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We consider directed quantum transport in one-dimensional, periodic tight-binding lattices that are driven by
unbiased, but asymmetric driving forces which are composed of a fundamental and its second harmonic
(harmonic mixing signal). The reduction to a single-band dynamics then yields a formally exactly integrable
dynamics. An asymmetric drive generally breaks time-reversal symmetry without causing any dissipation.
For an initially localized particle withzero momentum no finite coherent current emerges; in contrast, a
directed current occurs, however, when prepared with an initial coherence. The presence of phase fluctuations
yields a decaying current, thereby rendering the nondissipative currents a transient phenomenon. In contrast,
the presence of quantum dissipation yields at all temperatures a finite asymptotic current independent of
preparation.

I. Introduction

Statistical mechanics and quantum theory are two main pillars
upon which most of the structure of theoretical physics is built.
These two pillars considerably have influenced also the scientific
“palmares” of Bruce Berne, who has advanced with many
seminal contributions the fields of light scattering, transport
theory in liquids, computer simulations of various molecular
phenomena, and reaction rate theory. Quantum theory as well
as statistical mechanics involve a time arrow as a primitive
concept. In quantum mechanics one computes the probability
amplitudes for possible measurable outcomes whichfollow
specified initial preparations, i.e., not those which precede them.
Likewise, in thermodynamics and statistical mechanics it is
dogma that the total thermodynamic entropy of a closed system
cannot decrease.

With this original work we elaborate on a problem that is
rooted both in statistical mechanics and quantum theory. In
particular, we focus on the question of obtaining in periodic
structures adirectedtransport of matter, or, more generally, a
transduction of information out of unbiased fluctuations. This
topical concept is presently very much en vogue; it is known
under labels such asBrownian rectifiers,1 Brownian motors,2-4

and born out from the challenge to obtain an understanding of
intercellular transport along biological polymer filaments, also
asmolecular motors.4,5 Apart from its biological relevance this
concept is enormously fruitful also for the construction of
nanoscale and microscale devices, such as pumps, rectifiers,
and particle separators.1,4 By use of a bottom-up approach, such
motors have been synthesized recently even from single chiral
molecules.6,7

For a Brownian rectifier to work the following two conditions
seemingly must be obeyed: (i) the system must possess a source
of asymmetry in the sense that it either exhibits an explicit
asymmetric, periodic structure that breaks reflection symmetry,
or it is driven by unbiased, but asymmetric forces. (ii) The
system must operate far from equilibrium, because only then
can it escape the limiting restriction imposed by the second law.

If systems are reduced to the very conceptual backbone
showing this two minimal requirements they present objects for
studies from a fundamental point of view in their own right:
clearly, this set up then mimics a Maxwell-Loschmidt demon8-10

which seemingly can be brought to life when operating in a
stationary far from equilibrium situation. It is also generally
believed that the occurrence of directed transport of information
can only take place in the presence of irreversibility, or finite
dissipation, respectively. Indeed, all known common schemes
to model transport (Boltzmann equation, Fokker-Planck equa-
tions, Zubarev method, Kubo method, etc.) all assume the
element of a time arrow. The use of dissipation is then a most
natural way to break time-reversal invariance; such a violation
presents a necessary (although not sufficient) element to induce
directed current.

We emphasize, however, that the use of an asymmetric drive
equally well does break time-reversal invariance. The dynamics
is then governed by a pure Hamiltonian dynamics with a time-
inhomogeneous Liouville-von Neumann evolution operator.
This brings to us the area of Hamiltonian ratchets.11-13 Surpris-
ingly to many of us, recent pioneering work by Sergej Flach
and his collaborators,11 see also ref 12, has shown that a
nontrivial, directed current seemingly exists for Hamiltonian
classicalflows that exhibit both chaotic and regular solutions.
The origin of such Hamiltonian directed classical currents has
recently been traced back to the existence of a sum rule in phase
space,13 namely, that the sum of corresponding invariant phase
space volume times its average velocity for the union of
invariant (ergodic) manifolds equals zero. In short, the overall
directed current seemingly vanishes when averaged over all
phase space. This still, however, allows for the possibility of a
directed flow of information in a periodic system that starts out
at some configurational position withinitially Vanishingvelocity.
It is this prerequisite which we shall assume throughout the
rest of this work. To set the stage of our investigation, we note
that even within this restriction of a zero initial velocity we
should exclude some trivial situations that lead to a Hamiltonian
directed current. Such a current occurs trivially if we take a
bounded motion and transform it onto a moving frame (Galilei
transformation with a nonzero, constant velocity). Likewise, a
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current occurs trivially with a biased initial momentum distribu-
tions. Yet another trivial situation occurs when the drive contains
an initial bias in phase. For example, take the oscillatory driven
dynamics

which after one integration yields with zero initial velocity,x̆(0)
) 0, the trivial solution for the velocity dynamics, i.e.,

A time average then obviously yields a nonzero velocity
wheneverψ * 0, modπ.

The occurrence of directed nondissipative current brings to
mind a series of questions and problems. What is the role of
quantum dynamics with its inherent smearing of phase space
structures? What about a semiclassical treatment of the directed
flow?13 A driven Hamiltonian flow with a mixed phase space
structure of dimensiondphase-space g 5 allows for Arnold
diffusion among invariant manifolds.14 With the possibility that,
generally, the mean time for mixing isnot finite,15 the question
then arises whether some seemingly stationary directed currents
are in fact only extremely slow, power law like transients. In a
first step, we shall next focus on the role of quantum fluctuations
in a skeleton quantum system that possesses all the necessary
minimal ingredients for directed quantum transport.

II. Directed Quantum Current in Absence of Dissipation

A. Deterministic Asymmetric Driving. To start, let us
consider a charged particle such as an electron (with negative
chargee) moving on a periodic lattice under the influence of a
harmonic mixing electric field signalE(t) of the form

with the driving strengthsE1, E2, frequencyω, and the relative
phaseφ. The quantityψ in eq 3 is theabsolutephase of the
two harmonics which generally can be a random function of
time, describing the effect of dephasing. For the moment,
however, we freeze this absolute phase to assume a fixed value.
In this case, the presence of the nonzero absolute phaseψ in
eq 3 is equivalent to the time shifttft + t0 with t0 ) ψ/ω.
This fact makes obvious that the average over the randomly
distributed phaseψ is equivalent to an average over the initial
time t0 over a driving periodu ) 2π/ω.

The harmonic mixing signal in eq 3 constitutes the simplest
kind of an asymmetric periodic field with a nonvanishing third
moment〈E 3(t)〉ω ) 3/4E1

2E2 cosφ. Here〈...〉ω indicates the time
average over the temporal periodu. Apart from the specific
choice for the relative phase, i.e.,φ ) 0, modπ, the harmonic
mixing signal violates time reversal symmetry,tf -t - 2t0, of
the driven dynamics. Given such a violation of time-reversal
symmetry one might expect, similar to the classical case,11,12

the emergence of a directed current even in the absence of
dissipation.

In the absence of driving, the energy levels for the electron
in the periodic potential possess a band structure. Let us simplify
the situation further by restricting our analysis to the motion of
the electron in the lowest energy band, neglecting thereby
interband transitions. Then, in the representation of localized
Wannier states,|n〉, the Hamiltonian of thedriVen quantum

transport problem acquires the form17,18

wherep∆ is the tunneling matrix element between neighboring
states, 2N + 1 denotes the number of sites, anda is the lattice
period. We shall describe the dynamics in terms of the density
matrix Fn,m. By doing so, we go beyond the standard picture of
pure Bloch states. The density matrix approach allows one to
consider electrons prepared in mixed quantum-mechanical states
as well. In the limit of an infinite (N f ∞) number of states
this single-band tight-binding model isintegrableand can be
solved exactly forarbitrary external driving fieldsE(t).17,19,20

By the term “exactly” we mean that one can obtain anexplicit
analytical expression for the characteristic function,F(k,t) )
∑eiknFn,n(t) (with -π e k < π), of the probability distribution
Fn,n(t) to find the electron on the siten.20 Following the reasoning
in ref 17, we find (in the limitN f ∞) the result

where

and

With eq 5 at hand, any moment of the probability distribution
Fn,n(t) can be found from eqs 5-7 by taking the corresponding
number of derivatives. The first moment,〈x(t)〉 ) - iaF′k(0, t),
describes the mean position of the electron on the lattice,〈x(t)〉
) a∑nFn,n(t). It reads20

with, K ) ∑nFn,n-1(0), being the coherence parameter and
tan æ ) Im K/Re K. Next we introduce the quasi-momentum
p(t) obeying the so-called acceleration theorem, i.e.,p̆(t) ) eE(t),
with the pseudo-Hamiltonian given by18

where ε(p) ) -p∆cos(pa/p) denotes the undriven energy
spectrum. One can readily demonstrate that eq 8 provides the
explicit solution of the drivennonlinear classical dynamics
described with the pseudo-HamiltonianH(〈x〉, p) for the initial
quasi-momentump(0) ) pæ/a and the initial position〈x(0)〉.
These latter two quantities aredefinedby the initial density
matrix Fn,m(0). The relevant transport quantities of interest is
the net quantum current

being expressed here in a self-averaging manner.

HTB(t) ) -
p∆

2
∑

n ) -N

N

(|n〉〈n + 1| + |n + 1〉〈n|) -

eaE(t) ∑
n ) -N

N

n|n〉〈n| (4)

F(k, t) )
1

2π
∑
nm

Fn, n + m(0)∫-π

π
dk′ei{[k′-η(t,0)]m+kn-∑(k,k′,t)} (5)

∑(k, k′, t) ) ∆∫0

t
{cos[k′ - η(t,τ)] -

cos[k′ - k - η(t,τ)]}dτ (6)

η(t,τ) ) ea
p
∫τ

t
E(t′)dt′ (7)

〈x(t)〉 ) 〈x(0)〉 + a| K|∆ ∫0

t
dτ sin[η(τ, 0) + æ] (8)

H(〈x〉,p,t) ) |K|ε(p) - e〈x〉E(t) (9)

j ) e lim
tf∞

〈x(t)〉
t

(10)

ẍ(t) ) E cos(ωt+ψ) (1)

x̆(t) ) (E/ω) sin(ωt+ψ) - (E/ω) sin(ψ) (2)

E(t) ) E1 cos(ωt+ψ(t)) + E2 cos(2ωt+2ψ(t) + φ) (3)
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The result in eq 8 carries some truly remarkable conse-
quences: forarbitrary external fields we find the prominent
result that for a particle being initially prepared in a mixed state
characterized by thediagonal density matrix Fn,m(0) )
Fn,n(0)δn, m, implying a zero coherence parameterK ) 0; the
mean particle position〈x(t)〉 ) 〈x(0)〉 is not affected by the
arbitrary driVing fields. As a consequence we find that the
current is identically zero20, i.e.,

This initial diagonal preparation mimics the classical situation
of an initially localized particle. In clear contrast to the motion
of a classical particle in a periodic potential11 exhibiting amixed
(chaotic/regular) phase space, the quantum mechanical motion
of an initially localized particlesbeing restricted to the single
band dynamicssdoes with|K| ) 0, i.e., an infinite effective
masssnot exhibit an inertial dynamics, see eq 9. As a
consequence, no net current is supported in this case.

Can a directed quantum current in absence of dissipation
nevertheless be realized within a single band description? There
is still given the possibility that with a finite coherence parameter
|K| * 0, which induces a nonzero kinetic energy contribution,
a finite current will emerge. To investigate this possibility we
prepare the particle in a pure initial state give by the Bloch
wave|Ψ(0)〉 ) ∑ncn| n〉, wherecn ) (1/x2N+1)e

ip(0)na/p. For this
case,Fn,m(0) ) cncm

/ and the coherence parameter is maximal,
i.e., |K| ) 1 (N f ∞). Note that, in the absence of the external
driving, eq 8 indicates that any such Bloch state trivially carries
a current, i.e.,j ) e〈x̆(t)〉 ) ea ∆sin(p(0)a/p). In view of our
stated prerequisite in the Introduction, we consider here the case
that theinitial current is zero, yieldingp(0) ) 0. Then, the tight-
binding dynamics driven by a harmonic mixing signal withfixed
relative phase, eq 3, yields a finite limit in eq 10. The final
main result for the time-averaged current in the absence of
dissipation emerges as

whereê1,2 ) eaE1,2/(pω). This result holds for frozen fixed phase
ψ(t) :) ψ, cf. eq 3.

In the lowest first order of the electric field amplitudes we
find from eq 12

Alternatively, one can re-derive eq 13 by use of the effective
mass approximation in the pseudo-Hamiltonian (eq 9): we
replace the kinetic energy term withp2/(2m*), wherem* )
p/(|K|a2) denotes the effective mass. The origin of current,〈x̆〉,
in eq 13 is then obviously due to an initial phase effect as
induced by the finite integration constant in〈x̆〉 in terms of
nonzero values forψ and/orφ of the switched on driving field
E(t). As such, it has nothing to do either with the nonlinear
dynamics, nor with the violation of time-reversal symmetry for
φ * 0. This effect exists even in the case of a single harmonic
driving, with eitherê1 ) 0, or ê2 ) 0, see eq 2. In absence of
any phase fluctuations this (coherent) current carries no dissi-
pation and it fails to decohere. Nevertheless, if one assumes
that the initial field phaseψ is randomly distributed in the
interval [0, 2π] with the probability densityP(ψ) ) 1/(2π) it

becomes obvious from eq 13 that the averaging overψ yields
zero current independentlyof the relative phase shiftφ.
Likewise, one can show that the same result holds, namely a
zero averaged current, after averaging over the initial phaseψ
(or, equivalently, over the initial timet0 ) ψ/ω) in eq 12. This
result isexact, and does not depend on the amplitudes of the
driving field, E1,2. Moreover, we next demonstrate thatdynami-
cal phase fluctuationsψ(t) cause a decaying current as well.

B. Role of Dephasing.Let us consider a simple model of
dichotomous Markovian fluctuations of the absolute phaseψ(t).
This model allows for an exact analytic treatment, i.e., we set

whereψ0 denotes the amplitude of phase fluctuations andR(t)
) (1 is the dichotomous Markov process (DMP) with the
stationary autocorrelation function

〈R(t)R(t′)〉 ) exp(- ν|t - t′|)21. The parameterν is the mean
frequency of random phase jumps and defines the dephasing
time τ0 ) 1/ν. Using the relations, cos[ψ(t)] ) cos(ψ0) and
sin[ψt)] ) sin(ψ0)R(t), the external driving can be recast into
the form

where Ẽ(t) is given by eq 3 forψ(t) ) 0, but with the
renormalized amplitudesE1 f Ẽ1 ) E1 cos(ψ0) andE2 f Ẽ2

) E2 cos(2ψ0). Moreover, the functiong(t) in eq 15 reads

where the amplitudesg1 ) eaE1sin(ψ0)/p and g2 ) eaE2

sin(2ψ0)/p have the dimension of a frequency.
In the presence of random phase fluctuations, the stochasti-

cally averaged time-dependent current is given by

where the outer average〈...〉ψ denotes the average over the phase
fluctuations. The stationary current then is given byj ) limtf∞
j(t). For the most interesting case with a coherence parameter
of |K| ) 1, it follows from eq 8 that

whereη̃(t,0) is defined in eq 7, but withẼ(t) taken from eq 15.
The function〈U(t)ψ〉 ) 〈exp[-i∫0

t R(τ)g(τ)dτ]〉ψ in eq 18 is the
averaged solution of the auxiliary stochastic differential equation

which describes a generalized Kubo oscillator21 with the
stochastic frequencyΩ(t) ) g(t)R(t). The averaged solution of
eq 19 can be written by virtue of the Floquet theorem in the
form

with positive valued Floquet valuesΓ1,2 > 0, and time-periodic
Floquet modesu1, 2(t + 2π/ω) ) u1, 2(t). It then follows from
eq 18 that the smallest of the two Floquet exponents,Γ )
min{Γ1,Γ2}, in eq 20 characterizes the time scale on which some
(transient) current can exist. Even if the current exists in the
absence of phase fluctuationsψ(t), it will relax in real life

j ) 0 (11)

j ) e∆a ∑
k)-∞

∞

J2k(ê1)Jk(ê2/2) ×

sin[kφ - ê1 sin(ψ) -
1

2
ê2 sin(2ψ+φ)] (12)

j ≈ - e∆a[ê1 sinψ + 1
2
ê2 sin(2ψ+φ)] (13)

ψ(t) ) ψ0R(t) (14)

E(t) ) Ẽ(t) - p
ea

g(t)R(t) (15)

g(t) ) g1 sin(ωt) + g2 sin(2ωt + φ) (16)

j(t) ) e
d〈〈x(t)〉〉ψ

dt
(17)

j(t) ) ea∆Im{exp(i[η̃(t,0) + p(0)a/p])〈U(t)〉ψ} (18)

U̇(t) ) - ig(t)R(t)U(t) (19)

〈U(t)〉ψ ) e-Γ1tu1(t) + e-Γ2tu2(t) (20)
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situations for timest . Γ-1. This result that in the presence of
a random driving a stationary (t f ∞) current cannot be realized
in absence of dissipation has been shown by us previously in
ref 20. Next, we shall evaluate this time scale explicitly.

The averaged solution of eq 19 withg(t) ) const has been
given by Kubo.22 It can also be looked up in the book by Van
Kampen.21 In our case, the problem is more intricate. To solve
the task we apply the formalism of the so-termed “formulas of
differentiation”23 to yield the coupled set of differential equations

for the average〈U(t)〉ψ and the correlation〈R(t)U(t)〉ψ. The initial
conditions in eq 21 follow as〈U(0)〉ψ ) 1 and〈R(0)U(0)〉ψ )
0. From here on, sailing becomes smooth by observing that the
set of eqs 21 is indeed equivalent to a Hill equation for〈U(t)〉ψ.
To solve eq 21, we use the transformation〈U(t)〉ψ ) r(t)
cos[Φ(t)/2], 〈R(t)U(t)ψ ) ir (t) sin[Φ(t)/2], and end up with

for the new variablesr(t) and Φ(t). The initial conditions
transform intor(0) ) 1, andΦ(0) ) 0. In terms of the unknown
solution Φ(t), eq 22 yields for the averaged solution of the
stochastic differential eq 19 the result

This formal expression holds for anarbitrary functiong(t) and
is not restricted to the class of periodic functions only. Because
the second equation in eqs 22 cannot be integrated in closed
form for g(t)given in eq 16, the solution〈U(t)〉ψ remains implicit.
However, one can deduce the corresponding decay rateΓ in an
analytical form for relevant limiting cases. The most interesting
situation is the case of a highly coherent field with small field
strengths such thatν , ω and g1, 2 , ω. In this case, the
amplitude of oscillations ofΦ(t) is small,Φ(t) , 1, and one
can expand sin[Φ(t)] ≈ Φ(t) in eqs 22. After some straight-
forward calculations, we obtain in the lowest order in the driving
field strengths for the rate

implying for the transient current (fort . ν-1) the central result

with j is given in eq 13 withψ ) 0.
This result inherits the following consequences. (i) A nonzero

stationary current does not exist. (ii) The decay rateΓ for the
transient current is determined by the mean rate of phase
fluctuationsν, the amplitude of the phase fluctuationsψ0, and
also by the intensities of the field componentseaE1, 2/pω. (iii)
With the increasing field strength, not only does the field-
induced currentj increase, cf. eq 13 but also at the same time
the current decay rate is also enhanced, cf. eq 24. Moreover,
even if an arbitrary initial current was present it will decay with
the rate of eq 24, as it follows from eq 18.

To decide whether thecoherent field induced current is
asymptotically finite or only transient, one can put forward the

following criterion: (1) introduce small phase fluctuations
ψ(t) in the otherwise strictly periodic fieldE(t), cf. eq 3, and
(2) evaluate the limits in the sequence

The order of limits in eq 26 is very important and cannot be
interchanged. The application of this criterion to the quantum
current in the absence of dissipation yields within a single-band
descriptionj ) 0, meaning that no finite stationary contribution
survives. Whether this conclusion survives in the full potential
picture, i.e., beyond the single-band description, still remains
an open question. The authors presume, however, that indeed
this is the case.

III. Stationary Quantum Current in the Presence of
Dissipation

In the previous section we demonstrated that the field-induced
current is at most a transient phenomenon under realistic
conditions. The role of finite dissipation is thus crucial to
produce possibly nonvanishing,stationary directed currents.
Directed net currents in simple tight-binding models that are
generated by the combined action of dissipation and external
driving has been addressed in refs 16, 20, and 24 by use of
different approaches. It is interesting to note that the coupling
to a thermal bath in the deep cold, i.e., at the absolute zero
temperatureT ) 0 is already sufficient to produce a nonvan-
ishing current. This shows that a directed current can emerge
due to a cooperative rectification of zero-point quantum
fluctuations and external unbiased driving. Let us elucidate this
interesting point in further detail. We adopt here the conventional
model of quantum dissipation, i.e., we couple the quantum
particle bilinearly to a thermal bath of harmonic oscillators3,25,26

where x̂ ) a∑n n|n〉〈n| is the position operator of quantum
particle. The bath influence on the quantum particle is fully
captured by the Gaussian thermal force operatorF̂(t) )
∑icix̂i(t), possessing the complex-valued autocorrelation function

Here,J(ω) ) π/2∑ici
2/miwiδ(ω - ωi) denotes the bath spectral

density which will be taken in the Ohmic formJ(ω) )
ηωe-ω/ωc, with cutoff frequencyωc . ∆ and friction coefficient
η. Then, the autocorrelation function〈F̂(t)F̂(0)eqcan be evaluated
exactly.25,26. In the limit kBT , pωc it can be approximated by

where

is a function that assumes a Diracδ-function in the limitτT )
p/(πkBT) f 0. In eq 29, the first (complex-valued) term

d
dt

〈U(t)〉ψ ) - ig(t)〈R(t)U(t)〉ψ

d
dt

〈R(t)U(t)〉ψ ) -ν〈R(t)U(t)〉ψ - ig(t)〈U(t)〉ψ (21)

r̆(t) ) -ν sin2(Φ(t)/2)r(t)

Φ̇(t) ) -ν sin[Φ(t)] - g(t) (22)

〈U(t)〉ψ ) exp{-ν∫0

t
sin2[Φ(τ)/2]dτ} cos[Φ(t)/2] (23)

Γ ) 1
8
ν{sin2(ψ0) (eaE1

pω )2

+ sin2(2ψ0)(eaE2

2pω)2} (24)

j(t) ) j exp(-Γt) (25)

j ) e lim
ν or ψ0f0

lim
tf∞

d〈〈x(t)〉〉ψ

dt
(26)

HB )
1

2
∑

i [p̂i
2

mi

+ miωi
2(x̂i -

ci

miωi
2
x̂)2] (27)

〈F̂(t)F̂(0)〉eq ) p
π∫0

∞
J(ω)

cosh(pω/2kBT - iωt)

sinh(pω/2kBT)
dω (28)

〈F̂(t)F̂(0)〉eq ≈ 1
π

pηωc
2

(1 + iωct)
2

+ 2kBTηf (t) (29)

f (t) ) 1
2τT[τT

2

t2
- 1

sinh2(t/τT)] (30)
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corresponds to the zero-temperature contribution (due to the
zero-point fluctuations) and the second contribution corresponds
to the thermal fluctuations. The former one constitutes a genuine
quantum-mechanical feature which is absent in the classical
theory. The latter one corresponds to a classical Gaussian, non-
Markovian colored noise contribution with a thermal noise
intensityD ) 2ηkBT and an autocorrelation time scaleτT which
inherits quantum-mechanical features.

It is convenient to introduce the dimensionless friction
coefficient R ) ηa2/(2πp) (Kondo parameter). In ref 16, we
have shown that in the incoherent transport regime, where the
transport is dominated by incoherent quantum transitions among
neighboring lattice sites, the quantum current is given by a
Golden Rule type expression

where

and

In eq 32,pλ ) a2∫0
∞dωJ(ω)/πω denotes the bath reorganiza-

tion energy.27 The incoherent tunneling regime always occurs
for R g 1. ForR < 1, the validity region of eq 31 is restricted
(for small strengths and frequencies of the driving field) to
sufficiently high temperatures. Note, however, that for a strong,
high-frequency drivingE(t) the accuracy of perturbation theory
in the tunneling matrix element∆, which leads to the result in
eq 31, becomes drastically improved, cf. ref 28. Thus, our result
in eq 31 presents indeed a very good approximation even forR
< 1, except for the case of very smallR and temperatureT,
when coherent tunneling begins to dominate.

One can show that the application of the criterion in eq 26
does not change the result in eq 31. The current is stationary,
i.e., it does not decay in time. As follows from eqs 31 and 33,
the current vanishes identically, i.e.,j ) 0, for φ )
{π/2, 3π/2}, implying that all odd moments of the unbiased
driving field, 〈E2n+1(t)ω are zero. This result is not perturbative
in the driving field strength. Thus, the directed current appears
in form of a nonlinear response to the external driving field if
any odd moment of ordern g 3 of the unbiased driving field,
is different from zero. Indeed, forT * 0 the integrand in eq 31
decays exponentially in time. This circumstance makes the
current an analytical function of the driving strengths,E1 and
E2, respectively. As a consequence, in the lowest third order of
the harmonic mixing driving strengths one finds that the
dissipative resultj is proportional to

The nontrivial quantum prefactor involves the dissipation
strength and the temperature, see in refs 16 and 24.

The case of zero temperature is peculiar. In this case the
current ceases to be an analytical function of the external field,
thus an expansion to the lowest order in the field strengths fails.
Nevertheless, a finite rectification current persists atT ) 0.

Unfortunately, the corresponding integral in eq 31 is too
complicated and cannot be given in closed form. Some
numerical calculations are depicted in Figure 1 for the case of
adiabatic driving,ω , ωc, where the results become practically
insensitive to the variations of the driving frequencyω. Besides,
we assumed that one of the driving harmonics is weak,eaE2 ,
pωc, and the temperature is small,kBT , pωc. For the case in
Figure 1, it was sufficient to take into account only the terms
with |k| e 1 in the series 33. As it can be deduced from Figure
1 the current becomes smaller with increasing friction strength
R. On the other hand, in accordance with the previous analysis
and eq 31, it also diminishes in the limit of smallR f 0, cf.
Figure 1b.

This implies that there exists an optimal value of the friction
coefficient R which maximizes the current strength. This
nontrivial effect is in the spirit of the so-called stochastic
resonance (SR),29 where the addition of noiseF̂(t) to the input
driving signal E(t) can optimize the current response. The
considered system displays forR > 1 also a genuine SR
behavior, when the friction strengthη is fixed and the thermal
noise intensityD ) 2ηkBT is varied. The increase ofD can
also optimize the current value.16 Moreover, for R > 1 the
current flows for small field amplitudes in the intuitively
expected direction which is pointed out by the sign of〈E3(t)〉ω.
With increasing driving strengthsE1, however, the current
undergoes areVersal, i.e., it flows into the opposite, counter-

j ) ea∆2∫0

∞
dτ exp[-Q′(τ)]sin[Q′′(τ)]Im[Φ(τ)] (31)

Q′(t) + iQ′′(t) ) a2

p2∫0

t
dt1∫0

t1〈F̂(t2)F̂(0)〉eqdt2 + iλt (32)

Φ(τ) ) 〈exp(iea

p
∫t

t+τ
E(t′)dt′)〉

ω
)

∑
k)-∞

∞

J2k(2ê1 sin(ωτ/2))Jk(ê2 sin(ωτ))e-ik(æ + π/2) (33)

j ∝ 〈E 3(t)〉ω ∝ E1
2E2 cos(φ) (34)

Figure 1. Directed current vs the strength of the fundamental harmonic
in the harmonic mixing signal. The parameters used in calculations
are given.
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intuitive direction. ForR e 1 this counterintuitive behavior
dominates, cf. Figure 1b. Finally we note that forR ∼ 0.1 the
current is by 1 order of magnitude larger than forR ∼ 1. Thus,
the case of intermediateR ∼ 0.1 is preferable to observe the
rectification current in practice. We also remark that the strength
of the external driving should be optimized; notably the current
diminishes for increasingly strong driving, cf. Figure 1.

Conclusions

In this work we have focused on the possibility to generate
noise-induced directed quantum currents in periodic structures
of minimal complexity; namely, the rectification of quantum
noise in periodic tight binding lattices. The simplest way to
obtain a finite directed current is by the combined use of both
dissipation and nonequilibrium, asymmetric driving forces.

While dissipation breaks time-reversal symmetry in an
obvious way, thereby breaking also detailed balance symmetry,
it is not sufficient to yield finite transport. The key additional
element is a source of dynamical asymmetry. This so generated
directed current can also exhibit individual (possibly multiple)
reversals as a function of varying system parameters. Such
current reversals are of prime technological use: it opens the
possibility for shuttling around intodifferentdirections species
of quantum particles. At a point of net zero current the particles
may become selected according to some internal parameter such
as their initial energy, etc.; in this sense the device then operates
as a quantum Maxwell demon away from thermal equilibrium.
We have addressed with this work only the regime of incoherent
quantum tunneling. A study of the difficult crossover behavior
which involves on an equal footing coherent and incoherent
driven tunneling events toward the case with no dissipation has
yet to be undertaken.

Indeed, a most intriguing situation occurs when dissipation
is abandoned altogether. As shown in section II, a finite, time-
averaged quantum current can occur in certain circumstances;
but it will decay under realistic driving conditions when a sort
of quantum nondemolition perturbations are acting. This has
been exemplified in section II.B with a nondissipative dephasing
mechanism. This topic of quantum Hamiltonian rectifiers then
opens a Pandora’s box for all kind of further complications.
For example, the interplay of chaos and regular (classical)
motion together with quantum ergodicity is well-known to be
of relevance also for chemical reaction schemes, as pioneered
with the isomerization reaction scenario by Berne and col-
laborators in the early eighties.30 A particular interesting
situations arises when two,31 or a whole series of stadium
billiards are coupled to form a one-dimensional array. The
problem of energy transfer as well as the problem of rectification
in terms of asymmetric temporal perturbations are expected to
present interesting challenges, both in the classical regime and
in the quantum regime, respectively. For example, the crossover
from the full quantum toward the full classical behavior and
the role of chaos as a substitute of dissipation influences are
only beginning to be investigated in detail. The authors thus
look forward to to seeing these concepts promoted further on

the level of fundamental studies and also for practical applica-
tions in chemical and physical systems.
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