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Nonlinear stochastic resonance: The saga of anomalous output-input gain
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We reconsider stochastic resonait8&) for an overdamped bistable dynamics driven by a harmonic force
and Gaussian noise from the viewpoint of the gain behavior, i.e., the signal-to-nois€StdRpat the output
divided by that at the input. The primary issue addressed in this work is whether a gain exceeding unity can
occur for this archetypal SR model, for subthreshold signals that are beyond the regime of validity of linear
response theory: in contrast to nondynamical threshold systems, we find that the nonlinear gain in this con-
ventional SR system exceeds unity only for suprathreshold signals, where SR for the spectral amplification
and/or the SNR no longer occurs. Moreover, the gain assumes, at weak to moderate noise strengths, rather
small (minimal) values for near-threshold signal amplitudes. The SNR gain generically exhibits a distinctive
nonmonotonic behavior versus both the signal amplitude at fixed noise intensity and the noise intensity at fixed
signal amplitude. We also test the validity of linear response theory; this approximation is strongly violated for
weak noise. At strong noise, however, its validity regime extends well into the large driving regime above
threshold. The prominent role of physically realistic noise color is studied for exponentially correlated Gauss-
ian noise of constant intensity scaling and also for constant variance scaling; the latter produces a character-
istic, resonancelike gain behavior. The gain for this typical SR setup is further contrasted with the gain
behavior for a “soft” potential model.

PACS numbg(s): 05.40—-a, 05.45--a, 02.50.Ey, 02.60.Cb

I. INTRODUCTION receiver operating characteristiROC) [9].
Throughout this work we shall concentrate on conven-
Stochastic resonancéSR) characterizes a cooperative tional SR setups that are fed by a harmonic input signal
phenomenon wherein the addition of a small amount of noisé\, cos2t+¢). The main question to be addressed with this
to an input driving signal can optimally amplify the output Work is the saga that relates the behavior of the @aine.,
response. Generically the phenomenon occurs in nonlinear
stochastic classical and quantum systems which possess a G Rout 1)

kind of metastability such as a potential barrier, a fixed Riy

threshold, or, more generally, a statistical distribution of

level-crossing features. An introductory overview of this between theoutput R, and theR;, to the strength of the
most challenging phenomenon can be found in Ref?]  signal inputA, and the noise characteristics such as its in-
while a comprehensive survey is provided in Ref]. As  tensity and its strength of color. For weak signals it follows
such, the SR effect plays a prominent role in such diversérom a straightforward application of linear response theory
scientific areas as sensory biology, signal information and5,6,10—-12 that the gain cannot exceed unfti3].

detection, or in conventional physical and chemical nonlin- Recently, there has been considerable interest in the re-
ear noisy systems that are externally perturbed by periodic sponse of threshold systemgr static nonlinearities
aperiodic forces. Given the three featuregipfhonlinearity,  wherein the SR effect also occurs, but bears a very strong
(i) a weak information carrying signal, ariii ) a source of resemblance to “dither,” a connection that was recently
noise, the response of the system generically undergoesquantified by Gammaitorjil4]. In contrast to dynamical sys-
nonmonotonic signal transduction behavior as a function ofems, for SR occurring in thegendynamicathreshold sys-
increasing noise intensity: the response typically displaysems such as in a level-crossing detedtts] or SR in the
one or sometimes more maxima as a function of noise intengeneralized two-threshold system as characterized by a static
sity, hence the term “stochastic resonance.” Typical quanti-nonlinearity [16], which are all driven by periodic,
fiers for SR in the case of time-periodic input signals are thegectangular-shaped pulss&) of short duration, it has been
spectral power amplificatiofSPA) [4,5] and/or the signal- demonstrated15,16 that the gain can indeed exceed unity
to-noise ratio(SNR) [6]. For more general inputs, such as for moderate to strongubthresholdpulses. For a smooth
nonstationary, stochastic, and wideband signals, the adequatarmonic input passing through a soft limiter, given by a
SR gquantifiers are information-theoretic measiif@such as  nonhysteretic rf superconducting quantum interference de-
the mutual information, the information distance, or the ratevice (SQUID) loop, a gain exceeding unity has been ob-
of information gain, to name but a fel@]. For signal detec- served as wel[17]. Therefore, it seems likely that the gain
tion systems, the effect of SR on detection performance isan exceed unity at no risk if only the responsbéyondthe
quantified by signal detection statistics such as the probabikegime of vality oflinear responseThe challenge to be ad-
ity of detection and probability of a false alarm, which are dressed with this work is to settle this very issue for the most
often plotted against each other to form a curve known as theonventional SR setup: namely, a harmonically driven, over-
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damped dynamics in a symmetric double well. The regime of % )
nonlinear response for this archetypal SR system has been K(w):= f_ exp—iw7)K(7)dT. (6)
addressed previously from the viewpoint of nonlinear spec-

tral amplification,R, [4,5] and the corresponding phase lag yence, the total integrated input power of the cosine drive
of the non_lmear resp(_)ns[asl,lglz its universal V\(eak noise accordingly is 2r(A§/2)=7TA§. The spectral amplification
SR behawor[ZO—ZZ, its switching and dynamic trapping 5] is then given by the ratio of the integrated power of the
behavior for suprathreshold and near-threshold drivin symptotic power spectrurk,(w) of the two 5-function

as

strengthg 23], or the control of SR24] by the relative phase g : o
of a harmonic mixing signaR5]. Also, an SNR gain exceed- weights located at- ) and the total input power, yielding

ing unity has been briefly studied for an overdamped particle 47|M4(Ag, Q)2

in a “soft” (nonquarti¢ double-well neuron potential driven 7= E ;’

by a suprathreshold sine wave plbandpass-filteredhoise mAG

(see Fig. 11 if26]); however, a detailed study of SNR gain

behavior with delta- or exponentially correlated noise has not 2IM1(Ag,Q)[\2

yet been put forward. Our objective here is to fill this very - A @

gap with a systematic study. In particular, we want to inves-

tigate whether a gain exceeding unity generically occurs imThe SNR’s are defined as follows: In terms of the power
conventional SR setups for subthreshold signals that exhibgpectrum of the output x(t), i.e., K, gdw=Q)
nonlinear SR, or whether it requires strong suprathreshold:=K,;.{Q;A,,D), and the power spectrum of the input
signals. Thereby, the role of linear response theory will benoise = (w)=2D we obtain for the output SNR
reinvestigated quantitatively as a function of increasing sig-

nal strength. Moreover, we will research the role of noise R _477|M1(AO,Q)|2 ®
color for the gain behavior. UK ed QiAg,D)
Il. ARCHETYPAL MODEL FOR SR while the input SNR reads
We start by considering the most common SR situation, 7A2 A2
namely, an overdamped dynamics driven by white Gaussian Rin:m =%p - (9)

noise in a symmetric, quartic bistable double well. In terms

of rescaled variabletsee[27] for detailg the dimensionless The quantity of interest, namely, the SNR gain in E1), is
driven dynamics obeys the Langevin equation thus given by the result ’ ’

v — v y3 /
with &(t) being Gaussian white noise with correlation TAZK roisd 23 Ag,D) ’

(&(1)&(s))=8(t—s) and ¢ an arbitrary, fixed phase of the
coherent drive. The deterministic driven dynamics in &).  which clearly does not exceed unity as the driving strength
loses its global bistable character when the driving strengtlapproaches zerdinear response limit Because we consider
A, exceeds the threshold valig=A;:=/4/27~0.3849. mainly the nonlinear driving regime, these expressions are
This archetypal driven bistable dynamics generally yielddifficult to evaluate by analytical means. An analytical evalu-
a nonlinear response: its asymptotic time-periodic expectaation is possible for the adiabatic driving regime; its explicit
tion reads in terms of the complex-valued spectral weightevaluation requires, however, the need of numerics. There-
M, [3,27] fore, we stick to a full nonlinear numerical evaluation
throughout the remaining parts of this paper. Some details of
- . the numerical scheme are summarized in the Appendix.
(X(D)as= 2 Mnexin(Qt+¢)]. (3
I1l. GAIN FOR WHITE GAUSSIAN NOISE DRIVEN SR
The correlation function of the driven stochastic process

x(t), averaged oveboth the noise&(t) and the uniformly W€ start our SNR gain comparison with the white noise
distributed phaseb, obeys, in the asymptotic long-time limit, driven overdamped dynamics in E@). In Fig. 1 we depict
the time-homogenousesult the power spectrum of the output noise background, i.e.,

Khoisd @) in Eq. (4), for a weak driving amplitudélinear
{(X(t+7)x(1))) :=K(7) =K pisd 7) + Kas(7), (4)  response limjt Ap=0.1A; and a strong driving amplitude

Ap,=10A;. We note that at frequencies near the driving fre-
wherein the asymptotic part denotes the oscillatory long-timejuencyw = =0.1 and below, the noise power spectral den-
limit, i.e., sity undergoes a drastic reduction with increasing driving
strength. This already suggests that the increase in SNR gain
is mainly controlled by the behavior of the noise power spec-
trum, considering that the spectral amplificatiprexhibits a
decreasing behavior versus increasing driving stremgth
The power spectral densitySD of the time-homogeneous [3,5].
correlationK(7) is defined as For subthreshold driving, probing the double well at very

Kas(f)zzn; IM|2cognQ 7). (5)



PRE 62 NONLINEAR STOCHASTIC RESONANCE: THE SAG. .. 6157

Khoise

Khoise

0.01 0.050.1 05 1 5 10
w

0.1 0.5 1 5 10

FIG. 1. The output noise power spectrifn,{ ), for weak .
driving amplitudeAy=0.1A; (top) and strong driving amplitude FIG. 2. Contqur plot of the SNR galﬁ_m (2) for thg conven-
A,=10A; (bottom. The angular driving frequency i€=0.1 in tional SR setup in2) versus noise intensit and relative signal
Figs. 1-11. amplitudeAy/A;. The gain is minimal near and below threshold

driving and weak nois®=<0.1; it exceeds unity only for strong

. . . . . . suprathreshold driving signals.
low noise would require impractically long simulation times

due to the exponential time required to escape a well or reach
equilibrium, preventing us from observing the asymptotic

long-time result(4). Thus, we have limited our simulations | | | | |
to D>0.04. In a simulation or experiment with much be-

low this value, one would see single-wéihtrawell) behav- 0 0.2 04 06 0.8 1 1.2
ior only. G

The main result of the SNR gain is depicted with Fig. 2
for an angular driving frequency set 8t=0.1. The overall
behavior of the SNR gain remains qualitatively robust for 50
smaller driving frequenciegot shown. The thick solid line

in this two-dimensional contour plot of the scaled driving

ratio Ag/A; and scaled dimensionless noise intendly

marks the separation line between a gain below unity and a 10
gain above unity. Most importantly, we note that the gain ~ 5
does not exceed unity for subthreshold signals. Within the SQ
considered parameter range of driving strength and noise in- <
tensity the gain reaches a maximal value around 1.20 on the
peninsula corresponding to large driving strengths and large 1
noise intensities. This behavior occurs in a parameter regime

wherein no SR behavior for strong suprathreshold signals 0.5
occurs. In contrast, the SNR gain assumes minimal values
G=0.08 at low noise and around threshold driving

Ap~A; and below. The nonlinear gain above unity is thus
controlled by the quartic nonlinearity in the bistable poten- 0.1 05 1 5 10
tial. The behavior of this nonlinear gain regime is contrasted D

with Fig. 3, which depicts the 4SNR gain behavior for a pure £ 3 contour plot of the gain behavior versus noise intensity
quartic well. This monostable” potential does not exhibit  p anq relative signal amplitudi, /A in absence of bistability, i.e.,
SR; its gain reaches from a minimum n&as=0.7 to maxi-  the gain in a pure quartic well. In this case, both the spectral am-
mal values along a diagonal band increasing fr@n piification andR,, are monotonically decreasing functions versus
~1.24 athigh noise toG~1.29 at lownoise. Note that the increasing noise intensitgno SR behavior The regime of SNR
peninsula in Fig. 2 with a gain exceeding unity is ruled bygain exceeding unity for the bistable Duffing dynamics is clearly
this very monostable nonlinearity. dominated by the quartic nonlinearity.
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FIG. 6. Spectral amplificationy versus noise intensity for the
SR setup in Eq.2) for four different signal strengthsf,/A;
=0.1585 (solid line), Aq/Ar=1 (dotted ling, Ay/Ar=5.012
(dashed ling and Ay/A;=25.12 (dot-dashed line Note that the
bell-shaped SR behavior still exists at the threshold driving
~(0.3849.

Some details of the gain behavior are made explicit with
the cuts taken at fixed noise intensigee Fig. 4and fixed £y 7 For weak noisésolid curve, we find large deviations
driving strength(see Fig. 3. The results in Fig. 4 depict the o the linear response prediction. This is so because the
typical behavior of gain versus relative driving strength oo gition for linear response theory, namely, that the signal
Ao /At at weak to small to moderate to large noise intensity o \weak compared to the noise intensity, is now violated.
Generally, the gain behavior is distinctively nonmonotonic.Note, however, that the regime of linear response at moder-

A (_:haracterisitic fe_a_ture is that for weak noise intensity th_eate to strong noise extends to large driving strengths well
gain assumes a minimal value near and below threshold d”Va'\bove thresholdsee dashed and dot-dashed lines

ing strengths. This situation is mirrored for the behavior of
SNR gain versus noise intensiy in Fig. 5.

Next we shall elucidate in detail the nonlinear response
behavior for the spectral amplificatiom and the regime of
validity of linear responseer se The signal amplificatior
is shown in Fig. 6. We note that, for small driving strength,
the spectral amplification exhibits the by now typical SR
behavior. Interestingly enough, this SR behavior persist
even for suprathreshold drivingote the dotted line in Fig.
6); the dynamical SR behavidat (1=0.1) ceases to exist,
however, for driving strengths exceeding roughfy
=1.2A;, and decreases in amplitude for slowadiabati¢

FIG. 4. The gain for the SR setup in E@) versus the relative
signal amplitudeAy/A; for four different noise intensitiesD
=0.04288 (solid ling), D=0.3678 (dotted ling, D=0.9976
(dashed ling andD =9.976 (dot-dashed ling

IV. ROLE OF NOISE COLOR

The case of white Gaussian noise presents an idealization
which in many physical situations is not exactly realized. It
is thus of importance to address the correction in the re-
sponse to white noise, when the noise is colored. Several
Tnethods and approximations have been developed over re-
cent years to investigate both numerically and analytically
the role of finite noise correlation times, i.e., noise color; see
Ref. [28] for a recent comprehensive review. For an over-
i ) ) damped dynamics driven by Gaussian, exponentially corre-
driving (angulay frequencies, saturating aroudg~Ar . lated noise—i.e., Ornstein-Uhlenbe@U) noise of constant
. _Of par.t|cular interest is the question of the regime of Va’intensity (thus possessing a proper white noise ljmithe
lidity of_ linear response theory. We rgsearch this ISsue b¥ncrease of noise coldi.e., increasing the correlation time
computing, as a function oh,, the ratio of full nonlinear 45 tg decrease the SR effggl This result has repeatedly

SNR gainG(A,) to the SNR gain at a very small driving peen demonstrated via analog simulatid@s], analytical
strength, G, g=G(0.158%A1). The results are depicted in
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FIG. 5. Gain behavior for the white Gaussian noise driven, over-

damped bistable Duffing dynamics versus noise interi3igt four
different signal strengthsA,/A;=0.1585(solid line), Ag/Ar=1
(dotted ling, Ag/A+=5.012(dashed ling andA,/A+=25.12(dot-
dashed ling

FIG. 7. Testing linear response: ratio of gain as a functioApf
to gain at a fixed, small value of amplitude (0.188%, for four

different noise intensitiesD =0.04 288 (solid line), D=0.079 24
(dotted ling, D=0.1464(dashed ling andD =0.9976(dot-dashed
line).
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FIG. 9. Gain ratioGg versus signal strengih, /A; between the
gain taken at a noise color ef=12.11(constant intensity scaling
and the gain taken at white noisg=0. HereD=0.3678(solid
line), D=0.9976(dotted ling, andD =9.976 (dashed ling

Most importantly, the separation line giving unity gdimote
the thick line in Fig. 8 now extends down to very weak
noise intensitie®. The maximum in gain is also increased to
a valueG=~1.62. This enhancement of gain, however, does
not occur uniformly. Figure 9 depicts the ratio of the corre-

FIG. 8. Contour plot of the SNR gain for OU noise driven SR assponding gain values at=12.11 and the white noise case.
a function of constant intensitd and relative signal amplitude The gain can both be enhanced and suppressed over the
Ao/Ar. The angular driving frequency is set &=0.1 and the  white noise case, depending on the intensity of n&isand
noise correlation time is held fixed af=12.11. the signal strength.

In Fig. 10 we plot SNR gain versus, for severalD

theory [30], experiments[31], and also by Monte Carlo values andA,=A;. With constant intensity scaling, SNR
simulationg 32]. In contrast, inertial effects and certain other gain appears to decrease monotonically with This is in

noise color characteristics can, in fact, also enhance the SHear contrast to the constant variance case discussed next.
phenomenor{3,30,33. Here, we shall focus on the SNR

gain behavior when the dynamics is driven by Gaussian, ex-
ponentially correlated noise.

0.5 1 2 5

B. Gain for constant variance OU noise

In this subsection we address the case of OU noise driven
SNR gain with a different noise scaling fg(t), namely, the

) ] o case of OU noise of constant variance scaling: it reads
The corrections to the white noise limit are modeled by an

A. Gain for constant intensity OU noise

OU noisey(t) of constant intensity scaling. This implies an . y 2D
overdamped dynamics of the form y=-_—+ NP &(1), (14)
C Tc
v —v_ v3 . . . .
X=X=X"+AgCOS QL+ ) +y(1), a yielding for the noise correlation the form
11
\ y , 2D (y()y(s))=Dexp(—[t=s|/7c), (15
y=—_+ &),
Tc Tc
1
This OU noisey(t) therefore possesses the following corre- - L
lation: 0.8 TIATI N {
. \\ .
D 0.6 F—HNH—-Hi-
(y(D)y(s))= —exp(—[t=s|/7), (12 © h TN Y
Tc 0.4 N
which does approach the case of white noise studied in the 0.2 N Y
preceding section as.—0. The input power spectrum RN 3} |
Z(w) reads explicitly 0 S EUL
0.1 1 10 100
_ 2D T
E(w)=—>. (13 _ _ _ _ . _
1+ w g FIG. 10. Gain for OU noise driven SR with constant intensity

scaling[see Eq.(12)] versus noise correlation time, at different
The gain behavior is depicted in Fig. 8 at a noise correlatiortonstant noise intensitié®. HereD = 0.2 (solid line), D=0.5 (dot-
time set atr.=12.11. The role of strong noise color clearly ted line, D=1 (dashed ling and D=5 (dot-dashed line The
has a dramatic effect on the overall behavior of the gainsignal strength is at threshol, /A;=1.
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FIG. 11. Gain for OU noise driven SR with constant variance
scaling[see Eq.(14)] versus noise correlation time, at different
constant noise intensitied. Here D=0.02 (solid line), D=0.05
(dotted ling, D=0.1 (dashed ling andD =0.5 (dot-dashed ling
The signal strength is at threshodg /Ar=1.

which approaches a vanishing white noise limit, i2exp
(—|t—g/7)—2D7.8t—s) as 7.—0.

Although this situation formally consists of a mere sub-
stitution of the noise intensity of the forld—D 7., it im-
plies different physics. For example, this scaling for OU
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noise has been shown to be capable of exhibiting resonance r|G. 12. Contour plot of the SNR gai@ in Eq. (1) for the SR

activation for theescape rat¢34,35; i.e., the rate exhibits a

setup in Eq(16) versus noise intensity and relative signal ampli-

bell-shaped behavior versus increasing noise color. Since SideA,/Ar. The gain is minimal near and below threshold driving

in the linear response limit is controlled by this very rg3é

and weak noisdD <50; it exceeds unity only for suprathreshold

we now expect a differing role of noise color for the spectraldriving signals. The gain at weak to moderate signal and noise is
amplification and the SNR gain as well. Indeed, Fig. 11 exsimilar to the bistable Duffing oscillator in ER). In contrast, the

hibits the predicted bell-shaped, resonancelike depen-
dence of the SNR gain on., in contrast to the monotoni-

suprathreshold gain behavior differs distinctly from the quartic
double well: it saturates towards unity for strong suprathreshold

cally decreasing behavior seen with constant intensitgriving. Other parameter values ae=1.225,C=1, R=0.018 69,

scaling(Fig. 10.

V. GAIN FOR A “NEURON"” MODEL

In this section we consider a model with a so-called
“soft” potential. We again have a double-well potential, but
in this case the potential grows g&rather tharx* for large

x. For signal amplitudes and/or noise intensities that are large
compared to the barrier height, we will essentially have mo-

andJ=216. For these parameter values, the deterministic switching
threshold isAt=116.6.

term, and we approach linear system behavior. The SNR
gain, as we have defined it, must then necessarily approach
unity.

VI. CONCLUSIONS AND OUTLOOK

In the present work we have concentrated on SNR gain,

tion in a parabola; i.e., we recover the linear response behayaiher than other performance measures such as signal detec-

ior.
The Langevin equation reads

X

Cx:—R

+Jtanh(x) + Agcog Qt+ ¢) + V2D &(t).
(16)

Such a form can describe disolated element of an elec-
tronic neural network, wher& is the neuron’s membrane
potential,C is the input capacitanc® is the transmembrane
resistance, and is a self-coupling coefficier|t36].

Figure 12 illustrates the SNR gain behavior for this
model. As in the white noise driven Duffing mod@), the
gain may exceed unity for suprathreshold driving ofripte
the island in Fig. 12 wittG~1.19). For very strong suprath-

tion statistics or information-theoretic measures. For the ar-
chetypal SR setup we find—in contrast to the nondynamical
threshold systems ifl5—17—that the SNR gain does not
exceed unity for subthreshold signals. Moreover, the gain
assumes rather small values for near-threshold or subthresh-
old driving strengths with weak noise. The gain does exhibit
a very interesting feature as a function of increasing noise
color: while this gain is monotonically decreasing for
Ornstein-Uhlenbeck noise color of constant intensity scaling
(thereby assuming a proper white noise limwith increas-

ing noise correlation time it does exhibit, in clear contrast, a
resonancelike behavior for constant variance scaling. The lat-
ter feature reflects the resonant activation phenoméabh
that occurs only for this form of Gaussian exponentially cor-
related noise. Generically, the SNR gain in these dynamical
models of SR exceeds unity only for suprathreshold signals

reshold driving, however, the gain approaches unity. Undewhere the SR phenomenon in amplification and/or SNR is
strong driving, the potential is dominated by its quadraticlost. Our results with suprathreshold sinusoidal driving refute
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a recent conjecture that exceeding unity gain requires nonsworks, the response can also be enhancedibgar or non-
nusoidal driving[15, third referenck linean coupling through an array-enhanced stochastic reso-
We remark that an output-input SNR gain exceeding unitynance(AESR) effect[38]; the response will, of course, differ
does not necessarily imply, e.g., that the performance of adepending on whether the noise is uncorrelated from element

optimal detector on the SR system’s output would exceed it§0 element or is instead “global” in character.

performance on the input; however, the SNR does often cor- Stochastic resonance witiot, however, improve the per-
relate well with the performance of commonly used subopformance of an already optimal detectée.g., an ideal
timal detectord9]. Furthermore, a high SNR is relevant in matched filter—in this case, a single bin in the .fast FO.UI’IEI‘
many applicationsiot involving transduction of information transform of the system output—for the detection of time-

through the SR system: e.g., generating a high-power, lowsinusoidal signals embedded in Gaussian noigethe past,
noise. monochromatic wave a failure to recognize this simple truth has led to a consider-

While the class of input signals considered in this work isable amount of confusion in the literature. An excep(i88|

amenable to the use of the SNR as an adequate measure35curs when one considers a signal processing scenario with

the system response, more complicated signals should A nonlinear sensor connected to an optimal detector that is

general, have their responses characterized by more gene?édbJeCt to a noise floor, e.g., from the ambience or the mea-

measures, e.g., the mutual information or a distance measu?é"rer.nent and_ readout (_electronlcs, as happens ql_ute oft_en n
of the “separation” of output probability densities in the practice. In this case noise added to the sensor or input signal

presence and absence of the signal. The choice of measure-a’ in fact, enhance signal detectability, displaying a SR

also predicated by the signal processing task at lidatec- effect with thg maxi.mal response occurring fo_r a value of the
tion or estimation, for instangee.g., for detection, the mini- added noise intensity that depends on the noise floor. This is
mum achievable,probability of. e”rror can be éxpressed i result of the fact that the noise floor destroys the “invert-

terms of various information-theoretic distance measureébt'rl]Ity .Of thet_sys'lteg”n tor’t alterr;)atl\?—:-ly l\”z\’(\ﬁj’ rend_ers tﬁn
(see, e.g., Robinsoet al. [8]). otherwise optimal detector suboptimal. ing noise then

The construction of the “optimal” detector or filter for a helps overcome the noise floor via the amplification effect of

given signal processing application might be a nontrivial taskSR'

in general; however, it is at least clear that the SNR, as

commonly defined in the SR literature, ®t the optimal

response measure for systems subject to complex signals. In ACKNOWLEDGMENTS
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questionablg choice of SNR as the measure characterizing
the response in those works, where gains much higher than
unity have been observed. o APPENDIX: NUMERICAL TECHNIQUES

Stochastic resonance is a sophisticated effect that, clev-
erly applied to ara priori nonlinear device, can improve its ~ The general numerical method we use for solving a sys-
response, particularly to subthresholdsignal in noise. For tem of stochastic differential equationsSDE'’S) is the
such input signals, a better response can generally be obequivalent Heun scheme.” Provided certain symmetry con-
tained by lowering the thresholdn this case, the potential ditions hold, this scheme has a “locali.e., one-stepaccu-
barriep between the stable states than by adding noise; howacy of O(h®), whereh is the size of the time step and a
ever, threshold lowering may be difficult to achieve in some“global” (arbitrary number of stepsaccuracy ofO(h?)
cases. This approach has been applied in some physical syg0]. If, as in our case, the noise term is independent of the
tems, most notably in systems characterized by static nonlirsystem statdi.e., additive noisg then the aforementioned
earities where thdin this case nondynamigalSR effect ~symmetry conditions are automatically satisfied; further-
more closely resembles dithering4,17. Neural networks more, the equivalent Heun scheme in this case reduces to the
are thought to use the internal noise as a “tuning” param-simpler Euler-Maruyama scheme.
eter, cooperatively adjusting thresholds and internal param- The time steph must be chosen small enough to ensure
eters to achieve the best possible response, given the noisemerical stability. This becomes an issue for large signal
levels already present. A recent mogig¥] attempts to cap- and/or noise, particularly in the Duffing case due to the pres-
ture some of these features, notably “adaptation,” in anence of arx® term in the Langevin equation. For the Duffing
electronic “fuzzy” neural network that mimics a noisy non- and neuron simulations we used time step$€of0.007 670
linear system whose dynamics are unknown. The fuzzy sys8192 time steps per driving peripénd 0.0050081024
tem tunes its “if-then” rules in response to samples from thetime steps per driving perigdrespectively.
response of the dynamical system and, effectively, learns the We use the Box-Muller algorithni41] to generate the
SR effect which it then uses to help itself converge to therequired Gaussian random deviategite Gaussian noige
dynamical system’s characterization more rapidly. In net-To generate OUWcolored noise, we include in our system of
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stochastic differential equations a white noise driven Typically we average 2048 windows’ worth of data to
Ornstein-Uhlenbeck equation. allow us to estimate SNR’s with errors of significantly less
The numerically generated time series solutions must béhan 1 dB. Our contour plots are typically evaluated at 256
windowed and Fourier transformed. The frequency resoluparameter space points. Such large computations necessitate
tion is inversely proportional to the window time lendtre.,  using many processors in parallel. Each processor can be
the number of time series points per windowo it must be assigned the task of computing the result at one point in
chosen large enough to provide sufficient frequency resoluparameter space. Alternatively, all the processors can be
tion around the driving frequency. We typically set the win- given the task of computing the result at the same point in
dow length equal to 32 periods of the driving signal, result-parameter space, but with less averaging and with each pro-
ing in a fundamental response exactly “centered” in thecessor using a unique random number generator seed. The

33rd bin of the discrete Fourier transfofmFT) (the first bin
is do). Given our choices ofi above, this implies 2 points
per Fourier transform for the Duffing simulations an® #r
the neuron.

final result is then obtained by averaging over the results
obtained by each processor. Current parallel supercomputers
such as the Cray T3E, SGI Origin 2000, or IBM SP can
compute one such contour plot in several hours’ time if 64

The window length should also be chosen long enough sprocessors are employed. Since very little interprocessor
that the simulation reaches equilibrium. In a double-well syscommunication is required, networks of workstations may
tem with subthreshold driving, this puts a definite practicalalso be employed instead of supercomputers.

limit on the minimum value of the noise intensiy. For
simulations involving colored noise, the window length

The values obtained for each frequency bin represent the
power contained in that bin; i.e., they correspond to the in-

should also be much greater than the noise correlation timeegral of the power spectral densitySD over the width of

Before performing the DFT, the data may be multiplied
by a windowing function to help reduce “leakage” to neigh-

the bin. We defined our SNR'&8) and (9) as signal power
divided by the noise PSD. To obtain our numerical SNR

boring bins of any strong, narrow peaks that do not fall pre-estimate, note that the total power in the driving frequency
cisely in the center of a frequency bin. However, in the mod-bin equals the signal power plus noise power. We estimate
els studied here, the peaks occur at the driving frequency arttie noise power in the driving frequency bin by considering

its multiples. By choosing the driving frequency to be cen-

the power in the nearby bins above and below the driving

tered in one of the frequency bins, we can eliminate leakagé&equency bin(excluding bins very close to the driving fre-

without using a windowing function.

quency bin. We can either average them or fit a Lorentzian.

We estimate the power spectrum by computing the averWe subtract this estimated noise power from the total power
age of the magnitude squared of the DFT’s of many win-in the driving frequency bin to obtain the signal power. We

dows’ worth of time series datéafter discarding the first

window’s worth of data to skip over the start-up transjent
We use the fast Fourier transfoff@l] to compute the DFT

efficiently.

divide the estimated noise power by the bin width to obtain
an estimated noise PSD; the signal power is then divided by
the so-obtained noise PSD to obtain an SNR that agrees with
our definition.
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