) in the entire interval �2L�2, L�2	 with
2 . q . 4�3, yielding the result

D � D0

µ
Lqm

kT

∂324�q
R

dx K2�x, g�K�2x, g�

�� kT
Lqm �2�q21S�g� 1

2q21

q�22q� 	3
,

(14)

where S�g $ 0� :� 0 and

S�g , 0� :�
2p jg�qj�22q���q21�

q�q 2 1�
3 exp�2�q 2 1� jg�qjq��q21�
 . (15)

Technical details as well as the discussion of other q val-
ues and more complicated potentials V �x� will be given
elsewhere.
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The salient difference of (14) in comparison with (11)
is a competition between the two terms in the denomina-
tor on the right-hand side: for any fixed g value, the sec-
ond term dominates when kT becomes sufficiently small.
Thus D�D0 increases proportional to �kT �4�q23, i.e., we
find again a huge enhancement of thermal diffusion. More
subtle is the behavior of (14) as a function of g for a small
but fixed kT value. For arbitrary positive as well as for
moderately negative g values, it is still the second term
in the denominator which dominates, and thus the g de-
pendence of D is governed by

R
dx K2�x, g�K�2x, g�. On

the other hand, for large negative g values we can evaluate
the latter integral by means of a saddle point approxima-
tion, yielding the result S2�g��2. Since S�g� from (15) in-
creases very fast with decreasing g, the right-hand side of
(14) increases very fast as long as

R
dx K2�x, g�K�2x, g�

governs the g dependence. However, again due to this fast
increase, the first summand in the denominator starts to
compete with the second summand and ultimately takes
over, leading to a decrease of D proportional to 1�S�g�.
Thus a peak appears at a (negative) g value for which both
terms in the denominator are of the same order of magni-
tude. The detailed quantitative calculation is straightfor-
ward and leads, for 2 . q . 4�3, to the result

D�gmax� �
222qq�2 2 q�

27
Lqm

h
, (16)

gmax � 2q

∑
2 2 q

2q�q 2 1�
ln

µ
Lqm

kT

∂∏121�q

. (17)

Note that the maximal diffusion coefficient in (16) is in-
dependent of kT . In other words, the maximal enhance-
ment of diffusion is even stronger than for q . 2 [cf. (11)].
These predictions are confirmed by direct numerical evalu-
ation of the exact formula (8) in Fig. 3.

These results can be applied, for instance, to the ther-
mally induced diffusion of a particle that moves in a liq-
uid under the action of gravitation along the rigid surface
of a critically tilted periodic geometrical profile. For a
spherical iron particle of 1 mm radius in water and a criti-
cally tilted profile that decreases by 1.5 cm per spatial
period L � 10 cm, one finds, at room temperature for
the thermal diffusion coefficient, D0 � 2 3 10212 cm2�s.
From (11), with q � 3, one finds at the critical tilt D �
5 3 1023 cm2�s, i.e., an enhancement by about 9 orders
of magnitude. For a specially tailored profile of the form
(10) with q � 3�2, one finds from (16) that D � 2 3

102 cm2�s, i.e., the enhancement of thermal diffusion is
improved by another 5 orders of magnitude as compared to
the case q � 3 and should be easily observable on macro-
scopic length and time scales. An actual experimental re-
alization is presently under construction.

We conclude with the promised proof of (4) and (5) for
F . 0 and an arbitrary x0. To this end, we denote by c
an arbitrary point between a and b . a. Then the first
passage time t�a ! b� can be decomposed into the time to
travel from a to c, plus the time to travel from c to b. For
010602-3
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FIG. 3. Diffusion coefficient (8) versus the tilt F for a potential
V�x� � V�x 1 L� defined by (10) for x [ �2L�2, L�2	. Using
dimensionless units, the parameter values are q � 3�2, h � 1,
L � 2, m � 1, Fc � 1. The five curves, with sharper peaks
corresponding to lower temperatures, represent the following
values of kT � D0: 3 3 1022, 1022 , 1023, 1024, 1025. The
theoretically predicted peak height for asymptotically small kT
from (16) is 0.1.

a white noise driven process (1), the latter two times are
statistically independent of each other [19] and all statisti-
cal properties of t�a ! b� are exactly the same as those of
t�a ! c� 1 t�c ! b�. As a consequence, �t�a ! b�� �
�t�a ! c�� 1 �t�c ! b�� and analogously for the first
passage time dispersion �Dt2�a ! b�� :� �t2�a ! b�� 2

�t�a ! b��2. Further, t�x0 ! x0 1 lL� is statistically
equivalent to a sum of l independent, random variables,
t�x0 ! x0 1 L�, . . . , t���x0 1 �l 2 1�L ! x0 1 lL���, and,
due to the periodicity (2), they are identically distributed.
Invoking the central limit theorem, the distribution of the
first passage times t�x0 ! x0 1 lL� thus approaches for
large l a Gaussian distribution with mean value l�t�x0 !

x0 1 L�� and variance l�Dt2�x0 ! x0 1 L��.
Next, we introduce “coarse-grained states” �xm :� x0 1

mlL
`
m�2`, where l is a large but fixed integer [20]. The

process x�t� is said to be in a certain “state” from the in-
stant it hits the associated point xm until the moment it hits
one of the adjacent points xm61. It follows that the diffu-
sion coefficient D is identical for the original process x�t�
and its coarse-grained counterpart, due to the long-time
limit in (3), and similarly for the current � �x�. Next we note
that “backward transitions” xm � xm21 are suppressed by
a Boltzmann factor exp�2lLF�kT
 compared to xm �
xm11 and therefore are negligible for sufficiently large l.
The remaining “forward transitions” between neighboring
“states” xm and xm11 are identically distributed random
events with a probability distribution which is identical
to the first passage time distribution for the original pro-
cess x�t�. On the other hand, we have seen above that for
sufficiently large l this distribution is completely fixed by
�t�x0 ! x0 1 L�� and �Dt2�x0 ! x0 1 L��. Thus, if the
010602-4
latter two quantities are the same for two processes (1) then
� �x� and D will also be the same in the two cases. Conse-
quently, it is sufficient to prove (4) and (5) for the special
case that V 0�x� � 0. In this case, � �x� � F�h, D � D0,
and the evaluation of �t�x0 ! x0 1 L�� and �Dt2�x0 !

x0 1 L�� according to (6) is straightforward. As a result,
one sees that (4) and (5) are indeed fulfilled.
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