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Controlling electron transfer in strong time-dependent fields:
Theory beyond the Golden Rule approximation

Ludwig Hartmann, Igor Goychuk, and Peter Hänggi
Institut für Physik, Universita¨t Augsburg, Universita¨tsstraße 1, D-86159 Augsburg, Germany

~Received 10 July 2000; accepted 26 September 2000!

In this work we apply a generalized Zusman model to study the influence of an external periodic
electric field on the dynamics of electron transfer~ET! reactions coupled to an overdamped reaction
coordinate which is treated semiclassically. Being nonperturbative in the tunneling coupling this
approach goes beyond the conventional Golden Rule description and includes both adiabatic and
nonadiabatic electron transfer regimes. Explicit expressions for the ET rates are derived in the
high-frequency driving regime and compared with exact numerical results. Our novel analytical
findings constitute a useful approximation scheme, as long as the dynamics can be characterized by
a single exponential relaxation. We further demonstrate that the Golden Rule description becomes
drastically improved in the presence of strong, fast oscillating fields. Moreover, we discuss
interesting phenomena such as an inversion of populations and a driving induced transition from an
adiabatic to a nonadiabatic reaction dynamics. ©2000 American Institute of Physics.
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I. INTRODUCTION

The influence of an environment on the reaction rate
electron transfer processes in condensed media prese
long standing problem which still attracts ever growing
terest. The current state of the art of the theme of elec
transfer is summarized in two recent volumes ofAdvances in
Chemical Physics.1 Especially, the interplay between non
diabatic and adiabatic electron transfer~ET! regimes is much
in the focus of current research activity. Marcus2 and Hush3

laid the groundwork to the adiabatic electron transfer the
making use of theclassicaltransition state theory~TST! ap-
proach. Soon after, Levich and Dogonadze4 were among the
first to address ET as a nonadiabatic process using Fer
Golden Rule approach. This full quantum-mechanical
proach is based on the assumption that the time scale o
fast bath relaxation dynamics and the slow electronic tun
ing process can be separated. It corresponds to a relat
small electronic coupling between donor and acceptor s
which is considered perturbatively. In the lowest order
such a perturbation theory the rate of electron transfe
proportional to the square of the electronic coupling. Bo
adiabatic ~strong electronic coupling! and nonadiabatic
~weak electronic coupling! approaches to ET have been e
tended and dwelled upon by many researchers in the
~see, e.g., Ref. 1 for relevant review articles and further
erences therein!.

A promising attempt to unify both wings of the E
theory and to consider the electronic couplingnonperturba-
tively has been undertaken by Zusman5 and Alexandrov.6

The original Zusman work envisages the ET reaction a
two-state tunneling problem with aparabolic dependence o
the electronic energies on the nuclear reaction coordin
This harmonic reaction coordinate is considered classica
it is assumed to beoverdampedand because of this fact
11150021-9606/2000/113(24)/11159/17/$17.00
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can be modeled as a stochasticOrnstein–Uhlenbeck process.
Zusman then developed a phenomenological theory in
placing the dependence of the electronic levels on the re
tion coordinate by the stochastic process in the Hamilton
making the latter explicitly time-dependent and applyi
thereafter the Stochastic Liouville Equation approach. B
cause such approaches yieldincorrect asymptotic popula-
tions, the obtained equations of motion have been corre
ad hoc to ensure the correct thermal detailed balance be
ior. Garg, Onuchic, and Ambegaokar7 provided a full micro-
scopic justification to the phenomenological approach
Zusman5 and others, and derived Zusman’s equations from
time-independent system plus bath Hamiltonian. Their
proach opens the doorway how the discussed semiclass
but nonperturbativetheory could be generalized further, e.g
including a nonparabolic energy dependence. A special m
of the Zusman approach is the fact that it naturally conne
the nonadiabatic and the solvent controlled adiabatic tran
behavior, even though the simplest pictures of the two d
ferent regimes of ET reactions appear to be very differ
from each other.1

Several subsequent modifications of the Zusman mo
have led to the development of more general descriptions
Refs. 8 and 9, time-dependent solutions of the Zusm
model are presented for the case of a polar non-Debye
dium with frequency-dependent friction. It was demonstra
that the decay of the donor population becomes strongly n
exponential in contrast to the case of a nonpolar Debye
vent. While most of the previous studies employ essentia
two reaction potential surfaces with a one-dimensional re
tion coordinate, very recent works concentrate on the ge
alization of the Zusman approach to electron transfer
three-states systems within a two-dimensional configura
space.10–12 Within such approaches, problems concerni
9 © 2000 American Institute of Physics
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multielectron events and/or the interplay between seque
and superexchange mechanisms can be examined.

Recently, the problem of external field control of non
diabatic ET attracted much attention.13–17 There, the theory
of the driven spin-boson model~see the review18 for a de-
tailed discussion and further references! has been applied to
study periodicallydriven ET dynamics. In those studies,
was shown that in the nonadiabatic Golden Rule regime
driving can either suppress strongly the rate of electron tra
fer, or strongly accelerate nonadiabatic ET, as well as
invert the direction of electron transfer.13,14 Within the
present study we shall generalize these previous works
yond theGolden Rule ET. In doing so, we shall rely on the
conventional, well established quasiclassical formulation
the ET problem by Garget al.,7 but with the prominent gen
eralization which accounts for time-dependent external d
ing. Our main objective is to find an answer to the quest
how external driving fields can influence and control the
havior beyond the Golden RuleET theory. Therefore, ou
main focus is to generalize the existing concepts7,19,20 to in-
clude the effects of time-dependent driving.

The structure of this paper is as follows. In the ne
section we briefly review basic concepts in electron trans
theory and introduce our model Hamiltonian. Ideas such
diabatic states, adiabatic states and the Born–Oppenhe
approximation are elucidated. The derivation of the dyna
cal equations of motion is carried out in Sec. III togeth
with the discussion about their region of validity. There, w
shall also introduce thedriven Zusman equations. Section IV
is devoted to the discussion of analytical approaches
corresponding results. In the parameter regime of hi
frequency driving we shall show that forward and backwa
transition rates of the transfer process can be extracted
Sec. V, we present a numerical formalism to solve the g
eralized Zusman equations for arbitrary driving forces. S
tion VI contains a comparison of the numerical findings w
the analytical results obtained in Sec. IV. We investig
several effects introduced by the external driving, amo
those are the inversion of population and the transition fr
adiabatic to a nonadiabatic electron transfer. Finally, we c
clude with a summary of our findings.

II. A GENERALIZED ELECTRON TRANSFER MODEL

An intermolecular electron transfer~ET! reaction is usu-
ally associated with a transition between molecular el
tronic levels which is accompanied by a nuclear rearran
ment. To model such processes the relevant electronic s
must be known. The foundation of ET theory involves
description in terms of alocalized electronic initial state,
which we will refer to as thedonor ~D! or reactant state, an
a localizedfinal state, which we will refer to as theacceptor
~A! or product state. To determine thesediabatic molecular
states one usually makes use of one of the most promi
concepts in molecular physics and chemistry, the so-ca
Born–Oppenheimer approximation. In the first stage,
electronic problem is solved while keeping the atomic nuc
~reaction coordinate! fixed in configuration space. In secon
stage, the nuclear dynamics on a given predetermined po
tial energy surface is treated. The techniques for calcula
Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
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these energy surfaces have been developed to a high de
of efficiency in modern quantum chemistry.21

A. The model Hamiltonian

The minimal framework to describe driven electro
transfer processes consists of two diabatic electronic st
V1,2(x) and a generalized one-dimensional reaction coo
natex. The two electronic states before and after the cha
transfer are usually denoted as donoru1& and acceptoru2&
state, respectively. The reaction coordinate with the effec
massm represents some distinctive nuclear degree of fr
dom ~e.g., a combination of certain intramolecular vibr
tional modes! coupled to the electronic transfer system1

Moreover, the use of the Born–Oppenheimer approximat
allows one to formulate the starting Hamiltonian as

ĤBO~x,p,t !5V1~x,t !u1&^1u1V2~x,t !u2&^2u1
p̂2

2m
. ~1!

Due to the external driving forcesE(t) the expressions
V1,2(x,t)ªV1,2(x)2d1,2E(t) in Eq. ~1! are explicitly time
dependent. Here, the static diabatic electronic curvesV1,2(x)
~see Figs. 1 and 2! constitute Born–Oppenheimer potentia
for the motion of the reaction coordinatex at the fixed elec-
tron configurationn51,2. The influence of the applied elec

FIG. 1. Schematic representation of two unbiased diabatic Born–Op
heimer surfacesV1,2(x) and the corresponding adiabatic potentialsV6(x).
The distance between the adiabatic levels is given by twice the nonadia
interactionD.

FIG. 2. The diabatic reactantV1 and productV2 energy surfaces presente
by harmonic functions of the reaction coordinatex @cf. Eq. ~5!#. The biase0

is the difference between the energy minima of the surfaces.Er is the reor-
ganization energy, andx* is the point of intersection at which the electro
transfer takes place. The curvature of the wells is characterized byv0 . The
curved arrow indicates relaxation along the reaction coordinate and
straight arrow indicates the crossing motion.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tric field on the electronic subsystem is considered in
dipole approximation, and is given byd1,2E(t). In this ex-
pression d1,2 denote the electric dipole moments of th
charge density distribution associated with the electron
cated on the donor or acceptor site, respectively, andE(t) is
the time-dependent field in the semiclassical approximat
Strictly speaking, bothd1,2 and E(t) are vectors and thei
scalar product should be considered. However, we shall
sume that the difference of dipole moments is aligned w
the electric field and, therefore, we use scalar notations.

Note also that the chosen form of the coupling to t
electric field excludes thedirect influence of the externa
driving on the reaction coordinate. This assumption me
that the reaction coordinate bears only a very small or
associated electric charge or dipole moment. Besides,
dipole momentsd1,2 generally should depend on the reacti
coordinatex. However, we shall neglect thisindirect influ-
ence as a higher order effect, which is beyond the scop
the present work. These very same approximations are
plicitly assumed in all previous works on driven electr
transfer.13–15

To study the influence of external time dependent el
tric fields on ET processes the Hamiltonian~1! represents the
simplest model which can be treated with reasonable effo
However, the Born–Oppenheimer approximation becom
invalid in the vicinity of the crossing pointx* of the two
potential curves whereV1(x* )5V2(x* ) ~cf. Fig. 2!. Here,
electronic transitions~tunneling! between the two diabatic
electronic levels start to play an important role. This can
accounted for by adding an additional term

Ĥ tun5
1
2 D~ u1&^2u1u2&^1u!, ~2!

to the starting Hamiltonian~1!. This contribution is respon
sible for the coupling between the two surfacesV1 andV2 .
The charge transfer is induced by the electronic coup
matrix elementD which characterizes the degree of overl
of the donor and acceptor wave function, and which gen
ally also depends on the reaction coordinate. However,
have additionally used the Condon approximation in Eq.~2!,
assuming that the electronic couplingD(x)ªD is a constant.

Moreover, in condensed phase ET complexes, the ab
system is immersed in a thermal bath which captures
effect of other nuclear and solvent degrees of freedom on
reaction coordinate. Phenomenologically, this situation
be described by friction. On the microscopic level it is mo
eled by a bilinear coupling of the reaction coordinate to
bath of independent harmonic oscillators of massmi and
frequenciesv i . Collecting all our assumptions we end u
with the following archetypical Hamiltonian

ĤET~ t !5 1
2 @V1~x,t !2V2~x,t !#ŝz1

1
2 Dŝx

1
1

2 F p̂2

m
1V1~x,t !1V2~x,t !G 1̂1ĤB , ~3!

where we have introduced the pseudo-spin operators~Pauli
matrices! ŝzªu1&^1u2u2&^2u, ŝxªu1&^2u1u2&^1u, and the
unity matrix 1̂, respectively. Furthermore, the term
Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
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ĤB5
1

2 (
i

H p̂i
2

mi
1miv i

2Fxi2
ci

miv i
2 xG2J ~4!

in Eq. ~3! describes the thermal bath of harmonic oscillato
and its coupling to the reaction coordinate. The latter one
written in a separable bilinear form with a so-termed coun
term @quadratic inx contribution in Eq.~4!# which removes
the renormalization of the potential curves due to frictio
This coupling can uniquely be characterized by the b
spectral functionJ(v)5(p/2)( i(ci

2/miv i)d(v2v i). In the
continuum limit we choose the smooth Ohmic formJ(v)
5hv exp(2v/vc) with the frequency cutoffvc→` ~Ref.
22! and phenomenological friction coefficienth. This consti-
tutes a realistic choice for modeling viscous friction in ma
ET systems. For example, in experiments with seve
solvents23 it has been observed that the behavior of the b
correlation function is qualitatively similar to the theoretic
prediction for a solvent with an Ohmic spectral densi
Moreover, it is noteworthy that the same Ohmic-type sp
tral density has been found in simulations of the primary
in bacterial photosynthesis.24

Next, we want to emphasize that the electronic degree
freedom, described by the spin matricesŝx,z , is not directly
coupled to the environment. The influence of dissipation
the tunneling dynamics takes place via the reaction coo
natex, which in turn is coupled to the remaining nuclear a
solvent degrees of freedom. However, the reaction coo
nate in our model is not directly coupled to the external fie
and experiences the field influence via the electronic deg
of freedom only.

B. The potential curves

Basic details of the theory presented below are valid
generic forms of the diabatic potential curvesV1,2(x). Nev-
ertheless, we shall restrict ourselves to the standard harm
oscillator potentials

V1~x!5 1
2 mv0

2x2,

V2~x!5 1
2 mv0

2~x2x0!22e0 ,
~5!

wherex0 is the spatial displacement between the two shif
parabolic surfaces, ande0 is the energy distance between th
minima. For convenience, the donor wellV1(x) is centered
on the coordinate origin. The curvature of the two wells
assumed to be equal and is characterized byv0 . In the lit-
erature the potential curves are often characterized by
well-known reorganization energy

Er5
1
2 mv0

2x0
2, ~6!

and the crossing point of the diabatic curves

x* 5
x0

2
2

e0

mv0
2x0

5
Er2e0

2Er
x0 . ~7!

We will use these parameters when appropriate. The con
tion between the various parameters is illustrated with Fig
In the adiabatic basis, the potential energy of the Ham
tonianHET is diagonalized. The corresponding adiabatic s
faces are the eigenvalues, i.e.,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V6~x!5 1
2 @V1~x!1V2~x!#6 1

2 A@V1~x!2V2~x!#21D2.
~8!

If, without driving, the energy gap between the adiaba
surfacesD is larger than the thermal energy,D@kBT, the
upper level is practically not occupied and may be exclud
from the further consideration. Thus, an adiabatic descrip
on a single adiabatic surface becomes adequate. When
electronic couplingD is relatively small, or time-dependen
driving is present, one needs to considerboth potential sur-
faces; the reaction can then proceed either adiabatic or
adiabatic.

III. EQUATIONS OF MOTION

In this section we focus on the derivation of the dynam
cal equations for the reduced density matrix elements, g
erned by the electron transfer HamiltonianHET(t) ~3!. We
are particularly interested in a mixed classical-quantum
scription of the problem, where the reaction coordinate
treated as a classical object moving in a viscous medium
is coupled to the electronic degrees of freedom, which ar
a pure quantum nature. The resulting equation of motion
the reduced density operatorr̂ can be derived, e.g., by th
cumulant expansion method.25 Note that the characteristi
decay time of correlations in the thermal bath is given~in the
limit vc→`) by the thermal timetT5\/(2pkBT). If we
assume that this time scale is much shorter than any o
characteristic time scale of the dynamics of the system~in
the absence of dissipation! and the relevant dynamics take
place on the coarse-grained time scalet@tT , the following
Markovian master equation can be derived7
l
n
io

y
m
at
es

Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
c

d
n
the

n-

-
v-

-
s
nd
of
r

er

d

dt
r̂~ t !52

i

\
@ĤET~ t !,r̂~ t !#2

ih

2m\
@ x̂,@ p̂,r̂~ t !#1#

2
hkBT

\2 @ x̂,@ x̂,r̂~ t !##, ~9!

where @A,B#ªAB2BA and @A,B#1ªAB1BA denote
commutator and anticommutator of two arbitrary operato
A andB, respectively. In Eq.~9! the dissipative part has th
well-known Caldeira–Leggett form22 and the region of va-
lidity of this equation is given bykBT@$\v0 ,\h/m%.25

This means that the reaction coordinate varies on a time s
which is slower as compared to the thermal environmenttT .

A. Wigner phase-space representation

We are interested in the limit when the quantum beh
ior of the reaction coordinate and the environment is
important. For this purpose, it will be convenient to repres
Eq. ~9! in terms of aquasiprobabilitydistribution, such as a
phase space distribution function. Similar representati
have proven to be extremely useful when studying the se
classical limit of quantum mechanical systems. The m
prominent example from a variety of possibilities is given
the Wigner function26,27

Ŵ~x,p,t !5
1

2p\ E
2`

1`

dx8 exp~2 ipx8/\!

3^x1x8/2ur̂~ t !ux2x8/2&. ~10!

Note thatŴ(x,p,t) is the 232 matrix in the present case
Applying the transformation~10! to the master equation~9!
and keeping only terms of leading order in\(\→0), we end
up with the following semiclassical equation of motion,
]

]t
Ŵ~x,p,t !52

1

m

]

]x
~Ŵp!1

]

]p S Ŵ
d

dx

1

2
@V1~x,t !1V2~x,t !# D1

h

m

]

]p
~Ŵp!1hkBT

]2

]p2 ~Ŵ!

1
1

2

]

]p
@ŝz ,Ŵ#1

d

dx

1

2
@V1~x,t !2V2~x,t !#2

i

\ F1

2
~V1~x,t !2V2~x,t !!ŝz1

1

2
Dŝx ,ŴG . ~11!
i-
it
i-

,
zed
We remark that in Eq.~11! the intrinsic quantum mechanica
nature of the electron dynamics is depicted by the prese
of Planck’s constant in the last contribution. The assumpt
for neglecting higher order terms in\ is consistent with the
validity regime of Eq.~9!. It implies that the relevant energ
of the reaction coordinate is small compared to the ther
energy. Therefore, the reaction coordinate can be tre
semiclassically. In deriving the Fokker–Planck-type expr
sion ~11! we have utilized the operator correspondences

x̂r̂↔S x1
i\

2

]

]pD Ŵ~x,p!, r̂ x̂↔S x2
i\

2

]

]pD Ŵ~x,p!,

~12!

p̂r̂↔S p2
i\

2

]

]xD Ŵ~x,p!, r̂ p̂↔S p1
i\

2

]

]xD Ŵ~x,p!.
ce
n

al
ed
-

These relations can readily be proved,28 and for powers ofx
andp they hold iteratively.

In the next section we shall simplify further the sem
classical equation~11! by assuming the overdamped lim
g@v0 with g5h/m. In this latter case the reaction coord
nate possesses the characteristic relaxation~autocorrelation!
time t5g/v0

2.

B. Zusman equations

In the overdamped limit (g@v0), the dynamics of the
reaction coordinatemomentum pis not of relevant interest
and thus can be integrated out, i.e., in the basis of locali
states,ui&, i 51,2 we have

r i j ~x,t !5E
2`

1`

dpWi j ~x,p,t !, ~13!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where (̄ ) i jª^ i u(¯)u j &. For large timest@g21 the equa-
tions of motion forr i j (x,t) can be obtained by a metho
termed the inverse friction expansion.29,30 Here, to leading
order ing21 the distribution for the reaction coordinate m
mentump at any space pointx is assumed to be Maxwellia
so thatŴ takes the form

Wi j ~x,p,t !5
1

A2pmkBT
exp~2p2/2mkBT!r i j ~x,t !.

~14!

The interested reader can find higher order contribution
the series expansion in Ref. 29. We neglect such com
higher order contributions because they do not provide
portant corrections as long as the time scale of the drivin
long compared to the time scale necessary for the reac
coordinate momentump to equilibrate.

To ensure the convergence of this method the damp
constant has to be sufficiently large. For static harmonic
tentials~5! the region of validity is determined byg@v0 .29

Bearing all this in mind we finally end up with the nove
semiclassical Smoluchowski-type equations,

]

]t
r11~x,t !5L1r11~x,t !2 i

D

2\
@r21~x,t !2r12~x,t !#,

]

]t
r22~x,t !5L2r22~x,t !2 i

D

2\
@r12~x,t !2r21~x,t !#,

~15!
]

]t
r12~x,t !5Lr12~x,t !2 i

D

2\
@r22~x,t !2r11~x,t !#

2
i

\
@V1~x!2V2~x!1e~ t !#r12~x,t !,

]

]t
r21~x,t !5Lr21~x,t !2 i

D

2\
@r11~x,t !2r22~x,t !#

1
i

\
@V1~x!2V2~x!1e~ t !#r21~x,t !.

Here, the time-dependent electric field influence is contai
in the function

e~ t !5~d22d1!E~ t !. ~16!

In Eq. ~15! we have defined the two Smoluchowski ope
tors,

L15D
]

]x S ]

]x
1

1

kBT

]

]x
V1~x! D ,

~17!

L25D
]

]x S ]

]x
1

1

kBT

]

]x
V2~x! D ,

which describe diffusion on the energy surfacesV1(x) and
V2(x), respectively. Moreover, the operatorL5(L11L1)/2
describes diffusion on the averaged potential. The ma
scopic diffusion constantD is connected with the phenom
enological friction coefficienth and the temperatureT by the
Einstein relation

D5
kBT

mg
5

kBT

h
. ~18!
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The diagonal elementsr11(x,t) and r22(x,t) can be inter-
preted as the probability distribution functions for the rea
tion coordinate positionx when the electron is situated at th
donor or acceptor site, respectively. The external driv
force e(t) in Eq. ~15! can be understood as a modulation
the energy gape0 between the minima of the two potentia
surfaces in time. The specific form of this modulation
defined by the time dependence of the driving fieldE(t)
which can be arbitrary. It is worth noting that, on the ph
nomenological level of description—using the Smol
chowski like equations~15! instead of the Fokker–Planc
equation~11!—corresponds to the assumption that the d
namics of the reaction coordinate can be described by
overdamped oscillator, i.e., inertia effects are neglected. T
is a standard assumption met across the literature with
much detailed discussion. To determine precisely the reg
of validity of this assumption requires a separate study wh
is far beyond the scope of the present work.

In the limit of a vanishing driving amplitudee(t)50,
Eqs.~15! reduce to those of Garget al.,7 who obtained them
within a path integral scheme. They have also been deri
@whene(t)50# by Yang and Cukier19 by a projection opera-
tor method. Equations~15! are named in the literature th
Zusman equations, according to the pioneering work o
Zusman,5 who introduced them in 1980 in a more phenom
enological manner using the stochastic Liouville equat
approach. One can deduce that our generalized Zus
equations~15! are a hybrid between the equations for t
density matrix of spin 1/2 system in an external field and
well-known Smoluchowski equation for diffusion on the tw
diabatic surfacesV1(x) andV2(x).

Recently, the undriven Eqs.~15! have been analytically
and numerically investigated by several authors.7,19,20,31–33In
contrast, we will next focus our attention on the driven, tim
dependent case.

IV. ANALYTIC HIGH-FREQUENCY SOLUTION

With Eq. ~15! at hand we shall derive an analytic expre
sion for the electron transfer rate constant in the limit
high-frequency driving. To this goal, we shall reduce,
generalizing the reasoning in Ref. 19 onto the driven ca
the set of four coupled Zusman equations~15! to only two
coupled equations for the diagonal elementsr11(x,t) and
r22(x,t).

By formally solving for the two off-diagonal equation
for r12 and r21 in ~15! the diagonal populations are repr
sented by

]

]t
r11~x,t !52

D2

2\2 ReE
2`

1`

dx8E
0

t

dt8G~x,tux8,t8!

3@r11~x8,t8!2r22~x8,t8!#1L1r11~x,t !,
~19!

]

]t
r22~x,t !5

D2

2\2 ReE
2`

1`

dx8E
0

t

dt8G~x,tux8,t8!

3@r11~x8,t8!2r22~x8,t8!#1L2r22~x,t !,

where the propagatorG(x,tux8,t8) is the Green function de
fined in the operator form by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G5@]/]t2L1 i @V1~x!2V2~x!1e~ t !#/\#21. ~20!

We explicitly evaluate this Green function in the Append
for the harmonic surfaces in Eq.~5!. The result is given in
Eq. ~A2! together with Eqs.~A3!, ~A7!, and~A8!.

To proceed, we consider a harmonic driving of the fo

e~ t !5 ê cos~Vt !, ~21!

and focus our attention on the limit of high-frequency dr
ing, i.e., we assume that the driving period 2p/V is smaller
than any characteristic time of the electron transfer and
diffusive motion in the potential wells. A good approxim
tion to the dynamics ofr i i (t) then amounts to perform th
average of Eq.~19! over a period of the fast driving field to
obtainr̄ i i (x,t)5^r i i (x,t)&V . The resulting equations for th
averagedcoarse-grained dynamics read

]

]t
r̄11~x,t !52

D2

2\2 ReE
2`

1`

dx8E
0

t

dt8Ḡ~x,t2t8ux8!

3@ r̄11~x8,t8!2 r̄22~x8,t8!#1L1r̄11~x,t !,
~22!

]

]t
r̄22~x,t !5

D2

2\2 ReE
2`

1`

dx8E
0

t

dt8Ḡ~x,t2t8ux8!

3@ r̄11~x8,t8!2 r̄22~x8,t8!#1L2r̄22~x,t !,

where(¯)ª^¯&V denotes the time-averaging over the p
riod of the external field. The averaged Green funct
Ḡ(x,t2t8ux8)5^G(x,tux8,t8)&V , see Eq.~A2!, reads

Ḡ~x,t2t8ux8!5G0~x,t2t8ux8!J0S 2ê

\V
sin

V~ t2t8!

2 D
3expF2

i

\
e0~ t2t8!G , ~23!

with G0(x,t2t8ux8) given in Eq.~A7!. To obtain Eqs.~22!
and ~23! we have used the high-frequency decoupling
sumption ^G(x,tux8,t8)r i i (x8,t8)&V'Ḡ(x,tux8,t8) r̄ i i (x8,t8)
and the well-known relation13,17,18

K expF i ê

\ E
t8

t

cos~Vt9!dt9G L
V

5J0S 2ê

\V
sin

V~ t2t8!

2 D ,

~24!

where J0(z) is the zero order Bessel function of the fir
kind. Hence, for a fast driving field time translation inva
ance is recovered by this averaging procedure, and the p
lem becomes formally equivalent to a static one where
influence of the driving has been absorbed in the time dep
dent prefactorJ0((2ê/\V)sin@V(t2t8)/2#).

We proceed with performing two further crucial a
proximations on Eq.~22!. First, we assume that the tim
variation ofG(x,tux8,t8), which reflects the dynamics of th
coherencesr12(x,t) and r21(x,t), is much faster than the
dynamics of the populationsr11(x8,t8) and r22(x8,t8).
Thus, we can apply a Markovian approximation related
the time integral in Eq.~22!, yielding
Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
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]

]t
r̄11~x,t !52E

2`

1`

dx8M ~xux8!@ r̄11~x8,t !2 r̄22~x8,t !#

1L1r̄11~x,t !, ~25!

with the integral kernel given by

M ~xux8!5
D2

2\2 ReE
0

`

dt8Ḡ~x,tux8!. ~26!

By use of the propagator

G1,25~]/]t2L1,2!
21, ~27!

describing diffusive motion on the surfaceV1,2(x), the for-
mal solution of Eq.~25! is given by

r̄11~x,t !52E
2`

1`

dx9E
2`

1`

dx8E
0

t

dt9G1~x,t9ux9!M ~x9ux8!

3@ r̄11~x8,t !2 r̄22~x8,t !#. ~28!

Note, that an analogous equation holds forr22(x,t).
In a second step, we follow the Ref. 19 and assum

that the spatial variation ofG1,2(x,t9ux9) is much smoother
compared to that ofM (x9ux8) we approximate the integra
over x9 in Eq. ~28! as *dx9G1(x,t9ux9)M (x9ux8)
'G1(x,t9ux8)*dx9M (x9ux8). This approximation is based
on the fact that, generally, the diagonal densities in Eq.~15!
vary smoothly on the space scale of variations of the o
diagonal densities, see also Refs. 5, 7. Then, by apply
G1

21 to the resulting equation we finally obtain

]

]t
r̄11~x,t !52K~x!@ r̄11~x,t !2 r̄22~x,t !#1L1r̄11~x,t !,

~29!
]

]t
r̄22~x,t !5K~x!@ r̄11~x,t !2 r̄22~x,t !#1L2r̄22~x,t !,

where we have introduced the twice-integrated Green fu
tion

K~x!5
D2

2\2 ReE
2`

1`

dx8E
0

`

dt8Ḡ~x8,t8ux!. ~30!

Using Eq.~23! and Eqs.~A7!–~A10! in Eq. ~30! we obtain

K~x!5
D2

2\2 E
0

`

dtJ0S 2ê

\V
sin

Vt

2 D
3cosS Ert

\ S 2x

x0
21D ~12e2t/t!1

e0

\
t D

3expS 2ErkBTt2

\2 @~12e2t/t!

1 1
2 ~12e2t/t!22t/t# D . ~31!

The integral in Eq.~31! can approximately be evaluated b
making a short-time approximation in its integrand. In doi
so, the corresponding functions in cos(¯) and exp(̄ ) in Eq.
~31! are expanded to the lowest nonvanishing order in timt,
i.e., to the first order in cos(̄ ) and to the third order in
exp(̄ ). Then, one observes that in the absence of exte
driving the functionK(x) has a peak around the crossin
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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point of diabatic surfacesx* , cf. Eq. ~7!. Moreover, in the
presence of driving one finds@using the identity
J0((2ê/\V)sin(Vt/2))[(n52`

` Jn
2( ê/\V)exp(inVt) in Eq.

~31!# that this peak is splitted into the additional peaks
$xn* 5x* 2n\Vx0 /(2Er), n561,62,...% possessing the
relative weightsJn

2( ê/\V).
With Eq. ~29! we are able to reduce the full Zusma

equations~15! to a simpler pair of coupled equations whic
involve only the populationsr11 and r22. The structureof
Eqs.~29! and ~30! is formally equivalent to the expression
obtained in Ref. 19. Therefore, we can follow in our furth
analysis of Eq.~29! the reasoning therein.

A. Rate equations

Electron transfer processes are characterized by the
responding transfer rates. In particular, the experimenta
are interested in the rate description~if at all possible! be-
cause this provides them with the relevant time scale of
experiment. To extract rate coefficients from Eqs.~29! it is
convenient to compare them to some phenomenological
equations.

1. Phenomenological rate equations

For the generic reactionDA�D1A2 the following sys-
tem of equations is often invoked:

d

dt S P11~ t !
P22~ t ! D52S k1 2k2

2k1 k2 D S P11~ t !
P22~ t ! D[2kP~ t !.

~32!

Here,k1 andk2 are the rate constants for the forward a
backward reaction, respectively, and the correspond
populationsPi j (t) on the donor and acceptor surfacesV1 and
V2 , respectively, are obtained by integrating the probabi
density over configuration space, i.e.,

Pii ~ t !5E
2`

1`

dxr̄ i i ~x,t !. ~33!

Due to conservation of probability the relationP11(t)
1P22(t)51 holds. With the initial conditionsP11(0)51
andP22(0)50, Eq. ~32! can easily be solved to give

P11~ t !5P`1~12P`!exp~2Gt !. ~34!

Equation~34! predicts an exponential decay with the to
rate constantG for the reaction given by the sum of forwar
and backward rates, i.e.,

G5k11k2. ~35!

At long times the stationary limit

P`5
k2

k11k2 ~36!

is reached. Thus, in writing down Eq.~32! we have implic-
itly made use of the assumption that the relevant dynam
can be described by a single exponential decay. For h
frequency driving, this reasoning is certainly true as long
we are in the overdamped regime and a sufficiently h
static barrier exists between the donor and acceptor st
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However, the numerical results of Sec. V will prove th
even in the activationless regime satisfactory rate results
be obtained.

In terms of the Laplace transformationf̂ (l)
5*0

` exp(2lt)f(t) the population equation~32! reads

@k1l#P̂~l!5P~0!. ~37!

2. Derivation of rate equations

An analogous equation can be obtained starting from
~29! with the time independent high-frequency functio
K(x), given in Eq.~30!. The procedure to achieve this ob
jective is known.19 We rewrite expression~29! for the diag-
onal elements of the distribution function in matrix notatio
i.e.,

d

dt
r~x,t !52@K ~x!2L #r~x,t !, ~38!

with the definitions

r~x,t !5S r̄11~x,t !
r̄22~x,t ! D , L5SL1 0

0 L2
D ,

~39!

K ~x!5S K~x! 2K~x!

2K~x! K~x!
D .

Next we perform the Laplace transform on Eq.~38! which
results in a similar equation as Eq.~37!. However, it still
depends on the reaction coordinatex. To achieve an expres
sion for the integrated populations we act on this equat
with the projection operator

P~¯ !5S g1~x! 0

0 g2~x!
D E

2`

1`

~¯ !dx5g~x!E
2`

1`

~¯ !dx,

~40!

g1,2~x!5
exp~2V1,2~x!/kBT!

*2`
1`dx exp~2V1,2~x!/kBT!

,

and its complementQ51̂2P. By ~i! using standard projec
tion operator manipulations,~ii ! utilizing the relationsPL
50, Lg50, and~iii ! assuming that the initial distributions o
the diagonal densitiesr̄ i i (x,0) are taken at equilibrium, i.e.
r̄ i i (x,0)5gi(x)Pii (0), i 51,2, one finds that

@m~l!1l#P̂~l!5P~0!, ~41!

with the matrix

m~l!5g21PK ~ 1̂2@l1Q~K2L !#21QK !g. ~42!

Using some algebraic manipulations and the propertiesQL
5L , Lg50, one can identically transform Eq.~42! into the
series

m~l!5g21PK S 1̂2 (
n50

`

~21!n@G̃~l!QK #n11D g, ~43!

which is convenient to introduce approximations below E
~44!. In Eq. ~43!, G̃(l) is the diagonal matrix
whose elements are the Laplace-transformed Gr
functions G̃1,2(x,lux8)5*0

` exp(2lt)G1,2(x,tux8)dt, where
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G1,2(x,tux8) is given in Eq.~A12!. Note thatG̃1,2(x,lux8)
acts on the arbitrary functionf (x) as an integral operator
i.e., G̃1,2(l) fª*2`

` G̃1,2(x,lux8) f (x8)dx8. Upon comparing
Eq. ~37! with Eq. ~41! we find in the long time limitt→`
the identification

k5 lim
l→0

m~l!, ~44!

for the rate matrix. The evaluation of this equation with E
~43! is done in Ref. 19 for the undriven case by means of
so-termed ‘‘consecutive step approximation’’19 in which the
dynamics of diffusion and reaction~tunneling! are disen-
tangled. In our case, we closely follow their evaluati
scheme. This consecutive step approximation is in the s
spirit as the one used above Eq.~29!; it assumes a decou
pling between the smooth Green functions in Eq.~43! as
compare to the rapidly varying integral kernelK(x) which
has a peak aroundx5x* @cf. the discussion below Eq.~31!#.
In order to obtain a tractable result, we next perform t
decoupling consecutively in each term of the series~43!.34

Then, the corresponding series can be summed to yield

k5@11KNAKD#21KNA . ~45!

Here, the elements of the matrices

KNA5S kNA
1 2kNA

2

2kNA
1 kNA

2 D , KD5S 1/kD
1 0

0 1/kD
2D , ~46!

are defined via the integral relations

kNA
6 5E

2`

1`

dxK~x!g1,2~x!, ~47!

and

1/kD
65E

0

`

dt@G1,2~x* ,tux* !g1,2~x* !2121#. ~48!

The explicit expressions for K(x), g1,2(x), and
G1,2(x* ,tux* ) can be found in Eqs.~31!, ~40!, and ~A12!,
respectively.

The rate constantskD
6 characterize the time scale of di

fusion in the two harmonic wells, whereas the crossing
namics is described bykNA

6 . If the diffusion is rapid relative
to the crossing rate, the well population is equilibrated a
the standard nonadiabatic~Golden Rule! rate expression is
recovered~see Sec. IV B!. On the other hand, if the diffusion
is slow, it essentially determines the rate of electron tran
rendering the latter essentially independent of the electro
coupling D. This can be best seen by writing out the e
ments of Eq.~45! to obtain the rate expression

k15
kNA

1

11kNA
1 /kD

11kNA
2 /kD

2 , ~49!

which is the usual form for a consecutive step react
mechanism.19,35 An analogous equation holds also for th
backward ratek2 with the interchange (1↔2). In Eq.
~49!, all the effects of external driving are captured by t
field-dependentnonadiabaticrate constantskNA

6 . The diffu-
Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
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6 in Eq. ~49! arenot affected by external

driving. This clearly reflects a flaw of our approximatio
scheme when used for the driven case.

It is also interesting to note that a similar rate express
as in Eq.~49! recently emerged in Ref. 15, whereperiodi-
cally drivenET was discussed in a rather different system.
this latter work, a model of stochastically gated long ran
ET has been considered. There, the electron transfer
pathway ~‘‘bridge’’ ! was stochastically interrupted due
random changes in the conformational configuration of
underlying molecule. Moreover, the conformational dyna
ics plays there a role similar to the diffusive reaction co
dinate in the present work. However, there is a very essen
difference between the two models which is reflected in
different physical situations considered. In Refs. 15 and
the conformational fluctuationsdrive by assumption the ET
without any feedback, in the present work the electron tra
fer dynamics and the reaction coordinate diffusion dynam
are mutually coupled. The structure of Eq.~49! indicates
however aneffective decouplingbetween the diffusion dy-
namics and the electronic transitions. As a result, theindirect
influence of external field on the diffusion dynamics is co
pletely disregarded. This decoupling represents thus a dra
approximation which has to be tested against numerical
culations. Notwithstanding these remarks, the approxim
result in Eq.~49! motivates us to address such an intrigui
effect as the driving-induced transition between the adiab
and nonadiabatic transfer regime of ET which has been
dicted for the conceptually different situation in Ref
15 and 16.

B. The nonadiabatic rate constant

As will be demonstrated below in Sec. VI B 1, high
frequency and strong driving does actually strongly aff
the diffusive rate constantskD

6 , yielding an enhancemen
that increases with increasing driving strength. Therefore,
may find thatkD

6@kNA
6 , so that the ratesk6 become equal to

the nonadiabatic rateskNA
6 @cf. Eq. ~49!#. These rates can b

evaluated explicitly. Upon inserting the expressions~31! and
g1,2(x) into Eq. ~47! and doing the spatial integral analyt
cally, we are led to the very appealing form

kNA
6 5

D2

2\2 E
0

`

dtJ0S 2ê

\V
sin

Vt

2 D cosS Ert

\
~12e2t/t!7

e0

\
t D

3expS 2ErkBTt

\2 @~12e2t/t!t2t# D , ~50!

where the remaining time integral can be calculated b
numerical quadrature. In deriving this expression we ha
made use of the Green function~A2! within the high-
frequency approximation~23!. We want to emphasize tha
Eq. ~50! is one of the central results in this paper. In t
absence of driving (ê50), it represents nothing but the high
temperature Golden Rule result for the spin-boson mo
with the Debye spectral densityJDebye(v)5(2Er /x0

2)vt/(1
1v2t2).36,37 Thus, our nonadiabatic rate constants~50!
present a generalization of the standard Golden Rule res
to the case of fast periodic driving. Put differently, by use
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the short-time approximation in~50!, i.e., expanding the two
terms (12e2t/t) in ~50! up to the first and second orde
respectively, one recovers the previous results in Refs.
14, 18 obtained therein within the short-time and high te
perature approximation scheme; see, e.g., Eq.~34! in Ref.
13~a!, or Eq. ~25! in Ref. 14.

Moreover, the above discussion of Eq.~50! and its deri-
vation based on the Green function~A7! may be understood
as anindirect proof of our result for the Green function~A7!
compared to an incorrect expression given for the undri
case in Ref. 20.

C. The adiabatic rate constant

Also the diffusive rate constantskD
6 in ~48!—which are

independent of driving parameters due to ma
approximations—can be evaluated explicitly. By use of
Green function~A12! and Eq.~40! we obtain

1/kD
65tE

0

`

dyF 1

A12e22y
expS ~Er7e0!2

2ErkBT

1

11eyD21G .

~51!

Note that the diffusion rates are inverse proportional to
solvent relaxation time, i.e.,kD

6;t215v0
2/g. Furthermore,

the integral in Eq.~51! can be transformed into a more co
venient form,

1/kD
65tS ln~2!1E

0

1

dz
@exp~Ea

6z/kBT!21#dz

zA12z
D , ~52!

where Ea
65(Er7e0)2/4Er denote the so-called activatio

energies. Equation~52! can be expressed in terms of a ge
eralized hypergeometric series2F2(a,b;c,d;z),38 to yield

1/kD
65tS ln~2!1 (

n51

`
1

n~2n21!!! S 2Ea
6

kBT D nD
[tS ln~2!12S Ea

6

kBTD 2F2S 1,1;
3

2
;2;

Ea
6

kBTD D , ~53!

where (2n21)!![1•3•5•¯•(2n21). Moreover, for high
activation barriersEa

6@kBT this result can be well approxi
mated by

1/kD
6'tApkBT

Ea
6 expS Ea

6

kBTD . ~54!

Note that in absence of external driving the detailed bala
condition,

kNA
1 /kNA

2 5exp~e0 /kBT!5exp~Ea
2/Ea

1!, ~55!

holds. Using this and Eq.~54! in the rate expression~49! we
obtain in the adiabatic limitkNA

6 @kD
6 and for e0,Er the

forward and backward undriven Kramers rates,

k6'kad
65

v0
2

4g
A Er

pkBT F12S e0

Er
D 2Ge2~Ea

6/kBT!

[
v0

2

g
A Ea

1Ea
2

pErkBT
e2~Ea

6/kBT!, ~56!
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for the activation transitions in the adiabatic potent
V2(x), see Eq.~8!, and Fig. 1, which is of cusplike form in
the limit $D,e0%!Er . Our adiabatic rate expression~56!
agrees well with a more general one derived in Ref. 39
the asymmetric cusp potential. Moreover, for the symme
case,e050, the original Kramers rate expression40,41 for the
cusp potential is then recovered. Thus, the rate expres
~49! reproduces correctly both the nonadiabatic and the a
batic limit of electron transfer in theabsenceof driving pro-
vided thatD!Er .

With Eqs.~50! and ~51! at hand we can next verify ou
analytical results versus precise numerics.

V. NUMERICAL SOLUTION OF THE DRIVEN ZUSMAN
MODEL

First we like to discuss a numerical method for solvi
the externally driven Zusman equations~15!. A very success-
ful scheme that works in absence of a detailed balance r
tionship ~which is broken in a time-dependent driven cas!
has been proposed by Yang and Cukier.19 We therefore
adopt their numerical scheme for our purpose. In doing
we introduce in place of Eq.~15! the four combinations,

r65r116r22, 2 Rer125r121r21,
~57!

2 Imr125r122r21.

It is advantageous to work with dimensionless quantities.
this end we introduce a dimensionless timet̃ 5t/t, with the
relaxation time of the overdamped harmonic oscillatort
5g/v0

2. Thus the phenomenological time constant in t
Zusman model ist, which is frequently identified with the
longitudinal dielectric relaxation time or the average solv
tion time.5,31,35,42 Moreover, a dimensionless coordinatex̃
5Amv0

2/kBTx is defined, whereAkBT/mv0
2 is the average

width of the oscillator potential surfaces. Using these defi
tions together with Eqs.~5! and ~17! in Eq. ~15! we obtain

]

] t̃
r1~ t̃ ,x̃!5L̃r1~ t̃ ,x̃!1

1

2
x̃0

]

] x̃
r2~ t̂ ,x̃!,

]

] t̃
r2~ t̃ ,x̃!5L̃r2~ t̃ ,x̃!1

1

2
x̃0

]

] x̃
r1~ t̃ ,x̃!2 c̃ Im r12~ t̃ ,x̃!,

~58!
]

] t̃
Rer12~ t̃ ,x̃!5L̃ Rer12~ t̃ ,x̃!1d̃~ x̃2 x̃* ~ t !!Im r12~ t̃ ,x̃!,

]

] t̃
Im r12~ t̃ ,x̃!5L̃ Im r12~ t̃ ,x̃!2d̃~ x̃2 x̃* ~ t !!Rer12~ t̃ ,x̃!

1
c̃

4
r2~ t̃ ,x̃!,

where

L̃5F ]2

] x̃2 1S x̃2
1

2
x̃0D ]

] x̃
11G . ~59!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The new dimensionless auxiliary parameters appearing
Eq. ~58! are c̃52tD/\ and d̃5A2ErkBT/\t. The time-
dependent crossing point and the spatial displacement r

x̃* ~ t !5
Er2e02e~ t !

A2ErkBT
, x̃05A2Er /kBT, ~60!

respectively. In the following we suppress the tildes indic
ing dimensionless coordinates since there is no risk for c
fusion. Furthermore, we construct a solution for Eq.~58! by
the use of an eigenfunction expansion method. For this p
pose we choose as basis functions the right eigenfunct
r n(x) of the diffusion operator,

L̃r n~x!5mnr n~x!, ~61!

with eigenvaluesmn52n, n50,1,2,... . The functionr n(x)
is proportional to Hermite polynomialHn of ordern,

r n~x!5
~1/2p!1/4

A2nn!
Hn@~x2x0/2!/&#

3exp@2~x2x0/2!2/2#. ~62!

Because the right eigenfunctionsr n(x) form together with
the left eigenfunctions~which are the right eigenfunctions o
the adjoint operator!,

l n~x!5
~1/2p!1/4

A2nn!
Hn~~x2x0/2!/& !

5exp~~x2x0/2!2/2!r n~x!, ~63!

a complete set, we can expand the solutions of Eq.~58! as

r6~ t,x!5 (
n50

`

an
6~ t !r n~x!,

Rer12~ t,x!5 (
n50

`

bn
1~ t !r n~x!, ~64!

Im r12~ t,x!5 (
n50

`

bn
2~ t !r n~x!,

with time dependent expansion coefficientsan
6(t) and

bn
6(t). Substitution of Eq.~64! into the coupled partial dif-

ferential equations~58! and multiplication from left with
l m(x) together with integration overx results in

]

]t
an

1~ t !52nan
1~ t !2

x0

2
Anan21

2 ~ t !,

]

]t
an

2~ t !52nan
2~ t !2

x0

2
Anan21

1 ~ t !2 c̃bn
2~ t !,

~65!
]

]t
bn

1~ t !52nbn
1~ t !1d̃Anbn21

2 ~ t !1d̃An11bn11
2 ~ t !

2d̃~x* ~ t !2x0/2!bn
2~ t !,
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]

]t
bn

2~ t !52nbn
2~ t !2d̃Anbn21

1 ~ t !2d̃An11bn11
1 ~ t !

1d̃~x* ~ t !2x0/2!bn
1~ t !1

c̃

4
an

2~ t !.

In deriving this infinite set of linear first-order differentia
equations for the expansion coefficients we have used
biorthogonality of the basis functions. Note that Eq.~65! we
are now confronted withtime-dependentcoefficients due to
the time-dependent crossing pointx* (t) @cf. Eq. ~60!#. Thus,
in the further analysis we cannot simply rely on the stand
methods of linear algebra with its fast and well-elabora
numerical algorithms. Instead, we must directly integrate
set of Eqs.~65! numerically. This clearly requires a muc
larger computational effort as compared to the undriv
case!

The sparse linear system~65! has a block tridiagona
structure, where the blocks are 434 matrices, corresponding
to the four coefficientsan

6 ,bn
6 for a givenn. Note that since

*2`
` r n(x)dx50 for nÞ0 and*2`

` r 0(x)dx5(2p)1/4 it fol-
lows from Eqs. ~33!, ~64!, and ~57! that P11(t)
5 1

2 (2p)1/4@a0
1(t)1a0

2(t)# and P22(t)5 1
2 (2p)1/4@a0

1(t)
2a0

2(t)#. Moreover, from Eq.~65! it follows that a0
1(t)

5const5a0
1 is a time-independent constant. The value

this constant as well as theinitial value ofa0
2(t) can be fixed

by the initial distribution of electronic populations. Assum
ing P11(0)51 @P22(0)50# in the following we geta0

1(t)
5a0

2(0)51/(2p)1/4. Then, the probability distribution on
the surfaceV1 reads

P11~ t !5 1
2 @11~2p!1/4a0

2~ t !#. ~66!

The expansion coefficienta0
2(t) is obtained by integrating

Eq. ~65! numerically. The rest of initial valuesan
1(0)

5an
2(0) is determined from the expansion of the initial di

tribution r11(x,0) over the set$r n(x)%. Moreover, bn
6(0)

50. Note thatP11(t), analytically given by Eq.~34! with Eq.
~49!, and numerically given in Eq.~66! via Eq. ~65!, is the
key quantity in the discussion of driven ET dynamics.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section we shall present our numerical resu
concerning the Zusman model of electron transfer with
ternal driving. We shall discuss some general features
point out new effects induced by the time dependent fie
Moreover, we compare our novel analytical approximate
sults versus numerically precise ones.

To evaluate the probability densitiesr i j (x,t) we solve
the system of 43n first order differential equations~65! by
using a Runge–Kutta–Merson propagation scheme. Our
merical calculations have shown that usually a set ofn
'300 basis functions is enough to ensure convergence o
results. As initial preparation it is convenient to choose
Gaussian wave packet placed on the donor surfaceV1(x),
i.e.,

r11~x,0!5
1

bsA2p
expS 2

~x2xI!
2

2bs
2 D , ~67!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Dynamics of the reduced density matrix distributionr i j (x,t) according to the Zusman equations~15!. The calculations for a symmetric system wit
a vanishing energy gap (e050) between the two surfaces were carried out by the numerical solution of Eqs.~65!. The time-dependent field strengthê
5250 cm21 and the frequencyV51 cm21 correspond to weak adiabatic driving. The reorganization energy is chosen to beEr5500 cm21 and the temperature
is set toT5300 K. The probability distributionr11(x,t) corresponds to the donor potential surfaceV11 while r22(x,t) is the probability distribution on the
acceptor site.
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and P11(0)51. Besides, it is assumed that the Gauss
wave packet has already relaxed to a thermal quasiequ
rium distribution~with electronfixedat donor!, which explic-
itly determines the corresponding widthbs of the distribu-
tion and the initial positionxI50. To study the effect of
strongly nonequilibrium initial preparations, arbitrary valu
for bs andxI can be considered.

In our figures, system and driving parameters are gi
im units which are commonly used in the ET literature.
explore the influence of time periodic external driving@cf.
Eq. ~21!# in the Zusman model, we have studied syste
characterized by a typical reorganization energy ofEr

5500 cm21. The energy gape0 ~bias between the two sur
faces! is varied between the normal regime of electron tra
fer (ue0u,Er) and the inverted regime (ue0u.Er). The bor-
der between these regimes is called the activation
situation where the asymmetry equals the reorganization
ergy ue0u5Er . The calculations are done at room tempe
ture T5300 K and the relaxation timet of the overdamped
oscillator is assumed to be 1 ps, if nothing else is sta
Moreover we have used a small coupling strength,D
510 cm21, which is two orders of magnitude smaller tha
the reorganization energyEr . This parameter choice is quit
Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
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reasonable for the description of many characteristic n
adiabatic ET reactions.

A. Low-frequency driving

Our considerations start with symmetric systems with
bias,e050, i.e., the static system in the absence of driving
in the normal regime. First, we wish to illustrate our nume
cal procedure with Fig. 3 where we have presented the
duced density matrix distributionr i j (x,t). Here, the chosen
driving frequency V51 cm21 and driving amplitude ê
5250 cm21 are relatively small compared to the reorganiz
tion energy ofEr5500 cm21. As a consequence of this ver
slowly varying driving field the overall effect is an ‘‘adia
batic’’ periodic modulation of the energy gap between t
two potential wells around the mean valuee050. Thus, one
can observe an exponential decay of the initial populat
distributions r11(x,t) with superimposed small driving
induced oscillations. Correspondingly, the distributi
r22(x,t) on the second potential surfaceV2(x) depicts an
increase of the population. On the slow time scale of
driving the oscillations are best explained within a qua
static description.

Since the spatial distribution of the reaction coordina
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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bears no relevant information for the ET reaction dynam
we shall concentrate in the subsequent figures on the
grated donor population dynamicsP11(t) on the surface
V11(x) @cf. Eqs.~33! and ~34!#. Moreover, we compare ou
numerical findings~66! with the analytical predictions given
in Eqs. ~34! and ~49!. Here we shall however distinguis
between two different approximations for the relaxation ra
appearing in Eq.~34!. The curves labeled withG in our fig-
ures correspond to calculations with the full rate constanG
5k11k2 which is composed of the consecutive step f
ward and backward ratesk6 in Eq. ~49!. For comparison, we
plotted also calculations with the nonadiabatic rate cons
GNA[kNA

1 1kNA
2 , consisting of the nonadiabatic forward an

backward rateskNA
6 ~50!. These latter calculations are labele

with GNA .
Figure 4 depicts the numerical results for an intermed

driving frequencyV510 cm21 vs corresponding analytica
results. The static energy bias assumes values in the no
ET regime betweene050 ande05375 cm21. As expected,
we observe a single exponential decay towards a b
dependent asymptotic long-time limitP` . Superimposed on
this decay one can still detect some small driving induc
oscillations. However, on a long time scale these oscillati
are only of secondary importance for the characterization
the ET reaction and they increasingly vanish upon furt
increasingV.

From the good agreement of the numerical findings w
the analytic results one can conclude that in Fig. 4 the tra
fer takes place in the nonadiabatic regime. This is beca
the dynamics can already be well described with the n
adiabatic rateGNA ~dashed–dotted line!. However, for this
low-to-moderate-frequency driving, a closer inspecti
might indicate that it is slightly more correct to use the f
consecutive step rate constantG, because, in this case th
system is still influenced by the diffusive processes descri
by the rateskD

6 in Eq. ~49!. The discussion in the next sub
section will show that for strong high-frequency drivin
these diffusion effects are negligible and the reaction
comes even more nonadiabatic.

B. High-frequency driving

In Fig. 5 we consider again a symmetric situation,e0

50, but now the driving field parametersê51400 cm21 and
V5500 cm21 correspond to a strong high-frequency fie
The comparison between the exact numerical results~66!
~solid line! and the analytical high-frequency results~34!
~dashed lineG, and dashed–dotted lineGNA) exhibits good
agreement for the undriven (ê50) as well as for the driven
dynamics. We observe in both cases a single expone
decay of the initial population, without observable oscil
tions towards the equilibrium donor populationP`50.5.
However, for strong high-frequency fields it seems that
dynamics is better described by the nonadiabatic rateGNA

since this curveperfectlymatches the numerical results~the
two curves are indistinguishable!.
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1. Consecutive step rate vs nonadiabatic Golden Rule
rate

In Fig. 6 we deal with a more complicated situation wi
finite bias where it is necessary to carefully choose the c
rect transfer rate in order to correctly describe thedriven
dynamics. Figure 6 depicts results for two biased syste
with e05500 cm21 and e05800 cm21. In the case without
time-dependent driving this corresponds to the activation
situation and to the inverted regime of ET, respectively. N
that in the activationless case (e05500 cm21) and in the
absence of driving (ê50) the analytical resultG still agrees
with the numerics. The nonadiabatic decay rateGNA is a
slightly larger@see also Fig. 7~a!#, but the agreement is sa
isfactory. The long-time limitP` is independent of the em
ployed rate concept, i.e.,G vs GNA ; it is always reproduced
correctly.

However, if we now turn to the driven dynamics we ca
observe something astonishing: the analytical descrip
with the consecutive step rate constantG breaks down in this
limit of strong high-frequency driving~see dashed lines!.
Note, that the driving amplitudeê51400 cm21 is almost
three times the reorganization energy and we are in the a
vationless or inverted regime, respectively. However,
find that the ordinary nonadiabatic rate constantGNA5kNA

1

1kNA
2 excellently agrees with the numerics. The two curv

match each other within line thickness. This is surprisi
since kNA

6 in Eq. ~50! is nothing else but the lowest orde
Golden Rule result inD, without contributions from diffu-
sion. Thus, together with the findings in Fig. 4 and Fig. 5
see the trend that the consecutive step mechanism with
rateG ~49! is well suited to describe the undriven or weak
driven dynamics. In contrast, the strongly driven dynamics
rather well described by the nonadiabatic Golden Rule re
GNA in ~50!. This finding will be confirmed with the nex
figure.

Figure 7 depicts the different rate constantsGNA and G
vs the energy gape0 between the two potential surfaces. Th
case without driving@Fig. 7~a!# as well as the situation with
fast strong driving@Fig. 7~b!# are examined. The paramete
are the same as in Fig. 6. For comparison also the long-t
rates extracted from the full numerical calculations are
picted by the triangles. In Fig. 7~a! it becomes obvious tha
in absence of driving the numerical results agree best w
the consecutive step mechanism that relates to the full
constantG ~dashed line!. However, the differences with th
nonadiabatic rateGNA ~solid line! are small within the nor-
mal, activationless, and inverted ET regimes. With exter
driving switched on the situation changes@cf. Fig. 7~b!# and
GNA ~dashed line! becomes more appropriate to describe
dynamics. In contrast, the consecutive step rateG ~dashed
line! predicts a too slow decay. The differences with t
numerical results become most pronounced in the inve
ET regime.

The reason for this behavior depicted with Fig. 7 is th
the diffusion on the diabatic surfaces also experiences
indirect influence of the external field via the electronic d
gree of freedom. Thus, due to an energy flow from the
ternal field this diffusion can be strongly accelerated; it th
ceases to act as a limiting factor for the ET reaction. T
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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serves as the explanation why the studied ET reaction
comes increasingly nonadiabatic when strong, fast oscilla
fields are applied. Unfortunately, the invoked approxim
tions in deriving Eq.~49! do not respect the mentioned sc
nario. An improvement would be to take into account a
the external field influence on the diffusion, resulting in ra
kD

6 that would depend on the driving field parameters. W
leave this interesting issue for a future study.

At this point is is also necessary to comment on
agreement between the numerical results and the analy
results. Actually, just a comparison of the single-exponent
analytical transfer rates (GNA or G! with numerically ex-
tracted long-time decay rates does not provide informa
on how well the analytic description really describes the f
dynamicsof P11(t). Especially, in the activationless and in
verted regime the dynamics has usually to be approxima
by a multiexponential decay. In our treatment we disregar
such effects that occur usually on a short initial time sca
However, our numerical studies have shown that forstrong
high-frequency drivingthe time evolution ofP11(t) can very
well be described by asingle exponential decaywith the
nonadiabatic transfer rateGNA ~cf. Figs. 5 and 6!. This holds
true even in the activationless and inverted ET regim
where in the case of zero or weak driving the sing
exponential consecutive step approximation already bre
down ~not shown!.

2. Driving induced inversion of populations

A further appealing feature of external time-depend
driving in the Zusman model is the effect of driving induc
inversion of the asymptotic populations, as illustrated w
Fig. 6. While in the static, activationless case (ê50, e0

5500 cm21) the long time limitP` of the donor population
is nearly zero it becomes larger than 1/2 in the driven c

FIG. 4. Time-dependence of the integrated donor populationP11(t) on sur-
face V11(x) for moderate driving strength and intermediate driving fr
quency. For different bias energiese0 in the normal regime a single expo
nential decay with superimposed, driving induced oscillations towards
asymptotic long-time limitP` is observed. Besides the exact numeric
results~solid line! of Eq. ~66! also the analytical predictions of Eq.~34! are
depicted. For the full rate constant we used the consecutive step raG
5k11k2 @dashed line, cf. Eq.~49!# and the ordinary nonadiabatic rat
GNA5kNA

1 1kNA
2 @dashed-dotted line, cf. Eq.~50!#. Here and in the following

figures the temperature is chosen to beT5300 K and the relaxation time o
the harmonic oscillator is set tot51 ps. The remaining parameters a
given in the figure.
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for the particular choice of the external field parameters.
thus find more population on the donor surfaceV1 than on
the acceptor surfaceV2 even though the energetic minimum
of V1 is situatede05500 cm21 above the minimum ofV2!

This effect, already known from the driven spin-bos
model,13,14,18can also be detected in Fig. 8. Here, the lo
time valueP` ~36! of P11(t) is plotted vs the energy biase0

for different values of the applied driving strengthê. The
driving frequencyV5500 cm21 is held fixed. Inversion of
populations, i.e.,P`.1/2 for positive biase0 , can be ob-
served for a strong field amplitudeê51400 cm21 and for a
small to moderate biase0 . The explanation of this phenom
enon is similar to that used for the driven spin-bos
model.13,14,18 For a relatively weak resonant field (ê
5500 cm21) the asymptotic long time limit shows a strictl

e

FIG. 5. Numerical and analytical results~cf. Fig. 4! for the dynamics of the
integrated donor populationP11(t). The ET system is assumed to be sym
metric (e050) and driven by a strong high-frequency field. The analytic
curve obtained by use of the nonadiabatic rate constant (GNA , dashed-dotted
line! coincides with the numerical findings~solid line!. The curve calculated
with the consecutive step rate~G, dashed line! predicts a slightly slower
decay. For comparison also the case without driving (ê50) is depicted.
Here, both analytical curves~G and GNA) provide satisfactory approxima
tions to the exact numerical result.

FIG. 6. The figure shows a comparison between the predictions of the e
numerical equation~66! for the donor populationP11(t) ~solid line! and the
analytical approximation~34! with the rate constantsG and GNA , respec-
tively. An activationless situation (e05500 cm21) and an inverted situation
(e05800 cm21) are considered. The driving field parameters are the sa
as in Fig. 5. Note that the analytic results with the consecutive rate cons
G ~dashed line! are incorrect while the curve withGNA ~dashed-dotted line!
matches the numerical results exactly. However, the activationless
without driving (ê50, e05500 cm21) is best described by the curve withG.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 7. Dependence of the full ET rate constantsG5k11k2 ~dashed line!
and GNA5kNA

1 1kNA
2 ~solid line! on the energy gape0 between the two

surfaces. For the sake of clarity also the corresponding forward and b
ward ratesk6 in Eq. ~49! ~a! or kNA

6 in Eq. ~50! ~b! are depicted. Numeri-
cally calculated long-time rate constants are indicated by triangles.~a! de-
picts results for a system without driving. Here, the long-time ET dynam
obeys a consecutive step mechanism~dashed line,G!. In ~b! the strongly
driven situation is examined, with the same field parameters as in Fig
and 6. Contrary to~a! now a strict nonadiabatic~solid line, GNA) reaction
dynamics takes place.

FIG. 8. Driving induced inversion of populations: Plotted is the long tim
limit P11(t→`)5P` vs the biase0 for different values of the applied driv
ing strengthê. For strong high-frequency driving (ê51400 cm21, solid
line! the time-averaged asymptotic equilibrium valueP` of the donor popu-
lation P11(t) becomes larger than 1/2 even though a positive energy gae0

is assumed. For comparison corresponding numerical results are indi
by triangles. Likewise for negativee0 we find the corresponding inversio
with P`,1/2.
Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
monotonic behavior with decreasingP` for strongly biased
systems, similar to the static case (ê50), which is also de-
picted. Finally, withê51050 cm21 the driving amplitude is
chosen in such a way, to result in a bias independentP` for
small bias. Note that also in this figure numerical results
indicated by the triangles. Moreover, we want to menti
that our numerical studies prove that the driven long-ti
limit P` is always correctly given by the analytical formu
~36!. Thus, P` depends only on the long-time rates, a
differences of the exact numerical results and the analytic
the time-dependent dynamics ofP11(t) do not become rel-
evant at asymptotic times. We also recall again that w
time-dependent drivingP` cannot be determined from th
detailed balance condition.

3. Driving-induced crossover to nonadiabatic transfer

Figures 9 and 10 depict the analytical dependence of
total consecutive step rateG5k11k2 and the total nonadia

k-

s

5

ted

FIG. 9. The reciprocal of the consecutive step transfer rateG5k11k2

~dashed line! and the nonadiabatic Golden Rule transfer rateGNA5kNA
1

1kNA
2 ~solid line! as a function of the solvent relaxation timet. A symmetric

system withe050 and a high-frequency driving is assumed~the parameters
are listed in the figure!. Moreover, a comparison with the undriven ca
( ê50) is depicted. Corresponding results extracted from numerical ca
lations are indicated by triangles and crosses, respectively.

FIG. 10. Dependence of the reciprocal transfer ratesG5k11k2 ~dashed
line! andGNA5kNA

1 1kNA
2 ~solid line! on the solvent relaxation timet in the

high-frequency driving regime. Here, the energy gape05500 cm21 corre-
sponds to an activationless situation. The comparison with the undriven
( ê50) is depicted also. Corresponding numerical results are indicated
triangles and crosses, respectively.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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batic rateGNA5kNA
1 1kNA

2 vs the relaxation timet of the
harmonic oscillator. The corresponding system and driv
parameters are listed in the figures.

First, we want to discuss the undriven case, marked
both figures withê50. Clearly, theG21 vs t curve can be
separated into two different regions. For larget the recipro-
cal of the ET rate is proportional tot which is an indicator
for the solvent-controlled adiabatic limit~dashed line!. This
type of behavior is robust against the variation of the ene
gape0 ~cf. Figs. 9 and 10! and was predicted previously.5,33

It agrees well with our numerical findings indicated by t
crosses. The nonadiabatic rateGNA ~solid line! fails in this
regime. However, the behavior for very smallt depends
qualitatively on the bias between the two surfaces. For
symmetric system in Fig. 9 the transfer rateG rapidly in-
creases with decreasingt, while for the activationless situa
tion in Fig. 10 an opposite behavior is observed. In this
gime the consecutive step rateG and the nonadiabatic rat
GNA always become the same, meaning nonadiabatic r
tion dynamics. In the transition region between ‘‘large’’ an
‘‘small’’ relaxation times t the situation is not completely
clear. Here, the rate depends only weakly ont which is usu-
ally named the ‘‘normal’’ nonadiabatic behavior.

If we now apply a strong high-frequency driving we o
serve the same striking effect as already encountered in
previous figures. Our numerical results in Figs. 9 and
~indicated by the triangles! make it evident that for larget
the time-dependent external field promotes the transi
from the adiabatic to the nonadiabatic regime of ET. Wh
in the undriven case the reciprocal rate was depending
t,G21;t ~adiabatic regime!, the rate with driving become
increasingly independent of the relaxation time. This is
hallmark of the nonadiabatic reaction regime and con
quently the electron transfer has to be described byGNA

~straight solid line!. This important result is independent o
whether a symmetric system~Fig. 9! or an activationless
system~Fig. 10! is considered as long as the driving streng
ê and frequencyV are large enough. For intermediate dri
ing fields the situation is more complicated and neithe
strict adiabatic nor a strict nonadiabatic behavior is to
expected~not shown!.

Our results represent a prominent manifestation of
improvementof the Golden Rule type description of ET pro
cessesdue to time-dependent fields. This result is rather un-
expected because the nonadiabatic Golden Rule rateGNA

corresponds just to the lowest order perturbation theory
the tunneling matrix elementD.

As a last point of our considerations it is worth mentio
ing that the above discussions lead us to the conclusion
a field-induced transition in the opposite direction, i.e.,from
the nonadiabatic to the adiabatic transfer regimeis barely
possible for the present model. Indeed, we were not abl
find such a regime numerically, albeit its presence is dem
strated by Eq.~49!.

VII. CONCLUDING REMARKS

In this work we have studied the generalized Zusm
model of electron transfer in presence of strong driving fie
Downloaded 29 Sep 2003 to 137.250.81.34. Redistribution subject to A
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E(t). It was shown that the original Zusman equations can
generalized to the driven case by simple replacing the st
energy bias with the time-dependent one. We have stud
these so generalized equations both numerically and ana
cally. A ~in D! nonperturbative rate expression~49! has been
derived. It generalizes the one given earlier in Ref. 19 to
driven, time-dependent case. Moreover, by doing so, we
generalize the driven nonadiabatic ET theories
Dakhnovskii and Coalson13 and others14,17 beyond Golden
Rule theory away from fast and strong driving. Testing th
rate expression against the precise numerics shows th
works excellently for theundrivencase and in thenormal
regime of electron transfer. Moreover, this expression s
works for the driven case, if the driving frequency is not t
high. However, for a ‘‘nonadiabatic,’’ high-frequency driv
ing it even fails alreadyin the normal regime. Instead, the
familiar nonadiabatic rate expression~50! extends drastically
its regime of applicability. For sufficiently large solvent a
tocorrelation timest it may happen that instead of the line
dependence of the inverse ET rate,G21}t, on t ~solvent
controlled ET!, the transfer rate becomesindependentof t, if
the driving field is switched on. This result manifests tha
strong and fast periodic driving can introduce a crosso
from the adiabatic~solvent controlled! to the nonadiabatic
ET regime. This is the major finding of this work. In terms
a perturbation theory in the electronic couplingD, our results
prove that strong and fast periodic drivingimprovesthe qual-
ity of low order perturbation theory inD. As a result, its
lowest order approximation, i.e., the Golden Rule, becom
sufficient to describe ET dynamics even there, where it w
clearly not applicable before, in the absence of driving.
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APPENDIX: GREEN FUNCTIONS FOR THE HARMONIC
POTENTIALS

1. The off-diagonal Green function

For harmonic potential surfacesV1(x) and V2(x) the
operator ~20! becomes similar to that for the Ornstein
Uhlenbeck process with a linear drift coefficient and a co
stant diffusion coefficient. Therefore, we expect to find
analytic expression for the complex-valued Green funct
G(x,tux8,t8) in Eq. ~20!. By use of the potentials~5! and the
phenomenological relaxation time of the overdamped os
lator t5g/v0

2, the equation for the Green function reads

]

]t
G~x,tux8,t8!5FD

]2

]x2 1
1

t

]

]x
~x2x0/2!

2
i

\ S 2Er

x0
~x2x0/2!1e01e~ t ! D G

3G~x,t8ux8,t8!, ~A1!
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with the initial conditionG(x,t8ux8,t8)5d(x2x8) and the
boundary conditionsG(6`,t8ux8,t8)50. Note immediately
that the solution of Eq.~A1! can be considered in the form

G~x,tux8,t8!5G0~x,t2t8ux8!expF2
i

\
z~ t,t8!G , ~A2!

where G0(x,t2t8ux8) is the Green function of a simila
static (e(t)50) and symmetric (e050) problem, and where

z~ t,t8!5E
t8

t

dt9@e01e~ t9!# ~A3!

accounts both for the energy biase0 and for the externa
driving field influencee(t). While G0(x,t2t8ux8) depends
only on the time difference, the driving functionz(t,t8) ex-
plicitly depends on both time arguments and thus also
Green function itself. Obviously, the Green functio
G0(x,t2t8ux8) satisfies Eq.~A1! with e(t)50 and e050.
Its solution is obtained by making a Fourier transform w
respect tox, i.e.,

G̃0~k,tux8!5
1

A2p
E

2`

1`

dxeikxG0~x,tux8!. ~A4!

The equation for the Fourier transform is given by

]

]t
G̃0~k,tux8!5F2Dk22

k

t

]

]k
1

ikx0

2t
2

2Er

\x0

]

]k
1

i

\
Er G

3G̃0~k,tux8!, ~A5!

which is simpler than Eq.~A1! because only first-order de
rivatives with respect tok occur. The initial condition for the
Fourier transform becomesG̃0(k,0ux8)5exp(ikx8)/A2p.
With the ansatz,

G̃0~k,tux8!5
1

A2p
exp@2a~ t !k22b~ t !k2c~ t !#, ~A6!

where the time dependent functionsa(t), b(t), and c(t)
have to be calculated, one finds after some lengthy alge
and transformation back to the time domain the final res

G0~x,tux8!5
1

ApA~ t !
expF ~B~x8,t !2 ix !2

A~ t !
1C~x8,t !G .

~A7!

Here, we have introduced the functions

A~ t !52Dt~12e22t/t!, ~A8!

B~x8,t !5
kBTt

\
x0~12e2t/t!21 i

1

2
x0~12e2t/t!

1 ix8e2t/t, ~A9!

C~x8,t !5
ErkBTt2

\2 S 1

2
~12e2t/t!21~12e2t/t!2

t

t D
1

i2Ert

\x0
S 1

2
x02x8D ~12e2t/t!. ~A10!
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As expected, the Green functionG0(x,tux8) obeys for times
t.0 a Gaussian distribution. Our result forG0(x,tux8) re-
places the incorrect one given in Ref. 20.

2. The diagonal Green functions

The evaluation of the remaining propagatorsG1,2(x,t
2t8ux8) in Eq. ~27! causes even less problems for harmo
potential surfaces. The process described by the equatio

]

]t
G1~x,t2t8ux8!5FD

]2

]x2 1
1

t

]

]x
xGG1~x,t2t8ux8!,

~A11!

is just the Ornstein–Uhlenbeck process. The correspond
solution is well known and given by29

G1~x,t2t8ux8!5
1

A2pDt~12e22~ t2t8!/t!

3expF 2~x2x8e2~ t2t8!/t!2

2Dt~12e22~ t2t8!/t!
G . ~A12!

The expression forG2(x,t2t8ux8) is obtained from Eq.
~A12! by the substitutionsx→(x2x0) and x8→(x82x0),
respectively.
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