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In this work we apply a generalized Zusman model to study the influence of an external periodic
electric field on the dynamics of electron trandfeéil) reactions coupled to an overdamped reaction
coordinate which is treated semiclassically. Being nonperturbative in the tunneling coupling this
approach goes beyond the conventional Golden Rule description and includes both adiabatic and
nonadiabatic electron transfer regimes. Explicit expressions for the ET rates are derived in the
high-frequency driving regime and compared with exact numerical results. Our novel analytical
findings constitute a useful approximation scheme, as long as the dynamics can be characterized by
a single exponential relaxation. We further demonstrate that the Golden Rule description becomes
drastically improved in the presence of strong, fast oscillating fields. Moreover, we discuss
interesting phenomena such as an inversion of populations and a driving induced transition from an
adiabatic to a nonadiabatic reaction dynamics. 2@0 American Institute of Physics.
[S0021-9606)0)50248-1

I. INTRODUCTION can be modeled as a stochasdimstein-Uhlenbeck process
] ) ) Zusman then developed a phenomenological theory in re-
The influence of an environment on the reaction rate ofy|acing the dependence of the electronic levels on the reac-
electron transfer processes in condensed media presents;d, coordinate by the stochastic process in the Hamiltonian
long standing problem which still attracts ever growing IN- making the latter explicitly time-dependent and applying
terest. T_he current state of the art of the theme of ele_Ctroﬂwereafter the Stochastic Liouville Equation approach. Be-
transfgr is sumr_narlzed in two recent volumeshdivances in cause such approaches yiditorrect asymptotic popula-
C_heml_cal Phys!cé E_speually, the interplay petwe_en nona- tions, the obtained equations of motion have been corrected
diabatic and adiabatic electron transfe) regimes is much ad hoc to ensure the correct thermal detailed balance behav-

in the focus of current research activity. Martasid Hush ior Gara. onuchic. and Ambeaaokarovided a full micro-
laid the groundwork to the adiabatic electron transfer theory_ ' 9. ' gaorar

making use of thelassicaltransition state theorgTST) ap- scopic justification to the p_henomenologglcal approach by
. Zusman and others, and derived Zusman’s equations from a
proach. Soon after, Levich and Dogonatimere among the

first to address ET as a nonadiabatic process using Fermitgme—mdependent system plus bath Ham|lton|an. T_he|r ap-
Golden Rule approach. This full quantum-mechanical approach opens the doorway how the discussed semiclassical,

proach is based on the assumption that the time scale of t@tnopperturbativdheqry could be generalized further, €g.
fast bath relaxation dynamics and the slow electronic tunnel'—nCIUdIng a nonparabolic energy dependgnce. A special merit
ing process can be separated. It corresponds to a relative the Zusman approach is the fact that it naturally connects
small electronic coupling between donor and acceptor site$'® nonadiabatic and the solvent controlled adiabatic transfer
which is considered perturbatively. In the lowest order of€havior, even though the simplest pictures of the two dif-

such a perturbation theory the rate of electron transfer i$erent regimes of ET reactions appear to be very different
proportional to the square of the electronic coupling. Bothffom each othet.
adiabatic (strong electronic coupling and nonadiabatic Several subsequent modifications of the Zusman model
(weak electronic couplingapproaches to ET have been ex- have led to the development of more general descriptions. In
tended and dwelled upon by many researchers in the fielRefs. 8 and 9, time-dependent solutions of the Zusman
(see, e.g., Ref. 1 for relevant review articles and further refmodel are presented for the case of a polar non-Debye me-
erences therejn dium with frequency-dependent friction. It was demonstrated
A promising attempt to unify both wings of the ET thatthe decay of the donor population becomes strongly non-
theory and to consider the electronic couplimgnperturba-  exponential in contrast to the case of a nonpolar Debye sol-
tively has been undertaken by Zusmand Alexandro\.  vent. While most of the previous studies employ essentially
The original Zusman work envisages the ET reaction as #&wo reaction potential surfaces with a one-dimensional reac-
two-state tunneling problem with garabolic dependence of tion coordinate, very recent works concentrate on the gener-
the electronic energies on the nuclear reaction coordinatalization of the Zusman approach to electron transfer in
This harmonic reaction coordinate is considered classicallythree-states systems within a two-dimensional configuration
it is assumed to beverdampedand because of this fact it space:®~*? Within such approaches, problems concerning
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multielectron events and/or the interplay between sequential Wy ()
and superexchange mechanisms can be examined. Vi(z) Va(2) :
Recently, the problem of external field control of nona-
diabatic ET attracted much attentibit}’ There, the theory
of the driven spin-boson modésee the reviewf for a de-
tailed discussion and further referenchas been applied to
study periodicallydriven ET dynamics. In those studies, it
was shown that in the nonadiabatic Golden Rule regime fast
driving can either suppress strongly the rate of electron trans- Reaction Coordinate

fer, or strongly accelerate nonadiabatic ET, as well as to

invert the direction of electron transf&y4 Within the FI(_3. 1. Schematic representation of two _unblas_ed O!|abat|c Born—Oppen-
heimer surface¥; ,(x) and the corresponding adiabatic potentils(x).

present StUdy we shall generghze these previous works bQ’he distance between the adiabatic levels is given by twice the nonadiabatic
yond theGolden Rule ETIn doing so, we shall rely on the interactionA.

conventional, well established quasiclassical formulation of
the ET problem by Garet al,’ but with the prominent gen-
eralization which accounts for time-dependent external driv
ing. Our main objective is to find an answer to the questionO
how external driving fields can influence and control the be- o
havior beyond the Golden RUET theory. Therefore, our A The model Hamiltonian
main focus is to generalize the existing concépt£to in- The minimal framework to describe driven electron
clude the effects of time-dependent driving. transfer processes consists of two diabatic electronic states
The structure of this paper is as follows. In the nextV, 5(x) and a generalized one-dimensional reaction coordi-
section we briefly review basic concepts in electron transfenatex. The two electronic states before and after the charge
theory and introduce our model Hamiltonian. Ideas such agansfer are usually denoted as dorbr and acceptof2)
diabatic states, adiabatic states and the Born—Oppenheimstate, respectively. The reaction coordinate with the effective
approximation are elucidated. The derivation of the dynamimassm represents some distinctive nuclear degree of free-
cal equations of motion is carried out in Sec. Ill togetherdom (e.g., a combination of certain intramolecular vibra-
with the discussion about their region of validity. There, wetional mode$ coupled to the electronic transfer systém.
shall also introduce thdriven Zusman equationSection IV Moreover, the use of the Born—Oppenheimer approximation
is devoted to the discussion of analytical approaches andllows one to formulate the starting Hamiltonian as

Energy

these energy surfaces have been developed to a high degree
f efficiency in modern quantum chemisty.

corresponding results. In the parameter regime of high- a2
frequency driving we shall show that forward and backward  fj_ (x,p,t)=V,(x,t)|1)(1]+ V,(x,1)[2)(2| + p_ (1)
transition rates of the transfer process can be extracted. In 2m

Sec. V, we present a numerical formalism to solve the genpue to the external driving forces(t) the expressions
eralized Zusman equations for arbitrary driving forces. Secy, (x t):=V, (x) —d; ,£(t) in Eq. (1) are explicitly time
tion VI contains a comparison of the numerical findings with gependent. Here, the static diabatic electronic cuegx)
the analytical results obtained in Sec. IV. We investigatg(see Figs. 1 and)Zonstitute Born—Oppenheimer potentials
several effects introduced by the external driving, amongor the motion of the reaction coordinateat the fixed elec-

those are the inversion of population and the transition fromron configuratiom=1,2. The influence of the applied elec-
adiabatic to a nonadiabatic electron transfer. Finally, we con-

clude with a summary of our findings.
Il. A GENERALIZED ELECTRON TRANSFER MODEL

An intermolecular electron transféET) reaction is usu-
ally associated with a transition between molecular elec-

- - - - TN
tronic levels which is accompanied by a nuclear rearrange- B
ment. To model such processes the relevant electronic states o

must be known. The foundation of ET theory involves a
description in terms of docalized electronic initial state,
which we will refer to as the&lonor (D) or reactant state, and
alocalizedfinal state, which we will refer to as trecceptor

(A) or product state. To determine thediabatic molecular
states one usually makes use of one of the most prominent
concepts in molecular physics and chemistry, the so-calledlig, 2. The diabatic reactai, and product, energy surfaces presented
Born—Oppenheimer approximation. In the first stage, they harmonic functions of the reaction coordinatgef. Eq. (5)]. The biaseq
electronic problem is solved while keeping the atomic nucleis the difference between the energy minima of the surféets the reor-

. . . . ’ . ganization energy, ang* is the point of intersection at which the electron
(reaction coordinafefixed in configuration space. In second transfer takes place. The curvature of the wells is characterizes,byrhe

;tage, the nuclear dynamics on a given Predetermined poj[ea]rved arrow indicates relaxation along the reaction coordinate and the
tial energy surface is treated. The techniques for calculatingtraight arrow indicates the crossing motion.
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tric field on the electronic subsystem is considered in the 1 2

dipole approximation, and is given g ,£(t). In this ex- HB=§Z ] (4)
pressiond; , denote the electric dipole moments of the '

charge density distribution associated with the electron loin Eq. (3) describes the thermal bath of harmonic oscillators
cated on the donor or acceptor site, respectively, &nyis  and its coupling to the reaction coordinate. The latter one is
the time-dependent field in the semiclassical approximationwritten in a separable bilinear form with a so-termed counter
Strictly speaking, bothd,; , and £(t) are vectors and their term[quadratic inx contribution in Eq.(4)] which removes
scalar product should be considered. However, we shall ashe renormalization of the potential curves due to friction.
sume that the difference of dipole moments is aligned withThis coupling can uniquely be characterized by the bath
the electric field and, therefore, we use scalar notations. spectral functiorﬂ(w)z(w/Z)Ei(ciZ/miwi)é(w— w;). In the

Note also that the chosen form of the coupling to thecontinuum limit we choose the smooth Ohmic fodfw)
electric field excludes thélirect influence of the external = 7w exp(~w/w,) with the frequency cutoffw,—« (Ref.
driving on the reaction coordinate. This assumption mean&2) and phenomenological friction coefficient This consti-
that the reaction coordinate bears only a very small or ndutes a realistic choice for modeling viscous friction in many
associated electric charge or dipole moment. Besides, theT systems. For example, in experiments with several
dipole momentsil, , generally should depend on the reaction solventé® it has been observed that the behavior of the bath
coordinatex. However, we shall neglect thisdirect influ-  correlation function is qualitatively similar to the theoretical
ence as a higher order effect, which is beyond the scope girediction for a solvent with an Ohmic spectral density.
the present work. These very same approximations are imMoreover, it is noteworthy that the same Ohmic-type spec-
plicitly assumed in all previous works on driven electron tral density has been found in simulations of the primary ET
transfert®-1° in bacterial photosynthesf4.

To study the influence of external time dependent elec- Next, we want to emphasize that the electronic degree of
tric fields on ET processes the Hamiltonidn represents the freedom, described by the spin matrides,, is not directly
simplest model which can be treated with reasonable effort<oupled to the environment. The influence of dissipation on
However, the Born—Oppenheimer approximation becomeghe tunneling dynamics takes place via the reaction coordi-
invalid in the vicinity of the crossing poimt* of the two  natex, which in turn is coupled to the remaining nuclear and
potential curves wher¥{(x*)=V,(x*) (cf. Fig. 2. Here, solvent degrees of freedom. However, the reaction coordi-
electronic transitiongtunneling between the two diabatic nate in our model is not directly coupled to the external field
electronic levels start to play an important role. This can beand experiences the field influence via the electronic degree
accounted for by adding an additional term of freedom only.

Ci
Xj— — X
: miwiz

Hun=3A(11)(2]+[2)(1)), 2
B. The potential curves

to the starting Hamiltoniaril). This contribution is respon- Basic details of the theory presented below are valid for
sible for the coupling between the two surfadésandVz.  generic forms of the diabatic potential curés,(x). Nev-

The charge transfer is induced by the electronic couplingtheless, we shall restrict ourselves to the standard harmonic
matrix elementA which characterizes the degree of overlap yggijator potentials

of the donor and acceptor wave function, and which gener-
ally also depends on the reaction coordinate. However, we V1(X)=%mngz’
have additionally used the Condon approximation in @.
assuming that the electronic couplidgx) :=A is a constant.
Moreover, in condensed phase ET complexes, the abowsherex, is the spatial displacement between the two shifted
system is immersed in a thermal bath which captures thearabolic surfaces, ang is the energy distance between the
effect of other nuclear and solvent degrees of freedom on theinima. For convenience, the donor w¥l|(x) is centered
reaction coordinate. Phenomenologically, this situation camn the coordinate origin. The curvature of the two wells is
be described by friction. On the microscopic level it is mod-assumed to be equal and is characterizedvpy In the lit-
eled by a bilinear coupling of the reaction coordinate to aerature the potential curves are often characterized by the
bath of independent harmonic oscillators of magsand  well-known reorganization energy
frequenciesw;. Collecting all our assumptions we end up
with the following archetypical Hamiltonian

®)

V(X) = 3 Mwd(X—Xo)?— €,

E=3 mw(z)x(z)' (6)

and the crossing point of the diabatic curves

Her(t)=3[Vi(x,t) = Va(x,1) ], + 3 A5 . X0 € E,—eo .
1[p2 o =T mwlx,  2E, Xo- @
+5 _+V1(X,t)+V2(X,t) 1+HB! (3) . .
2|m We will use these parameters when appropriate. The connec-

tion between the various parameters is illustrated with Fig. 2.

where we have introduced the pseudo-spin operdfasli  In the adiabatic basis, the potential energy of the Hamil-
matrice$ o,:=[1)(1|=|2)(2], &,:=[1)(2|+[2)(1], and the  tonianHer is diagonalized. The corresponding adiabatic sur-
unity matrix 1, respectively. Furthermore, the term faces are the eigenvalues, i.e.,
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V() =3[ V1) + Vo)1= 3 V[ V1(X) = Vo() ]+ A%, d 0. . /A
(8) gi PO =~ 7 [Herd®.p(O] = 5 o [%[P.p(D]+ ]
If, without driving, the energy gap between the adiabatic KT
surfacesA is larger than the thermal energy>kgT, the — %[x,[k,ﬁ(t)]} 9

upper level is practically not occupied and may be excluded

from the further consideration. Thus, an adiabatic descriptionvhere [A,B]:=AB—BA and [A,B],:=AB+BA denote

on a single adiabatic surface becomes adequate. When tkemmutator and anticommutator of two arbitrary operators,
electronic couplingA is relatively small, or time-dependent A andB, respectively. In Eq(9) the dissipative part has the
driving is present, one needs to consitheth potential sur-  well-known Caldeira—Leggett forfh and the region of va-
faces; the reaction can then proceed either adiabatic or nofidity of this equation is given bykgT>{fwq,% 7]/m}.25
adiabatic. This means that the reaction coordinate varies on a time scale
which is slower as compared to the thermal environnent

IIl. EQUATIONS OF MOTION A. Wigner phase-space representation

) ) o ) We are interested in the limit when the quantum behav-
In this section we focus on the derivation of the dynami-jq of the reaction coordinate and the environment is not

cal equations for the reduced density matrix elements, 9OV hortant. For this purpose, it will be convenient to represent
erned by the electron transfer Hamiltonibdg(t) (3). We

) : ) ‘ 3 Eqg. (9) in terms of aquasiprobabilitydistribution, such as a
are particularly interested in a mixed classical-quantum deppase space distribution function. Similar representations

scription of the problem, where the reaction coordinate ig,,ye proven to be extremely useful when studying the semi-

treated as a classical object moving in a viscous medium andassical limit of quantum mechanical systems. The most
is coupled to the electronic degrees of freedom, which are gfominent example from a variety of possibilities is given by

a pure quantum nature. The resulting equation of motion fof,,, Wigner functiof®:2’

the reduced density operatprcan be derived, e.g., by the

cumulant expansion methdd.Note that the characteristic W(x.p,t)= LJ'Hch, exp(—ipx'/#)
decay time of correlations in the thermal bath is givierthe T 2mh e

limit w.—) by the thermal timerr=%4/(2wkgT). If we )l A ,
assum; thai th)i/s time scale is muI:h sh(orterBth)an any other X(xFx2p(1)]x=x"12). (10
characteristic time scale of the dynamics of the system Note thatW(x,p,t) is the 2x2 matrix in the present case.
the absence of dissipatipand the relevant dynamics takes Applying the transformatiori10) to the master equatiof®)
place on the coarse-grained time scafer;, the following  and keeping only terms of leading order/if#. —0), we end

Markovian master equation can be deried up with the following semiclassical equation of motion,
? xpt = = L ivpys (WS L vyt v 77 iupyt kT g (i
WGP == = p)+% ax 2L V106D +Va(x,1)] +E%( p)+ 7k (?_pZ( )

L9 5, Ollv v ilv v o 1A“\iv 11

+5 35102 Wl g5 S IVAD = Vo 0] = 1/ 5 (Va()) = Vo))t 5 A3 W, (11)

We remark that in Eq(11) the intrinsic quantum mechanical These relations can readily be prov&dnd for powers ok
nature of the electron dynamics is depicted by the presencandp they hold iteratively.

of Planck’s constant in the last contribution. The assumption In the next section we shall simplify further the semi-
for neglecting higher order terms fnis consistent with the classical equatiorfll) by assuming the overdamped limit
validity regime of Eq.(9). It implies that the relevant energy y> wy with y= n/m. In this latter case the reaction coordi-
of the reaction coordinate is small compared to the thermahate possesses the characteristic relaxaaomocorrelatioh
energy. Therefore, the reaction coordinate can be treateiime 7= y/wg.

semiclassically. In deriving the Fokker—Planck-type expres-

sion (11) we have utilized the operator correspondences B. Zusman equations

In the overdamped limit > w,), the dynamics of the

XﬁH(XJr f i) W(x,p), pxes|x— f i) W(x,p) reaction coordinatenomentum ps not of relevant interest,
2 dp e 2 dp Y and thus can be integrated out, i.e., in the basis of localized
(12 states|i), i=1,2 we have
. in 9\ . o ih 9\ . N
pp<—>( —7&>W(x,p), pp— p+?&)W(x,p). Pij(X,t)—ledPVVij(X,p,t), (13
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where ¢--);; :=(i|(--*)|j). For large time¢>y~! the equa- The diagonal elements,;(x,t) and p,,(x,t) can be inter-
tions of motion forp;;(x,t) can be obtained by a method preted as the probability distribution functions for the reac-
termed the inverse friction expansioit® Here, to leading tion coordinate positiox when the electron is situated at the
order iny~ ! the distribution for the reaction coordinate mo- donor or acceptor site, respectively. The external driving
mentump at any space point is assumed to be Maxwellian force €(t) in Eq. (15 can be understood as a modulation of
so thatW takes the form the energy gag, between the minima of the two potential
surfaces in time. The specific form of this modulation is
defined by the time dependence of the driving fi€ld)
e —n2 .
[2mmksT exp(— p/2migT) pij (X.1). which can be arbitrary. It is worth noting that, on the phe-
(14 nomenological level of description—using the Smolu-
The interested reader can find higher order contributions ir(]:how§k| like equations15) instead of the F_okker—PIanck
) o equation(11l)—corresponds to the assumption that the dy-
the series expansion in Ref. 29. We neglect such complex_ . . . .
) L " “hamics of the reaction coordinate can be described by an
higher order contributions because they do not provide im- : L : .
. . .~ overdamped oscillator, i.e., inertia effects are neglected. This
portant corrections as long as the time scale of the driving is . . .
is a standard assumption met across the literature without

long compared to the time scale necessary for the reaction . . : . ! )
: - much detailed discussion. To determine precisely the region
coordinate momenturp to equilibrate.

To ensure the convergence of this method the dampinOf validity of this assumption requires a separate study which

constant has to be sufficiently large. For static harmonic po- far beyon_d L he scope Qf t_he present work_.
tentials(5) the region of validity is determined by> wq.2° In the limit of a vanishing driving amplitude(t) =0,
. gion ot Y . @o- Egs.(15) reduce to those of Garet al.,” who obtained them
Bearing all this in mind we finally end up with the novel, . hi th intearal scheme. Thev have also been derived
semiclassical Smoluchowski-type equations, within a pa_ 9 - NSy L
[whene(t)=0] by Yang and Cukiér by a projection opera-
) tor method. Equation$l5) are named in the literature the
21 P = L1p1a( 1) =i 5[ poa(X, 1) = pra(X, D], Zusman equationsaccording to the pioneering work of
Zusmarr who introduced them in 1980 in a more phenom-
enological manner using the stochastic Liouville equation
approach. One can deduce that our generalized Zusman
(15) equations(15) are a hybrid between the equations for the
density matrix of spin 1/2 system in an external field and the
well-known Smoluchowski equation for diffusion on the two
i diabatic surface¥;(x) andV,(x).
— —[V1(X) = Vo(X) + e(t) ] p1a( X, 1), Recently, the undriven Eg$l5) have been analytically
h and numerically investigated by several authfol%2°31-33n

Wij(X! plt) =

J A
Epzz(X.t) =LopoAX, 1) —i ﬁ[Plz(X-t) —p2a(X,0)],

J A
Eplz(xyt) =Lp1X,1) =i ﬁ[Pzz(X:t) —pu(X,1)]

J A contrast, we will next focus our attention on the driven, time-
Epﬂ(x,t) =Lpy(X,t)—i E[pll(x,t) —paAX,1)] dependent case.
i
+ 2 (Va0 V(0 +€(t) Ipau(x,). IV. ANALYTIC HIGH-FREQUENCY SOLUTION

. o ) ) With Eq. (15) at hand we shall derive an analytic expres-
Here, the time-dependent electric field influence is containedjq, for the electron transfer rate constant in the limit of
in the function high-frequency driving. To this goal, we shall reduce, by
e(t)=(d,—dq)E1). (16)  generalizing the reasoning in Ref. 19 onto the driven case,
the set of four coupled Zusman equatidd$) to only two

In Eqg. (15 we have defined the two Smoluchowski Opera'coupled equations for the diagonal elemepts(x,t) and

tors,
p2AXt).
9 9 By formally solving for the two off-diagonal equations
£1:D5(5+ kB_T 5V1(X))7 for p1, and p,q in (15) the diagonal populations are repre-
sented by
J [ d 1 9 (a7
L=D — | —+ ——= —V,(x) J AZ e
2 ax\ox  kgT ax 2 ’ Epll(x,t)=—WRe dx’f dt’ G(x,t|x’,t")
— 0

which describe diffusion on the energy surfadggx) and

V,(x), respectively. Moreover, the operat6e (£,+ £1)/2 X[p1a(X" 1) = poa X', t") ]+ L1p12(X,1),
describes diffusion on the averaged potential. The macro- A2 . . (19
scopic diffusion constanD is connected with the phenom- Epzz(x,t)= WRGJ dx’J' dt’G(x,t|x’,t")
enological friction coefficienty and the temperaturg by the ‘°° 0
Einstein relation X[paa(X' 1) = pad X' )]+ Lapza X, 1),

_ kgT  kgT where the propagatdB(x,t|x’,t') is the Green function de-

=—=— (18 . i

my 7 fined in the operator form by
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"X MK [P D)~ P X )]

— oo

G=[dlot— L+i[V1(X)—Vo(x)+e(t) )R] L. (20 J__ +
Epll(xit): —f

We explicitly evaluate this Green function in the Appendix
for the harmonic surfaces in E¢). The result is given in + L1p1a(X,1), (25
Eqg. (A2) together with Eqs(A3), (A7), and(A8).

To proceed, we consider a harmonic driving of the formW'th the integral kernel given by

A2 ®
e(t)=ecog Ot), (21) M(x|x")= %zRefo dt'G(xt[x"). (26)

and focus our attention on the limit of high-frequency driv- By use of the propagator
ing, i.e., we assume that the driving perio@/Q is smaller _

than any characteristic time of the electron transfer and the Gao=(aldt= L1, 27
diffusive motion in the potential wells. A good approxima- describing diffusive motion on the surfadg 5x), the for-
tion to the dynamics op;;(t) then amounts to perform the mal solution of Eq.(25) is given by

average of Eq(19) over a period of the fast driving field to e e )
obtainp;i (x,t) =(pii(x,t))o . The resulting equations for the 3, (x,t)= _f dx”f dx'f dt"G(x,t"[x" )M (X"|x")
averagedcoarse-grained dynamics read — — 0

5 2 e X [p1aX' 1) = P2l X', 1)]. (29)
S Pu(Xt)=- z_ﬁzReﬁx dx’ Jodt’G(X’t_t'|X’) Note, that an analogous equation holds fgs(x,t).
In a second step, we follow the Ref. 19 and assuming
X[ p1a(X",t") = pos( X", 1) ]+ L1p11(X,1), that the spatial variation oB; 5(x,t”|x") is much smoother
(220  compared to that oM(x”"|x’) we approximate the integral
J__ A2 A L . over X" in Eqg. (28) as [dX'Gy(x,t"[X")M(x"|x")
EPZZ(X't):z_ZRej_m dx Jodt Gxt—t'[x") ~G,(x,t"|x") fdX"M(X"|x"). This approximation is based
B o o on the fact that, generally, the diagonal densities in (Eg)
X[p1a(X' 1) = poa X', 1) ]+ Lopaa X, 1), vary smoothly on the space scale of variations of the off-

- _ _ diagonal densities, see also Refs. 5, 7. Then, by applying
where(---)==(--)o denotes the time-averaging over the pe-G1 tg the resulting equation we finally obtain
riod of the external field. The averaged Green function

~ 1! rogr J__ _ — —
COut=tX)=(G(xtx" t))a. see Eq(A2), reads 2P == KOO[Bra(x,) = P )]+ Lipra(x.),
G(x,t—t'|x")=Go(x,t—t'[x")J ( 2€ Q(t_t/)) J @9
X,t—t"|x")=Go(x,t—t'|x —sin———— — _ — —
( o a2 S PaAX ) =KOO[p106) ~ Pas ) 1+ Lm0,
Xexr{ _ fit—fo(t—t')}. (23) ¥yhere we have introduced the twice-integrated Green func-
ion
2

with Gy(x,t—t’|x’) given in Eq.(A7). To obtain Eqs(22) _ AT e ,f” =
and (23) we have used the high-frequency decoupling as- K(x) 2h° Re — dx 0 dr G, t']). (20

sumption (G(x,t|x,t")p;i (X',t"))a~G(x,t
and the well-known relatiori"18

X\ ) pii (X,t) Using Eq.(23) and Egs(A7)—(A10) in Eq. (30) we obtain

KO0 A2 wdtJ 2¢ Ot
ie [t b 2e . Q(t—t) X :WJO ol 70 S5
<ex;{%£, cog (t")dt >Q—Jo(msmT), L
X
(24) ><cos( i;T(X——l)(l—e“”)wL %t
0
where Jy(z) is the zero order Bessel function of the first OE kaT 2
kind. Hence, for a fast driving field time translation invari- xex;{#T[(l_e—t/r)
ance is recovered by this averaging procedure, and the prob- h

lem becomes formally equivalent to a static one where the
influence of the driving has been absorbed in the time depen- + %(l—et”)z—tlr]> . (31
dent prefactody((2€/2.Q)sinQ(t—t")/2]).

We proceed with performing two further crucial ap- The integral in Eq(31) can approximately be evaluated by
proximations on Eq(22). First, we assume that the time making a short-time approximation in its integrand. In doing
variation of G(x,t[x’,t"), which reflects the dynamics of the so, the corresponding functions in cos(and exp(:-) in Eq.
coherenceg5(x,t) and p,i(x,t), is much faster than the (31) are expanded to the lowest nonvanishing order in time

dynamics of the populationg,(x’,t") and po(Xx',t"). i.e., to the first order in cos() and to the third order in
Thus, we can apply a Markovian approximation related toexp(--). Then, one observes that in the absence of external
the time integral in Eq(22), yielding driving the functionK(x) has a peak around the crossing

Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 113, No. 24, 22 December 2000 Electron transfer in strong fields 11165

point of diabatic surfaces*, cf. Eq. (7). Moreover, in the However, the numerical results of Sec. V will prove that
presence of driving one finds[using the identity even in the activationless regime satisfactory rate results can
Jo((2e/h.Q)sinQ2))=37__ J?(e/hQ)exp(nQt) in Eq.  be obtained.
(31)] that this peak is splitted into the additional peaks at In terms of the Laplace transformatiorﬁ()\)
X3 =x*—nhQxo/(2E;), n==*1+2,.} possessing the == exp(—\t)f(t) the population equatiofB2) reads
relative weights)3(&/A Q). )

With Eq. (29) we are able to reduce the full Zusman  [K+N]P(A)=P(0). (37
equationg15) to a simpler pair of coupled equations which
involve only the populationg,; and p,,. The structureof 2. Derivation of rate equations
Egs.(29) and (30) is formally equivalent to the expressions
obtained in Ref. 19. Therefore, we can follow in our further
analysis of Eq(29) the reasoning therein.

An analogous equation can be obtained starting from Eq.
(290 with the time independent high-frequency functions
K(x), given in Eq.(30). The procedure to achieve this ob-
jective is known'® We rewrite expressiof29) for the diag-
onal elements of the distribution function in matrix notation,
ie.,

Electron transfer processes are characterized by the cor-
responding transfer rates. In particular, the experimentalists _— 5(x t)= —[K(x)—L]p(x,t), (38)
are interested in the rate descriptiGhat all possible be- dt
cause this provides them with the relevant time scale of thgyith the definitions
experiment. To extract rate coefficients from E9) it is

A. Rate equations

convenient to compare them to some phenomenological rate (x t):(Fll(x,t) L= L, 0

equations. L% paAX,t))’ 0 L,

1. Phenomenological rate equations K(x) —K(x) (39
For the generic reactioDA=—D " A~ the following sys- )=\ _ Kx) K(x) |

tem of equations is often invoked:

i( P1a(t) ( k" - k) ( P1(t)
dt | Poy(t) —kT k™ )\ PgyAt)

Next we perform the Laplace transform on E§8) which

results in a similar equation as E7). However, it still

depends on the reaction coordinatelo achieve an expres-
(32)  sion for the integrated populations we act on this equation

Here,k* andk~ are the rate constants for the forward andWith the projection operator

backward reaction, respectively, and the corresponding g1(x) 0 +oo +oo

populationsPj;(t) on the donor and acceptor surfadgsand H(---)=( 0 (x))J (--)dx= g(x)J (--+)dx,
V,, respectively, are obtained by integrating the probability 92 o
density over configuration space, i.e., exp — V1 AX)/kgT)

91280 = Ty oxpl — Va0 kg T) |

)E—kP(t).

— o0

(40)

+
Put= | ddix. (33 /
o and its complemer®=1—11. By (i) using standard projec-
Due to conservation of probability the relatioRy,(t)  tion operator manipulationgji) utilizing the relationsIIL
+P,,(t)=1 holds. With the initial conditions;(0)=1  =0,Lg=0, and(iii) assuming that the initial distributions of
andP,,(0)=0, Eg.(32) can easily be solved to give the diagonal densitieg;;(x,0) are taken at equilibrium, i.e.,
Pi(t)=P.+(1—P.)exp —TI't). (34) pii (x,0)=0;i(x)P;;(0), i=1,2, one finds that

Equation(34) predicts an exponential decay with the total [m(A)+N]P(A)=P(0), (41
rate constant” for the reaction given by the sum of forward with the matrix
and backward rates, i.e.,

I=k"+k". (39

At long times the stationary limit

m(\) =g MIK(1-[A+Q(K—L)]"*QK)g. (42)

Using some algebraic manipulations and the propef@ks

=L, Lg=0, one can identically transform E¢2) into the
k™ series

"k 36

is reached. Thus, in writing down E¢32) we have implic-

ity made use of the assumption that the relevant dynamics = | ] ) o
can be described by a single exponential decay. For higH’-Vh'Ch is convenient to Lntroduce approximations below Eqg.
frequency driving, this reasoning is certainly true as long ag44). In Eq. (43, G(\) is the diagonal matrix
we are in the overdamped regime and a sufficiently highvhose elements are the Laplace-transformed Green
static barrier exists between the donor and acceptor statefsinctions élyz(x,)\|x’)=f§’ exp(—At)Gy o(x,t[x")dt, where

POO oo
m(\) =g K i—go<—1>”[é<x>QK]"” g (43
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Gy Ax,t|x") is given in EQ.(A12). Note thatG; 5(x,\|x")

acts on the arbitrary functiofi(x) as an integral operator,

e, G N)f:=/7,.GyAx\|x")f(x')dx". Upon comparing
Eq. (37) with Eq. (41) we find in the long time limitt— oo
the identification

k= Ilim m(\),
A—0

(44)

Hartmann, Goychuk, and Hanggi

sive rate constants; in Eq.(49) arenot affected by external
driving. This clearly reflects a flaw of our approximation
scheme when used for the driven case.

It is also interesting to note that a similar rate expression
as in Eqg.(49) recently emerged in Ref. 15, wheperiodi-
cally drivenET was discussed in a rather different system. In
this latter work, a model of stochastically gated long range
ET has been considered. There, the electron transferring

for the rate matrix. The evaluation of this equation with Eq.pathway (“bridge” ) was stochastically interrupted due to
(43) is done in Ref. 19 for the undriven case by means of theandom changes in the conformational configuration of the

so-termed “consecutive step approximatiot?'in which the
dynamics of diffusion and reactioftunneling are disen-

underlying molecule. Moreover, the conformational dynam-
ics plays there a role similar to the diffusive reaction coor-

tangled. In our case, we closely follow their evaluationdinate in the present work. However, there is a very essential
scheme. This consecutive step approximation is in the sandifference between the two models which is reflected in the
spirit as the one used above HQR9); it assumes a decou- different physical situations considered. In Refs. 15 and 16

pling between the smooth Green functions in E4R3) as
compare to the rapidly varying integral kerrt€(x) which
has a peak around=x* [cf. the discussion below E¢31)].

the conformational fluctuationdrive by assumption the ET
without any feedback, in the present work the electron trans-
fer dynamics and the reaction coordinate diffusion dynamics

In order to obtain a tractable result, we next perform thisare mutually coupled The structure of Eq(49) indicates

decoupling consecutively in each term of the sefi?).3*
Then, the corresponding series can be summed to yield

k=[1+KnaKp] *Kya- (45)
Here, the elements of the matrices
Kia  —Kna 1k O
Kna= , = _|, (46
NA —Kin Kna D 0 1lkg (46)
are defined via the integral relations
-+ e
Kna= f_ dxK(x)g1,Xx), (47)
and
1/k,§=f dt[ Gy A X* t]x*) gy A x*) "1 —1]. (48)
0
The explicit expressions for K(x), g;xx), and

G Ax*,t|x*) can be found in Eqs(31), (40), and (A12),
respectively.

The rate constants, characterize the time scale of dif-
fusion in the two harmonic wells, whereas the crossing dy
namics is described by, . If the diffusion is rapid relative

however aneffective decouplindgpetween the diffusion dy-
namics and the electronic transitions. As a resultjnidé@ect
influence of external field on the diffusion dynamics is com-
pletely disregarded. This decoupling represents thus a drastic
approximation which has to be tested against numerical cal-
culations. Notwithstanding these remarks, the approximate
result in Eq.(49) motivates us to address such an intriguing
effect as the driving-induced transition between the adiabatic
and nonadiabatic transfer regime of ET which has been pre-
dicted for the conceptually different situation in Refs.
15 and 16.

B. The nonadiabatic rate constant

As will be demonstrated below in Sec. VIB1, high-
frequency and strong driving does actually strongly affect
the diffusive rate constantky , yielding an enhancement
that increases with increasing driving strength. Therefore, we
may find thatky >ky, , SO that the ratek™ become equal to
the nonadiabatic ratds, [cf. Eq. (49)]. These rates can be
evaluated explicitly. Upon inserting the expressi¢d® and
01(X) into Eq. (47) and doing the spatial integral analyti-
cally, we are led to the very appealing form

. 2 * 2¢€ . Ot ¢ 7T —t/r __€p
to the crossing rate, the well population is equilibrated an&NA:Wf dtdp| 7 sin—5-|cog 5 —(1—e ") +7-t

the standard nonadiabatiGolden Rulg rate expression is
recoveredsee Sec. IV B On the other hand, if the diffusion
is slow, it essentially determines the rate of electron transfer

0

2E,kgTT

X ex T[(l—e_t”)r—t] , (50)

rendering the latter essentially independent of the electronic

coupling A. This can be best seen by writing out the ele-

ments of Eq.(45) to obtain the rate expression
Kna

ke
1+ Ka/ kg + KualKp

(49

where the remaining time integral can be calculated by a
numerical quadrature. In deriving this expression we have
made use of the Green functiofA2) within the high-
frequency approximatiori23). We want to emphasize that
Eqg. (50) is one of the central results in this paper. In the
absence of drivingg=0), it represents nothing but the high-

which is the usual form for a consecutive step reactionemperature Golden Rule result for the spin-boson model
mechanisn?® An analogous equation holds also for the with the Debye spectral densifipep,d ) = (2E, /x3) w /(1

backward ratek™ with the interchange < —). In Eq.

+w?7%).%%%" Thus, our nonadiabatic rate constar(&0)

(49), all the effects of external driving are captured by thepresent a generalization of the standard Golden Rule results

field-dependenhonadiabaticrate constant&y, . The diffu-

to the case of fast periodic driving. Put differently, by use of
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the short-time approximation if50), i.e., expanding the two for the activation transitions in the adiabatic potential
terms (1-e~Y") in (50) up to the first and second order, V_(x), see Eq(8), and Fig. 1, which is of cusplike form in
respectively, one recovers the previous results in Refs. 13he limit {A,eq}<E,. Our adiabatic rate expressidb6)
14, 18 obtained therein within the short-time and high tem-agrees well with a more general one derived in Ref. 39 for
perature approximation scheme; see, e.g., B4) in Ref.  the asymmetric cusp potential. Moreover, for the symmetric
13(a), or Eq.(25) in Ref. 14. case,e,=0, the original Kramers rate expressibf for the
Moreover, the above discussion of E§0) and its deri- cusp potential is then recovered. Thus, the rate expression
vation based on the Green functi¢t7) may be understood (49) reproduces correctly both the nonadiabatic and the adia-
as anindirect proof of our result for the Green functiqA7) batic limit of electron transfer in thabsenceof driving pro-
compared to an incorrect expression given for the undrivewided thatA <E, .
case in Ref. 20. With Egs.(50) and(51) at hand we can next verify our
analytical results versus precise numerics.

C. The adiabatic rate constant

Also the diffusive rate constant€§ in (48)—which are \I\;'ONDUE'\CERICAL SOLUTION OF THE DRIVEN ZUSMAN

independent of driving parameters due to made

approximations—can be evaluated explicitly. By use of the  First we like to discuss a numerical method for solving
Green function(A12) and Eq.(40) we obtain the externally driven Zusman equatiofi$). A very success-

ful scheme that works in absence of a detailed balance rela-

. S 1 (E,Fep)? 1 : . o i . )
1/k—:Tf dy ex 1. tionship (which is broken in a time-dependent driven gase
° 0 Vi-e ¥ 2EkgT 1+e’ has been proposed by Yang and CuRkfetve therefore

(51) adopt their numerical scheme for our purpose. In doing so
Note that the diffusion rates are inverse proportional to theve introduce in place of Eq15) the four combinations,
solvent relaxation time, i.ekp~ 7~ 1= w3/ y. Furthermore,

: : . T=pu*prn, 2Rep=piotpo,
the integral in Eq(51) can be transformed into a more con- prPu=pz Piz= P12 P21

: 5
venient form, 2IMpo=p1o—po1. ®)
. 1 [expE,z/kgT)—1]dz It is advantageous to work with dimensionless quantities. To
lkp=1| In(2)+ fo dz -z ' this end we introduce a dimensionless tifnet/ 7, with the

relaxation time of the overdamped harmonic oscillator
where E; = (E, + €,)?/4E, denote the so-called activation —y/42. Thus the phenomenological time constant in the
energies. Equatio(b2) can be expressed in terms of a gen-zysman model is, which is frequently identified with the
eralized hypergeometric serig,(a,b;c,d;z),* to yield longitudinal dielectric relaxation time or the average solva-

oc 1 oE:\n tion time>313%42Moreover, a dimensionless coordinate
1kp= 7'( In(2)+ E a ) ) = \/mwOZ/kBTx is defined, Whera/kBT/mwo2 is the average
n=1 n(2n—=1!t |\ kgT width of the oscillator potential surfaces. Using these defini-
: 3 = tions together with Eq95) and(17) in Eq. (15) we obtain
=7'<In(2)+2 kB—T) 2F2<1,1,§,2,kB—T ), (53) _ ~ ~ 1 p A
_ . _~P+(ta~):£P+(tv7()+_7(O_P_ 1~)1

where (h—1)!!=1.3.5.---. (2n—1). Moreover, for high i 2 X
activation barriersE; >kgT this result can be well approxi-
mated by ~

T R =Tp (E3)+ 3 p (£~ Im pysT )

— X) = X)+ —Xo— ,X)—CIm X)),

”» e E: o (ftp P 5 oo_&P P12
D~T‘\/€EX kB_T ( ) (58)

J ~ ~ ~ ~ ~
Note that in absence of external driving the detailed balance- Rep,(t,X) =L Rep 1 (t,%X) +d(X—%X*(t))Im p1(t,X),
condition, Jat

Kna/Kna=expleo/ksT)=exp(E, /ES), (55) p ~ 5 5 B B
—Imp(t,X)=L1Impy(t,X) —d(X=X*(t))Repy(t,X)

holds. Using this and Ed54) in the rate expressiof#9) we i
obtain in the adiabatic limiky,>ky and for e,<E, the

forward and backward undriven Kramers rates, c  ~_
) ) L (t,%),
K~ k=2 | B 1_(2) e (E/kgT)

4y N akgT E where
2 B 2

Wy ELE., - ~ | d 1 d

—_0 . [/ _"a7a _—(E;/kgT) = — %= =% | — +11.
5 wErkBTe a , (56) L p X 2x0 = 1 (59
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The new dimensionless auxiliary parameters appearing in - - ~ . ~ .
Eq. (58) are ©=2rA/4 and d=2E kgT/h7. The time- 5t P ()=—nby, (t)—dvnby_y(t) —dVn+1by,4(t)
dependent crossing point and the spatial displacement read 5
E—egme(t) +a(x*(t)—x0/2)b:(t)+%a;(t).

V2E kgT Xo= V2E fkeT, (©0 In deriving this infinite set of linear first-order differential
] . ] ~_ equations for the expansion coefficients we have used the
respectively. In the following we suppress the tildes indicat+orthogonality of the basis functions. Note that E8F) we
ing dimensionless coordinates since there is no risk for consre now confronted withime-dependentoefficients due to
fusion. Furthermore, we construct a solution for EzB) b_y the time-dependent crossing poit(t) [cf. Eq.(60)]. Thus,
the use of an eigenfunction expansion method. For this pufi, the further analysis we cannot simply rely on the standard
pose we choose as basis functions the right eigenfunctiongethods of linear algebra with its fast and well-elaborated

X* ()=

ra(x) of the diffusion operator, numerical algorithms. Instead, we must directly integrate our
~ set of Egs.(65 numerically. This clearly requires a much
Lrn(X) = pnln(x), (61) larger computational effort as compared to the undriven
case!

with eigenvaluesu,=—n, n=0,1,2,.... The functiom,(x)

is proportional to Hermite polynomia, of ordern, The sparse linear syste®5) has a block tridiagonal

structure, where the blocks are<4t matrices, corresponding

(1/27) 14 to the four coefficients, ,b,, for a givenn. Note that since
Fn(X)= —n'Hn[(x—XOIZ)/Vi] IZ.ra(x)dx=0 for n#0 and [”_.ro(x)dx=(27) Y it fol-
v2'n! lows from Egs. (33), (64), and (57) that Py(t)
X exi] — (X—xo/2)2/2]. 62 =:@mYag()+ag ()] and Py(t)=3(2m) {aq (1)
—ag (t)]. Moreover, from Eq.(65) it follows that ag (t)
Because the right eigenfunctiong(x) form together with =const=a, is a time-independent constant. The value of
the left eigenfunctiongwhich are the right eigenfunctions of this constant as well as tfigitial value ofa; (t) can be fixed
the adjoint operatoy, by the initial distribution of electronic populations. Assum-
20y ing P1,(0)=1 [P,,(0)=0] in the following we getag (t)
(12w =a, (0)=1/(2m)Y%. Then, the probability distribution on
1a()= N Ho((x=X0/2)/V2) the surfaceV; reads
— exXp((X—X/2)2I2)1 (), 63) Pu(t)=3[1+(2m)"a, (1)]. (66)

The expansion coefficierd, (t) is obtained by integrating

a complete set, we can expand the solutions of(E). as Eq. (65 numerically. The rest of initial vaIuesa,T(O)

o =a, (0) is determined from the expansion of the initial dis-
pE(tX)= D a ()rq(x), tribution p;,(x,0) over the sefr,(x)}. Moreover, b, (0)
n=0 =0. Note thatP;(t), analytically given by Eq(34) with Eq.

(49), and numerically given in Eq66) via Eq. (65), is the
key quantity in the discussion of driven ET dynamics.

oo

Rep12<t,x>=n20 by (£)r (), (64)

* VI. NUMERICAL RESULTS AND DISCUSSION

Impyo(t,x)= >, by, (H)rn(x), _ _ _
n=0 In this section we shall present our numerical results

o . L concerning the Zusman model of electron transfer with ex-
with time dependent expansion coefficienss (t) and  ternal driving. We shall discuss some general features and
by (t). Substitution of Eq(64) into the coupled partial dif-  noint out new effects induced by the time dependent fields.
ferential equationg58) and multiplication from left with  noreover, we compare our novel analytical approximate re-

I (X) together with integration overt results in sults versus numerically precise ones.
p To evaluate the probability densitigs;(x,t) we solve
ﬁa:‘r(t): —na (t)— % Jna,_4(t), the system of &n first order differential equation&5) by

using a Runge—Kutta—Merson propagation scheme. Our nu-
merical calculations have shown that usually a setnof
J __ - Xo = — ~300 basis functions is enough to ensure convergence of the
(t)==na, ()= 5 Vna, () ~Tb, (1), g g

ﬁa“ results. As initial preparation it is convenient to choose a
(65) Gaussian wave packet placed on the donor surfage),
J ~ _ )
b (=—nb; ()+d\nb,_y()+dn+Tb .y
(X_XI)Z)
~ _ x,0)= exp — , 6
At (0~ 25 (1), T p( 2b7 7
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FIG. 3. Dynamics of the reduced density matrix distributigj{x,t) according to the Zusman equatiofi®). The calculations for a symmetric system with
a vanishing energy gape¢=0) between the two surfaces were carried out by the numerical solution of(&s)s.The time-dependent field strengéh
=250 cm! and the frequencf2=1 cm* correspond to weak adiabatic driving. The reorganization energy is choselEfe-t50 cn* and the temperature
is set toT=300 K. The probability distributiom,(x,t) corresponds to the donor potential surfatg while p,(x,t) is the probability distribution on the
acceptor site.

200

and P,,(0)=1. Besides, it is assumed that the Gaussiarff€@sonable for the description of many characteristic non-

wave packet has already relaxed to a thermal quasiequiligdiabatic ET reactions.
rium distribution(with electronfixedat donoy, which explic- A, Low-frequency driving

itly determines the corresponding width, of the distribu- . . . . .

tion and the initial position,=0. To study the effect of Our considerations start with symmetric systems without

strongly nonequilibrium initial preparations, arbitrary values p|as,50:O, €., the statl_c system_m the_absence of driving _'S

for b, andx, can be considered in the normal regime. First, we wish to illustrate our numeri-
- :

In our figures, system and driving parameters are giverfal Procedure with Fig. 3 where we have presented the re-
im units which are commonly used in the ET literature. Toduced density matrix distributiop;;(x,t). Here, the chosen
explore the influence of time periodic external driviff. ~ driving frequency @=1cm™ and driving amplitude&
Eg. (21)] in the Zusman model, we have studied systems= 250 cm ! are relatively small compared to the reorganiza-
characterized by a typical reorganization energy Ef  tion energy ofE,=500cnT*. As a consequence of this very
=500cmil The energy gag, (bias between the two sur- SlOle varying driving field the overall effect is an “adia-
faces is varied between the normal regime of electron transbatic” periodic modulation of the energy gap between the
fer (|eo| <E,) and the inverted regimd ;| >E,). The bor-  two potential wells around the mean valgg=0. Thus, one
der between these regimes is called the activationlesean observe an exponential decay of the initial population
situation where the asymmetry equals the reorganization emlistributions p;;(x,t) with superimposed small driving-
ergy |eg| =E, . The calculations are done at room tempera-induced oscillations. Correspondingly, the distribution
ture T=300K and the relaxation time of the overdamped p»x(X,t) on the second potential surfad&g(x) depicts an
oscillator is assumed to be 1 ps, if nothing else is statedncrease of the population. On the slow time scale of the
Moreover we have used a small coupling strength, driving the oscillations are best explained within a quasi-
=10 cm %, which is two orders of magnitude smaller than static description.
the reorganization enerdy, . This parameter choice is quite Since the spatial distribution of the reaction coordinate
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bears no relevant information for the ET reaction dynamics,I. Consecutive step rate vs nonadiabatic Golden Rule
we shall concentrate in the subsequent figures on the intgate

grated donor population dynamidg,,(t) on the surface In Fig. 6 we deal with a more complicated situation with
Viy(x) [cf. Egs.(33) and (34)]. Moreover, we compare our finite hias where it is necessary to carefully choose the cor-
numerical finding466) with the analytical predictions given rect transfer rate in order to correctly describe thiven

in Egs. (34) and (49). Here we shall however distinguish gynamics. Figure 6 depicts results for two biased systems
between two different approximations for the relaxation ratesyith ¢,=500cni* and e,=800cn ™. In the case without
appearing in Eq(34). The curves labeled with' in our fig-  time-dependent driving this corresponds to the activationless
ures correspond to calculations with the full rate constant sjtuation and to the inverted regime of ET, respectively. Note
=k*+k~ which is composed of the consecutive step for-that in the activationless case=500cm’) and in the
ward and backward ratés in Eqg. (49). For comparison, we absence of driving&=0) the analytical resulF still agrees
plotted also calculations with the nonadiabatic rate constankith the numerics. The nonadiabatic decay rhig, is a
I'na=kynatKna » consisting of the nonadiabatic forward and slightly larger[see also Fig. @)], but the agreement is sat-
backward rateky, (50). These latter calculations are labeled isfactory. The long-time limif., is independent of the em-

with T'ya - ployed rate concept, i.el; vs 'y, ; it is always reproduced
Figure 4 depicts the numerical results for an intermediateorrectly.
driving frequencyQ=10cm ! vs corresponding analytical However, if we now turn to the driven dynamics we can

results. The static energy bias assumes values in the normabserve something astonishing: the analytical description
ET regime betweer,=0 ande,=375cm 1. As expected, with the consecutive step rate constarireaks down in this
we observe a single exponential decay towards a biadimit of strong high-frequency drivingsee dashed lings
dependent asymptotic long-time linf. . Superimposed on Note, that the driving amplitudé=1400cn* is almost
this decay one can still detect some small driving inducedhree times the reorganization energy and we are in the acti-
oscillations. However, on a long time scale these oscillationgationless or inverted regime, respectively. However, we
are only of secondary importance for the characterization ofind that the ordinary nonadiabatic rate constiigh=Kya
the ET reaction and they increasingly vanish upon furthertky, excellently agrees with the numerics. The two curves
increasing(). match each other within line thickness. This is surprising
From the good agreement of the numerical findings withsince kg, in Eq. (50) is nothing else but the lowest order
the analytic results one can conclude that in Fig. 4 the trangsolden Rule result im\, without contributions from diffu-
fer takes place in the nonadiabatic regime. This is becaus®ion. Thus, together with the findings in Fig. 4 and Fig. 5 we
the dynamics can already be well described with the nons€e the trend that the consecutive step mechanism with the
adiabatic ratdy, (dashed—dotted line However, for this ratel’ (49) is well suited to describe the undriven or weakly
low-to-moderate-frequency driving, a closer inspectiondriVen dynamics. In contrast, the strongly driven dynamics is
might indicate that it is slightly more correct to use the full rather well described by the nonadiabatic Golden Rule result
consecutive step rate constdnt because, in this case the I'na in (50). This finding will be confirmed with the next
system is still influenced by the diffusive processes describefigure. _ .
by the ratesks in Eq. (49). The discussion in the next sub- Figure 7 depicts the different rate constafitg, and I
section will show that for strong high-frequency driving VS the energy gap, between the two potential surfaces. The

these diffusion effects are negligible and the reaction be¢@Se Without drivindFig. 7(a)] as well as the situation with
comes even more nonadiabatic. fast strong drivindFig. 7(b)] are examined. The parameters

are the same as in Fig. 6. For comparison also the long-time
rates extracted from the full numerical calculations are de-
picted by the triangles. In Fig.(& it becomes obvious that
in absence of driving the numerical results agree best with
the consecutive step mechanism that relates to the full rate
constantl” (dashed ling However, the differences with the

In Fig. 5 we consider again a symmetric situati@g, nonadiabatic ratd y, (solid line) are small within the nor-
=0, but now the driving field paramete#s=1400cm* and  mal, activationless, and inverted ET regimes. With external
Q=500cm* correspond to a strong high-frequency field. griving switched on the situation changes. Fig. 7(b)] and
The comparison between the exact numerical res@® 1, (dashed linebecomes more appropriate to describe the
(solid ling) and the analytical high-frequency resul®4)  dynamics. In contrast, the consecutive step fatélashed
(dashed linel", and dashed—dotted liniéy,) exhibits good line) predicts a too slow decay. The differences with the
agreement for the undriveré€0) as well as for the driven numerical results become most pronounced in the inverted
dynamics. We observe in both cases a single exponenti®dT regime.
decay of the initial population, without observable oscilla- The reason for this behavior depicted with Fig. 7 is that
tions towards the equilibrium donor populatidh,=0.5.  the diffusion on the diabatic surfaces also experiences an
However, for strong high-frequency fields it seems that thendirect influence of the external field via the electronic de-
dynamics is better described by the nonadiabatic faig  gree of freedom. Thus, due to an energy flow from the ex-
since this curveperfectlymatches the numerical resulthe  ternal field this diffusion can be strongly accelerated; it then
two curves are indistinguishable ceases to act as a limiting factor for the ET reaction. This

B. High-frequency driving
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FIG. 4. Time-dependence of the integrated donor populaigft) on sur- FIG. 5. Numerical and analytical resulisf. Fig. 4) for the dynamics of the

face Vq4(x) for moderate driving strength and intermediate driving fre- integrated donor populatioR(t). The ET system is assumed to be sym-

quency. For different bias energieg in the normal regime a single expo- metric (,2=0) and driven by a strong high-frequency field. The analytical

nential decay with superimposed, driving induced oscillations towards thecurve obtained by use of the nonadiabatic rate consigy ( dashed-dotted

asymptotic long-time limitP,, is observed. Besides the exact numerical line) coincides with the numerical findingsolid line). The curve calculated

results(solid line) of Eq. (66) also the analytical predictions of E(R4) are with the consecutive step rat§, dashed ling predicts a slightly slower

depicted. For the full rate constant we used the consecutive stefd rate decay. For comparison also the case without drivigg-Q) is depicted.

=k*+k~ [dashed line, cf. Eq(49)] and the ordinary nonadiabatic rate Here, both analytical curved” andI'y,) provide satisfactory approxima-

I'ya=Kkpa+ kna [dashed-dotted line, cf. EGG0)]. Here and in the following  tions to the exact numerical result.

figures the temperature is chosen toTee300 K and the relaxation time of

the harmonic oscillator is set to=1 ps. The remaining parameters are

given in the figure. for the particular choice of the external field parameters. We
thus find more population on the donor surfa¢gthan on

) ) ) the acceptor surfacé, even though the energetic minimum
serves as the explanation why the studied ET reaction bess V, is situatede,=500 cm* above the minimum o¥/,!

comes increasi_ngly nonadiabatic when strong, fast oscill_ating This effect, already known from the driven spin-boson
f!elds_are ap_plled. Unfortunately, the invoked approxima-maqe(181418¢an also be detected in Fig. 8. Here, the long
tions in depvmg Eq.(49) do not respect thg mentioned sce- {jme valueP., (36) of P44(t) is plotted vs the energy bias,
nario. An improvement would be to take into account alsofoy gifferent values of the applied driving strengéh The
th+e external field influence on the_d_n‘fus!on, resulting in rateSyriving frequencyQ =500cm * is held fixed. Inversion of
kp that yvquld depen(_j on the driving field parameters. Wepopulations, i.e.P..>1/2 for positive biasey, can be ob-
leave this interesting issue for a future study. served for a strong field amplitucke= 1400 cmi* and for a

At this point is is also necessary to comment on thégmg)| to moderate bias,. The explanation of this phenom-
agreement between the numerical results and the analyticghon is similar to that used for the driven spin-boson
results. Actually, just a comparison of the single-exponential j,oge|131418 For a relatively weak resonant fielde (

analytical transfer ratesI'ya or I') with numerically ex- _gqg cnl) the asymptotic long time limit shows a strictly
tracted long-time decay rates does not provide information

on how well the analytic description really describes the full

dynamicsof Pq(t). Especially, in the activationless and in- 1.0 T —T T
verted regime the dynamics has usually to be approximated . numerics
by a multiexponential decay. In our treatment we disregarded o B N r oo N
such effects that occur usually on a short initial time scale. N na T —
However, our numerical studies have shown thatsioong = A —— o —oocn
high-frequency drivinghe time evolution oP,(t) can very = 05Fy TS P —
well be described by aingle exponential decawith the R E, = 500cm™
nonadiabatic transfer ratéy, (cf. Figs. 5 and & This holds 0.25 ¢ = 1400cm™! i
true even in the activationless and inverted ET regimes Q = 500cm™! éfgoo .
where in the case of zero or weak driving the single- | , ‘= Tm
zxpon(entialhcon;ecutive step approximation already breaks 00 150 200 430

own (not shown.

t[ps]

2. Driving induced inversion of populations FIG. 6. The figure shows a comparison between the predictions of the exact

numerical equatioii66) for the donor populatiof®;(t) (solid line) and the
A further appealing feature of external time-dependentnalytical approximatiori34) with the rate constants andT'ya, respec-
driving in the Zusman model is the effect of driving induced tively. An activationless situationep="500 cni?) and an inverted situation
inversion of the asymptotic populations, as illustrated with(€o=800cnt?) are considered. The driving field parameters are the same

. o . P A as in Fig. 5. Note that the analytic results with the consecutive rate constant
Fig. 6. While in the static, activationless case—(O, €o I' (dashed lingare incorrect while the curve withy, (dashed-dotted line

_ 71 . . . .
.—500 cm™) th? long time limitP.. of the dqnor p0pl_1|at|0n matches the numerical results exactly. However, the activationless case
is nearly zero it becomes larger than 1/2 in the driven caseithout driving (=0, e,=500 cnT?) is best described by the curve with
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FIG. 9. The reciprocal of the consecutive step transfer Fatek™ +k~
(dashed ling and the nonadiabatic Golden Rule transfer rE};@\=k§A
+kya (solid line) as a function of the solvent relaxation timeA symmetric
system withe,=0 and a high-frequency driving is assuniéte parameters
are listed in the figune Moreover, a comparison with the undriven case
(e=0) is depicted. Corresponding results extracted from numerical calcu-
Q0 =500cm™t kf, e \ lations are indicated by triangles and crosses, respectively.

€ =1400cm™ hkyy === N
A.f_5cm_1
T T T TN monotonic behavior with decreasify, for strongly biased
T -~ systems, similar to the static case<0), which is also de-
"""" picted. Finally, withe=1050 cm* the driving amplitude is
L L 1 L L chosen in such a way, to result in a bias indepenéentor
—800 —400 0 400 800 small bias. Note that also in this figure numerical results are
Eo[Cmfl] indicated by the triangles. Moreover, we want to mention
that our numerical studies prove that the driven long-time

limit P, is alw rrectly given he analytical formul
and I'ya=kya+kna (solid ling on the energy gag, between the two t h sa azj/s co deCty ? € b%/ t le a a.lyt cal 1o u%
surfaces. For the sake of clarity also the corresponding forward and baclé—:_%)' Thus, P., depends only _on the long-time rates, _an '
ward ratesk® in Eq. (49) (a) or k5, in Eq. (50) (b) are depicted. Numeri-  differences of the exact numerical results and the analytics in
cally calculated long-time rate constants are indicated by trianggsle- the time-dependent dynamics Bf4(t) do not become rel-
picts results for a system without driving. Here, the long-time ET dynamicsgy,ant at asymptotic times. We also recall again that with

obeys a consecutive step mechanigtashed linel’). In (b) the strongly . .. .
driven situation is examined, with the same field parameters as in Figs. §|me'dependem driving®., cannot be determined from the

and 6. Contrary tqa) now a strict nonadiabati¢solid line, I'y,) reaction detailed balance condition.
dynamics takes place.

[(eg)[107*ps™!]

FIG. 7. Dependence of the full ET rate constafitsk* + k™~ (dashed ling

3. Driving-induced crossover to nonadiabatic transfer

Figures 9 and 10 depict the analytical dependence of the
total consecutive step rafe=k*+k~ and the total nonadia-

LO === T | E— T T
- ‘--.~_~\‘v\\ e=0 -
’ \\ ¢ = 500cm~! - g0 [ T T T ]
S TN ¢ = 1050cm =t ——- b T
= S NN é=1400cm™ Py
o S hRNN T
w s ‘\//’—V\ '''' -
T 05 \"\v_:/“\ e ANy = g - - -
Qﬂ \i\\\ \‘\.\- .&. 60 ifv VvV ¥ 7 "7 7 > = v _|
N ~. _ 1
E, = 500cm ™" e . = Ey = 500cm™
. N e >~ —_ € = 500cm
A = 5Sem ¢ = 1400cm ™
Q = 500cm™! el el t=0 Q = 500cm™!
0 1 1 1 1 Rt PSR 40 / - UV <]
—800 —400 0 400 800 K o sesesx=mmmatm=mm XX
1 1 1 1 1
-1
€olem™] 0 0.5 10 L5 2.0
FIG. 8. Driving induced inversion of populations: Plotted is the long time ’T[pS]

limit P,4(t—)=P,, vs the biase, for different values of the applied driv-

ing strengthe. For strong high-frequency drivingeE& 1400 cm'?, solid FIG. 10. Dependence of the reciprocal transfer ratesk” +k~ (dashed

line) the time-averaged asymptotic equilibrium vaRg of the donor popu-  line) andT ya=kya+Kna (solid ling) on the solvent relaxation timein the

lation P44(t) becomes larger than 1/2 even though a positive energygap high-frequency driving regime. Here, the energy agp-500 cn? corre-

is assumed. For comparison corresponding numerical results are indicateghonds to an activationless situation. The comparison with the undriven case
by triangles. Likewise for negative, we find the corresponding inversion (€=0) is depicted also. Corresponding numerical results are indicated by
with P,,<1/2. triangles and crosses, respectively.
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batic ratel'ya=Kkya+Kna VS the relaxation timer of the  &(t). It was shown that the original Zusman equations can be
harmonic oscillator. The corresponding system and drivinggeneralized to the driven case by simple replacing the static
parameters are listed in the figures. energy bias with the time-dependent one. We have studied
First, we want to discuss the undriven case, marked irthese so generalized equations both numerically and analyti-
both figures withe=0. Clearly, thel' ! vs 7 curve can be cally. A (in A) nonperturbative rate expressiofd) has been
separated into two different regions. For largthe recipro-  derived. It generalizes the one given earlier in Ref. 19 to the
cal of the ET rate is proportional te which is an indicator driven, time-dependent case. Moreover, by doing so, we also
for the solvent-controlled adiabatic limitlashed ling This  generalize the driven nonadiabatic ET theories of
type of behavior is robust against the variation of the energypakhnovskii and Coalsdf and other¥!” beyond Golden
gap €, (cf. Figs. 9 and 1pand was predicted previously®  Rule theory away from fast and strong driving. Testing this
It agrees well with our numerical findings indicated by therate expression against the precise numerics shows that it
crosses. The nonadiabatic rdig, (solid line) fails in this  works excellently for theundrivencase and in th@ormal
regime. However, the behavior for very smalldepends regime of electron transfer. Moreover, this expression still
qualitatively on the bias between the two surfaces. For thavorks for the driven case, if the driving frequency is not too
symmetric system in Fig. 9 the transfer rdterapidly in-  high. However, for a “nonadiabatic,” high-frequency driv-
creases with decreasing while for the activationless situa- ing it even fails alreadyn the normal regimelnstead, the
tion in Fig. 10 an opposite behavior is observed. In this refamiliar nonadiabatic rate expressitB0) extends drastically
gime the consecutive step rafeand the nonadiabatic rate its regime of applicability. For sufficiently large solvent au-
I'ya always become the same, meaning nonadiabatic reatecorrelation timesr it may happen that instead of the linear
tion dynamics. In the transition region between “large” and dependence of the inverse ET raf&, '« r, on 7 (solvent
“small” relaxation times r the situation is not completely controlled ET), the transfer rate becomaslependenof , if
clear. Here, the rate depends only weaklyromhich is usu-  the driving field is switched on. This result manifests that a
ally named the “normal” nonadiabatic behavior. strong and fast periodic driving can introduce a crossover
If we now apply a strong high-frequency driving we ob- from the adiabatidsolvent controlledl to the nonadiabatic
serve the same striking effect as already encountered in tHeT regime. This is the major finding of this work. In terms of
previous figures. Our numerical results in Figs. 9 and 10a perturbation theory in the electronic coupliigour results
(indicated by the trianglg¢samake it evident that for large  prove that strong and fast periodic driviingprovesthe qual-
the time-dependent external field promotes the transitioity of low order perturbation theory il. As a result, its
from the adiabatic to the nonadiabatic regime of ET. Whilelowest order approximation, i.e., the Golden Rule, becomes
in the undriven case the reciprocal rate was depending osufficient to describe ET dynamics even there, where it was
7,I' "1~ 7 (adiabatic regimg the rate with driving becomes clearly not applicable before, in the absence of driving.
increasingly independent of the relaxation time. This is a
hallmark of the nonadiabatic reaction regime and conseACKNOWLEDGMENTS

quently the electron transfer has to be describedl'Ry This work has been supported by the Deutsche Fors-
(straight solid ling. This important result is independent of chungsgemeinschaft within the Schwerpunktsprogramm
whether a symmetric systeifFig. 9) or an activationless Zeitabkagige Phimomene und Methoden in Quantensyste-
system(Fig. 10 is considered as long as the driving :strengthmen der Physik und ChemiblA1517/14-3, and within the

€ and frequency) are large enough. For intermediate driv- g e rforschungsbereich 486, project A10. We also like to
ing fields the situation is more complicated and neither aacknowledge helpful discussions with E. Pollak
strict adiabatic nor a strict nonadiabatic behavior is to be ' '

expectednot shown. _ _ _ APPENDIX: GREEN FUNCTIONS FOR THE HARMONIC
Our results represent a prominent manifestation of theoTENTIALS

improvemenbf the Golden Rule type description of ET pro- ) )

cesseslue to time-dependent fieldBhis result is rather un- 1- The off-diagonal Green function

expected because the nonadiabatic Golden RuleIfgie  For harmonic potential surfaceg;(x) and V,(x) the
corresponds just to the lowest order perturbation theory imperator (20) becomes similar to that for the Ornstein—
the tunneling matrix element. Uhlenbeck process with a linear drift coefficient and a con-

~ Asalast point of our considerations it is worth mention-stant diffusion coefficient. Therefore, we expect to find an
ing that the above discussions lead us to the conclusion thahalytic expression for the complex-valued Green function
a field-induced transition in the opposite direction, ifeom  G(x,t|x’,t") in Eq. (20). By use of the potentialg) and the

the nonadiabatic to the adiabatic transfer reginsebarely  phenomenological relaxation time of the overdamped oscil-

possible for the present model. Indeed, we were not able tgtor 7= y/wé, the equation for the Green function reads
find such a regime numerically, albeit its presence is demon-

J 92
strated by Eq(49) EG(X,”X,,V): DW"‘;&(X_X()/Z)
i [2E
VII. CONCLUDING REMARKS - X—'(X—Xo/2)+60+e(t)”
In this work we have studied the generalized Zusman 0
model of electron transfer in presence of strong driving fields XG(x,t'|x",t), (A1)
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with the initial conditionG(x,t’|x’,t’)=68(x—x') and the

boundary condition&(+=,t’|x’,t’)=0. Note immediately
that the solution of Eq(A1) can be considered in the form

. (A2)

G(x,t|x’,t’)=GO(x,t—t’|x’)exp{ — ;,L—g(t,t’)

where Gy(x,t—t'|x’) is the Green function of a similar
static (e(t)=0) and symmetric §,=0) problem, and where

t
g(t,t’)zf dt"[ o+ e(t”)] (A3)
t!
accounts both for the energy biag and for the external
driving field influencee(t). While Gy(x,t—t’|x’) depends
only on the time difference, the driving functiqfft,t’) ex-

Hartmann, Goychuk, and Hanggi

As expected, the Green functi@y(x,t|x’) obeys for times
t>0 a Gaussian distribution. Our result f@&p(x,t|x’) re-
places the incorrect one given in Ref. 20.

2. The diagonal Green functions

The evaluation of the remaining propagatdss x,t
—t’|x") in Eq. (27) causes even less problems for harmonic
potential surfaces. The process described by the equation,
2

+__ I !
Dﬁ—xz — o G(x,t—t'|x"),

(A11)

is just the Ornstein—Uhlenbeck process. The corresponding
solution is well known and given BY

J
EGl(x,t—t |x")=

plicitly depends on both time arguments and thus also the

Green function itself. Obviously,
Go(x,t—t’|x") satisfies Eq(Al) with e(t)=0 ande;=0.

Its solution is obtained by making a Fourier transform with

respect to, i.e.,

~ 1 +oo .
Go(k,t|x")= \/ﬁ fﬁx dxeX*Gy(x,t|x"). (A4)

The equation for the Fourier transform is given by

—Dk2—51+
7 K

kg 26, 0 0
D dkg ok AT

a'é Kk  —
pn o(k,t[x") =

X Go(k,t|x"), (AS)

which is simpler than Eq(Al) because only first-order de-

rivatives with respect t& occur. The initial condition for the

Fourier transform becomess,(k,0/x")=exp(kx')/\27.
With the ansatz,

Go(k,t|x )= LeX|c[ —a(t)k?—b(t)k—c(t)], (A6)
o

NP

where the time dependent functioagt), b(t), and c(t)

the Green function

Gy(x,t—t'|x") =

\/ZﬂTDT(l— e—2(t—t’)/-r)
_ (X_X!ef(tft')/T)Z

X ex - .
2D7(1—-e 2071

The expression folG,(x,t—t’|x’) is obtained from Eg.
(A12) by the substitutionsx— (x—Xg) and x’ — (x" —Xo),
respectively.

(A12)
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