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Nonlinear Electron Current through a Short Molecular Wire
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The voltage and the temperature behavior of inelastic interelectrode current mediated by a short mo-
lecular wire is analyzed within a nonlinear kinetic approach that accounts for strong Coulomb repulsion
between transferring electrons. When the coupling to the heat bath occurs via high-frequency vibra-
tion modes we predict a generally nonlinear current-voltage characteristics (an Ohmic behavior at small
voltage, rising towards saturation and being followed by an abrupt decrease at large voltage) and a
bell-shaped current response vs temperature at not too large temperatures.
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Molecular wires refer to especially tailored molecular
nanostructures whose spatial and energetic properties pro-
mote a distant electron transfer (ET) between two micro-
electrodes [1–5]. These molecular systems are able to
exhibit various nonlinear features such as, e.g., a thresh-
old behavior, rectification, or a blockade characteristic. As
such, these structures form the ideal candidates possessing
the potential to construct novel molecular electronic de-
vices such as a few-molecule transistor. In recent years,
much emphasis has been placed on the study of elastic
[1–6] and inelastic [2,7–10] ET processes mediated by a
molecular wire including as well ET processes that are con-
trolled by external magnetic [6,7] and time-dependent [11]
fields. There exist molecular nanostructures [12] where the
ET process is mediated by incoherent hopping events. In
those cases the role of Coulomb repulsion will prominently
rule the transport when the molecular wire is synthesized to
be of small length, typically of 25–40 Å in size. Our pri-
mary objective with this work is to study the physics of an
inelastic hopping interelectrode electron current in a short
molecular wire where the presence of a strong Coulomb re-
pulsion between transferring electrons causes a nonlinear
current characteristics. We restrict ourself to a physical
situation where the energy separation between the lowest
unoccupied molecular orbital (LUMO) levels of each wire
unit and the Fermi level is much less than the correspond-
ing energy distance between the Fermi level and the high-
est occupied molecular orbital (HOMO) levels. In this
case, the thermal activation of an electron from the Fermi
level to the LUMO level is much more effective than the
corresponding activation of a hole to the Fermi level; con-
sequently, a hole transport is not essential.

Theoretical model.—To start, we model the molecular
nanostructure by a linear molecular wire (MW) composed
of N units that are divided by spacers (S) and bridging
groups (B), Fig. 1a. The bridging groups form the su-
perexchange electron couplings Vn n61 between the neigh-
boring wire units. It is well known from the theory of
bridge-assisted ET [13] that for a weak site-to-site super-
exchange coupling Vnn0 the coherent effects in ET play a
0031-9007�01�86(13)�2862(4)$15.00
minor role. The ET between two sites n and n0 then as-
sumes a nonadiabatic character. The corresponding quan-
tum transfer rates (denoted by gn and rn in Fig. 1a) follow
from a Golden rule calculation. The same situation holds
for the site electrode, and electrode-site transfer rates, i.e.,
xa,b and x2a,2b , respectively. In a short molecular wire
the Coulomb repulsion is shown to inhibit statistically the
appearance of an additional extra electron if the length of
molecular wire does not exceed 40 Å and, additionally, the
wire is surrounded by a nonpolar medium (with a dielec-
tric constant ´ � 3 2 5).

The physics of Coulomb repulsion thus reduces the
number of possible configuration wire states to two types
only, one without and one with a single transferring elec-
tron inside the wire. Statistically, the working states are
characterized by the weight W0 to find the whole wire in

FIG. 1. (a) Linear molecular wire embedded between the
microelectrodes. (b) Electrostatic profile (solid line) formed
by the ramp (dotted line) and the polarization image potential
(dashed line).
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the open state and the weights Wn, (n � 1, 2, . . . N) for
N singly occupied wire states, respectively. The interelec-
trode electron current through the short wire is then gov-
erned by a nonlinear kinetic process that involves just these
two classes of wire configuration weights. The remaining
wire states that statistically involve two, three, or more
transferring electrons occupying the wire can be referred
to as blocking states.

Nonlinear kinetic approach to molecular wire cur-
rent.—As far as a Coulomb repulsion allows only a
single electron transfer across the wire, we can work
with averaged site occupancies Pn # 1, (n � 1, 2, . . . N).
The working configuration weights can be written as
W0 �

QN
n�1�1 2 Pn� and Wn � Pn

QN
jfin�1 2 Pj�. In

the absence of a magnetic field, the current related to any
fixed electron spin projection is given by I � 2e �Na �
e�xaW0 2 x2aW1� where e is the value of electron
charge, and �Na � 2 �Nb is the time variation of the num-
ber of electrons which are capable of being transferred
through a molecular wire from electrode a to electrode
b. To specify W0 and Wn we have derived (by use of a
density matrix method [14]) a set of coupled nonlinear
quantum kinetic equations for the site occupancies Pn,
reading [15]

�P1 � 2�x2a 1 g1�P1

Y
jfi1

�1 2 Pj� 1 xa

Y
j
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1 r2P2

Y
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�Pn � 2�gn 1 rn�Pn

Y
jfin

�1 2 Pj�

1 gn21Pn21

Y
jfin21
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1 rn11Pn11

Y
jfin11

�1 2 Pj�, �n fi 1, N� ,
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Y
jfiN

�1 2 Pj� 1 xb

Y
j

�1 2 Pj�

1 gN21PN21

Y
jfiN21
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Our focus is on the stationary current when �Na assumes
a constant. By use of the stationary condition �Pn � 0,
and by invoking the auxiliary quantities Un :� Pn��1 2

Pn�; i.e., Pn � Un��1 1 Un�, the set (1) assumes a linear,
inhomogeneous system of equations for the set �Un� of the
form AU � C, which can be solved iteratively to yield

U1 �
1

x2a
�2J 1 xa� ,

Un11 �
1

rn11
�2J 1 gnUn� ,

(2)

where the particle flow through the wire

J �
1

Det
�xag1 · · · gN21x2b 2 xbrN · · · r3r2x2a� (3)
is given in terms of the determinant Det of the correspond-
ing matrix A.

Casting the interelectrode current into the form

I � eW0J,

√
W0 �

NY
n�1

�1��1 1 Un��

!
, (4)

we can formally consider W0 as a transmission factor. It
is this very dependence on W0 which characterizes the
physics at work in a short molecular wire.

Equations (2)–(4) describe single-electron hopping ET
across a short molecular wire. We next discuss the current-
voltage (-temperature) dependence for the case of a regular
wire with identical units. The specification of the transfer
rates is obtained for a molecular wire model where the
coupling to a heat bath occurs effectively via an active
vibrational mode of frequency v0 [16]. For this case the
theory of nonadiabatic ET [5,11,13,17] yields the rates
[13,17]: rn11 � exp�2�En 2 En11��kBT�gn,

gn � a0Fnn ,

Fnn � exp

∑
2S coth

h̄v0

2kBT

∏ ∑
1 1 nB�v0�

nB�v0�

∏nn�2

3 Ijnnj�2S
q

nB�v0� �1 1 nB�v0�� � .

(5)

Next, we specify the transfer rates xa,b and x2a,2b,.
The latter ones are determined by transitions be-
tween the terminal local level and the quasicontinuous
band spectrum. Here, the phononless transitions, i.e.,
n � 0, yield the main contribution, i.e., with xa,b �
exp�2DEa,b�kBT �x2a,2b one obtains

x2a,2b � x0�1 2 nF�DEa,b��F0 . (6)

In (5) and (6), a0 and x0 denote voltage and temperature
independent constants; nB�v0� � �exp�h̄v0�kBT � 2

1�21 and nF�DEa,b� � �exp�DEa,b�kBT � 1 1�21 are
Bose and Fermi distribution functions, respectively. T is
the temperature, DEa � E1 2 EF 2 eV , DEb � EN 2

EF with V being the applied voltage bias. EF is the
Fermi-level energy; nn :� �En 2 En11��h̄v0 with En

being the energy of the transferring electron which occu-
pies the nth wire unit; S � l�h̄v0 (l is the reorganization
energy); and Ijnn j�z� denotes the modified Bessel function.

The hopping mechanism of the underlying nonadiabatic
ET implies that the transferring electron is localized within
a molecular wire. Therefore, a spatially varying electro-
static potential [4,10] acts on the transferring electron. It
consists of the sum of the polarization image-force poten-
tial at the electrodes and the linear ramp across the metal
electrode, i.e., En � E0 1 E�i��xn� 1 eV �1 2 xn�L�
where E0 is the energy of the unperturbed LUMO level,
E�i��xn� is the polarization shift [2,10] at the site of
electron localization xn � d 1 �n 2 1�s [d and s are the
distances indicating the electron localization, L � 2d 1

�N 2 1�s is the wire length, cf. Fig. 1].
Discussion of main result.—The current (4) is caused

by the competition between the transfer rates which form
a particle flow J and a blocking transmission factor W0.
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To specify the voltage and temperature dependence of the
rates (and thus the current) we refer to values for the pa-
rameters l and v0 that characterize common ET in rigid
molecular systems [13,16].

Voltage dependence.— Let the temperature be held
fixed. The analysis shows that for the case that the
site-electrode distance d is comparable with the site-site
distance s, cf. Fig. 1a, and with a symmetric form of
polarization shift E�i��xn�, cf. Fig. 1b, the current-voltage
(-temperature) characteristic is similar both with a lo-
cal shift E�i��xn� or an averaged polarization shift, i.e.,
E �

1
N

PN
n�1 E�i��xn�. In the latter case, however, the rates

(5) become equal, i.e., g1 � g2 � · · · � gN21 :� a,
rN � rN21 � · · · � r2 :� b, nn :� n � eVs�Lh̄v0

implying Un11 �
1
b �2J 1 aUn�, with

J �
xaza 2 xbzbgN22

�1 2 gN21���1 2 g� 1 za 1 zbgN22 , (7)

where g � b�a � exp�2eVs�LkBT �, za � a�x2a,
zb � b�x2b . Figure 2a supports this conclusion for a
wide range of the bias voltage. The further discussion
and interpretation uses this simplified version. At small
bias voltage V , when g 	 1, yielding zb 	 za, all
occupancies become identical, i.e., Pn 
 �1 1 ed�21,
with d � DE�kBT and DE � E0 2 EF 1 Ei . As a
consequence, we find that the voltage behavior of the
current assumes an Ohmic law, i.e., I � GV where the
conductance is with z :� a0�x0 given by

G �
e2x0F0

kBT

µ
1

1 1 e2d

∂N e2d

2�1 1 e2d� 1 z 21�N 2 1�
.

(8)
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FIG. 2. Molecular wire current I (in units I0 � ex0 3 1026)
vs voltage bias V at room temperature T � 300 K for N �
4, L � 30 Å, d � 5 Å, S � 20, v0 � 500 cm21, i.e., l �
1.25 eV. (a) Calculations with (2), (3) (solid lines) and (2),
(7) (dashed lines). (b) Dependence of transmission W0, and
flow J (in units x0 3 1026) ruling the current I for E0 2 EF �
0.68 eV.
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Size dependence.— Let exp�2d� ø 1. This condition
yields a small electron population on the wire units; thus,
the role of Coulomb repulsion is minor. In this case the
transmission factor, W0 	 1, is maximal so that the con-
ductance (8) depends mainly on the number of wire units
N via the factor �2 1 z 21�N 2 1��21. When z is small,
this factor reduces to z��N 2 1�, i.e., the conductance of
the molecular wire becomes proportional to the inverse
wire length. A similar Ohmic regime has also been pre-
dicted for a single electron donor-acceptor ET mediated by
a bridge with a large number of bridge units [9]. For our
case of a short molecular wire, this Ohmic regime corre-
sponds to the specific condition that z ø N 2 1.

Current dependence.—When the voltage bias increases
the factor k :� exp�2DEa�kBT� � exp�2�DE 2

eV �d�L���kBT� which controls the delivery rate xa for
an electron from the Fermi sea to the first unit increases
as well. This in turn causes the current to rise. At large
V , when g ø 1, (7) reduces to J 
 xaza��1 1 za�. For
za ¿ 1, it simplifies to J 
 xa � nF�DEa�. Therefore,
upon observing that with k ¿ 1, i.e., nF�DEa� 	 1, one
finds that all quantities, the flow J , the transmission W0,
and the current I saturate, cf. Fig. 2b. Notably, the length
of the saturation plateau shortens with deceasing z . At
very small z , the plateau crosses over into a peak (curve 2
in Fig. 2a). Physically, the appearance of the plateau cor-
responds to the switch-on of a resonance mechanism for
tunneling from the electrode to the terminal wire unit. It
occurs at voltages when DEa # 0, i.e., when the electrode-
site bias eVd�L exceeds the effective gap DE. At very
large V , when n ¿ 1, the current formally exhibits a
sudden drop which is due to the limiting electron-phonon
coupling for multiphonon processes as encoded with the
corresponding Franck-Condon factor in the Jortner model.

Temperature dependence.—Next, let the voltage bias
be held at a fixed value. The temperature behavior of
the current is then controlled by the parameter k for the
delivery rate, the intersite parameter g, as well as by the
factor exp�2h̄v0�kBT � and n, which all specify
the transfer rates. Figure 3 depicts the frequency effect: at
the fixed reorganization energy l, the ET process is much
more effective if the coupling to the bath occurs with a
high-frequency vibration mode; e.g., at room temperature,
T � 300 K, the difference in currents comprises 2 orders
of magnitude for v0 � 1000 cm21 and v0 � 2000 cm21,
respectively. At high frequencies, the current-temperature
dependence assumes a bell-shaped behavior. It can be
explained as follows: for eVd�L , DE, i.e., DEa . 0,
and the first energy level of the transferring electron being
positioned above the Fermi level the factor k is at low
temperature far too small to provide an ample population
of the wire with transferring electrons. Thus, both the
inner site occupancies and the resulting current are small.
With increasing temperature the occupancies Pn, the
flow J , and the current I rise as well. The rise of occu-
pancies, however, causes the transmission factor W0 to
decrease. A bell-shaped behavior in an intermediate
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FIG. 3. Interelectrode current I from (2), (7) (in units I0) vs
temperature T at a fixed voltage eV � 0.01 eV for N � 4, L �
30 Å, d � 5 Å, E0 2 EF � 0.48 eV, l � 1.25 eV. The lines
are calculated for (a) 1 (v0 � 500 cm21), 2 (v0 � 700 cm21),
and 3 (v0 � 1000 cm21); (b) 3 (v0 � 1000 cm21), 4 (v0 �
1500 cm21), and 5 (v0 � 2000 cm21).

temperature regime thus reflects the competition between
the delivery process for an electron from the electrode onto
the adjacent terminal unit and the repulsion effect induced
by the transferring electrons. The bell-shaped behavior,
however, is not universal; a moderate bath oscillator
frequency can cause a monotonic current-temperature
characteristic, cf. Fig. 3a.

Conclusions.— In this work we have elucidated the char-
acteristics of an inelastic (hopping) ET through a short
molecular wire. The basic expressions for the particle flow
J and transmission factor W0 follow from the stationary
solution of the corresponding set of nonlinear quantum ki-
netic equations for the site occupancies Pn (1). In this
way, all transfer rates displayed in Fig. 1a become defined
in terms of the microscopic site-electrode and site-site
electron couplings, as well as the vibrational structure of
the thermal environment. The effect of Coulomb repul-
sion is accounted for in a nonlinear kinetic manner via a
transmission factor. The Coulomb inhibition is most ef-
fective when the transmission factor W0 assumes a small
value. At fixed temperature, an Ohmic behavior can ap-
pear at small bias voltages, cf. Fig. 2b. At strong bias,
however, one can observe a saturation or rather a broad
peak behavior, cf. Fig. 2a. The situation changes for a
fixed voltage: For a high vibrational frequency of the
bath mode one can find an intermediate decrease of the
current with increasing temperature. The current-voltage
and the temperature-voltage characteristics depend sub-
stantially on the form of the transfer rates and the pa-
rameters specifying those rates. The results of the present
work relate to a model where the hopping process occurs
due to a coupling with a high-frequency vibration mode.
Independently on the specific form of rate constants, the
bell-shaped behavior of the current has its origin mainly
in the transmission factor W0. Therefore, in virtue of the
strong nonlinearity caused by the Coulomb repulsion be-
tween the transferring electrons in a short wire, the cur-
rent can be controlled externally upon varying not only
the voltage but also the temperature. Apart from its po-
tential for molecular electronics the nonlinear processes
dealt with in this work do impact other transport schemes
such as the charge transfer in low-dimensional systems in-
cluding strongly anisotropic single crystals, doped poly-
mers, supramolecular compounds, and even transport in
ion channels.
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