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Surmounting oscillating barriers: Path-integral approach for weak noise
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We consider the thermally activated escape of an overdamped Brownian particle over a potential barrier in
the presence of periodic driving. A time-dependent path-integral formalism is developed which allows us to
derive asymptotically exact weak-noise expressions for botlingtantaneousand thetime-averagedescape
rate. Our results comprise a conceptually different, systematic treatment @ftéhprefactormultiplying the
exponentially leading Arrhenius factor. Moreover, an estimate for the deviations at finite noise strengths is
provided and a supersymmetry-type property of the time-averaged escape rate is verified. For piecewise
parabolic potentials, the rate expression can be evaluated in closed analytical form, while in more general
cases, as exemplified by a cubic potential, an action-integral remains to be minimized numerically. Our
comparison with very accurate numerical results demonstrates an excellent agreement with the theoretical
predictions over a wide range of driving strengths and driving frequencies.

PACS numbg(s): 05.40:—a, 82.20.Mj, 82.20.Pm

[. INTRODUCTION lating barrier crossing in the regime of weak thermal noise is
still at its beginning. Previous quantitative, analytical inves-
The thermally activated escape over a potential barrier isigations have been restricted to w2k —23, slow[24,25,

a recurrent theme in a large variety of physical, chemicalpr fast[21,24,26 driving. In this paper we continue our re-
and biological contexts1-3]. In the case of foremost prac- cent study{27] of the most challenging intermediate regime
tical relevance, the characteristic strength of the thermabf moderately strong@nd moderately fastriving by means
noise (the thermal energkgT) is much smaller than the of path-integral methods. The general framework of this ap-
potential barrier. As a consequence, successful barrier crosgroach is derived from scratch in Sec. llI, thus collecting,
ings constitute rare events and the escape statistics verifiggeamlining, and partially extending previously known ma-
with very high accuracy an exponential decay as a functioRerial. The evaluation of the escape rate is worked out in Sec.
of time. In other words, a meaningful escape rate can by with the central resultg116) for the time-averaged and
defined which completely characterizes the decay process. fog) for the instantaneous escape rate. Especially, these re-
seminal contribution to the theory of escape rates representyts comprise a conceptually different, systematic treatment
the work by Kramers in 19404], which subsequently has ¢ yhe rate prefactormultiplying the exponentially leading

been refined, modified, and generalized in various importan’z\rrhenius factor. They become asymptotically exact for any

direction§[1—3]. . N finite amplitude and period of the driving as the noise
A patrticularly challenging direction are systems far awaystrength tends to zero. On the other hand, for any fixed

from thermal equilibrium, either due to nonthermal noise or(smalb noise strenath. we have to exclude extremelv small
external deterministic forcd4d]. In such a case, the relevant *>."" . gt Mely s
driving amplitudes and extremely long or short driving peri-

probability distribution strongly deviates from the Boltz- ds s hi Id lead tractively back dri
mann form in the entire state space and its determinatioRdS Since this would lead us effectively back to an undriven

becomes a highly nontrivial problerMutatis mutandisthis ~ ©S¢ape problem, which is not covered by our present ap-
very same basic difficulty resurfaces again in all known thelroach. Another situation WhICh' is excluded in our theory is
oretical methods of calculating escape rates in far from equithe case of extremely strong driving such that escape events
librium systemg5-12. become possible even in the absence of the thermal noise
The subject of our present paper is one of the simplest28,29. Closest in spirit to our methodology is the recent
nonequilibrium descendants of the original problem ofwork [23], which is restricted, however, to the linear-
Kramers: namely the thermally activated escape of an overesponse regim@veak driving for the exponentially leading
damped Brownian particle over a potential barrier in thepart(Arrhenius factor and treats the prefactor by means of a
presence of a periodic drivin@letails are given in Sec.)ll  matching procedure, involving the barrier region only. The
This is a prototypical setup in the sense that investigating thapproximation adopted in that work is complementary to
behavior of a system under the influence of a periodic forcours in that it admits, for a fixesmal) noise strength, ar-
ing represents a particularly natural and straightforward exbitrarily small driving amplitudes.
perimental situation. Examples arise in the context of laser In Sec. V our analytical predictions are verified for the
driven semiconductor heterostructufdsg], stochastic reso- case of sinusoidally rocked metastable potentials against
nance[14], directed transport in rocked Brownian motors very precise numerical results. A first example consists of a
[15-17, or periodically driven “resonant activation” pro- piecewise parabolic potential, for which our general rate ex-
cesse$18,19 like ac-driven biochemical reactions in protein pressions can be evaluated in closed analytical form. In more
membrane$20], to name only a few. general cases, exemplified in Sec. V by a cubic potential, a
Despite its experimental importance, the theory of oscilfew elementary numerically tasks remain before actual num-
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V() Q=2m/T. ®)

Our next assumption is that the deterministic dynamics in
Eq. (3) with D=0 exhibits a stable periodic orbx(t) and
an unstable periodic orbi,(t) [31], satisfying

5(S,U(t): F(XS,U(t)vt)v (7)
AV \ Xs,u(t“’T):Xs,u(t)v (8)
_________________________ : T where ‘‘s,u”’ means that the index may be eithes" or

Ts Ty “u.” Moreover, every deterministic trajectory is assumed to

approach in the long-time limit either the attracxg¢t) or to
diverge towardsx=o, except if it starts exactly at the sepa-
ratrix x,(t) between those two basins of attraction. In other
words, the metastable potential is required not to be rocked
too violently such that particles cannot escape deterministi-
cally, i.e., without the assistance of the random fluctuations
FIG. 1. Sketch of a typical metastable potentigk) in Eq. (5). in Eq. (3). ltis clear thatx(t) andx,(t) must be disjoint and
Plotted is the piecewise parabolic exampl®4) with parameters by assuming a second “attractor” at=c we have, without
AV=0.9,A\s=—0.6, and\,=0.3 in arbitrary, dimensionless units. |oss of generality, implicitly restricted ourselves to the case

that
bers can be obtained from our rate expressions. The final

conclusions are presented in Sec. VI. Xu(1)>X(1) 9)

for all t. Note that the above requirements do not necessarily
exclude the possibility that for certain timeshe “instanta-

A. Model neous potential,” from which the force field(x,t) derives,
jdoes no longer exhibit a potential barrier.

Il. ESCAPE PROBLEM

We consider the following model for the one-dimensiona
Brownian motion of a particle with coordinax¢t) and mass

munder the influence of a time-dependent force fie{d, t): B. Escape rates
. . Next, we return to the stochastic dynami® with a
mX(t) = F(x(1), )= — nx(t) + V2D (). (D) finite but very small noise strengBsuch that a particlg(t)

. : . is able to leave the domain of attraction of the stable periodic
iolated parice, he right.nand side models the miiuence cp!Bit Xt and subsequently disappear towaxds» but he
P ’ 9 ypical waiting time before such an event occurs is much

gise;?e”;]:é Zn;/;;odnor?nelntﬁgjgggtis Vfﬁf%f) fr\';ﬂi%r;] IC;)ZT longer than all characteristic time scales of the deterministic
0 Zt be unbi dyG i n?/vhit | i’ with correlati dynamics(separation of time scal¢4,22,37). For a quanti-

sumed fo be unbiased Laussia € noise correlaliofliive characterization of such escape events, our starting

DEE ) =S(t—t). 2 point is the probability distributiop(x,t) of particles which
(EmEX) =4 ) @ is governed by the Fokker-Planck equat|@3]

At thermal equilibrium, the intensiti of the noise is related 9 J g

to the temperaturd according to the Einstein relatioD —p(x,t)= _{ —F(x,t)+D—] p(X,t). (10)

= 7kgT, wherekg is Boltzmann’s constarjtl]. Throughout at IxX X

this paper we will restrict ourselves to the overdamped mo-O is Kk h latiorP f the ti

tion such that inertia effect:iX(t) in Eq. (1) are negligible nce p(x,t) is known, the populatiorP 4(t) of the time-

[30]. Choosing the time unit such thai=1, the stochastic dependenf[ bgsin .Of attractionl(t) =(—x,(t)] of the
dynamics takes the form stable periodic orbik(t) follows as

X(t)=F(x(),1)+ V2D &(1). 3 P ()= f Y o tdx. 11)

The force fieldF(x,t) in Eq. (3) is assumed to derive

from a metastable potential which undergoes an arbitrary pe® suggestive definition of the “instantaneous ratef(t) is
riodic modulation in time with period, then provided by the relative decrease of this population per

time unit
F(x,t+7)=F(x,t). (4) )
D (t):=—P4(1)/P 4(1). (12
An example is a metastable static potentélx) as car-
tooned in Fig. 1, supplemented by an additive sinusoidalVe note that particles which leave the domain of attraction
driving give rise to a positive contribution tb(t). There is also a
certain probability that particles from outside this domain
F(x,t)=—-V'(x)+Asin(Qt), (5) recross the separatri,(t), giving rise to a negative contri-
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bution toI'(t). In other words, Eq(12) is the net flux of V(w)
particles (outgoing flux minus back fluxacross the sepa-

ratrix x,(t) in units of the remaining populatioR 4(t). By

exploiting the deterministic dynamicé7) for x,(t), the

Fokker-Planck equatiofl0) for p(x,t), and the definition

(11) of P 4(t), we can rewrite the instantaneous rét@) as

D dp(xy(t),t)
PA(t) aXu(t)

I't)y=— (13

Inside the metastable state<x,(t) the particle distribu-
tion is governed by intrawell relaxation processes. For small
noise strength®, their characteristic time scales are well
separated from the typical escape time it§él22,33. On
this time scale of the intrawell relaxation, transients die out
and the distributionp(x,t) approaches a quasiperiodic de-
pendence on timé. More precisely,p(x,t)/fi“f:)p(x,t)dx
tends, at least fox<x,(t), towards a time-periodic function FIG. 2. The supersymmetric partner potentik) := — V(—x)
ast grows. The same carries over to the escape probabilityf the potentiaM(x) from Fig. 1 in arbitrary, dimensionless units.
(13) and thus the time-averaged escape rate

F(x,t):=F(—x,—t). (16)

_ t+T
F==§—J rt’)dt’ (14 For instance, if the force fielBi(x,t) derives from a periodi-
‘ cally rocked potentiaV/(x) like in Eq. (5), then its supersym-

becomes independent of the tirhe metric partner is obtained by turning(x) upside down, fol-

Our assumption of weak noise guarantees that the loss é@wed by an inversion of the axis, i.e.,V(x)=—V(-x),
populationP 4(t) is negligible on the time scale of the in- see Fig. 2, while the drivingA sin(Qt) in Eq. (5) remains
trawell relaxation for any initial distributiop(x,t,) that is ~ invariant(up to an irrelevant phagelin such a supersymmet-
negligibly small in the vicinity and beyond the instantaneousric partner fleIdF(x t), the stable and unstable periodic or-
separatrixx,(tg). The denominator in Eq.13) can thus be bits exchange their roles, thus defining a different escape
approximated by 1 for all times—t, much smaller than the problem out of the basin of attraction of the new stable orbit

characteristic escape timel'litself. Further, we can restrict is(t)i_xg(_t) dacross the r&ew separr?t”nq}(t)? _XS(f'_t|)d
ourselves toés-distributed initial conditions of the form _ |t has been demonstrated 82,34 that for force fields

D(X,to) = 8(x—Xo) With X, inside the basin of attraction F(x,t) of the form(5), the time-averaged ratd4) is invari-

A(t) of x(t) such that the overwhelming majority of real- ant under the supersymmetry transformati@f). The same

izations(3) will first relax towards a close neighborhood of In€ Of reasonind22,34 can be readily generalized to force

the attractoxg(t) before they escape. The behavior of moref'e'(_js 9f th_e_formF(x,t)z — VI (x) +y(t) with an arbitrary
general initial distributions then readily follows by way of Periodic drivingy(t). In our present paper we will show that

linear superposition. Moreover, one expefts22,33 that for asymptotically weak nois® the time-averaged escape

after transientéintrawell relaxation processesave died out, '€ (14) is invariant under the general supersymmetry
the time-dependent escape rét8) will actually become in- transformation (16) without any further restrictions on
dependent of the initial conditions, andt,. Denoting by ~F(X.t). Regarding the notion of supersymmetry and espe-
p(x,t|x0,to) the conditional probability associated with an cially its connection with supersymmetric quantum mechan-
initial 5-peak atx, we thus can rewrite Eq13) as ics, we refer t0o[22,34 and further references therein. We

finally remark that the standard definition of the supersym-

ap(Xy(1),t|Xo,to) metric partner force field is- F(x,—t). For our present pur-
I'(t)=-D % (0) (15  poses, the definitiofl6) is equivalent but more convenient.
u

. . . . . . Ill. PATH INTEGRALS: GENERAL FRAMEWORK
We recall that this expression is valid eventifty is not

large, but thed'(t) still depends orx, andty. On the other In this section the general framework of a path-integral
hand,t—t, has been assumed to be much smaller than thapproach to the stochastic dynami{&$ is outlined. Though
these concepts are not n¢®-12,36—42, we find it worth
while to briefly review them here in order to make our paper
self-contained. We also note that most of this section re-
mains valid beyond the particular assumptions on the force
field F(x,t) from Sec. Il.

typical escape time U However, on this time scale the rate
I'(t) has practically converged to its asymptotically periodic
behavior and thus the extrapolation B{t) to arbitrarily
larget—tg is trivial.

C. Supersymmetry A. Time-discretized path integrals

Given a time-periodic force fieldk(x,t), we define its Much like in quantum mechanics, also in the present con-
supersymmetric partner fiele(x,t) [22,34,39 according to  text of stochastic processes, path-integral concepts have a
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tangible meaning only when considered as the limiting case dxg - dXy_1 Su(Xg, ... Xn)

of appropriate discrete-time approximations. Our first step is Pn(Xt X0, to) = m&‘ex -~ b I’

therefore a discretization in time of the overdamped stochas- 23)

tic dynamics(3). Denoting the initial and final times by

andt;, we introduce the definitions where

At:=[t—to]/N, (17) N At X, —X 2
Su(Xo.- Xn) = 2 %—F(xn,m} (24)
n=0

th:=to+ nAt, (18)
is the discrete-time “action” or “Onsager-Machlup func-
Xn:=X(tn), (190  tional.” While x4,...Xy_1 are integration variables in Eq.
(23), the initial and end points are fixed by the prescrizgd
wheren=0,1, ... N. The integerN is considered as large and by the additional constrairf;=x;, see Eqs(17)—(19).
but finite and will ultimately be sent to infinitgcontinuous-
time limit). The discretized dynamid8) then takes the form B. Saddle-point approximation

— For small noise strength3 the path integra{23) is domi-
Xn+1~Xn=F(Xn tn) AL+ V2D ALE, (20 nated by the minima of the actidB\(Xg,...,Xy). The exis-
tence of at least onégloba) minimum can be readily in-
ferred from the general structure of the action in Exf). To
keep things simple we assume for the moment that besides
B 1 ) this global minimum no additiondlocal) minima play a role
P(&n)=(2m) " "exp{— &/2}. 2D in Eq. (23). Denoting the global minimum byx*

_ . o =(xg ... Xy) it follows that it satisfies the extremality con-
As a side remark we notice that the so-called “prepoint dis-yjtions
cretization scheme[40—-42 [not to be confused with the Ito

where the¢,, are independent, identically distributed Gauss-
ian random numbers with probability distribution

scheme in the stochastic dynami@&] has been implicitly ISN(X*)

adopted in Eq(20) for the sake of later convenience. Other ot (29
“discretization schemes”[40—-42 would give rise to a n

somewhat modified path-integral formalism but WOUId, Offor n=1,... N—-1, Supp|emented by the boundary condi-
course, lead to identical results as far as the actual stochastigns forn=0N,

dynamics(3) is concerned. In passing we further note that

our treatment for Eq(3) can be generalized to multiplicative X§=Xo, XN=Xt- (26)
noise g(x) &(t), with g(x)# 0, without encountering addi-

tional difficulties. Under the assumption that the noise strergtts small, the

For the conditional probabilityoy(Xn+1,ths1]Xn,ty) to  path integral in Eq(23) can be evaluated by means of a
reach the poink,,, at timet,,; when starting out fronx, saddle-point approximation about the minimizing path
at the previous time step, we find from the discretized Wwith the result
dynamics(20) and the noise distributiof21) that
Pr(Xs ,ti]Xo,to) =Zn(x* )&~ NP[1+ O(D)], (27)

X 1 Xp,t L . .
P2t 1lXn . to) where the prefactoZy(x*) is given by a Gaussian integral

of the form
:J O(Xn+1—Xn— F(Xp,th) At—y2DAtE,) P(£,)dé,
) 7 (3% )i dy; --dyn—1
B S (O TP SR N NOCS= | apan e
(47DAL)YZ ADAt '

1 "GN as(x)
; L - - Xexp — 5= 2 Yoz Ym[: (28)
Here and in the following, integrals over the entire real axis 2D nm=1"" dx; dXy,
are written without the integration limitsc. Further, the
mutual independence of the random numb&rsn Eq. (20) and where in the order of magnitude expressi®D) only
(Markov property implies for the conditional probability the the dependence on the noise-strenBths being kept. A
Chapman-Kolmogorov relation more detailed quantitative estimate of this correctiofD)

is a difficult, and to our knowledge unsolved task.

The Gaussian integral in Eq28) is readily evaluated to
pN(Xn+21tn+2|Xn’tn):j pN(Xn+2’tn+2|Xn+1vtn+1) yieId
X PN Kns 15Ene 11Xn ,t) AX s 1 - 92S(x*)\ 172
pN( n+1 n+l| n n) n+1 ZN(X*)== A47DAt de(ZAt%) , (29)
X X

Upon iteration of this relation in combination with E®2)
one finds for the conditional probability the time-discretizedwhere detf\,,) indicates the determinant of ai—1XxN
path-integral representation —1 matrix with element®\,,,. As demonstrated in Appen-
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dix A, the determinant appearing in EQ9) can be rewritten
in the form of a two-stefgsecond-orderlinear recursion

Qni1—2Q7 —Qp-1
At?

_ ZQ: F/(X3 ta) = Qp1F' (X3 _1,th-1)
a At

* o *
*Xn+1 Xn

—F (X5, ty) |F7 (X5 L t)

n At
+QAF (X} )= Qh 1 F'(Xh_ 1 tq—1)?
(30)
with initial conditions
Q* _Q*
Qi=At, L =1+0(AY), (31

from which the prefactoZy(x*) in Eq. (29) follows as
Zy(x*)=[4mDQ}] 2 (32

The fact thatx* is a minimum of the actioli24) guarantees

that QN >0. Here and in the following we use the abbrevia-

tions:

IF(Xx,t)

E(x,0) = iy IF(x,t)

a

F(X,t):= (33

and bracket-saving expressions like<)? are understood as

[fO)12

As we shall see later, we have to leave room for the

possibility that even for small noise strengtbsmore than
one (global or loca] minimum of the action(24) notably
contributes to the path-integral expressi#8). We label
those various non-negligible mininxg by the discrete index
k but leave for the moment the precise setkofalues un-
specified. Each of the minimizing patk§ thus satisfies an
extremality condition of the formi25). Under the assumption
that those minima xi are well separated in the
N—1-dimensional space of all pathgg(...xy) appearing
in Eq. (23), the saddle-point approximatigq27) simply ac-
quires an extra sum ovérwith a corresponding extra index
k in Egs.(28)—(32). Combining Eqs(27) and (32) we thus
arrive at

—SN(Xg)ID

e
P (X ,tflxo,to)=2k WTD—(W“JFO(D)]' (34)

C. Continuous-time limit

Next we turn to the continuous-time limil—o, At
—0 in Eq.(17). The continuous-time conditional probability
p(X;,t|Xg,tg) whenN—c in Eq. (23) is symbolically indi-
cated by the path-integral expressi@6]

X0 =x ~Sx(t))/D
p(xf!tf|X0!tO): Dx(t)e Sx] ’

X(tg)=Xg

(39

where
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ty
S[x(t)]::J L(x(t),x(t),t)dt (36)
to
is the continuous-time limit of the actioi24) with
L(X’th)::%[X_F(X!t)]Z (37)

as Lagrangian. The extremality conditions for the minimiz-
ing pathsxj (t) in the continuous-time limit are obtained
from Eqgs.(24) and(25) by letting At—0 as

(1) =F O (1),0)+FOE (1), DF (X (1),t) (38
with boundary conditiongcf. (26)]
Xi (to) =X, X (tr)=X. (39

The same result38) can also be recovered as the Euler-
Lagrange equation corresponding to the Lagrang®.

Equivalent to this Lagrangian dynamics is the following
Hamiltonian counterpart:

H(x,p,t):=pX—L=p?+pF(x,t), (40)
Pk (1) =—pg (HDF" (X (1),1), (41)
X (1)=2pg () + F (X (1), 1). (42)

The last equatioid2) may also be considered as the defini-
tion of the momentunp; (t) in terms ofx; (t) and Xi (t).
With Egs.(37) and (42) the action(36) along a minimizing
pathxg (t) follows as

t
Su(Xi 1) =SIXE (1] = ft ‘i, (49
0

where the dependence of the actigp(X;,t;) on the initial
condition xy at timety has been dropped. For later use we
also recall the well-known result from classical mechanics
that the derivative of the extremizing action with respect to
its end point equals the canonical conjugate momentum, i.e.,

Ipe(Xe b)) |
T_pk(tf)-

(44)
Finally, the continuous-time limit for the conditional
probability (34) in combination with Eq(43) takes the form

e_ ¢k(xf ,tf)/D

P(X¢ vtf|XOatO):2k W[l+ O(D)],

(45
whereQj (t) is governed by the second-order homogeneous

linear differential equatiorf27,39,43 that follows in the
limit At—0 from Egs.(30) and (42),

1. d
EQI (t)— a[QI (DF" (¢ (1),5)]+ Qi (1) pi (DF"(x (1),1)
=0. (46)

Similarly, the initial conditiong31) go over forAt—0 into
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Qf (t)=0, Qf(te)=1. (47 Xo=Xs(to). (52)

We remark that according to Eq88) and(39) the mini-
mizing pathsx; (t) are independent of the noise stren§th
Consequently, neithes,(x;,t;) from Egs.(38), (39), and Our next goal is the characterization of all the minimizing
(43) nor Q; (t) from Egs.(46) and(47) depend on the noise pathsx; (t) which significantly contribute to the sum in Eq.
strength, i.e., no implicit additiondd dependences are hid- (51). Our first observation is that for any finitg andt; the
den in Eq.(45). We further note that by means of the sub- action(36) exhibits in the generic case a unique global mini-
stitution mum respecting the boundary conditions

A. Minimizing paths

Qx (1) Xi (to) =Xs(to),  Xf (tp) =Xy(te), (53)

=M—F’(Xﬁ(t),t) (48)

K according to Eqs(39) and Eqgs(51) and(52). To be specific,
the linear homogeneous second-order equafi#®) goes We denote this globally minimizing path a (t). From the
over into the nonlinear first-order Riccati equation explicit form of the Lagrangiar37) we can infer that for
. , , large values of;—t, the minimal pathx; (t) follows most
0 (1) + 20 (1°+2g¢ (VF' 6 (1).D)=—pE ()F (X;(t)(’dgj of the time rather closely a determin(i)stic trajectory, i.e.,

x’k‘o(t):F(xﬁo(t),t), in order not to accumulate a too large

Since Eq(47) does not lead to a meaningful initial condition amount of actior(36). In view of Egs.(7) and(593) it is thus

for gi (t) in Eq. (48), the Riccati equatiori49) can only be  suggestive thax’kfo(t) starts ab(’k‘o(to)zxs(to) and then con-

used for times>1,. For this reason and also from the view- tin,es to closely follow the stable periodic orbig(t) for

point of calculational efficiency we found that for practical quite some time. At a certain moment’ (t) leaves this
0

urposes the linear second-order equaté#®) is often supe- . . ) L
Pup quais) P neighborhood and travels in a comparatively short time into

rior to the Riccati equatiof49). o .. . i
To establish contact with previously known results weth€ Vicinity of the unstable periodic orbi,(t), where it
remains for the rest of its time and endsxég(tf)zxu(tf).

finally remark that one can identify

Only during the crossover from the neighborhoodxgft)
P (X ty) ‘(1) 50 into that ofx,(t) does the pattx; (t) substantially deviate
r9X]g Gic(te)- from a deterministic behavior and so gives rise to the main

contribution to the actior(36). We desist from a more rigor-
This relation(50) and the associated Riccati equati@¥®)  ous derivation of these basic qualitative features since they
are usually derived by introducing a WKB-type ansatz intogre quite similar to the well-known barrier-crossing problem
the Fokker-Planck equation for the conditional probabilityin  static potentiaftime-independent force fiel§37,38,44.
distribution[cf. Eq. (10)] and then comparing powers of the Especially, the relatively short “crossover segment’ of

noise strengttD. Since a direct derivation by means of path- y (t) petween the long sojourns close to the stable and un-

integral methods is not known to us, we have included such.?® . "
- , . . stable orbits has lead to the name “instanton” for such a
a derivation of the relatio50) in Appendix B.

path.
As we will see in more detail later, a meaningful limit of
xfgo(t) exists fort;— — andt;—« (henceforth abbreviated

. . . _ asti—ty—o) in the sense thax’k‘o(t) follows closer and

By introducing the path-integral expressio#b) for the  ¢joser the periodic orbits, ,(t) over longer and longer time
conditional probability into the formuléld) for the instan-  jteryals, while the crossover-segment does practically not
taneous ratd'(t) at timet=t; and taking into account Eq. change its shape any more. Also the associated minimal ac-

gk (1)

IV. PATH-INTEGRAL SOLUTION OF THE ESCAPE
PROBLEM

(44), we obtainour first main resul{27], namely, tion S (t)] from Eq. (36) tends to a finite limit. In fact,
Pk (tr)e~ Ak&u(t)tp/D one can readily show that the minimal action cannot increase
F(tf)=2 27DOF ()12 [1+O(D)]. (51 upon increasing; and/or decreasint,. Furthermore, since
K [47DQ(t)] it is bounded from below, the existence of the limit follows

In view of Eq. (45), the instantaneous raté1) has the sug- for the action as well as for the minimizing path itself. More

) . i S importantly, from the time periodicity of the force field)
Igg)isitt)llv’? structure of “probability at the separatrix times Ve- e can infer that in the limit;— ty— o the actionS[x’k*O(t

As already mentioned in Sec. II, for sufficiently large N7)] has the same value for any integeiln other words,

come independent of the initial position as long as¢, is ~ Unique absolute minimum, rather each pafl(t+n7
located inside the domain of attraction of the stable periodic) glo-

orbit xs(t). A more detailed discussion of this point will be a1y minimizes the action. However, thedegenerat@bso-
given in Sec. IV G. To keep things as simple as possible Wt minima are still well separated in the space of all paths
focus in Secs. IVA-IVF on the particular case thatis  ({) appearing in Eq(35). This feature is the salient differ-
locatedat the stable periodic orbit, i.e., ence between our present problem and its time-independent
counterpar{37,38,44—4% which exhibits acontinuousde-
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generacy(Goldstone modgein the limit t;—ty—o. Put dif- T
ferently, the time-periodic force field reduces the continuousz S / u(t)
time-translation symmetry into a discrete one. Since the rat€” |~/ / ¥
formula (51) assumes well separated minim@(t) of the /
action, it is quite clear that théme-independent case must /
be excluded in the following

We emphasize that the minimizing patk§(t) remain
well separated and thus the rate form(#d) becomes as-
ymptotically exact for anyarbitrary but fixed finite values _
of the driving amplitude and period as the noise streryth s~
tends to zero. Apart from this fact thiat the limit D— 0 the w. Ts(t)
O(D) correction in the saddle-point approximati2v) and ' ts 7
thus in Eq.(51) vanishes, a more detailed quantitative state-
ment seems difficult. On the other hand, for a giyemal) FIG. 3. Solid: The paths} (t), k=0, ... K(t;,to)=3 which
noise strengtiD, we have to exclude extremely small driving minimize the actioriEgs.(36) and (37)] with boundary conditions
amplitudes and extremely long or short driving periods since53). Dashed: The associated “master pathg(t+k7), implic-
this would lead us effectively back to the statimdriven) itly defined via Eq.(54). Dotted: Stable and unstable periodic orbits
escape problem, which requires a completely different treatxg(t) andx,(t) from Eq. (7). In this plot, t;—t, has been chosen
ment (especially of the (quasi) Goldstone mode rather small. Ad;—t, increases, more and more intermediate paths
[23,37,38,44—4p than in Eq.(27). Put differently, in any of Xg (t) appear which better and better agree with their associated
these three asymptotic regimes, the e(D) from Eqgs. master pathxgp[(HkT). The depicted curves have been obtained
(27) and(51) becomes very large. for the addic_tively driven piecewise parabolic potenfighs. (5)

For later reference we denote the minimizing pafr(t) ~ and (134] with parametersA=0.5, Q=1, As=—1, \,=1, AV

. . 0" =1,ty=—12,t;=7.5 (dimensionless unijs

whent;—ty— by xgpt(t), keeping in mind that we are still
free to shift its time argument by an arbitrary multiple bf
The corresponding action is

&, ;pt (t)

/
/
f

there is a finite numbdiof the order {;—ty)/7 ] of minimiz-

ing pathsxg (t) and without loss of generality we can assume
(54) that the indices in the suitb1) start atk=0 and run until a
certain maximal valu& (ts,tg):

bopr=SXgp()]= lim min - §x(t)],

tO" —® X(t)
ty—o  X(tg)=Xs(tp)
X(te) =xy(ts)

O<k=K(t,to)=O((t;—to)/ 7). (55
where the second identity may also be considered as an im-
plicit definition of xgpt(t). Similarly, any other quantity as- Thus x§ (t) is that minimizing path which closely follows
sociated withxgpt(t) will be marked by an index “opt,” for  x¢(t) as long as possible and crosses over to the neighbor-
instancepg,(t) [see EqQ.(42)], Qg,(t) [see Eq.(46)], and  hood ofx,(t) at “the latest possible moment(see Fig. 3,
Jopl(t) [see Eq.(48)]. and similarly forx’,g(tf to)(1). Note that all the general quali-
In principle, besides the absolute minimud),(t) of the  tative features discussed above are nicely illustrated by the
action there may coexist furthefabsolute or relative explicit example in Sec. VA.
minima which cannot be identified with each other after a
time shift by an appropriate multiple ¢f While the coex-
istence of further absolute minima is nongeneric, coexisting
relative minima are irrelevant for sufficiently small noise  Our final goal is to approximate the actigf(xs,t;) and
strengthsD as far as the sum in Eq51) is concerned. the prefactorpy (t{)/[ Qx (t;)1¥2 for all minimizing paths
Though both cases could be easily taken into account in thgy (t) that play a non-negligible role in the suf&gs. (51)
following discussion, we will restrict ourselves to the sim- and (55)] solely in terms of the master paﬂipt(t) and its
plest and most common case theft(t+n7) are the only  descendantp?,(t),Q%(t), etc. To this end we first address
(relevan minima of the action(36) in the limit ti—to—.  the pehavior of a patix} (t) within the neighborhood of
Returning to finite but large values ofi—to, We  gither the stable periodic orbit(t) or of the unstable one
expect—as a precursor of the-to—c limit—that besides y (t) within these regions, the time-dependent force field
the unique absolute m|n|mumfo(t) there will coexist many  can be approximately written as
additional relative minimag (t) with an only slightly larger
action. All those minimax; (t) possess a limit whety—t,
— in the same sense as for the clisek, described above
(quantitative details will be given laterMoreover, whert; ~ Note that these approximations are valid not onlyxif
—tg— then eachx} (t) appro;-;mhesq;pt(tjL n(k)7) fora  —Xsu(t) is small but also ifF"(y,t) is small for ally be-
suitable choice of(k) and without loss of generality we can tweenx andxs ,(t). An immediate consequence of H§6)
assume gre-labeling of thexi (t) such thatn(k)=k. In  are the relations
other words, to eack; (t) belongs a very similarly looking
“ master path xgp[(t+kT), see Fig. 3. Sincg —t is finite, F'(x,t)=F'(Xsy(t),t), F"(x,t)=0. (57

B. Neighborhood of periodic orbits

F(X,1)=F (X u(1), 1)+ (Xx=Xs u(1))F' (X5 4(1),1).  (56)
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As long as a minimizing pathj (t) remains in a region
where these approximations apply, the Hamiltonian equa-

tions (41) and (42) take the form
P (1) == pg (DF' (Xs u(1),1), (58)
AR (1) =2pi (D) + AX (DF ' (X u(1),1), (59
where we have introduced
AXE (1) 5=X5 (1) = Xg (1), (60)
Their solutions are
Pk () =pi (ty)e~ Reultie), (61)

AXie (1) =Axic (ty)etsu W+ pE(t)Ig y(tty), (62

wheret, is an arbitrary reference timvithin our assump-
tion that Eq.(56) applies for all the considered timésand

where
t
Aott= [ Frounoar, 63
1
t ’
lsu(t,ty) :=2f e2Asutt gt (64
ty
Obvious properties of the functionss ,(t,t;) from Eqg.
(63) are
AS,u(t!IZ):AS,u(titl)+As,u(tlat2): (65)
AS,u(tlit): _As,u(tvtl)! (66)
Asut+ T+ 7= Ag(Lty). 67)

Further, one readily sees that the quantities

Nsui=Agy(t+T0)/T (68)

are indeed independent and characterize the stability or in-
stability (“Lyapunov exponents) of the periodic orbits,

namely,

Ns<0, A\ ,>0. (69

One even expects that(t,t;) <0 andA ,(t,t;)>0 not only

for t—t,=7, 27,... [cf. (68)] but in fact for allt—t,>0;

however, exceptions cannot be excluded for not too large
—t;. From Eqs.(63) and (69) it follows that A (t,t;) can
be written as the sum of a linear functiag - (t—t;) and a

periodic function oft. As a consequence, we obtain
As,u(t:tl)w)\s,u'(t_tl) (70)

for asymptotically large positive and negative tintest; .

Turning to the discussion df (t,t;) from Eq. (64), we

first note that

lo(t,ty) = 14(t) — et (ty), )
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t ’
I4(t):= lim IS(t,t1)=2f e?Astttdt’ (72
ty——o -
and similarly
Lu(t,ty) = — 1y (t) +e2 Mt (ty), (73
I,(t):=— lim Iu(t,t1)=2f e2Mutt)gy’, (74)
ty—o t

Thus, I (t) are positive and finite for all and obey

lsu(t+T)=15u(t). (75)

It follows that I4(t,t;) in Eq. (71) is given by a periodic
function oft minus the product of another periodic function
times an exponentially decreasing factor gxp(t—t,)}, and
analogously forl ,(t,t;) in Eq. (73).

Choosing as reference tintg=t, in Eq. (62) and taking
into account thafA x; (to) =0 according to Eqg52) and(60)
implies that in the neighborhood af(t) we have

AX (1) =pi (D)14(t,t0)- (76)

Dividing this result by the same identity evaluated at a dif-
ferent reference timg>t, and taking into account E¢61),
we obtain

_As(txts)L,to)
I S(tS 1t0) ,

Pi (1) = Axy (tg)e™ MU (tg,to). (79

Axg (D) =AxE (toe (77

Both these expressions consist of an exponentialtyeas-

ing factor exg—A\- (t—tg)} times some periodic function of

In Eqg. (77) one has in addition a quickly decreasing correc-
tion. The corresponding behavior in the neighborhood of
Xy(t) is given by

ly(t,tg)
Axﬁ(t)zAx’k‘(tu)eAu(t'tu)lu(ithf), (80)
P (1) =Axg (ty)e™ Mt/ (ty ty), (81)

wheret, is some reference time with,<t;. As expected,
Egs.(80) and(81) are now dominated by an exponentially
decreasingbehavior exp—\,-(t—t,)}. We further remark
that for the master patlxgp[(t) we havety— —o and t;
—oo, thuslg y(t,tgf) in Egs.(76)—(81) go over intolg (t)
according to Eqs(71) and (73) and so all four equations
(77), (78), (80), and (81) are exactlygiven by exg—\g,-(t
—tsu)} times certain periodic functions of

Within our above local analysis of the neighborhoods of
Xsu(t), the reference timesg, are still arbitrary and the
corresponding parametersx; (ts,) remain undetermined.
They can only be fixed through the global behaviokpft).
It is instructive to reconsider the same thing from a some-
what different viewpoint. From Eq$71), (72), and(76) we
conclude that
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AXE (t) to (et e +k7) for timest near the starting poirty;. Formally, this
pr(t) s)_zf e~"sts dt (82)  approximation is equivalent to letting
S — o0
to— — . 85)
and similarly 0 (
* C. Approximations in terms of the master path
Axg (ty) _ F 2Nty ) g7
DE (1) =—ly(ty)+2 e dt’. (83 Our next objective is to express the acti@®) of the path
u f

X (1) in terms of the associated master paffy(t+k7).
Let us considet,>t, as fixed and such that the approxima- We recall that whilex; (t) satisfies the boundary conditions
tion Eq. (56) is valid for all te[to,t;]. Within the same (53), those ofgy(t) arexgy(t) —xy(t)—0 for t——c and
restriction, we now consider the quantify (t) as a pa- Xopt) ~Xy(t)—0 for t—o. We now modify the latter
rameter. For any value obx}(t), Eq. (82) thus fixes boundary condition and require instead that

px (ts). With these initial conditions fok; (t) andpi (t) at tei=t;+ KT (86)
time t=tg on may then propagate the Hamiltonian equations

(41) and(42) up to the timet=t; .. Itis clear that for a typical s the final time andk:=x},(t) the final position. In other
choice of Axi((ts) such a “shooting procedure” does not words, we simply truncate the master paf(t) at the time
lead to the desired end resuli; (t;) =0. But we also know ¢, associated with the final timg of xj(t). Since this
from the mere existence of the minimizing pgths that therenew” path Xpo(t) With te[ —o,t,] obviously still satisfies
must be specifidx; (ts) values which do the job. Further- the Hamiltonian equationgtl) and (42) it is again an ex-
more, Eq(83) tells us that it is not necessary to proceed untiltremizing path. The value of the action for this path follows
t=t¢, rather it is sufficient to take any tintg at whichx; (t) like in Eq. (43) as

has reached the,(t) neighborhood and then check whether
Eq. (83) is satisfied.

If ts—ty andt;—t, are already large then the integrands in
Egs.(82) and(83) are extremely small. Thus, tiny changes of
AXg (ts) andpyg (ts) will lead to huge changes @f andt;.  and the relation$44) and(50) take the form
Especially, by lettingt;— —« and t;—« those integrals

t
Popt Xk L) := f ~_Pap()?dt (87)

vanish and one recovers the master pejl(x+k7) asso- 9 Popt Xk s t) =p* () 89)
ciated withxj (t). This confirms our conclusion from Sec. IXy opti k7

IV A that a meaningful limit ofx} (t) for tp—o andt;— o 5

exists and that for finite but largg—t, the difference be- ” Popl Xk ) —g* (1) (89)
tweenx (t) and the associated master paffy(t+k7) is oxe Gopd th)-

extremely small for alt e [tq,t¢]. ] _
An example for whicht;—t, is not large is the path With Egs.(43) and(54) we can rewrite Eq(87) as

xg (1), i.e., the one which crosses over from the neighbor- "

hood ofx¢(t) into that ofx,(t) at the latest possible moment, Bopl X 1) = ¢0pt_f pgp,(t)zdt. (90)

see Fig. 3. For this patkg (t), the timet, at which it enters t

the neighborhood of,(t) is already rather close tg and so

the integral in Eq(83) is not any more small. As a conse-

quence, the deviation of; (t) from xg,(t) is no longer small

ast approached;. In particular, fort=t; it follows that

X5 (11) —Xgpt) = —AXgy(ts) is no longer small and with

Next we express the actio(86) of the pathx; (t) by
expanding the one belonging to the associated master path
Xop{t+KT) in powers of the difference- Axgy(t,) between
the end pointsq (t) =X, (tr) andxgy(ti+k7)=xgu(ty),

Eq. (79) we conclude that the same is true for the momentum Ibond X )
. [o] ]
pgpt(tf)- le., ¢k(X:(tf)itf):d’opt(xk:tk)_AX;pt(tk) pé’Xk
Popdtf) not small. (84 AX5 (102 7 Popd X 1)
+ > (91
2 X

With increasingk values, the deviations- Axg,(t+kT)

betweerxi (t) and the associated master paf(t+k7) in  As justified above Eq(85), the analogous contribution in
the vicinity of t; are rapidly decreasing, essentially like powers ofAx},(to+k7) is negligible on the right-hand side
exp{—\,k7}, see Eqs(68) and (80). In the same way, for of Eq. (91). By exploiting Egs.(88)—(90) and the counter-
the largest possibllevalues k=K(t ,to) [see Eq(59)], cor-  parts of Eqs(79)—(81) for x%,(t+k7T), one arrives after a
responding to pathsy (t) with only a very short initial time  ghort calculation at

segment close t&g(t), the deviations fronx§p1(t+ k7) are

no longer small fott close toty. As we will see later, paths
Xx (t) with such largek values are negligible in the su¢81).

For this reason, we will henceforth neglect deviations be-
tweenxj () andx},(t+Kk7) and betweemy (t) and pj,(t X[1+goptidlu(ti)+--1. (92

DX (1), 1) = doprt f:cp:(t)zdt
k
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A similar expansion ofp’gpt(tk) from Eg. (88) yields for
pi (t¢) the approximation

azd’opt(xkitk)
k

= Popt [ 1+ ggpdti) Lu(ti) +- 1.

We now turn to the prefactor tern®; (t) in Eq. (51).
Within the neighborhoods of, (t) for which the approxi-
mations(56) and thus(57) are valid, we can infer from Eq.
(46) that

p: (tp)= p;pt(tk) + A:;pt(tk)

(93

Qf (/2= QE (HF' (X5 (1) ,)=constip . (94
By comparison with Eq(48) we further see that
9k (DQ (1) = s (95

The constanjug, which is connected with the neighbor-
hood of x,(t) and is typically different formu,, follows
from the initial conditiong47) as u=1/2. Hence, the solu-
tion of Eq. (94) takes the form

Qi (1) =14(t,to)/2.

As a by-product we find from Eq(50), evaluated for an
arbitrary final conditiort;=t andx;=x in combination with
Egs.(95) and(96) that

P xt) 1
ax?  l4(t,tg)”

Within the linearization(56), closer inspection shows that

(96)

97)
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Once the neighborhood of,(t) is reached, i.e., fot
=t,, the solution of Eqs(94) and(95) can be written with
Eq. (64) as

Qf (1) =Qf (ty e MW 1—gg (t,)1,(t,,0]. (10D

In view of Eqg.(61) this yields, furthermore,

Qe D P12 = Qb tu) Paoi tw) [ 1= G tu) Lty )]
(102

Due to Eq.(73), the factorl ,(t,,t) approaches-1,(t,) as
t—t, becomes large. It follows that the left-hand side of Eg.
(102) tends towards a finite limit als— oo,

Qopt=lim Qgpt(t) pzpt(t)z- (103
t—o

Sincet, is an arbitrary reference time in EGL02), we can
first lett—o and then renamg, ast with the result

Qopt

m_ Moptl u(t), (104
op

Q:pt(t) =

where the(finite) constantu is defined analogously to Eg.
(95) as

Mopt*= lim ggpt(t)Qgpt(t)- (105
t—ow

Exploiting once more Eq¢95) and(105), we can eliminate
Qop(t) in Eq. (104 in favor of gg,(t) with the result

oo 1)
QOpt/Mopt_ pz;pt(t)zl u(t) .

JoplH) = (106)

only a single summand appears in the conditional probability ag discussed below83), the deviations ok (t) from the

(45) and one recovers the expected Gaussian resuli for
close to the stable periodic orbit(t):

1) [x=x4(1)]?
p(x,t|xs(to),to):m exp — —————:.

~ 2DI(t,tp)
(99

Returning to Eq.(96), it is remarkable that besides the
initial time t, no further details of the patk(; (t) play a role.
Especially, ifxy (t) remains for a long time in the neighbor-
hood of x4(t) where Eq.(96) is valid, then by the time it
leaves this neighborhood, sy t., the quantityl ((t,tg) is
practically equal td ((t) from Eq.(72) and thusQ} (t) equal
to the associated master prefactbgpt(tJrkT ). Within our
usual approximatiori85) we thus have

Qi (t9) = Qgplts+KT) =14(t5)/2, (99

Qikc (to)= Q;pt(ts_l— KT)=14(ts)/2. (100

These relations are then used as initial conditions in(&g).
in order to propagat®j (ts) and Q;pt(ts+ k7) through the
crossover segments of the corresponding path&s) and
Xgpt(ts-i- k7) up to a certain time point, say=t,, beyond
which the linearization56) aboutx,(t) and thus Eq(94)

can be applied.

associated master patkj,(t+k7) become smaller and
smaller ask increases and in view of Eq€99), (100), and
(46) we expect a similar convergence & (t) towards
Qopt+KT). In Appendix C, the following quantitative es-
timate for this convergence is established for all tintes
E[tu,tf]:

Qk (1 =Q3(t+kT)[1+0(p3(t)D],  (107)

where the order of magnitude is meant with respect to the
dependence ok.

From the technical viewpoint, Eq104) in combination
with Eq. (107) is a central and highly nontrivial result of our
present work. Sincé,(t) is periodic int and sincepf;p[(t)
decreases exponentially according to E&fl), we see from
Eqgs.(104) and(107) that the prefacto®y (t) diverges expo-
nentially with the time which the patkg (t) spends in the
neighborhood ofx,(t), in striking contrast to the behavior
(96) close tox(t). The basic physical reason for this diver-
gence ofQj (t) is that the probability of a stochastic process
(3) to permanently remain close to the unstable periodic orbit
xy(t) decreases exponentially with increasing time. Since
typically the process closely follows a deterministic trajec-
tory, the action barely grows and thus it is the prefactor
1/1Q; (t;) Y2 in Eq. (45) which has to account for the expo-
nential decrease in time.
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Sincepgpt(tk) decreases exponentially wikhwe see from
Eq. (106 thatgg,(t,) tends to zero Iikepgpt(tk)z. In view of
Egs. (88) and (89) we therefore conjecture that also higher
derivatives ofgop(X,tx) continue to scale like the corre-
sponding powers qf)gpt(tk). The terms indicated by the dots
in Egs.(11)—(93) are then indeed negligibly small.

D. Evaluation and discussion of the rate
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limit K(t,to) for larget—ty, we see that our formal approxi-
mation (85) is indeed self-consistently satisfied.

Next we notice that under the sum in E410), the pre-
exponential term is nothing else than the time derivative of
the expression in the exponential. By extending the sum over
all integerk values as justified above we obtain

7
7,

t+7
Kopi(t',D)dt’

We are now in the position to evaluate the rate formula

(51 in terms of the master patkg,(t). To this end we
approximate in Eqs(92) and(93) the square brackets by 1,
neglect in Eq.(107) the term of orderpgpt(tk)z, and in Eq.
(104 the last term[being also a correction of order
pgpt(tk)z]. By dropping the index ot; we then can infer
from Egs.(51) and (55) our central result for thénstanta-
neous ratg 27]

I'(t)=VDage ?o/Prqt,D)[1+O(D”)], (108

aope=[ 47T 2 lim pg(1)°Q5u() ], (109
t—o
K(t,tg) 2
Paoit+K7T)
Kopft.D) =T X g
1 * * ’ 2447
Xexp -5 t Popdt’ +KT)=dt’ ;.
(110

The effect of our various approximations in deriving this

result together with the corresponding “accuracy exponent”

v>0 in Eq. (108 will be discussed in Sec. IV E. Next, we
analyze in more detail the propertiesaf,(t,D). By means
of Egs.(61), (68), and(74) we rewrite Eq.(110) as

K(t,tg) % 2~k * 2~k
Poptt)°C Popt 1) “CHl (1)
KOpt(t,D):TkZ:O OpTeX _% ,
(111
C:=e M7, (112

Since 0<C<1 there is a competition in the sufhll) be-
tween the exponential terms which increase vkitand the
pre-exponential factors which decrease withOne readily
sees that the dominant contribution to the sum stems from

few k values around the real numberimplicitly defined via

Pa(D)ZCKI (1) =2D. (113
Recalling thatt stands here fott; and since neithet ,(t
=1¢) nor pg,(t=t) [cf. Egs.(74) and(84)] are small quan-
tities, it follows thatk is, for small noise strength3, much
larger than 0 but, for sufficiently largg—t,, according to
Eq. (55), also much smaller thak(t=t;,ty). Therefore the
sum in Eq.(111) and thus in Eq(110 can be extended to
arbitrary integerk at the price of an error which iBxponen-
tially small inD, i.e., without actually affecting the accuracy
exponenty in Eq. (108). As a further consequence of the fact
that the dominank values are much smaller than the upper

o

> ex

k=—o

(k+1)T

1 o0
p{ -5 pzpt(t'ﬂdt']

1 * * IN2H+!
=1—ex -5 ﬂopopt(t)dt .

Neglecting as usual errors exponentially smalithis leads
us to the remarkable conclusion that

7
T
for all t and all(small) D. For thetime-averagedate(14) we
thus obtain from Eqg108) and(115 our central resulf27]

t=k7T

(114

t+7

Kop(t',D)dt' =1 (115

I'=\Dage *»/°[1+0(D)]. (116

It consists of an Arrhenius-type exponentially leading part
with an “effective potential barrier’¢q, and a nontrivial
pre-exponentiaD dependence. The two quantitieg,, and
¢opt follow from the master patrxgpt(t) according to Egs.
(54) and (109). Thus they are independent bf but depend
in a highly nontrivial way on various global properties of the
deterministic force field=(x,t) in Eqg. (3). In general, their
explicit value can only be determined numerically or by
means of approximations. An exactly analytically solvable
special case will be presented in Sec. VA.

We recall that for equilibrium systems, characterized by a
time-independent force fielB(x)=—V’'(x) in Eq. (3), the
escape rate exhibits an exponentially leading Arrhenius fac-
tor, which involves simply the barrier against the escape of
the static potential V(x), and a D-independent pre-
exponential factor which depends only on local properties of
the potential at the barrier and the will, see also Eq.161)
below. The different structure of Eq116) is thus a conse-

uence of the far from equilibrium situation created by the
ime dependence of the deterministic force fiElgk,t).

As announced in Sec. Il C, the time-averaged escape rate
for the periodic force field-(x,t) can be identified with that
of its supersymmetric partner force fig(tlé) for asymptoti-
cally weak noiseD without any further restrictions on
F(x,t). The detailed proof of this highly nontrivial invari-
ance property of Eq(116) is carried out in Appendix D.

Returning to the instantaneous rdk08), we see that it
exhibits in comparison with the time averaged réit&6) the
additional time-dependent factok,,(t,D). The explicit
evaluation of this factor requires the knowledge of one more
global quantity, for instance of

Bopl(t) = lim pi(t)etu(. (117

t—ow
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Note that due to relatiof65) the t dependency of this quan- to corrections of the orde®( p¥,(t)) in the rate formula,

tity is actually quite simple. According to E¢61), this defi- i.e., of the orderO(\D) according to Eq(121). In other
nition (117) allows us to rewrite Eq(11)—with the range \yords. we can conclude that

of k extended to arbitrary integers—as
© 1 if F"(xy(1),1)=0

B Bopit)*C* Bopi1)*CH1 (1) y
Kopt(t,D)—/];(;ooTeX —T .

(118

- 1/2 otherwise. (123

In the casey=1/2 it is important that in the global quan-
tities dopt, @opt, Bopt) from Egs.(54), (109, and(117) the
long-time limits are made and the exact master path is uti-
lized without any further approximations. If instead in these

BesidesB,p(t) all other quantities in this expression are de-
termined by local properties of the force fieklx,(t),t)
along the unstable periodic orbit. By exploiting Eq68),

; definitions any finite reference time in combination with re-
(79, and(112) it follows that lations based on the approximati@6) were used, then this
Kop(t+T,D) = Kop(t,D), (119 would introduce a possibly very small but nevertheless
D-independent error and so ruin the asymptotically exact
Kop{1,CD) = kop(1,D). (120 predictions(108) and (116) in the weak noise limiD—0.

In cases for which Eq(56) is not exactly satisfied in the

Together with Eq.(113 and the obvious property O neighborhood of the unstable periodic orki(t) and hence

< Kkop(t,D) < this completes our qualitative picture of the y=1/2, itis in principle po_ssible to calculate p_erturbat_ively
— the corresponding corrections such as to arrive again at a

reduced relative erra®(D) in the so improved rate formu-
las, though the actual calculations and the resulting expres-
E. The accuracy exponenty sions become very complicated. On the other hand, further
In the following we come to the determination of the ac- 'éducing thed(D) error is even in principle rather problem-
curacy exponenty in Egs. (108 and (116. We will not  atic since it would require going beyond the saddle-point
elaborate here all the details of the rather involved calcula@PProximation in the path-integral approach from Sec. Ill.
tions but restrict ourselves to the main steps. At this point it may also be worth recalling from Sec.
First of all, we recall that a contributiaf®(D) is inherited VA that for any fixed (however sma)l D value, the error
right away from formula51). Next we have approximated (D) in Eq. (51), which is inherited by the final rate for-
the square brackets in E¢92) by 1. For thosek values Mula, diverges as the amplitude of the time dependency of

which mainly contribute to the rate it can be inferred from F(X;t) tends to zero, but also if its periddeither tends to
Eq. (113 together witht=t; and Eq.(86) that zero or to infinity. Thus, neither of these limits commutes

with the limit D—0.

way in whichT'(t) oscillates around its average vallie

Peplt)?=0O(D) (121

. F. The limits t—» and D—0
and hence with Eq(106) that o
In the derivation of the rate formulél08 we have as-

g;pt(tk)lu(tk):O(D)- (122 sumed that all pathsg (t) which notably contribute in Eq.
(51) sojourn for a very long initial time interval close to the
Since the integral in Eq92) is of the same order of magni- Stable periodic orbiks(t), see Eq(85). On the other hand,
tude asp’gpt(tk) from Eq (121) we conclude that the total Eq (113) tells us that the amount of time which those domi- -
error we committed in Eq(92) is of the orderO(D?), thus ~ nant paths spend in the neighborhood of the unstable peri-
contributing once more a term of the ord®(D) in the rate  odic orbitx,(t) is roughly speaking of the orded(In 1/D).
formulas (108 and (116). The same conclusion can be Both these conditions are compatible onlyt if t, substan-
drawn with respect to our approximating the square brackettally exceeds in order of magnitude Irfl/ In the physically
by 1 in Eq.(93) and neglecting thé)( pgpt(tk)z) term in Eq. relevf'i_nt case, the noise stren@ths small bu_t finite and this
(107) as well as the last term in E6LO4). In other words, the cpndlthn is we_ll satisfied aﬂer a comparat!vely short “tran-
relative error induced by all our so far made approximationsSient” time period. Thus, strictly speaking, in E4$08) and
is of the order®(D). (116)_, W|th_ decreasmg) v_alues also the lower I|_m|t of thg
What remains is a closer inspection of the approximatiorfidm'tte.d timeg —t, is tacitly assumed to slowly increase in
(56) for F(x,t) in the neighborhood ok ,(t). One readily ~Proportion to In 1D. _ , _
sees that actually only the approximation in the neighbor- We remark that our resultl0g) obviously remains peri-
hood of the unstable periodic orhig(t) matters in our quan- 0dic int for arbitrarily larget—to, see Eq(119). Therefore,
titative evaluation of the rate; the basic reason for this is onc&€ restriction of the utilized basic formuia4) to values of
more our assumptioty— — in Eq. (85). In case Eq(56) t—ty much smaller than I/ no longer applies to the final
happens to be an exact identity in this neighborhood ofesult(108); see also the discussion below Eg5).
Xy(t), then the total error committed in the rate formulas In the physically less relevant case thatt, is kept at an
(108 and (116) is thus of the order®(D). Otherwise, a arbitrary but fixed value and theb is made smaller and
closer analysis of the relevant perturbative corrections showsmaller, things become different. As pointed out in Sec.
that the error introduced via the approximati@®) amounts IV A, for any finite initial and final timeg, andt=t;, there
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exists generically a unique absolute minimunjg(t) of the For arbitrary but fixed, satisfying Eq.(126), the obser-
action. For sufficiently smalD the ko term will thus com- ~ vation from SEC- IV A remains true, namely that only mini-
pletely dominate the sum in E¢Y), i.e., mizing pathsx (t) play a role in the rat€¢51) which closely
follow a deterministic behaviokj (t)=F(x; (t),t) for most
pﬁo(tf)97¢ko(x“(tf)’tf)/D of the time. This requirement can be fulfilled in two basic
I'(t=ty)= 124 i i i i-
(t=t¢) [417DQf<‘O(tf)]1’2 (124 ways and appropriate compromises thereof. The first possi

bility is that the pathx; (t) closely approximates a determin-
istic trajectory for a very long initial time interval. During
this time, xi (t) approaches the periodic attractq(t) very
closely and practically does not accumulate any adtius.
(36) and (37)]. Consequently, one is back to the c45@)
after an appropriate redefinition of the initial timg. Re-
garding the prefacto®; (t), one can, according to E¢42),
approximatepi (t) in Eq. (46) by zero. With the initial con-

. . - . . ditions (47) one then recovers the same solution as in Eq.
either ad increases or ad decreases, is clear: At some point . : .
thek dependence of the pre-exponential factors in () |ps (96) except that in Eqd63) and(64) the functionA(t, to) is
no longer negligible in comparison with the exponentially "oW defined ag; F’(x (t),t")dt’. Sincexi (t) practically
leading contributions and so the domindntvalue moves agrees withxg(t) during a very long time interval, one sees
away fromk,=Kq(t,t,) towards smaller valude=k, cf. Eq.  that also with respect to the prefacQf (t) we are back to
(113. At the same time, more that one term in the s@h  the case52). As before, we may label such paths by law
starts to notably contribute. values and their contributions to the r&fe) are identical to

Quantitatively, a leading-order approximation follows those of the lowk values in Eqs(108—(110.

along the same line of reasoning as in the derivation of Eq. The second possibility is that the minimizing patf(t)
(108 from Eq.(51), except that in the approximation for the travels from its starting point, immediately into the neigh-
action(91), also contributions due to the deviations betweenborhood of the unstable periodic orbif(t) and then very
X (t) and its associated master patgbt(tJrkT ) at times  closely follows this deterministic trajectowy,(t) for the rest
close tot, have to be included, that is, the approximationOf its time. If x, is already close ta(to), such paths lead to
(85) should be abandoned. The final result is again of thé very small value of the action in Eq&6) and (37) and
same form as in Eq108) but with a larger error tha®(D?)  thus will ultimately dominate the ratésl) if t—t, is kept

While most of the quantities on the right-hand side of this
result(including the indexX,) still depend in a very compli-
cated way on the time=t;, no additional implicitD depen-
dence is hidden. The most striking feature is theDl/pre-
exponential behavior in comparison with th® scaling in
Eq. (108).

Qualitatively, the crossover from E¢L24) to Eq. (108),

and instead of Eq(110) with fixed andD becomes asymptotically small. This puzzling
observation has lead to some amount of confusion in the
Kol p* (t+KT)2 recent literaturg47,48. The resolution is that, much like in
Kop(t,D):=T >, pT Sec. IVF, things become very different for a small but fixed
k=0 D in combination with larger and larger timés-ty. The

1
XeXP[ D close tox,(t) is a very small prefactap; (t;)/[ Qf (t)]¥2in
Eq. (51), as discussed beloWl07), namely of the order
(125 exp[—2\,- (t—tp)}. As a consequence, the paths with low
~ k-values, as discussed in the preceding paragraph, will domi-
For moderatd —t, or extremely smalD the exponential i nate in spite of their unfavorable action. Therefore, the rate

Eq. (125 depends very strongly okand therefore the sum  formula (109 applies for anyx, satisfying Eq.(126) on
is dominated by a single terik=ko(t,tp). Upon increasing  condition that

t—ty or D this strongk dependence of the exponential and

% t salient point is that the price to be paid for a long sojourn
0 * ’ 2447
+ Poptt’ +KT)=dt’ 1.
t — o0

hence the dominance of thg contribution is softened and t—=10> dopt /(2DNy). (127
the already discussed qualitative crossover behavior is recov- N ) o )
ered. This condition characterizes the asymptotic time regime for

which the rate formul&108) is valid in the case of a general
initial condition. Even for rather smab, the preceding tran-
sient regime is typically confined to a few driving periofis

So far, our rate formulél08) is restricted to the cagé2)  as illustrated by the examples in Sec. V. Note that ®g7)
that the initial positiorx, at timet, coincides with the stable comprises the condition from Sec. IVF thatt, has to
periodic orbitx¢(to). As pointed out in Sec. Il, one expects substantially exceed in order of magnitude IB1/n other
that for large enough times—t, the initial positionx,  words, for a generic initial condition, Eq127) is the only
should not matter, provided it is chosen inside the domain ofestriction for the rate formul&l08), apart from the exclu-
attraction ofxg(t). For sufficiently small noise strengtlid  sjon of vanishing driving amplitudes and vanishing or di-
this is the case whenever verging periodsz.

G. More general seeds(,

< .
Xo=Xy(to) (126 H. Summary from the practical viewpoint

In the following, we analyze this intuitive expectation in  Given an arbitrary time-periodic force field(x,t) that
some more quantitative detail. satisfies the condition in E¢9), what are the necessary prac-
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tical (numerical or analyticalsteps for an explicit quantita-

tive evaluation of the rat€l08)?
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The accuracy othgy, Bopl(t) , @op: from Egs.(130), (13D,
and (133 can be estimated by observing how little these

The first step is the determination of the stable and unguantities change if,,y is varied and ifAx;, is changed by

stable periodic orbitgg(t) andx,(t). An efficient way to do

a factore™s”,

this is by evolving the (_jeterministic_dynamilcs forward and  We finally note that the association mgp[(tJr k7) with
backward over a long time, respectively, with a reasonablyhe specific pattx; (t) as in Secs. IV A-IV G does not play

well chosen initial condition. Onceg (t) is known, the
functions A4 y(t,t;) from Eq. (63) andl(t,t;) from Egs.
(71) and (73) follow readily, with t; being an arbitrary ref-
erence time.

a role any more in the above described practical procedure.

V. EXAMPLES

The next step is the determination of the master path In general, the explicit quantitative evaluation &f,

Xgp(t). To this end, we chose an arbitrary but fixed titge
and a very small but finite positive humbaix,,,, charac-
terizing the neighborhood of(t) within which we are will-

@opt, @Nd Kp(t,D) in the rate formulz108) is not possible
in closed analytical form. Exceptions are piecewise parabolic
potentialsV(x) in conjunction with an additive sinusoidal

ing to accept the errors introduced by the approximatiorflriving (5). In Sec. V A the simplest examp|@7] with two

(56). We now consider the quantityxg,(ts) as a parameter

that may take values in the interv@lAX i, AXmin€ "7].
Each such parameter valubqpt(ts) yields a set of initial
conditions

Xopt(ts) = Xs(ts) + AXgy(ts), (129

p;pt(ts) = AX;pt(ts)/l s(ts), (129

parabolic pieces will be worked out and compared with ac-
curate numerical results and with the approximation for
small driving amplitudes frorfi23]. In Sec. V B we elaborate
as a second example the case of a force f{g)dderiving
from a cubic potential/(x) along the lines of the numerical
recipe from Sec. IV H.

A. Piecewise parabolic potential

We consider the force field from Ep) with a piecewise

see Egs(60) and(82). With these initial conditions one then parabolic potential of the form

evolvesxg,(t) and pg,(t) according to Egs(41) and (42).
For a generic value of the paramemlx’gpt(ts), the path
x;‘pt(t) will either reachx,(t) after a finite time and then
proceed towardg=c or never reaclx,(t) and instead re-
turn into the vicinity of x¢(t) ast grows. By fine tuning
Axgo(ts) one has to find a patkg,(t) which remains close
to x,(t) as long as possible, say unt#t,,,,. Upon varying

Vix=0) = SR (-2

(134

V(x>0)=%[xﬁu—(x—7u)2],

AXE(te) ithin [AXpp, Ax.e 7] the existence of at least whereXs denotes the potential welstable fixed pointand

one such path is guaranteed by the theory. A second solutioffy
corresponding to a saddle point instead of a minimum of the

action, is also to be expectddee Sec. VA, below Eq.

the saddlgunstable fixed poinf with the properties

Xs<0, X,>0.

(139

(158]. Further local extrema may coexist as well. AMONg The parameters

them, the desired solutiogj,(t) is the one with the smallest

value of the action

. Axgpt(ts)z

¢ opt— m (130)

tmax
+ L pao )2dt,
see Eqgs(43), (54), (61), and(76). By approximatingi in Eq.
(117) by t,. We obtain
Bopl(t) = p:pt(tmax) etultmact), (131

whencexq(t,D) from Eq. (118 follows with C from Eqg.
(112. Finally, one chooses the initial conditions

Qi it =14t)/2, Qht=l4(t/2, (132

see Egs(99) and(100), and then propagateg;,(t) accord-
ing to Eq.(46) until t=t,,,,, to obtain
Qopt™ [47772 pgpt(tmax)zQ.c’;pt(tmax) N vz, (133

see Eq(109.

Ne<0, A,>0 (136)

characterize the piecewise constant curvatures and thus the
time scaledLyapunov exponenjsof the deterministic mo-

tion near the attractoxg and the repellek,, respectively.

The force field(5) then takes the explicit form

F(x<=0t)=A(Xx—X%g)+Asin(Qt),

_ (137
F(x=0t)=N\,(X—X,) +Asin(Qt).

In particular, the quantities , in Egs.(134) and(137) are
identical to those from E(68)

Requiring continuity ak=0 we conclude from Eq.137)
that\ xs=\ X, . Selecting as independent model parameters
Ns Ny, and the static potential barrier

AV:=V(X,) — V(Xy), (139
the fixed pointsg, can be expressed through
A X 2AV|NgN, (139
Xs= AN Xy=\/ T—F——
HTIRTNTG



6296 JORG LEHMANN, PETER REIMANN, AND PETER HAIGGI PRE 62

Turning to the determination of the stable and unstable AQ cog Ot,)
periodic orbits(7), it is convenient to make a somewhat S W
stronger assumption than in E@), namely that both peri- s
odic orbitsxs ,(t) never cross the matching poixt=0 of the  and show later, that this condition singles out the right solu-
two parabolic pieces d¥(x), i.e., we require that tion of (147). [The case\s+\,=0 has to be treated as limit
Nst+ A —0.] Combining Eqs(147)—(149) it follows that

(149

X(1)<0<x,(t) (140
* (1) =NoXu—|AlIN Ny /v2>0, 150
for all timest. One finds that this property is granted if and Popt1) =AXu = [Al[sfhulv (150
only if the conditions where we have introduced the definition
AZ<(\2,+ 02X, (141 p2:=[(N2+ Q%) (N2+Q?)]Y2, (151)

are satisfied for both thes® and the “u” indices, and that  Note that\ x, in Eq. (150 may be rewritten in various
the periodic orbits then take the explicit form equivalent forms according to E4139 and that the last

) relationpg,(t1) >0 in Eq.(150) follows as a consequence of
Alhs, SINAY + D 0D ) o Eqs.(136), (140, and(146.

e )\g’”H)Z Given t; and pg,(t;), the entire time evolution of the
With the definitions(63), (72), and(74) it follows that Egalitf’;zsa(t%%fzz db(c;gge;r?gyE ansf(e{Le:s()j ;;%Tl 54?%3%’
Asu(tit) =gy (t—ty), (143 the result
lsu(D=[Ngul " (144) Pop 1) = Popitr)e sw (1), (152
Our next goal is the determination of the master path Xopt=Xs,u(t) = Popt()/Ns u (153

x;‘pt(t). To simplify the analytical calculations we restrict \ynere “s’ is associated with timeg<t, and “u’ with t
ourselves to the case that the master pdfi{t) crosses the =t All the general qualitative features discussed in Sec.

pointx=0 exactly once, say at the time=t, IV A are nicely illustrated by this explicit exampl@52 and
(153).
Xop) =0 & t=ty. (149 Finally, we have to check the self-consistency of the so-

. . . . . lution Egs.(152) and(153) with our initial assumptiori145),
T_he self-fonsstenc_y of this assumption with the final solu-i.e_' we have to verify thax* (t) is strictly positive fort
tion for x3,(t) remains to be checked later. P

>t, and negative fot<t;. In general, in doing so, a tran-

* 1 1

. From Egs.(41) and (42) we see that bothioy(t) and  gcendental equation arises which has to be evaluated numeri-
Pop((t) are still continuous at=t,. For all other timed the ¢4y Without going into the details of the proof we further

relation (56) and hence the following conclusions are Nnot yention that one can show analytically tbk%t<)\§uxfu is a
approximations but exact identities since the force fieldgficient but not necessary self-consistency criterion for Eq.
F(x,t) in Eq. (137) is by construction piecewise linear. By (145 0On the other hand, it is obvious that the assumption
introducing Eqs.(144), (149), and (60) into Egs.(76) and  y (1)<0<x(t) in Eq. (140 is automatically covered by the
(79 we obtain, by lettingto— andt;—o for the‘: master  stronger requiremer{45). Thus, Eqs(140) and(141) are a
path, the following two relationgone with index 'S” and  ecessary but not sufficient self-consistency criterion for Eq.

one with “u”): (145).
Introducing the above relatiorid52) and (153 into Egs.
— n*
Xs,u(t1) = Popt(t1)/As,u- (148 (43) and(54), we obtain for the action of the master path
These two equations for the two unknownsand pg(t;) AZ)\S)\U(|)\5|+)\U)‘U2 2
imply with Eq. (142 the result bop=AV|1- SAV | . (154
e Y4
tan Qt,) = EM (147 For A—0 or Q—o we thus recover the stati@wndriven
Q Nty potential barrierAV from Eq. (138). The leading-order cor-
rections for smallA decrease likgA| [23]. For any finite
v oo — AN COLOty) amplitudeA and driving periodZ/= 27/ the “effective po-
Popt1) =AXy— — - (148 ; » and dim _ :
op utu QNstAy) tential barrier” ¢, is smaller than the static barriaV and

is monotonically decreasing both with increasifgand in-
We observe that the solutiobsof Eq.(147) are independent creasing7. Invoking the necessary but not sufficient self-
of A. Furthermore, there are obviously two solutionns consistency criteriori141) for Eq. (145, one can explicitly
within every time period/=2=/(). We anticipate that only ~ confirm thate,, can never become zefsee Eqs(36), (37),
one of them corresponds to a minimum of the action, andand (54)] by demonstrating that the argument in the square
thus to the master path. Hence we ffixuniquely (up to the  brackets in Eq(154) is always positive. If we had chosen the
usual degeneracy under>t+7) by (147 in conjunction  solution of Eq.(147) with the opposite inequality than in Eq.
with (149, then a plus instead of the minus sign in E§54)
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would have been the consequence. Thus(E49 is indeed

the pertinent condition for singling out the solution which

minimizes the action.
By using Egs.(143 and(152) in the definition(117) of
Bopt) we obtain

Bopt(1) =Pt hu 1), (155

Turning to the prefactog,(t), we see from Eqs.96) and
(144) that

1
* —
Qopt(t) - 2|)\s| (156)
for all timest=<t,. SinceF"(x,t)=(\,—\g) 8(x) according
to Eq. (137), we can infer from Eq(46) that the prefactor
Qgp(t) is continuous at=t, while its derivative jumps from
Q%,{t1)=0 to the value
_ |)‘s| Ay X:;pt(tl) - pgpt(tl)

Q)= ety

wheret; indicates the limit—t, from above and; from
below. With these initial conditions, the solution of E§4)
in the domaint>t, is straightforward, yielding

p;pt(tl)zQ;pt(tIr)
2Ny :

(157

lim Q¥ (1) phy(t)?= (158
t—ow

Using Egs. (148, (152, and (153 one can show that

Popi(t1) —Xop(ts) is identical to the expression on the left-

hand side of Eq(149), so that Eqs(157) and thus(158 are
positive quantities. With the opposite inequality in E&49)

they would be negative, confirming once more that the Iatten
case corresponds to a saddle point rather than a minimum ?f
the action. Collecting everything, we are finally in the posi-

tion to evaluate Eq(109 with the result

IAI(Q2 Ay + \/ 2avit 1%
( S u) |)\S|—1+)\Jl

16773|A| ¢opt

. (159

Aopt™
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FIG. 4. Instantaneous ral&(t) versus timet for the piecewise
linear force field(137) in dimensionless units with parametets
=A=—1,%X,=\,=1,Q=1 (7=27), andA=0.5, corresponding
to a static A=0) potential barriedV=1 in Eqgs.(138 and(139.
Solid line: Analytical predictionEgs. (108), (118), (150, (151),
(154), (155, and(159] by neglecting theé>(D?) term in Eq.(108).
Dashed line: High-precision numerical results, obtained as de-
scribed in Sec. VB.

spatial variable. We have adopted a Chebyshev collocation
method[49] to reduce the problem to a coupled system of
ordinary differential equations, which is then solved by stan-
dard numerical methods. By changing the various parameters
of the numerical procedure, the typical relative errors of the
numerical rated’(t) in our figures are estimated to be at
most of the order of 10* for rates down to about 16° and

of the order of 102 for rates down to about TG,

The results in Fig. 4 confirm for a representative set of
parameter values that the agreement between the analytical
predictions and the practically exact numerical results for the
irnstantaneous raté'(t) indeed improves with decreasing

ise strengtib. While the absolute values &f(t) and the
cation of the extrema strongly depend bn the overall
shape changes very little and dosst develop singularities
asD—0.

The corresponding time-averaged rate$6) are depicted
in Fig. 5a), exhibiting excellent agreement between theory
and numerics even for relatively larde Figure 3b) con-
firms our analytical prediction that the relative error in Eq.
(116) decreases asymptotically i@, see Eq(123).

Once again, the fact that the argument in the square root is Finally, Fig. 6 illustrates the dependence of the time-
positive can be explicitly verified by exploiting the necessary =

but not sufficient self-consistency criterigh41) for (145).

B. Comparison of analytical and numerical results

averaged rat&€ upon the amplitud@ of the periodic driving
force. As expected, our theoretical prediction compares very
well with the (numerically exact rate, except for very small
driving amplitudesA. The latter discrepancy is in accordance

We have compared the above analytical predictions fowvith our discussion in Sec. IV A and Sec. IVE.

the instantaneous ratd08) with very accurate numerical

We have, furthermore, included in Fig. 6 a comparison

results in Fig. 4. To this end, we have computed the solutionvith the analytical approximation for the time-averaged rate
of the FOkKer-Plaan equaUO“.O) and then evaluated the Ffrom Ref. [23] By way of a matching procedure’ involv-
rate according to Eq13), starting with a narrow Gaussian ing the barrier region only, it is predictd@3] that

initial distribution p(x,t,) about the potential welks and
then waiting until transients have died out, i.e., uhit) has

reached its7-periodic asymptotic behavior. In order to nu-
time-dependent

merically evolve the one-dimensional

— 27 d
rzrof 2—¢e*5<¢>’D, (160
0

ke

Fokker-Planck equatiofiL0) one can employ standard para- whereI is the well-known Kramers-Smoluchowsky rate in
bolic partial-differential equation solving procedures in onethe absence of the periodic driving forgE|
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0.03 + T + the piecewise linear force fieldl37) in dimensionless units with
7 parametersx;=As=—1, x,=A,=1, Q=1, and D=0.05. Solid
+ + line: Analytical predictiorf Eqgs.(116), (154), and(159)] by neglect-
+ ing theO(D?) term in Eq.(116). Dotted line: Theoretical approxi-
| E 0.02 |- + mation(160)—(163) according to Ref[23]. Crosses: High-precision
r'|' L‘f + + numerical results, obtained as described in Sec. V B. Inset: Magni-
1= + fication of the smallA regime.
0.01 N + amplitudesA but develops considerable deviations with in-
creasingA. Those approximations have been omitted in Figs.
W 4 and 5 since they are not valid in this parameter regime and
0 0.1 0.2 indeed are way off.
D

FIG. 5. (a) Arrhenius plot of the time-averaged rafefor the

C. Cubic potential
As a second example we consider a force fi@dwith a

piecewise linear force field137) in dimensionless units with the cybjc metastable potential

same parameters as in Fig. 4. Solid line: Analytical predidtius.
(1106, (154), and(159] by neglecting theé)(D?) term in Eq.(116).
Crosses: High-precision numerical results, obtained as described in

Sec. VB.(b) Relative difference between the analyticﬁ_l)(and
numerical (', rate.

a b
V(x)=— X3+ 5 %2,

3 5 a,b>0.

(164

The stable and unstable fixed pointg, of this potential are

given by
V' (xV' DI o b
=5 ¢ . (161 X.=0, Yuza, (165
The leading-order effect of an additive sinusoidal driviBl  \vith curvatures at those fixed points
such that the associated periodic modulations of the potential
barrier are small in comparison with the unperturbed barrier V'(xg)=b, V"(x,)=—b, (166)
AV, but not necessarily in comparison with the noise _ . _ .
strengthD, are captured by the functi@{¢) in Eq.(160). It ~ and a static potential barrier height
can be written for a general metastable potential) in Eq. b3
(5) under the forn{23] AV:=V(X,) — V(Xe) = e (167)
a
s(¢)=A(Ssingp—C cose), (162
The time-dependent force fiel8) takes the following form:
Xy x d
S=8S(Xq):= J_X dxsin QJ ,—y> F(x,t)=ax’*—bx+Asin(Qt). (168
Xe x V'(Y)
Since already the analytical evaluation of such a force
B Xy x dy field’s periodic orbits is impossible, one has to recourse to
C=Clxy):= f;s dXCOE(QJxlv’(y)>’ (163 numerical methods for the calculation of the quantitgs;,

@opt, aNd kop(t,D) appearing in the rate expressiofi®g)

with an arbitrary reference point e (Xs,X,). Figure 6 con- and(116). A convenient numerical strategy for doing so has
firms that this approximation frorfi23] is indeed comple- been discussed in detail already in Sec. IVH. The so ob-
mentary to ours in that it is very accurate for small driving tained predictions for the time-averaged rét&6) are com-
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an entire sum of possibly relevant contributions to the rate

10 - may be easier to handle than WKB-type or quasipotential-
type methodd9,12], which operate with the concept of a
102 F single exponentially dominating weak-noise contribution and

F a single pre-exponential factor, both of them typically of a
: nonanalytic nature.

e 10 ; The central result of our present paper represents the for-

107 [ mula (108) for the instantaneous rate, supplemented by the
result(123 for the “accuracy exponent”. The above dis-

5 [ cussed summation over the relevant local minima of the ac-

10 tion resurfaces in all the equivalent alternative expressions
167 i . . . . . . . i [Egs. (110), (111), and (118] for xqp(t,D) but drops out

0 9 4 6 8 10 12 14 16 (cgn be perf_orme}dn the time-averaged raté16) due to the
1/D miraculous identity(115).
The rate expressiondl08) and (116) share the general
Arrhenius-type structure of the exponentially leading weak-
noise contribution with the typical form of an equilibrium
(undriven rate (161). However, both the Arrhenius factor
and the pre-exponential contribution to the raf@68 and

FIG. 7. Arrhenius plot of the time-averaged ritdor the cubic
potential[Egs. (5) and (164)] in dimensionless units with param-
etersa=1/\/6, b=1, A=0.5, andQ =1, corresponding to a static

(A=0) potential barrierAV=1 in Eq. (167 and curvatures . .
IV"(Xeu)|=1 in Eq. (166). Solid line: Analytical prediction from (116) now depend in a very complicated way on global fea-

Eq. (116 without the O(D?) term by adopting the calculational tures of the periodically oscillating potentigih conlt,rast to
procedure from Sec. IVH. Crosses: High-precision numerical refh€ purely local propertieAV=V(x,) = V(Xs) andV"(xs)
sults, obtained as described in Sec. VB. governing Eq.(161)]. Moreover, a nontrivialyD depen-
dence of the pre-exponential factor on the noise strebgth
pared in Fig. 7 against precise numerical results for a reprearises.
sentative set of parameter values. Note that these parameter For the time-averaged raté16) we have shown in Ap-
values are quantitatively very similar to those in Fig. 6,Pendix D that for asymptotically weak noifean invariance
hence also the rates as a function of the noise stredgtre ~ Property holds under the supersymmetry transformaid
very similar. The agreement between the theoretical predicwithout any further restrictions on the force fiek(x,t).
tion and the practically exact numerical results is again exSuch an invariance property can be established rigorously on
cellent even for relatively large noise strengisHowever, ~Very general groundg34] for force fields of the form
in contrast to the piecewise parabolic case, the numericallf (X,t) = —V'(x) +y(t) and arbitrary noise strengtts
accessibleD values are still not small enough in order to ~ The time-averaged raté16) displays a remarkable struc-
check the validity of our predictiofl23) for the behavior of  tural similarity with the rate expressions obtained 0] for
the relative error in the analytical approximati¢ii6). one-dimensional discrete-time systems in the presence of
weak Gaussian white noise. While a general qualitative con-
nection between these two different types of escape problems
via some kind of stroboscopic mapping is quite suggestive,
In our present work we have scrutinized by means ofthe quantitative details are not so simple. Especially, the
path-integral methods the thermally activated escape of aGaussianity of the resulting noise after the stroboscopic map-
overdamped Brownian particle over a periodically oscillatingping is crucial[51] but is far from obvioug52] for the rare
potential barrier in the most challenging regime of weakbut strong fluctuationglarge deviationswhich govern the
thermal noise in combination with moderately strong andescape events.
moderately fast driving. The condition for the validity of our rate formulas is Eq.
A first major result of our path-integral approach is the (127) and that for a fixedsmal) noise strengtiD, extremely
expressior(51) for the instantaneous escape rate, which disweak, fast, and slow periodic driving forces should be ex-
plays the suggestive general structure of “probability at thecluded. Especially, the weak noise liniit—0 displays a
separatrix times velocity.” The summation appearing in thisrather intriguing noninterchangeability with the long-time
expression reflects the fact that several local minima of théimit t—« (see Sec. IV and with the limits of asymptoti-
relevant action in the path-integral formulation of the escapeally weak, fast, or slow driving.
problem notably contribute to the rate. In contrast to the In general, an action integral remains to be minimized
undriven escape problem, giving rise tdcuasi) Goldstone numerically and an ordinary linear differential equation of
mode due to théquasi) time-translation symmetry, in our second order for the prefactor to be soly&ec. IV H before
present case the paths corresponding to the local minima efctual numbers can be extracted from our rate formulas.
the action are well separated and therefore admit a standakéowever, for the special case of a sinusoidally driven, piece-
saddle-point approximation of the path integral for smallwise parabolic metastable potential this entire program can
noise strength®. Pictorially speaking, by switching on the be executed in closed analytical from. This example retains
periodic driving, the continuous time-translation symmetryall the typical features of more general setups and exhibits
of the escape problem is reduced to a time-discrete one. excellent agreement with high-precision numerical results
Our present explorations indicate that from the practicalSec. V).
(technical viewpoint, a path-integral approach which keeps Conceptually, our path-integral approach should be of

VI. CONCLUSIONS
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considerable interest for many related problems. Generalizahat Q) satisfies the required recursion relatiof8)) to-
tions for higher-dimensional systems and for nonperiodiggether with the initial condition§31).

driving forces are currently under investigatif80]. Also As a by-product, needed in Appendix B, we notice that by
the proper handling of the tantalizing weak, fast, and slowdefining for I=n<N

driving limits within a consistent path-integral formalism re-

mains as an open problem for future research. ox o*
Finally, the complicated dependence of the rate on the pyi= ~”“: ”:1, (AB)
global details of the oscillating potential poses a challenging Qn Qn

inverse problem, namely to reconstruct the underlying force
field from a given(e.g., measuredbehavior of the escape the linear two-step recursion relatigA4) can be rewritten
rates. as an equivalent nonlinear one-step recursion

b2
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APPENDIX A n=1
To prove the equivalence_ of ER9) and_ Eqs.(30_)—(32) _ APPENDIX B
one first needs the Hessian of the discrete-time action
Snu(Xg,-..Xn) in Eqg. (24), which is given by the N In the following we derive Eq(50) by showing that
—1)X(N—1) matrix )
Ph(xe ty) Qi (ty)
2 * _ N =
20220 wgagiy et BY
X IXn nm=12,...N-1
which gives together with Eq439) and (48) for t=t; the
a;  —by desired result.
—b, a, - We work with the time-discrete version of the quantities
= . . a b , in Eq. (B1) and consider in a first step the dependency of a
: : N-2 N-2 minimizing pathx* =x* (x;) on the end poin; for fixedt,,
—bno2  an-s t;, andXq. In order to complicate the notation as little as
(A1) possible, we have left out the indéabeling the different
pathsx; .
where Since the initial pointx, is kept fixed, we have that
dxg/dx;=0. Further, we know from Eq25) that for alln
an=2+[2F' (X7 ,tn) = (X§ 1= X3)F"(X] 1 ty) JAt =1,...N-1
HLF' (G 1)+ FOG  t)F7OG ) JAE, (A2) ISy
=0, (B2)
by=1+F' (x5 )AL, (A3) Pnlex vy

For the prefactoZy(x*) in Eq. (29) the determinant of the fo_r any x; value, which implies, after taking the derivative
matrix on the right-hand side dfA1) has to be evaluated. With respect tax;, that
This can be done by a standard proced(gk [39]). The

. . . . L. N—-1 * a2
result is a linear two-step recursion relation for the principal dxm Sy —0 (B3)
minor Q}' , consisting of the firsh columns and rows of Eq. m=1 dX¢ IXmdXp X% (x;) '
(A1), of the form
_ _ , = Using Eq.(Al), we thus get
Qh+1=a,Qp —b5_1 Q74 (A4)
N y dxy b dxy_ 4 dxpiq 0 B84
for 2<n=<N, with initial conditions 8 ax,  Pn1 gy, "y O (B4
Qi=1, Q=a. (A5)  Introducing the new quantities, by
Comparing Eqs(29) and(32) with Eqg. (Al), we observe that dx*, ,
Qf=AtQ}, and due to the linearity of EqA4) we can ni=bn g (BS)
n

conclude thaQ?* :=AtQ* also obeys these equations. There-
fore, using the definition§A2) and(A3), it is readily shown one obtains from Eq(B4) the one-step recursion relation



PRE 62

b2
n

Mn+1=8n+1—
n

(B6)

The corresponding initial condition follows from E@B4)

for n=1 by taking into account the above-mentioned fact

thatdxg/dx;=0:

71=aj. (B7)
Comparing Eqs(A7) with (B6) and(B7) yields 7,= u, for
n=1,..., N—1 and therefore, using the definitioid3),
(A6), and(B5), forn=N—-1

QN dxy
=[1+F"(xy - :
S [1+F"(XN-1,tN 1)]dx’,§_1

(B8)

In a next step an explicit expression fdiy/dx{_, in
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pendence for largk. Similar conclusions apply for the time
ts at whichxj; (t) leaves the neighborhood of the stable pe-
riodic orbit.

Next we can conclude from Eqé/1) and (76) that

¥ (1)=8pr (D15(0)—pE (Dest I (tg).  (C3

Within the approximation(85) it follows that Spj (ts)
= OXj (ts)/14(ts). With these initial conditions at=tg, the
small perturbationsx; (t) and 8pj (t) are then propagated
according to Eqs41) and(42) until t=t,. In linear order of
these small perturbations it follows thapy (t,)/ ox; (t,) is
an asymptoticallyk-independent constant, which, however,
depends on all the details of the force fi€l¢ix,t) along the
crossover segment of the master pm‘,ﬂglt(t).

The counterpart of EqC3) in the neighborhood aof,(t)
follows along the same line of reasoning, reading

terms of well-known quantities has to be found. This can be

achieved by taking the second derivative of the discrete-time

action Sy(x* (x¢)) of the same minimizing patk* as above
with respect to the end point;. With Egs.(B2) and (B3)
and the boundary conditior{26) we find

PS¢ (k) _ v dX5 Sy | ©9)
dxé =1 dxd axnaxN|x*(xf),
and using Eq(24) we can conclude that
dxy, 1+AtF (X{_ 1 tno1)
Wt oL s o) o
- — Sy(X* (x
dxz ™ f
Together with Eq(B8) we thus arrive at
QN _[1+AtF'(Xﬁ—1'tN—1)]2 (B11)
*_ - d2 '
Q-1 1= 28t 55 Su(x* (x))
f

which with Eq.(43) yields in the continuous-time limit the
searched for relatioB1).

APPENDIX C

In this appendix we derive EqL07) for te[t,,t;], where

the order of magnitude refers to the asymptotics with respect

to k. As discussed below E@83), the differences
k (1) :=Xg (1) = xgp(t+KT), (C1
8pk (1) =pj (1) — pop t+KT) (€2

rapidly decrease with increasing indéxuniformly on the

OXg (1) =—8py (D1, (1)+pp () e At (t5). (CH

Replacing on the right-hand side™2As(t0 by p* (t;
+kT)?Ip},(t+kT)? according to Egs.(61) and (65),
choosingt=t,, and making use of Eq$86) and (C2), we
can infer that

x |
pk (tu) u(tf) * t(tk)z.

(W) + P (W)t = o S5 o 572 Pon
(CH

As we have just pointed out, the quantify; (t,) is propor-
tional to Spj (t,) with an asymptoticallyk-independent pro-
portionality constant that depends on the details of the force
field F(x,t) along the crossover segment of the master path
xgpt(t). In the generic case, this proportionality constant is
thus not expected to coincide withl(t,) since the latter
depends on the behavior &f(x,t) along the unstable peri-
odic orbit x,(t) only. Consequently, bothsx; (t,) and
opx (t,) on the left-hand side of E4C5) are, with respect to
their k dependence, of the same order of magnitude as the
right-hand side. Sinc@f (t,) is asymptoticallyk indepen-
dent andspg (t,) tends to zero, we can infer from E(C5)
that

~’kc(tu):O(pz;pt(tk)z)l 5p’kr(tu)zo(pgpt(tk)2)- cH

With the initial conditions(99) and (100 it follows from
Eq. (46) that the relative difference betwee®y (t,) and
QoptutKkT) scales as a function dt like ox (t,) and
Spx (ty). With Eq. (C6) this implies that

Qk (tw) = Qp(tu kT 1+ O(pgp(t) 1. (CT)

entire time intervalty,t;]. Our first conclusion is that the
time pointt, at which x* (t) enters the neighborhood of A similar relation follows forQ? (t,) and thus foig (t,) [cf.
Xy(t) depends itself on the indéx basically it decreases like Eq. (48)], namely,

—k7, see Fig. 3. On the other hand, the distafog (t,) at
which the path enters this neighborhood is, by definition,
independent. The corresponding momentpji(t,) is not
strictly k independent, but approaches an asymptotitde-

Or (t) =G5t +kT)[1+O(pi(t)?].  (CY

Finally we conclude from Eq(101) that
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Q’I: (t) _ Qﬁ(tu) 1_gz(tu)|u(tu:t)
Qift+KT) Qi (ty+KT) 1—gi(t,+KT)I(ty 1)’
(C9

Like for Axg (t,) andpi (t,) [see below Eq(C2)] one can
convince oneself that alsgy (t,) is asymptoticallyk inde-
pendent. With Egqs(C7) and (C8) the result(107) then fol-
lows from Eqg.(C9).

APPENDIX D

The purpose of this appendix is to verify that our expres-
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with the Wronskian
W(t):=Q1(1)Qa(t) — Q1(1)Qa(t). (D5)
Due to Eq.(46) one can infer that
W(t)=2W(t)F' (x5{1),1). (D6)

With help of the Hamilton equatiof¥l) it follows that

Pao 1) 2W(t) =const. (D7)

sion(116) for the time-averaged rate is invariant with respect

to the supersymmetry transformatioh6). To this end, we
first note that the path defined via

’Sl(opt(t) == X:pt( -1,

ngt(t) = pgpt( -t

satisfies the Hamilton equatio¥l) and(42) for the super-
symmetric partner field (x,t) from Eq. (16). Since the pe-
riodic orbits of this new force field are given ¥ (t)=
—X,(—t) and X (t)=—xs(—t) (see Sec. Il € one can
readily see thaigpt(t) from Eq.(D1) also obeys the bound-
ary conditions(53) in the relevant limitt;—ty—cc. Hence
we have foundup to the usual degeneracy with respect to
time shifts by arbitrary multiples of ) the unique solution of
the supersymmetric partner variational problésd). Insert-
ing bgpt(t) from Eq. (D2) into the definitions(43) and (54)
then leads to the following result:

(D1)

(D2)

?&ODIZ ¢opt- (D3)

Somewhat more elaborate considerations are necessary
order to establish a corresponding identity for the prefacto
@opt iN EQ. (116). To this end we first consider two arbitrary
but linear independent solutiorgg;(t) (i=1,2) of the pref-
actor equation(46) for Qg (t). One can then easily verify
that the prefactoQg(t) which, moreover, has to fulfill the
initial conditions(47) in the limit t;— —o°, is given by

Q1(1)Q2(to) = Q1(t) Qa(1)

Qk(t)= lim Wi

t0—>oc

(D4)

Turning now to the supersymmetric partner problem, it is

readily seen that one obtains \@(t):=Q;(—t) two linear
independent solutions of the prefactor equatié6) for the
supersymmetric partner field6) and the path given by Eq.
(D1). Thus we can use Eq$D2) together with(D4) and
(D5) (with tildes) to establish the identity

pgp[( _t)z

L~ 2R * = |i i
|Tl Popt( ) Qopt(t)_tollnjw—w(—to)

t—oo

X[Q1(—1)Qx(—tp)

—Qu(—te)Qa(—1)]. (D)
According to Eq. (D7) we can now rewrite
Paol —1)ZIW(—to) as pj,(—to)?/W(—t). Replacingt—

—1, and vice versa one can then conclude with help of Eq.
(D4) that

ri” lim Pl 2Qi(t) = lim Pl ()°Qh(t). (DY)
t—o t—o
Hence we finally obtain
@opt= Aopt- (D10

This, in combination with Eq(D3), proves our proposition
that the time-averaged ra&16) is invariant with respect to
the supersymmetric transformatioi6).
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