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We consider directed quantum transport in one-dimensional, periodic tight-binding lattices that are driven by
unbiased, but asymmetric driving forces which are composed of a fundamental and its second harmonic
(harmonic mixing signal). The reduction to a single-band dynamics then yields a formally exactly integrable
dynamics. An asymmetric drive generally breaks time-reversal symmetry without causing any dissipation.
For an initially localized particle witrzero momentum no finite coherent current emerges; in contrast, a
directed current occurs, however, when prepared with an initial coherence. The presence of phase fluctuations
yields a decaying current, thereby rendering the nondissipative currents a transient phenomenon. In contrast,
the presence of quantum dissipation yields at all temperatures a finite asymptotic current independent of
preparation.

I. Introduction If systems are reduced to the very conceptual backbone
showing this two minimal requirements they present objects for
studies from a fundamental point of view in their own right:
clearly, this set up then mimics a Maxwelloschmidt demofr1°
which seemingly can be brought to life when operating in a
stationary far from equilibrium situation. It is also generally
believed that the occurrence of directed transport of information
can only take place in the presence of irreversibility, or finite
dissipation, respectively. Indeed, all known common schemes
to model transport (Boltzmann equation, FokkBtanck equa-
tions, Zubarev method, Kubo method, etc.) all assume the
element of a time arrow. The use of dissipation is then a most
natural way to break time-reversal invariance; such a violation
presents a necessary (although not sufficient) element to induce
directed current.

We emphasize, however, that the use of an asymmetric drive
equally well does break time-reversal invariance. The dynamics

Statistical mechanics and quantum theory are two main pillars
upon which most of the structure of theoretical physics is built.
These two pillars considerably have influenced also the scientific
“palmares” of Bruce Berne, who has advanced with many
seminal contributions the fields of light scattering, transport
theory in liquids, computer simulations of various molecular
phenomena, and reaction rate theory. Quantum theory as well
as statistical mechanics involve a time arrow as a primitive
concept. In quantum mechanics one computes the probability
amplitudes for possible measurable outcomes wtiaow
specified initial preparations, i.e., not those which precede them.
Likewise, in thermodynamics and statistical mechanics it is
dogma that the total thermodynamic entropy of a closed system
cannot decrease.

With this original work we elaborate on a problem that is
rooted both in statistical mechanics and quantum theory. In =1l - - !
particular, we focus on the question of obtaining in periodic 'S then governed by a pure Hamiltonian dynamics with a time-
structures alirectedtransport of matter, or, more generally, a nhomogeneous Liouvillevon Neumann evolution operator.
transduction of information out of unbiased fluctuations. This TNis brings to us the area of Hamiltonian ratchét$? Surpris-
topical concept is presently very much en vogue:; it is known ingly to many of us, recent pioneering work by Sergej Flach
under labels such @&rownian rectifierst Brownian motor$; and his collaborators; see also ref 12, has shown that a
and born out from the challenge to obtain an understanding of nontr@vial, directed cur_re_nt seemingly exists for Hamiltqnian
intercellular transport along biological polymer filaments, also Cclassicalflows that exhibit both chaotic and regular solutions.
asmolecular motorg:® Apart from its biological relevance this The origin of such Hamiltonian dlr(_ected classical currents has
concept is enormously fruitful also for the construction of recently been traced back to the existence of a sum rule in phase
nanoscale and microscale devices, such as pumps, rectifiersSPace;® namely, that the sum of corresponding invariant phase
and particle separatoté.By use of a bottom-up approach, such Space volume times its average velocity for the union of
motors have been synthesized recently even from single chiralinvariant (ergodic) manifolds equals zero. In short, the overall
molecules:? directed current seemingly vanishes when averaged over all

For a Brownian rectifier to work the following two conditions ~ Phase space. This still, however, allows for the possibility of a
seemingly must be obeyed: (i) the system must possess a sourcgirected flow of information in a periodic system that starts out
of asymmetry in the sense that it either exhibits an explicit &t Some configurational position withitially vanishingvelocity.
asymmetric, periodic structure that breaks reflection symmetry, It is this prerequisite which we shall assume throughout the
or it is driven by unbiased, but asymmetric forces. (i) The restof this workTo set the stage of our investigation, we note
System must Operate far from equ”'bnum' because on'y then that even W|th|n lhIS restriction Of a zero |n|t|al Ve|OCIty we

can it escape the limiting restriction imposed by the second law. should exclude some trivial situations that lead to a Hamiltonian
directed current. Such a current occurs trivially if we take a

* Part of the special issue “Bruce Berne Festschrift”. Dedicated to Bruce POUnded motion and transform it onto a moving frame (Galilei
Berne on occasion of his 60th birthday. transformation with a nonzero, constant velocity). Likewise, a
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current occurs trivially with a biased initial momentum distribu- transport problem acquires the forf#8
tions. Yet another trivial situation occurs when the drive contains
an initial bias in phase. For example, take the oscillatory driven AA N
dynamics Hig(t) = — Py > (Indh+ 1] + |n + 100A) —
n=-N
N
eaE(t) Z ninh| (4)

n=-N

X(t) = E cos@t+y) 1)

which after one integration yields with zero initial velocix0)

= 0, the trivial solution for the velocity dynamics, i.e., wherehA is the tunneling matrix element between neighboring
states, Rl + 1 denotes the number of sites, amés the lattice
X(t) = (Hw) sin(wt+y) — (Elw) sin@y) (2) period. We shall describe the dynamics in terms of the density

matrix pnm. By doing so, we go beyond the standard picture of
A time average then obviously yields a nonzero velocity pure Bloch states. The density matrix approach allows one to
whenevery = 0, mods. consider electrons prepared in mixed quantum-mechanical states

The occurrence of directed nondissipative current brings to @S Well. In the limit of an infinite i — co) number of states
mind a series of questions and problems. What is the role of this single-band tight-binding model istegrableand can be
quantum dynamics with its inherent smearing of phase spacesolved exactly forrbitrary external driving fieldsE(t).*1%20
structures? What about a semiclassical treatment of the directedY the term “exactly” we mean that one can obtaineaplicit
flow?!3 A driven Hamiltonian flow with a mixed phase space an{:kllytlcal expression for the characteristic functidf(kt) =
structure of dimensiondpnasespace = 5 allows for Arnold 2 €%onn(t) (With —7 < k < 7), of tf;gz probability distribution
diffusion among invariant manifold$.With the possibility that, ~ Pnn(f) t0 find the electron on the site*® Following the reasoning
generally, the mean time for mixing i@t finite, 15 the question N réf 17, we find (in the limitN — o) the result
then arises whether some seemingly stationary directed currents 1
are in fact only extremely slow, power law like transients. Ina  F(k, t) = _an - m(o)f” dk gl toImHkn=3 0k} (5
first step, we shall next focus on the role of quantum fluctuations 2nés o
in a skeleton quantum system that possesses all the necessary
minimal ingredients for directed quantum transport. where

t
Il. Directed Quantum Current in Absence of Dissipation z(k, K,t)= AL{COSK —n(t7)] —

A. Deterministic Asymmetric Driving. To start, let us cosk — k—n(t7)l}dr (6)

consider a charged particle such as an electron (with negative,, 4

chargee) moving on a periodic lattice under the influence of a

harmonic mixing electric field signdt(t) of the form eapt_, . .
n(t) =" [FEQ)dt (7)

E(t) = E, cost+y(t)) + E, cos(wt+2y(t) + ¢) (3)

With eq 5 at hand, any moment of the probability distribution

enn(t) can be found from eqs-57 by taking the corresponding

with the driving strength&;, E,, frequencyw, and the relative o ! .
9 gihn 2. 164 ¥ number of derivatives. The first momefik(t)(= — iaF, (0, t),

phase¢. The quantityy in eq 3 is theabsolutephase of the ) o

two harmonics whichwgenerally can be a random function of describes the mean ([))osmon of the electron on the lati¢g]]

time, describing the effect of dephasing. For the moment, — a¥npoa(t). It reads

however, we freeze this absolute phase to assume a fixed value. ¢ ]

In this case, the presence of the nonzero absolute phase X(H)O= X(O)T+ a K|A [ drsinfp(z, 0)+¢]  (8)

eq 3 is equivalent to the time shift-t + to with to = y/w.

This fact makes obvious that the average over the randomly with, K = >,0nn-1(0), being the coherence parameter and

distributed phase is equivalent to an average over the initial tang = Im K/Re K. Next we introduce the quasi-momentum

time to over a driving period” = 2/w. p(t) obeying the so-called acceleration theorem, jp¢) = eE(t),
The harmonic mixing signal in eq 3 constitutes the simplest With the pseudo-Hamiltonian given By

kind of an asymmetric periodic field with a nonvanishing third

moment(E 3(t)[}, = 3/4E:2E, cos¢. Herell.[ indicates the time H(BGPY = [Kle(p) — eXE() (©)

average over the temporal peried Apart from the specific

choice for the relative phase, i.e.,.= 0, modx, the harmonic

mixing signal violates time reversal symmetry; —t — 2to, of

where ¢(p) = —hAcospah) denotes the undriven energy
spectrum. One can readily demonstrate that eq 8 provides the
4 . . L . explicit solution of the drivemonlinear classical dynamics
the driven dynamics. Given such a violation of time-reversal yoqqribed with the pseudo-HamiltoniBiix() p) for the initial
symmetry one might expect, similar to the classical dasde, quasi-momentunp(0) = fig/a and the initial positionX(0)c]

the emergence of a directed current even in the absence Ofrpege [atter two quantities adefinedby the initial density

dissipation. matrix pnm(0). The relevant transport quantities of interest is
In the absence of driving, the energy levels for the electron the net quantum current

in the periodic potential possess a band structure. Let us simplify

the situation further by restricting our analysis to the motion of . . xXwa

the electron in the lowest energy band, neglecting thereby j=elim—= (10)
interband transitions. Then, in the representation of localized

Wannier states|nl] the Hamiltonian of thedrizen quantum being expressed here in a self-averaging manner.
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The result in eq 8 carries some truly remarkable conse- becomes obvious from eq 13 that the averaging qvgields
quences: forarbitrary external fields we find the prominent zero currentindependentlyof the relative phase shifip.
result that for a particle being initially prepared in a mixed state Likewise, one can show that the same result holds, namely a
characterized by thediagonal density matrix pnm(0) = zero averaged current, after averaging over the initial plgase
enn(0)0n, m, implying a zero coherence parameker= 0; the (or, equivalently, over the initial time = y/w) in eq 12. This
mean particle positiofiX(t)[J= X(0)Jis not affected by the result isexact and does not depend on the amplitudes of the
arbitrary driving fields As a consequence we find that the driving field, E; . Moreover, we next demonstrate tligtnami-
current is identically zer8, i.e., cal phase fluctuationg(t) cause a decaying current as well.

. B. Role of Dephasing.Let us consider a simple model of
1=0 (11) dichotomous Markovian fluctuations of the absolute pha@e
This model allows for an exact analytic treatment, i.e., we set

P(1) = poa(t) (14)

r\Nherez,uo denotes the amplitude of phase fluctuations a(t)
= #41 is the dichotomous Markov process (DMP) with the
stationary autocorrelation function

This initial diagonal preparation mimics the classical situation
of an initially localized particle. In clear contrast to the motion
of a classical particle in a periodic potentfegxhibiting amixed
(chaotic/regular) phase space, the quantum mechanical motio
of an initially localized particle-being restricted to the single
band dynamicsdoes with|K| = 0, i.e., an infinite effective

mass-not exhibit an inertial dynamics, see eq 9. As a (o) 0= exp( v|t — t))2L The parameter is the mean

consequence, no net current is supported in this case. frequency of random phase jumps and defines the dephasing
Can a directed quantum current in absence of dissipation . - 7o = 1/v. Using the relations, cosft)] = cosg/g) and

nevertheless be realized within a single band description? There_. o = .

is still given the possibility that with a finite coherence parameter sinfy] = sin(po)a(t), the external driving can be recast into
S I P the form

IK| = 0, which induces a nonzero kinetic energy contribution,

a finite current will emerge. To investigate this possibility we . A

prepare the particle in a pure initial state give by the Bloch E(t) = E(t) - ;,:lg(t)(l(t) (15)

wave |W(0) = ¥ qcn| njwherec, = (Y /7)€" ™. For this i

case,pnm(0) = cnCh, and the coherence parameter is maximal, where E(t) is given by eq 3 fory(t) = O, but with the

i.e., |K| =1 (N— ). Note that, in the absence of the external renormalized amplitude&; — E; = E; cosfpo) andE; — E;

driving, eq 8 indicates that any such Bloch state trivially carries = E, cos(2po). Moreover, the functiomg(t) in eq 15 reads

a current, i.e.j = elX(t)0= ea Asin(p(0)a/h). In view of our

stated prerequisite in the Introduction, we consider here the case g(t) = g, sin(t) + g, sin(2vt + ¢) (16)
that theinitial current is zero, yielding(0) = 0. Then, the tight- . .
binding dynamics driven by a harmonic mixing signal witred where the amplitudes, = eaksin(yo)/fi and g = eak

relative phase, eq 3, yields a finite limit in eq 10. The final SiN(2po)/h have the dimension of a frequency.

main result for the time-averaged current in the absence of [N the presence of random phase fluctuations, the stochasti-
dissipation emerges as cally averaged time-dependent current is given by

o ] dmx(t) L),
j=eray J(E)3E2) x O=e—g— 17
k:*OO
. . 1 where the outer average.l) denotes the average over the phase
sm’k¢ —Sisin@) - 5523|n(21p+¢)] 12) fluctuations. The statione%y current then is given by lim—.
j(t). For the most interesting case with a coherence parameter
whereé; , = eaR J(fw). This result holds for frozen fixed phase  of |[K| = 1, it follows from eq 8 that
Y(t) ==y, cf. eq 3. ) .
In the lowest first order of the electric field amplitudes we j(t) = eaAlm{exp([7(t,0) + p(O)a/A)) U(YL)}  (18)
find from eq 12 .
where7}(t,0) is defined in eq 7, but witk(t) taken from eq 15.
P ; 1. o The functionfW(t),, 0= [exp[—i/La(r)g(z)dz]C) in eq 18 is the
J eAa{él siny -+ 2‘)”&2 S|n(21/1+¢)] (13) averaged solutionyof the auxilia?y s’rochasti(:g differential equation

Alternatively, one can re-derive eq 13 by use of the effective U(t) = — igt)a(t)u(t) (19)
mass approximation in the pseudo-Hamiltonian (eq 9): we

replace the kinetic energy term wigh#/(2m*), wherem* = which describes a generalized Kubo oscilldtowith the
h/(|K|a?) denotes the effective mass. The origin of curréxii] stochastic frequenc(t) = g(t)a(t). The averaged solution of

in eq 13 is then obviously due to an initial phase effect as eq 19 can be written by virtue of the Floquet theorem in the
induced by the finite integration constant IRJin terms of form

nonzero values fop and/or¢ of the switched on driving field

E(t). As such, it has nothing to do either with the nonlinear oL, = e_rltul(t) + e_rztuz(t) (20)
dynamics, nor with the violation of time-reversal symmetry for

¢ = 0. This effect exists even in the case of a single harmonic with positive valued Floguet valuds » > 0, and time-periodic
driving, with either§; = 0, or&; = 0, see eq 2. In absence of Floquet modesi;, At + 27/w) = uy, At). It then follows from
any phase fluctuations this (coherent) current carries no dissi-eq 18 that the smallest of the two Floquet exponehts;s
pation and it fails to decohere. Nevertheless, if one assumesmin{T'1,I';}, in eq 20 characterizes the time scale on which some
that the initial field phasep is randomly distributed in the  (transient) current can exist. Even if the current exists in the
interval [0, 2t] with the probability densityP(y) = 1/(2r) it absence of phase fluctuationgt), it will relax in real life
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situations for times > I'"L. This result that in the presence of following criterion: (1) introduce small phase fluctuations
a random driving a stationary{> «) current cannot be realized  (t) in the otherwise strictly periodic fiel&(t), cf. eq 3, and
in absence of dissipation has been shown by us previously in(2) evaluate the limits in the sequence

ref 20. Next, we shall evaluate this time scale explicitly.

The averaged solution of eq 19 witfit) = const has been . . . dx(t)[m)
given by Kubo?? It can also be looked up in the book by Van 1= evolr'!/:gﬁo lﬂ; dt
Kampen?! In our case, the problem is more intricate. To solve
the task we apply the formalism of the so-termed “formulas of The order of limits in eq 26 is very important and cannot be
differentiation™3 to yield the coupled set of differential equations interchanged. The application of this criterion to the quantum

current in the absence of dissipation yields within a single-band
d WEOL = — ighEtU®) descriptionj = 0, meaning that no finite stationary contribution
dt survives. Whether this conclusion survives in the full potential

(26)

d ) picture, i.e., beyond the single-band description, still remains
o OUOG, = —va@UEOG — gL, (21) an open question. The authors presume, however, that indeed
this is the case.
for the averag@U(t)[) and the correlatiofmu(t)U(t)L). The initial

conditions in eq 21 follow agU(0)} = 1 and[a(0)U(0)r), = . S_tati(_)nary Quantum Current in the Presence of

0. From here on, sailing becomes smooth by observing that theDissipation

set of egs 21 is indeed equivalent to a Hill equationlEat)L). In the previous section we demonstrated that the field-induced
To solve eq 21, we use the transformatigh(t)l) = r(t) current is at most a transient phenomenon under realistic
cosf(t)/2], [a(t)u(t), = ir(t) sin[®(t)/2], and end up with conditions. The role of finite dissipation is thus crucial to

. roduce possibly nonvanishingtationary directed currents.
H(t) = —v sif(@(t)/2)r () FII))irected ﬁet cur)r/ents in simplg tight-bir{ding models that are
d(t) = —v sin[®(t)] — g(t) (22) generated by the combined action of dissipation and external
driving has been addressed in refs 16, 20, and 24 by use of
for the new variables(t) and ®(t). The initial conditions different approaches. It is interesting to note that the coupling
transform intor(0) = 1, andd(0) = 0. In terms of the unknown  to a thermal bath in the deep cold, i.e., at the absolute zero
solution ®(t), eq 22 yields for the averaged solution of the temperaturel = 0 is already sufficient to produce a nonvan-
stochastic differential eq 19 the result ishing current. This shows that a directed current can emerge
. due to a cooperative rectification of zero-point quantum
WO, = expf —vf(')sinz[d>(r)/2]dr} cosf®(t)/2] (23) fluctuations and external unbiased driving. Let us elucidate this
interesting point in further detail. We adopt here the conventional
This formal expression holds for ambitrary functiong(t) and model of quantum dissipation, i.e., we couple the quantum
is not restricted to the class of periodic functions only. Because particle bilinearly to a thermal bath of harmonic oscillatgfs®
the second equation in eqs 22 cannot be integrated in closed

form for g(t)given in eq 16, the solutiod(t)[) remains implicit. 1 I@i2 of . G 2
However, one can deduce the corresponding decay reten Hg = —Z — T moilX — —ZX (27)
analytical form for relevant limiting cases. The most interesting 260 m Maw;

situation is the case of a highly coherent field with small field

strengths such that < w andg;, » < w. In this case, the whereX = a3, n|nln| is the position operator of quantum
amplitude of oscillations ofb(t) is small, ®(t) < 1, and one particle. The bath influence on the quantum particle is fully
can expand sip(t)] ~ ®@(t) in eqs 22. After some straight- ~ captured by the Gaussian thermal force operdt@) =
forward calculations, we obtain in the lowest order in the driving iC%i(t), possessing the complex-valued autocorrelation function

field strengths for the rate coshbiw/2k,T — iwt)
L. A oo ) —lw
FOFO)L, ==/, I(w) - d (28)
r= %v{ Siff(yo (%1)2 + sin2(2¢o)(;£2)2} (24) - ﬂfo Y sinhfwi2eD)

w

Here,J(w) = ”/zziciz/mwié(w — wj) denotes the bath spectral

implying for the transient current (far> v~1) the central result density which will be taken in the Ohmic fornd(w) =

—wlw i it ]
i(t) = i exp(=Tt 25 nwe @@ with cutoff freq_uencw)c _>>AA and friction coefficient
IO =] exp-T (25) 1. Then, the autocorrelation functiaR(t)F(0)eq can be evaluated
with j is given in eq 13 withy = 0. exactly?>26 In the limit ksT < A, it can be approximated by

This result inherits the following consequences. (i) A nonzero

stationary current does not exist. (ii) The decay fater the Aoa 1 hnwi

transient current is determined by the mean rate of phase [H:(t)F(O)Qq% (1 + iw t)2+ 2kg Tyt (1) (29)
fluctuationsv, the amplitude of the phase fluctuatiops, and ¢

also by the intensities of the field componerts Jhw. (iii) where

With the increasing field strength, not only does the field-

induced currenj increase, cf. eq 13 but also at the same time 2

the current decay rate is also enhanced, cf. eq 24. Moreover, f(t)= A1 (30)
even if an arbitrary initial current was present it will decay with 2to| ¢ sintf(t/zy)

the rate of eq 24, as it follows from eq 18.
To decide whether theoherentfield induced current is is a function that assumes a Dirddunction in the limitzy =
asymptotically finite or only transient, one can put forward the #h/(zksT) — 0. In eq 29, the first (complex-valued) term
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]

corresponds to the zero-temperature contribution (due to the a o001 . . .
zero-point fluctuations) and the second contribution corresponds
to the thermal fluctuations. The former one constitutes a genuine
guantum-mechanical feature which is absent in the classical
theory. The latter one corresponds to a classical Gaussian, non-
Markovian colored noise contribution with a thermal noise
intensityD = 2ykgT and an autocorrelation time scatewhich
inherits quantum-mechanical features.

It is convenient to introduce the dimensionless friction
coefficient o = na?/(27xh) (Kondo parameter). In ref 16, we
have shown that in the incoherent transport regime, where the
transport is dominated by incoherent quantum transitions among
neighboring lattice sites, the quantum current is given by a
Golden Rule type expression (a)

~ I
0,030 )

LreR
LI T |

fiw = 0.1hw,
kgT = 0.1hw,
eaEs = 0.1hw,

-0.02F B

Scaled current (in units of eaA?/w,)
[
2
T

|

j =eah’ [ dr exp[~Q (@)]sin[Q"(M)]IM[®(7)] (31)

where
b 0 }\ T T T /—>>| >>>>> -
QM) +iQ"(H) = f dt, [ (L) FO, + it (32) 3 i -
< Fe .
o \“ / se
and o 02r / ]
=] ‘\\\ /
ea g g \C\‘ / = 0.50 -
D(r) = QXF{I— E(t')dt’)D = = | V. =S
h ‘ﬁ [2) E, X /"l g = 091205 —
- N a=0.05 ——-
B = 0.4 G 4
z 3, (28, sin(@1/2))3 (&, sin(wr))e M@+ 72 (33) B = 017w,
k== o kpT = 0.1,
B ealr = 0.17w,
In eq 32,1 = &2(jdwd(w)/mw denotes the bath reorganiza- g
tion energy?” The incoherent tunneling regime always occurs 5T 1) |
for a > 1. Fora. < 1, the validity region of eq 31 is restricted 0 02 04 06 08 1

(for small strengths and frequencies of the driving field) to
sufficiently high temperatures. Note, however, that for a strong,
high-frequency drivinde(t) the accuracy of perturbation theory ~ Figure 1. Directed current vs the strength of the fundamental harmonic
in the tunneling matrix element, which leads to the result in in the harmonic mixing signal. The parameters used in calculations

Scaled driving strength eaF; /fiw,

eq 31, becomes drastically improved, cf. ref 28. Thus, our result are given.

in eq 31 presents indeed a very good approximation evea for

< 1, except for the case of very smalland temperaturd, Unfortunately, the corresponding integral in eq 31 is too
when coherent tunneling begins to dominate. complicated and cannot be given in closed form. Some

One can show that the application of the criterion in eq 26 numerical calculations are depicted in Figure 1 for the case of

does not change the result in eq 31. The current is stationary,adiabatic drivingw < w, where the results become practically

e., it does not decay in time. As follows from eqgs 31 and 33, insensitive to the variations of the driving frequeneyBesides,
the current vanishes identically, i.ej, = 0, for ¢ = we assumed that one of the driving harmonics is weak, <
{n/2, 3t/2}, implying that all odd moments of the unbiased fiwe, and the temperature is smasT < fiw. For the case in
driving field, (E2"*1(t),, are zero. This result is not perturbative  Figure 1, it was sufficient to take into account only the terms
in the driving field strength. Thus, the directed current appears With [k| = 1 in the series 33. As it can be deduced from Figure
in form of a nonlinear response to the external driving field if 1 the current becomes smaller with increasing friction strength
any odd moment of order > 3 of the unbiased driving field, ~ a. On the other hand, in accordance with the previous analysis
is different from zero. Indeed, foF = O the integrand in eq 31~ and eq 31, it also diminishes in the limit of small— 0, cf.
decays exponentially in time. This circumstance makes the Figure 1b. _ . o
current an analytical function of the driving strengtis,and This implies that there exists an optimal value of the friction
E., respectively. As a consequence, in the lowest third order of coefficient a which maximizes the current strength. This
the harmonic mixing driving strengths one finds that the nontrivial effect is in the spirit of the so-called stochastic

dissipative resulj is proportional to resonance (SR, where the addition of noisé(t) to the input
driving signal E(t) can optimize the current response. The
j O |]£3(t)gJD Eszcos@) (34) considered system displays for > 1 also a genuine SR

behavior, when the friction strengthis fixed and the thermal
The nontrivial quantum prefactor involves the dissipation noise intensityD = 2ykgT is varied. The increase dd can
strength and the temperature, see in refs 16 and 24. also optimize the current valdé.Moreover, foro. > 1 the
The case of zero temperature is peculiar. In this case thecurrent flows for small field amplitudes in the intuitively
current ceases to be an analytical function of the external field, expected direction which is pointed out by the sigrn¥(t)0J.
thus an expansion to the lowest order in the field strengths fails. With increasing driving strength&;, however, the current
Nevertheless, a finite rectification current persistsTat 0. undergoes aeversal i.e., it flows into the opposite, counter-
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intuitive direction. Fora. < 1 this counterintuitive behavior  the level of fundamental studies and also for practical applica-
dominates, cf. Figure 1b. Finally we note that tor~ 0.1 the tions in chemical and physical systems.

current is by 1 order of magnitude larger than éor~ 1. Thus, .
the case of intermediate ~ 0.1 is preferable to observe the ~ AcCknowledgment. One of the authors (P.H.) herewith

rectification current in practice. We also remark that the strength dedicates this work to Bruce Berne. Moreover, he thanks him

of the external driving should be optimized: notably the current for @l those insightful and most fruitful discussions over the

diminishes for increasingly strong driving, cf. Figure 1. years (he learned a lot from him!). This work has been supported
by Sonderforschungsbereich 486, Project A10.
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