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Stochastic dynamics of time correlation in complex systems with discrete time
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In this paper we present the concept of description of random processes in complex systems with discrete
time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference
non-Markov equations for time correlation functions~TCFs!. We have introduced the dynamic~time depen-
dent! information Shannon entropySi(t) where i 50,1,2,3, . . . , as aninformation measure of stochastic
dynamics of time correlation (i 50) and time memory (i 51,2,3, . . . ). The set offunctionsSi(t) constitute the
quantitative measure of time correlation disorder (i 50) and time memory disorder (i 51,2,3, . . . ) in complex
system. The theory developed started from the careful analysis of time correlation involving dynamics of
vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihi-
lation of time correlation~or time memory! in details. We carry out the analysis of vectors’ dynamics employ-
ing finite-difference equations for random variables and the evolution operator describing their natural motion.
The existence of TCF results in the construction of the set of projection operators by the usage of scalar
product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-
Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic
equations for discrete TCFs and memory functions~MFs!. The solution of the equations above thereof brings
to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities
for detecting the frequency spectra of power of entropy functionSi(t) for time correlation (i 50) and time
memory (i 51,2,3, . . . ). Theresults obtained offer considerable scope for attack on stochastic dynamics of
discrete random processes in a complex systems. Application of this technique on the analysis of stochastic
dynamics ofRR intervals from human ECG’s shows convincing evidence for a non-Markovian phenomemena
associated with a peculiarities in short- and long-range scaling. This method may be of use in distinguishing
healthy from pathologic data sets based in differences in these non-Markovian properties.

PACS number~s!: 02.50.Wp, 05.20.Gg, 05.40.2a, 05.45.Tp
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I. INTRODUCTION

Manifold methods are successfully used in statisti
physics for the description of distinctive characteristics
chaotic dynamics of complex systems@1–26#. Nevertheless,
three vexing features which are difficult to yield a detail
and strict analysis are available in complex systems. Am
them: nonstationarity, nonlinearity, and nonequlibrium ph
nomena. Furthermore, the significant peculiarities of co
plex systems are directly related to the discretness of tim
object-subject registration response@9,14,15,17,24#. Non-
Markov and long-range statistical memory effects also p
the leading part in the complex systems behav
@7–9,17,27–33#.

However, the discretness of time while considering
complex systems has not been taken into account until n
although it is discretness that is the most commonly enco
tered feature of real objects/subjects. On the other hand
memory and time long-ranging effects are paramount. A
rule the state developed is complicated by the fact that
real complex systems are of nonphysical nature. Theref
the direct methods of statistical physics derived from Ham
tonian formalism, exact equations of motion and Liouville
equation are not applicable in this case to its theoret
analysis. Meanwhile the real existence of complex syste
in time and space generates a reliable evristic basis for
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modeling in terms of the time discretness, memory and ti
long-range effects.

The present article is dedicated to statistical considera
of a discretization in temporary changes of complex syste
of a substantial nature on the basis of the first principles
Sec. II we briefly outline general definitions and propos
used to form the stochastic dynamics of discrete time
quences, and in Sec. III we suggest the geometrical pre
tation of stochastic dynamics of time correlation. Introdu
tion of projection operators, splitting of equation of stat
vectors and matrix presentation of Liouville’s quasiopera
for the statistical description of random processes with d
crete time are reported in Sec. IV, and introduction of the
of orthogonal random variables as well as construction
infinite chain of finite-difference non-Markov kinetic equa
tions for discrete TCF are framed in Sec. V. A pseudohyd
dynamic description of random processes is provided in S
VI, where the relative merits of this approach are set forth
Sec. VII we define Shannon dynamical~time dependent! en-
tropy for time correlation and time memory in complex sy
tems. Aplication of technique on the analysis of stochas
dynamics ofRR intervals from human ECG’s are discuss
in Sec. VIII. In Sec. IX we present the discussion and co
clusions of the results obtained and possible opportunities
the experimental data processing.

II. BASIC ASSUMPTIONS AND DEFINITIONS

Following Gaspard@15# we consider a random proces
such as a sequence of random variables defined at succe
6178 ©2000 The American Physical Society
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PRE 62 6179STOCHASTIC DYNAMICS OF TIME CORRELATION IN . . .
times. We shall denote the random variable by

X5$x~T!,x~T1t!,x~T12t!, . . . ,x~T

1kt!, . . . ,x~T1tN2t!%, ~1!

which corresponds to signal during the time periodt5(N
21)t wheret is time interval of signal discretization. Th
mean valuêX&, fluctuationsdxj , absolute (s2) and relative
(d2) dispersion for a set of random variables~1! can be
easily found by

^X&5
1

N (
j 50

N21

x~T1 j t!, ~2!

xj5x~T1 j t!, dxj5xj2^X&, ~3!

s25
1

N (
j 50

N21

dxj
2 , ~4!

d25
s2

^X&2
5

1

N (
j 50

N21

dxj
2

H 1

N (
j 50

N21

x~T1 j t!J 2 . ~5!

The abovementioned values determine the statical~indepen-
dent from time! properties of the system considered. T
normalized time correlation function~TCF! @1–3,7–9# de-
pending on current timet5mt,N21>m>1 can be conve-
niently used for the analysis of dynamic properties of co
plex systems

a~ t !5
1

~N2m!s2 (
j 50

N212m

dx~T1 j t!dx„T1~ j 1mt!….

~6!

TCF usage means that developed method is just for com
systems, when correlation function exist. In forthcoming p
pers we intend to apply developed method for discrete r
dom processes analysis in complex systems in practical
chology, cardiology ~for the development of diagnosi
method of cardiovascular diseases!, financial and ecologica
systems, seismic phenomena, etc. The properties of T
a(t) are easily determined by Eq.~6!

lim
t→0

a~ t !51, lim
t→`

a~ t !50. ~7!

We have to recognize that the second property in Eq.~7! is
not always satistifed for the real systems even with arbitr
big values of timet or number (N21)5t/t. Taken into
account fact that the process is discrete, we must rearra
all standard operation of differentiation and integrati
@34,35#

dx

dt
→ Dx~ t !

Dt
5

x~ t1t!2x~ t !

t
,

E
a

b

x~ t !dt5 (
j 50

n21

x~Ta1 j t!Dt5t (
j 50

n21

x~Ta1 j t!5nt^X&,
-

ex
-
n-
y-

Fs

y

ge

b2a5c, c5tn. ~8!

The first derivative on the right is recorded in Eq.~8!. The
second derivative on the right is also derived easily,

d2x~ t !

dt2
→ Dx

Dt S Dx

Dt D
5t22$@x~ t12t!2x~ t1t!#2@x~ t1t!2x~ t !#%

5t22$x~ t12t!22x~ t1t!1x~ t !%. ~9!

Now let us proceed to the description of the dynamics of
process. For real systems valuesxj5x(T1 j t) and dxj
5dx(T1 j t) result from the experimental data. Thus we c
introduce in Shannon’s manner@17# the evolution operator
U(T1t2 ,T1t1) in as follows (t2>t1):

x~T1t2!5U~T1t2 ,T1t1!x~T1t1!. ~10!

For brevity let us present Eq.~10! in the form

x~ j !5U~ j ,k!x~k!, j >k, j ,k50,1,2, . . . ,N21.
~11!

The time operator of one step shiftt along a discrete trajec
tory is conviniently considered by means of two nearest v
uesx(t1t) andx(t)

x~ t1t!5U~ t1t,t !x~ t !. ~12!

Owing to Eqs.~10!–~12! a formal equation of motion is de
rivable for anyxP(x0 ,x1 ,x2 , . . . ,xN21)

dx

dt
→ Dx~ t !

Dt

5t21$x~ t1t!2x~ t !%

5t21$U~ t1t,t !21%x~ t !. ~13!

Let us consider Eq.~13! in terms ofxj

Dxj~ t !

Dt
5

xj 11~ t1t!2xj~ t !

t
5t21$U~ t1t,t !21%xj~ t !

and then introduce a Liouville’s quasioperatorL̂ as follows:

dx

dt
5

Dx~ t !

Dt
5 i L̂ ~ t,t!x~ t !,

L̂~ t,t!5~ i t!21@U~ t1t,t !21#. ~14!

Now in accordance with Refs.@15,16# let us present a set o
values of random variablesdxj5dx(T1 j t), j 50,1, . . . ,N
21 as ak-component vector of system state

Ak
0~0!5~dx0 ,dx1 ,dx2 , . . . ,dxk21!

5@dx~T!,dx~T1t!, . . . ,dx„T1~k21!t…#.

~15!

Now we can introduce the scalar product operation
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^A•B&5 (
j 50

k21

AjBj ~16!

with or without indication of obvious time dependence
vectorsA and B, respectively, in the set of vectorsAk

0(0)
andAm1k

m (t) wheret5mt and

Am1k
m ~ t !5$dxm ,dxm11 ,dxm12 , . . . ,dxm1k21%

5$dx~T1mt!,dx„T1~m11!t…,dx„T

1~m12!t…, . . . ,dx„T1~m1k21!…t%.

~17!

A numberk,N21 determines the vectors’ dimension. Th
functions~4!,~5! can be expressed in terms of scalar prod
~16!

s25
1

N
^AN

0
•AN

0 &5N21$AN
0 %2,

d25
N21^AN

0
•AN

0 &

^X&2.

A k- component vectorAm1k
m (t) displaced to the distancet

5mt on the discrete time scale can be formally presented
the time evolution operatorU(t1t,t) as follows:

Am1k
m ~ t !5U~T1mt,T!Ak

0~0!

5$U@T1mt,T1~m21!t#U@T1~m21!t,T

1~m22!t#•••U~T1t,T%Ak
0~0!. ~18!

The normalized TCF in Eq.~6! can be rewritten in a more
compact form by means of Eqs.~17!,~18! (t5mt is discrete
time here!

a~ t !5
^Ak

0
•Am1k

m &

^Ak
0
•Ak

0&
5

^Ak
0~0!•Am1k

m ~ t !&

^Ak
0~0!2&

. ~19!

Replacement of Eq.~6! by Eq. ~19! is true if the numbers
k,N21 satisties the condition

s2>k21(
j 51

k21

dxj
2 or s25 lim

k→`

k21(
j 50

k21

dxj
2 . ~20!

The condition of quasistationarity of processes under con
eration

Uda~T,t !

dT U!Uda~ t !

dt U, ~21!

serves the other criterion of validity for such replaceme
The TCFa(T,t) in Eq. ~21! is viewed on a time scale~point
T) at the distancet from the zero point. Such vector notion
very helpful for the analysis of dynamics of random pr
cesses by means of finite-difference kinetic equations of n
Markov type.
t

y

d-

t.

n-

III. GEOMETRICAL NOTION OF STOCHASTIC
DYNAMICS OF TIME CORRELATION

First of all let us consider the projection operation in t
set of vectors for different system states. It is easy to int
duce it employing the above scalar product~16!. Then it is
necessary to introduce vectorsA5Ak

0(0) and B
5Am1k

m (mt). Using Fig. 1 and simple geometrical notion
we can demonstrate the following relations in terms of th
symbols:

~1! ^A•B&5uAu•uBucosq, cosq5a~ t !,

~2! B5Bi1B' ,

~3! Bi5uBucosq
A

uAu
5

A

uAu
uBua~ t !, uBiu25uAu2$a~ t !%2,

~4! uB'u5uBusinq5uBu$12@a~ t !#%1/2, ~22!

where symboluAu denotes the vectorA length. Geometrical
distanceR(A,B) between two vectorsA andB can also be
found:

R~A,B!5$uA2Bu2%1/25H (
j 50

k21

~A j2Bj !
2J 1/2

.

Using the latter and taking into account Eqs.~6!, ~19! we can
find

R@Ak
0~0!,Am1k

m ~ t !#5$uAm1k,'
m ~ t !u2%1/2

5A2uAm1k
m ~ t !u$12a~ t !%1/2.

The equation above immediately shows that the distanc
determined by the dynamics of evolution of correlation p
cess. Owing to the property~7! the following relation
limt→`R„Ak

0(0),Am1k
m (t)…5A2ks2, where s2 is the vari-

ance can be developed. With regard to Eq.~22! the correla-
tion decay in limitt→` may result in complete annihilation
of parallel component of stateAm1k

m (t) vector. Then the state
of the system at the momentt→` is entirely determined by
the perpendicular componentAm1k,'

m (t) of the full vector
Am1k

m (t).

FIG. 1. Simple geometrical notion on vectors, their scalar pr
uct and normalized TCF of random variables.
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It follows from Eqs. ~22! that in the set of state
$Ak

0(0),Am1k
m (t)% vectors at different values oft, m, andk,

TCF of random processesa(t) plays a crucial role as an
indicator of two interrelated states of a complex system. O
of them deals with the creation of correlation and is specifi
by the Bi component, whereas the second one is relate
the annihilation of correlation and determined by the com
nent B' . It results in the fact that in the limit of greatt
→` the following relation:

lim
t→`

Am1k,i
m ~ t !50, lim

t→`

Am1k,'
m ~ t !5Am1k

m ~ t ! ~23!

is immediately fulfilled in correspondence with to Bogo
ubov’s @36# principle of correlation attenuation.

From the physical point of view this fact means that TC
a(t) represents two interrelated states determined by crea
and annihilation of correlation. Hence it follows that su
consideration must be given to both processes in an exp
form for stochastic dynamics of random processes’ corr
tion.

IV. SPLITTING OF EQUATION OF VECTORS MOTION
AND LIOUVILLIAN’S MATRIX PRESENTATION

It is obvious from Eq.~22! that TCFa(t) is originated by
projection of vectorAm1k

m (t) ~18!, where timet5mt on the
initial vector of stateAk

0(0) @see, for example, formula~19!#.
The following construction of projection operator:

PAm1k
m ~ t !5Ak

0~0!
^Ak

0~0!Am1k
m ~ t !&

^uAk
0~0!u2&

5Ak
0~0!a~ t ! ~24!

results from here. It is turn projection operatorP from Eq.
~24! has the following properties

P5
uAk

0~0!&^Ak
0~0!u

^uAk
0~0!u2&

, P25P, P512P,

P25P, PP50, PP50. ~25!

A pair of projection operatorsP and P are idempotent and
mutually supplementary. Figure 1 shows that projectorP
projects on the directionAk

0(0), whereas the orthogonal op
eratorP transfers all vectors to the orthogonal direction.

Let us consider quasidynamic finite-difference Liouville
Eq. ~14! for the vector of fluctuations

D

Dt
Am1k

m ~ t !5 i L̂ ~ t,t!Am1k
m ~ t !. ~26!

The vectorsAm1k
m (t) generate the vector finite-dimension

spaceA(k) with scalar product in which@according to Eqs.
~24!,~25!# the orthogonal projection operation@37,38# is ex-
pressed by

A~k!5A8~k!1A9~k!, Am1k
m ~ t !PA~k!,

A8~k!5PA~k!, A9~k!5PA~k!5~12P!A~k!.
~27!
e
d
to
-

on

it
-

OperatorsP and P split Euclidean spaceA(k) into two
mutually-orthogonal subspaces. This permits to split dyna
cal equation~26! into two equations within two mutually
supplementary subspaces@38–40# as follows:

DA8~ t !

Dt
5 i L̂ 11A8~ t !1 i L̂ 12A9~ t !, ~28!

DA9~ t !

Dt
5 i L̂ 21A8~ t !1 i L̂ 22A9~ t !. ~29!

In the equations above we crossout for short space elem
indices A,A8 and A9 and matrix elements argumentsL̂ i j ,
L̂ i j 5P i L̂P j , P15P, P25P512P, i 51,2. In line with
Refs. @39,40# we write down Liouville’s operator in matrix
form

L̂5S L̂11 L̂12

L̂21 L̂22
D ,

L̂115PL̂P, L̂125PL̂P,
~30!

L̂215PL̂P, L̂225PL̂P.

OperatorsL̂ i j act in the following way:L̂11 from A8 to A8,
L̂22 from A9 to A9, L̂21 - from A8 to A9, and L̂12 operates
from A9 to A8.

To simplify Liouville Eqs.~28!,~29! we exclude the irrel-
evant partA9(t) and construct closed equation for releva
part A8(t). For this purpose let us solve Eq.~29! step by
step:

D

Dt
$Am1k

m ~ t !%95 i L̂ 21$Am1k
m ~ t !%81 i L̂ 22$Am1k

m ~ t !%9.

~31!

Considering Eq.~8! we arrive at finite-difference solution o
this equation in the following form:

DA9~ t !

t
5t21@A9~ t1t!2A9~ t !#5 i L̂ 21A8~ t !1 i L̂ 22A9~ t !,

~32!

A9~ t1t!5$11 i tL̂22%A9~ t !1 i tL̂21A8~ t !. ~33!

Applying Eqs.~32!, ~33! we find

A9~ t12t!5~11 i tL̂22!
2A9~ t !1~11 i tL̂22!$ i tL̂21A8~ t !%

1$ i tL̂21%A8~ t1t!, ~34!

for m52 and

A9~ t13t!5~11 i tL̂22!
3A9~ t !1~11 i tL̂22!

2$ i tL̂21A8~ t !%

1~11 i tL̂22!$ i tL̂21A8~ t1t!%

1$ i tL̂21A8~ t12t%, . . . , ~35!

for m53, respectively. In general case we find
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A9~ t1mt!5$11 i tL̂22%
mA9~ t !1 (

j 50

m21

$11 i tL̂22%
j

3$ i L̂ 21A8~ t1~m212 j !t!% ~36!

for the arbitrary number ofm steps. Then after the substitu
tion of right side of Eq.~36! for Eq. ~28! we obtain the
closed finite-difference kinetic equation for the relevant pa
of vectors

D

Dt
A8~ t1mt!5 i L̂ 11A8~ t1mt!1 i L̂ 12$11 i tL̂22%

mA9~ t !

2L̂12(
j 50

m11

$11 i tL̂22%
jtL̂21

3A8@ t1~m212 j !t#. ~37!

To simplify this equation, let us consider the idempotent
property, and then determine (0<k<m21)

A9~ t !50, $11 i tL̂22%
kA9~ t !50. ~38!

Transfering from vectorsAm1k
m in Eq. ~37! to a scalar value

of TCF a(t) by means of suitable projection we come to t
closed finite-difference discrete equation for the initial TC

Da~ t !

Dt
5 iv0

(0)a~ t !2tV0
2 (

j 50

m21

M1~ j t!a~ t2 j t!. ~39!

Here V0 is the general relaxation frequency whereas f
quencyv0

(0) describes the eigenspectrum of the Liouville

quasioperatorL̂

v0
(0)5

^Ak
0~0!L̂Ak

0~0!&

^uAk
0~0!u2&

, V0
25

^Ak
0L̂12L̂21Ak

0~0!&

^uAk
0~0!u2&

.

~40!

Function M1( j t) in the right side of Eq.~39! is the first
order memory function

M1~ j t!5
^Ak

0~0!L̂12$11 i tL̂22%
j L̂21Ak

0~0!&

^Ak
0~0!L̂12L̂21Ak

0~0!&
, M1~0!51.

~41!

Equation~39! alongside with Eqs.~40!,~41! present first or-
der discrete non-Markov kinetic equation for the discr
time correlation functiona(t). However, our consequent ste
will be to perform a further generalization of discrete TC
analysis and to obtain finite-difference equation for the fi
order memory functionM1( j t) and so on.

V. INTRODUCTION OF THE SET OF ORTHOGONAL
RANDOM VARIABLES AND CONSTRUCTION
OF INFINITE CHAIN OF FINITE-DIFFERENCE

NON-MARKOV KINETIC EQUATIONS
FOR DISCRETE MEMORY FUNCTIONS

The discrete memory functionM1( j t) ~41! in Eq. ~29! is
in its turn the normalized TCF, evolution of which is define
by the deformed~compressed! Liouvillian ( L̂ (0)5L̂)
s

-

e

t

L̂ (1)5L̂22
(0)5L̂225~12P!L̂~12P! ~42!

for a new dynamical variableB(1)5 i L̂ 21Ak
0(0). Thus, we can

completely repeat forM1( j t) the whole procedure within
Eqs.~24!–~41!, and obtain the following non-Markov kinetic
equation for the normalized TCF. The infinite chain of equ
tions for the initial TCF and memory functions of increasin
order results from multiple repetition of similar procedure

However, this chain of equations can be obtained diff
ently, i.e. much shorter and less costly. For this purpos le
employ the method developed earlier for the physical Ha
ilton systems with the continuous time in Refs.@40,41#.
Moreover the lack of Hamiltonian and the time discretne
must be taken into account.

Let us remember that natural equation of motion~14! is
the finite-difference Liouville’s equation

D

Dt
x~ t !5 i L̂ x~ t !, ~43!

where the Liouville quasioperator is

L̂5L̂~ t,t!5~ i t!21$U~ t1t,t !21%. ~44!

Succesively applying the quasioperatorL̂ to the dynamic
variablesAm1k

m (t) (t5mt, wheret is a discrete time step!
we obtain the infinite set of dynamic functions

Bn~0!5$L̂%nAk
0~0!, n>1. ~45!

Using variablesBn(0) one can find the formal solution o
evolution Eq.~43! in the form

Am1k
m ~mt!5$11 i tL̂%mAk

0~0!5(
j 50

m
m! ~ i t!m2 j

j ! ~m2 j !!
Bm2 j

0 ~0!.

~46!

However, a similar form of dynamic variables is deficien
That is why we prefer the use the orthogonal variables
vectorsWn given below. Employing Gram-Schmidt orthogo
nalization procedure@42# for the set of variablesBn(0) one
can obtain the new infinite set of dynamical orthogonal va
ables, i.e., vectorsWn

^Wn* ~0!,Wm~0!&5dn,m^uWn~0!u2&, ~47!

where the mean̂•••& should be read in terms of Eqs.~16!–
~18! and dn,m is Kronecker’s symbol. Now we may easil
introduce the recurrence formula in which the senior valu
Wn5Wn(t) are connected with the juniour values

W05Ak
0~0!, W15$L̂2v0

(0)%W0 ,
~48!

Wn5$L̂2v0
(n21)%Wn212Vn21

2 Wn22 , n.1.

Here we used the equation, given earlier in Eq.~40! for num-
ber n50

v0
(n)5

^WnL̂Wn&

^uWnu2&
, Vn

25
^uWnu2&

^uWn21u2&
, ~49!
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whereVn is the general relaxation frequency, and frequen
v0

(n) completely describes the eigenspectrum of Liouville

quasioperatorL̂ ~44!. Now the arbitrary variablesWn may be
expressed directly through the inital variableW05Ak

0(0) by
means of Eq.~48!

Wn5U L̂2v0
(0) V1 0 ••• 0

V1 L̂2v0
(1) V2 ••• 0

0 V2 L̂2v0
(2)

••• 0

0 0 0 ••• L̂2v0
(n21)

U
3W0 . ~50!

The physical sense ofWn variables~vectors of state! can be
cleared up in the following way. For example, in the co
tinuous matter physics, the local density fluctuations may
considered as initial variables. So the local flow density,
ergy density and energy flow density fluctuations are
dynamic variablesWn where numbersn>1. The careful us-
age of the abovementioned variables within the long-w
limits creates the basis for the condensed matter theor
hydrodynamic approximation. The set of the orthogonal va
ables~48! @see also Eq.~47!# can be connected with the s
of projection operators. The later projects the arbitrary
namic variable~i.e., vector of state! Y on the corresponding
vector of the set

Pn5
uWn&^Wn* u

^uWnu2&
, Pn

25Pn , Pn512Pn ,

Pn
25Pn , PnPn50,

~51!
PnPm5dn,mPn , PnPm5dn,mPn , PnPn50.

Let us take into consideration the fact that both sets~45! and
~50! are infinite. If we execute the operations in the Eucl
ean space of dynamic variables then the formal express
~51! must be understood as follows:

PnY5Wn

^Wn* Y&

^uWnu2&
, YPn5Wn*

^YWn&

^uWnu2&
. ~52!

Now according to Eqs.~28!–~30!,~51!,~52! we can introduce
the following notation for the splitting of the Liouville’s qua
sioperator into the diagonal (L̂ i i

(n)) and nondiagonal (L̂ i j
(n))

matrix elements withiÞ j , n>1:

L̂ (n)5Pn21L̂ (n21)Pn21 ,

L̂05L̂,L̂ i j
(n)5P i

(n21)L̂P j
(n21) , i , j 51,2,

P1
(n)5Pn , P2

(n)5Pn512Pn . ~53!

For example, we come to the following equations:

L̂22
(0)5L̂05L̂, L̂22

(n)5Pn21Pn22•••P0L̂P0•••Pn22Pn21 .
~54!
y

-
e
-
e

e
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i-

-

-
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for the second diagonal matrix elements. Successively ap
ing projection operatorsPn andPn for the discrete equation
~43! in the set of normalized TCF (t5mt)

Mn~ t !5
^Wn@11 i tL̂22

(n)#mWn&

^uWn~0!u2&
~55!

we obtain the infinite hierarchy of connected non-Mark
finite-difference kinetic equations (t5mt)

DMn~ t !

Dt
5 iv0

(n)Mn~ t !2tVn11
2 (

j 50

m21

Mn11~ j t!Mn~ t2 j t!,

~56!

where v0
(n) is the eigen andVn is the general relaxation

frequency as follows:

v0
(n)5

^Wn* LnWn&

^uWnu2&
, Ln5L22

(n) , Vn
25

^uWnu2&

^uWn21u2&
.

A set of functionsMn(t) ~55!,~56! exceptn50

M0~ t !5a~ t !5
^Ak

0~0!•Am1k
m ~ t !&

^uAk
0~0!u2&

, t5mt

can be considered as functions characterizing the statis
memory of time correlation in the complex systems w
discrete time. The initial TCF a~t! and the set of discrete
memory functionsMn(t) in Eq. ~56! are of crucial role for
the further consideration. It is convenient to rewrite the se
discrete kinetic Eqs.~56! as the infinite chain of coupled
non-Markov discrete equations of nonlinear type for the i
tial discrete TCF a~t! ~ discrete timet5mt everywhere!

Da~ t !

Dt
52tV1

2 (
j 50

m21

M1~ j t!a~ t2 j t!1 iv0
(0)a~ t !,

DM1~ t !

Dt
52tV2

2 (
j 50

m21

M2~ j t!M1~ t2 j t!1 iv0
(1)M1~ t !,

~57!
DM2~ t !

Dt
52tV3

2 (
j 50

m21

M3~ j t!M2~ t2 j t!1 iv0
(2)M2~ t !.

These finite-difference Eqs.~56! and~57! are very similar to
famous Zwanzig’-Mori’s chain~ZMC! of kinetic equations
@43–45#, which plays the fundamental role in modern stat
tical physics of nonequilibrium phenomena with the smoo
time. It should be noted that ZMC’s are true only for th
physical quantum and classical systems with smooth t
governed by Hamiltonian. Our finite-difference kinetic equ
tions~56!, ~57! are valid for complex systems lacking Hami
tonian, the time being discrete and the exact equations
motion being absent. However, the ‘‘dynamics’’ and ‘‘mo
tion’’ in the real complex systems are undoubtedly abund
and are immediately registered during the experiment. T
first three of those Eqs.~57! in the whole infinite chain~56!
form the basis for the quasihydrodynamic description of r
dom processes in complex systems.
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VI. A PSEUDOHYDRODYNAMIC DESCRIPTION
OF RANDOM PROCESSES IN COMPLEX SYSTEMS

At first let us find the matrix elementsL̂ i j of complex
systems Liouvillian’s quasioperator. Employing Eqs.~24!,
~25!,~30!,~53!,~54! we successively found

i L̂ 11
(0)5P

a~t!2a~0!

t
5a8~0!P, ~58!

i L̂ 21
(0)5$t21@U~ t1t,t !21#2a8~0!%P, ~59!

i L̂ 12
(0)5P$t21@U~ t1t,t !21#2a8~0!%, ~60!

i L̂ 22
(0)5 i L̂ 2 i $L̂11

(0)1L̂12
(0)1L̂21

(0)%

5t21@U~ t1t,t !21#2t21P$U~ t1t,t !21%

2t211$U~ t1t,t !21%P1a8~0!P. ~61!

A diagonal matrix elementL̂22
(0) is the part of ‘‘compressed’’

evolution quasioperator, which in its turn is equal to

11 i tL̂225U~ t1t,t !1ta8~0!P2$P,U~ t1t,t !21%1 ,

~62!

where the anticommutator of appropriate operator is de
nate by the brackets$A,B%15AB1BA. One can see from
Eq. ~62! that the ‘‘compressed’’ evolution operator diffe
from the natural operatorU(t1t,t) because of the presenc
of contributions, associated with the first and the followi
derivatives of TCF the initial TCFa(t).

The large-scale presentation of the memory funct
M1(t) is suitable mostly for practical applications. Usin
Eqs. ~58!–~61!,~41!,~54! we also find the succession of th
first five points of discrete functionsM1( j t) where j
51,2,3,4 and

M1~0!51, M1~t!5$1/a9~0!%$a9~t!22ta8~0!a9~0!%.
~63!

The ‘‘Gaussian’’ behavior of TCF at the zero pointt50

a8~0!5
^Ak

(0)~0!$Ut21%Ak
(0)~0!&

^uAk
0~0!u2&

50

should be taken into account in the subsequent discussio
is proved accurately and connected directly with the ortho
nality property of dynamical variables~47!–~50!. It gives us
an opportinity to simplify the memory function formula a
follows:

M1~0!51, M1~t!5H a9t

a9~0!
J ,

M1~2t!5H 1

a9~0!
J $a9~2t!22ta9~0!a8~t!1t@a9~0!#2%,
g-

n

. It
-

M1~3t!5H 1

a9~0!
J $a9~3t!2ta8~2t!a9~0!

22ta9~t!a8~t!1t2a9~t!a9~0!1ta8~t!a9~0!%,

M1~4t!5H 1

a9~0!
J $a9~4t!2ta8~3t!a9~0!

2ta8~2t!a9~t!1ta8~2t!a9~0!2ta9~t!a8~2t!

~64!
1t2@a9~t!#22ta9~t!a8~t!1t2a9~t!a~t!a9~0!

2t2a~t!@a9~0!#2%.

Further presentation the following valuesMi( j t) ~numbers
j >5) constitute the extremely complicated combinato
problem. As analysis of Eqs.~64! shows second derivative’
behavior

M1~ j t!>H 1

a9~0!
J a9~ j t! ~65!

contributes mainly into functionsM1( j t).
Now let us move to practical realization of Eqs.~57!,

forming a basis of pseudohydrodynamic description of c
relation dynamics. Thus using orthogonal dynamic variab
~47!, ~48!,~50!, we immediately obtain

Ŵ05Ak
0 ,

Ŵ15$L̂2v0
(0)%Ŵ05L̂Ŵ05~ i t!21~Ut21!Ak

0~0!,

Ŵ25L̂Ŵ12V1
2Ŵ0

5$L̂22V1
2%Ŵ0

5~ i t!22$Ut21%2Ak2V1
2Ak

0 ,
~66!

Ŵ35L̂Ŵ22V2
2Ŵ1

5L̂~ L̂22V1
2!Ŵ02V2

2L̂Ŵ0

5$L̂32~V1
21V2

2!L̂%Ŵ0

5$~ i t!3@Ut21#32~ i t!21~V1
21V2

2!~Ut21!%Ak
0 .

Simple relation for the eigenfrequencies and general re
ation frequencies

v0
(n)5

^ŴnL̂Ŵn&

^uŴnu2&
50, Vn

25
^uŴnu2&

^uŴn21u2&
, V1

25ua(2)~0!u,

V2
25

a(4)~0!2@a(2)~0!#2

ua2~0!u
,

~67!

V3
25

a(6)~0!22a(4)~0!~V1
21V2

2!2~V1
21V2

2!2a(2)~0!

a(4)~0!2@a(2)~0!#2
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should be taken into consideration here. The orthogonal v
ablesŴn in Eq. ~66! can be easily rearranged as follows:

Ŵ05Ak
0 , Ŵ152 i

d

dt
Ak

052 i
D

Dt
Ak ,

Ŵ25H d2

dt2
1V1

2J Ak
(0)5H S D

Dt D
2

1V1
2J Ak

0 ,

~68!

Ŵ35 i H d3

dt3
1~V1

21V2
2!

d

dtJ Ak
0

5 i H S D

Dt D
3

1~V1
21V2

2!
D

DtJ Ak
0 .

Those formulas~68! have considerable utility inasmuch a
they permit to see the structure of formation of orthogo
variables and junior orders memory functions for the nu
bersn51,2,3. Equations~64!,~67!,~68! open up new fields of
construction of quasikinetic description of random proces
$Ak

0(0),Am1k
m (mt)%. By analogy with hydrodynamics th

variablesŴ0 , Ŵ1 , Ŵ2, and Ŵ3 in Eq. ~68! play the role
similar to that of the local density, local flow, local energ
density, and energy flow. It is clear that this is only form
analogy and the variablesŴn do not possess any physic
sense. However, such analogies can be helpful in revea
of the real sense of orthogonal variables.

To describe pseudohydrodynamics we have to use the
of first three discrete kinetic Eqs.~57! with frequencesV i

2

( i 51,2,3) derived from Eqs.~67!. It is essential that all fre-
quencesV i

2 are connected straightly with the properties
the initial TCF a(t) only. The latter can be easily derive
directly from the experimental data@45–47#. Thus the sys-
tem of Eqs.~57! has considerable utility for the experiment
investigations of statistical memory effects and non-Mark
processes in complex systems.

Among them it seems to us that one could propose m
physical interpretation of the different terms in the right si
of the three Eqs.~68!. For example, term2 iDA/Dt is simi-
lar to a dissipation,D2A/Dt2 is similar to an inertia, and
V2A(t) is similar to a restoring force. Third derivativ
D3A/Dt3 is the finite-difference generic form of th
Abraham-Lorenz force corresponding to dissipation fe
back due to radiative losses@see, for instance, formula~3! in
Ref. @48# for a recent experimental evidence in friction
systems#.

VII. SHANNON ENTROPY FOR THE TIME
CORRELATION AND TIME MEMORY IN COMPLEX

SYSTEMS

According to the results in Sec. VI, the information me
sure for the description of random processes in complex
tems can be expressed not only via TCF, but also by me
of the certain set of time memory functions. To accompl
that let us return to Sec. III in which we presented the g
metrical picture of stochastic dynamics of correlation. In
line with Shannon@17# in case of discrete source of informa
tion we were able to determine a definite rate of genera
ri-
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information, namely, the entropy of the underlying stochas
information by introduction fidelity evaluation functio
n@P(x,y)#. Here the functionP(x,y) is the two-dimensional
distribution of random variables (x,y) and

n@P~x,y!#5E E dxdyP~x,y!r~x,y!, ~69!

where the functionr(x,y) has the general nature of the ‘‘dis
tance’’ betweenx and y. As pointed by Shannon@17# the
function r(x,y) is not a ‘‘metric’’ in the strict sense, how
ever, since in general it does not satisfy eitherr(x,y)
5r(y,x) or r(x,y)1r(y,z)>r(x,z). It measures how un-
desirable it is according to our fidelity criterion~69! to re-
ceivey whenx transmitted. According to Shannon@17# any
evolution of fidelity must correspond mathematically to t
operation of a simple ordering of systems by the transm
sion of a signals within the certain tolerance. According
Shannon@17# the following is simple example of fidelity
evaluation function

n„P~x,y!…5^„x~ t !2y~ t !…2&. ~70!

In our case it is convenient to consider the initial vec
Ak

0(0) as a variablex and the final vectorAm1k
m (t) at time

t5mt for a variabley. The distance functionr(x,y) @17#

r~x,y!5
1

TE0

T

dt$x~ t !2y~ t !%2 ~71!

is the most commonly used measure of fidelity.
Taking into accout Eqs.~69!,~71! and the results in Sec

III as the fidelity function one can use the following functio
of geometrical distance:

n~P„Ak
0~0!,Am1k

m ~ t !…!52ks2$12a~ t !%, ~72!

where distance function is

r„Ak
0~0!,Am1k

m ~ t !…5R2
„Ak

0~0!,Am1k
m ~ t !…. ~73!

According to Ref.@17# partial solution of the general maxi
mizing problem for determining the rate of generating info
mation of a source can be given using Lagrange’s met
and considering the following functional:

E E H P~x,y!ln
P~x,y!

P~x!P~y!
1mP~x,y!r~x,y!

1n~x!P~x,y!J dxdy, ~74!

where the functionn(x) andm are unknown. The following
equation for the conditional probability can be obtained
variation onP(x,y)

Py~x!5
P~x,y!

P~y!
5B~x!exp$2lr~x,y!%. ~75!

This shows that with best encoding the conditional proba
ity of a certain cause for various receivedy, Py(x) will de-
cline exponentially with the distance functionr(x,y) be-
tween values thex andy in problem. Unknown constantl is



nd

th
ic
f

e

us
el
d
is

of
nt

-

le

d

li-

it
of

ic

cre-
bi-

-

6186 PRE 62RENAT YULMETYEV, PETER HÄNGGI, AND FAIL GAFAROV
defined by the required fidelity, and functionB(x) in the
case of continuous variables obeys the normalization co
tion

E B~x!exp$2lr~x,y!%dx51. ~76!

Since the distance functionr(x,y) ~71! is dependent only on
the vectors differencer(x,y)5r(x2y), we get a simple so-
lution for the special caseB(x)5a

Py~x!5a exp$2lr~x2y!%5a exp$2c@12a~ t !#%
~77!

instead of Eq.~75!. Constantsa andl result from the cor-
responding normalizing condition and in accordance with
required fidelity. From the physical point of view the bas
value of solution~77! is directly related to the occurence o
the TCFa(t). Therefore,the solution~77! describes the stat
of the system with certain level and scale of correlation.

Now let us employ Shannon’s solution for continuo
variables~75!, ~77! and pass to simplified discrete two-lev
description of the system. Then let us consider the con
tional probability~77! which describes the state on time ax
at the momentt5mt as corresponding to the creation
correlation. Whereas the other state at the fixed momet
5mt which accounts for the state with the absence~annihi-
lation! of correlation will exist. Let us introduce two prob
abilities ~see Fig. 2!, which will fit normalizing condition

P1~ t !1P2~ t !51, P1~ t !5Pcc~ t !, P2~ t !5Pac~ t !,

Pcc~ t !1Pac~ t !51. ~78!

In the case of two levels Shannon entropy

S52(
i 51

2

Pi ln Pi ~79!

increases at full disorder and takes its limiting value

lim
t→`

S5 lim
t→`

S~ t !5 ln 2. ~80!

To find unknown parametersa andc in two-level description
~creation and annihilation of correlation! in Eq. ~75! we
should take into account normalization condition, princip
of entropy increase~80! at t→` and of entropy extremality
~presence of minimum! at full order when the following re-
lationship: limt→oa(t)51 is true for the TCF. We obtaine
the following equation:

FIG. 2. Scheme of simplified two-lewel description of a com
plex systems state. Two probabilityPcc(t) and Pac(t) decsribes a
stochastic processes of creation~existence! and annihilation~decay!
of time correlation.
i-

e

i-

lim
t→0

S~ t !52$a ln a1~12a!ln~12a!%50

for the parametersa andc (c>0, 0<a<1) having regard to
these requirements. Among two solutions (a151, a250)
only the first one (a151) has physical sense. Two probabi
ties calculated by means of Eq.~77! will satisfy conditions
~78!, ~80!

P1~ t !5Pcc~ t !5exp$2~ ln 2!@12a~ t !#%, ~81!

P2~ t !5Pac~ t !512exp$2~ ln 2!@12a~ t !#%. ~82!

respectively. In accordance with two-level description
would be convenient to deal with two dynamic channels
entropy@creation (cc) and annihilation (ac)# of correlation
~see Fig. 2!

Scc~ t !5~ ln 2!$12a~ t !%exp$2~ ln 2!@12a~ t !#%, ~83!

Sac~ t !52$12exp@2~ ln 2!„12a~ t !…#%

3 ln$12exp@2~ ln 2!„12a~ t !…#%. ~84!

The probabilities obtained are in the line with full dynam
~time dependent! information Shannon entropy

S0~ t !5Scc~ t !1Sac~ t !

5 ln 2$12a~ t !%exp$2~ ln 2!@12a~ t !#%

2„12exp$2~ ln 2!@12a~ t !#%…

3 ln„12exp$2~ ln 2!@12a~ t !#%…. ~85!

The entropy introduced in to Eqs.~83!–~85! characterized a
quantitative measure of disorder in the system related to
ation and annihilation of dynamic correlation. The proba
listic and entropy channels~81!–~84! possess the following
asymptotic behavior:

if a(t)→1,

P1~ t !5Pcc~ t !>11~ ln 2!@a~ t !21#,

P2~ t !5Pac~ t !> ~ ln 2!@12a~ t !#,

Scc~ t !>2$11~ ln 2!@a~ t !21#% ln$11~ ln 2!@a~ t !21#%,

Sac~ t !>2~ ln 2!@12a~ t !# ln$ ln 2@12a~ t !#%,

S0~ t !>2$11~ ln 2!@a~ t !21#% ln$11~ ln 2!@a~ t !21#%

2 ln 2@12a~ t !# ln$~ ln 2!@12a~ t !#%

and if a(t)→0,

P1~ t !5Pcc~ t !> 1
2 $11~ ln 2!a~ t !%, ~86!

P2~ t !5Pac~ t !> 1
2 $12~ ln 2!a~ t !%,

Scc~ t !>2 1
2 $11~ ln 2!a~ t !% ln$ 1

2 @11~ ln 2!a~ t !#%,

Sac~ t !>2 1
2 $12~ ln 2!a~ t !% ln$ 1

2 @12~ ln 2!a~ t !#%,
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S0~ t !>2 1
2 $11~ ln 2!a~ t !% ln$ 1

2 @11~ ln 2!a~ t !#%

2 1
2 $12~ ln 2!a~ t !% ln$ 1

2 @12~ ln 2!a~ t !#%.

Subsequent boundary conditions result from the equat
above in terms of Bogolubov’s principle of attenuation
correlation~7! as follows:

lim
t→0

Pcc51, lim
t→0

Pac~ t !50, ~87!

lim
t→0

Scc~ t !50, lim
t→0

Sac~ t !50, lim
t→0

S0~ t !50, ~88!

lim
t→`

Pcc~ t !5
1

2
, lim

t→`

Pac5
1

2
,

lim
t→`

Scc~ t !5 lim
t→`

Sac~ t !5
ln 2

2
, lim

t→`

S0~ t !5 ln 2. ~89!

It is conditions~87! that give us an opportunity to prese
two different states associated with the creation (cc) ~in the
time momentt50, Pcc51) and annihilation (ac) @at the
point t50, Pac(0)50# of correlation. Owing to discretnes
of the TCF a(t) all functions Pab , Sab as well asS0(t)
(a5a,c; b5c) are discrete in the real complex systems

The results obtained in Sec. VI permit us to present the
of entropies for the states connected with the set of ortho
nal variables Wi and set of memory functionsMi(t)
5$M1(t),M2(t),M3(t), . . . %. In analogy with Eqs.~81!–
~89! these functions describe non-Markov and memory
fects in the system under discussion

P1
Mi~ t !5PcMi

~ t !5exp$2 ln 2@12Mi~ t !#%, ~90!

P2
Mi~ t !5Pami

~ t !512exp$2~ ln 2!@12Mi~ t !#%, ~91!

Si~ t !5~ ln 2!@12Mi~ t !#exp$~ ln 2!@12Mi~ t !u%

2$12exp@2~ ln 2!~12Mi !#%

3 ln$12exp@2~ ln 2!~12Mi !#%, ~92!

where i 51,2,3. Four corresponding entropiesS0(t),
S1(t),S2(t), andS3(t) and their power frequency spectra a
available from the set of four time functions@TCF a(t) and
three memory functionsM1(t), M2(t), M3(t)#. Equations
~81!–~92! are of great value because they allow us to e
mate stochastic dynamics of the real complex systems
discrete time. As a matter of principle the first three mem
functionsMi(t)( i 51,2,3) are easy to find via Eq.~57!. Us-
ing dimensionless parameter«15t2V1

2 and solution of the
first finite-difference Eq.~57! we can calculate the discret
function M1( j t) at the pointsj 50,1,2, . . . , asfollows:

M1~0!51, M1~t!52a~2t!1«1
21$a~2t!2a~3t!%,

M1~2t!52$a~2t!M1~t!1a~3t!%1«1
21$a~3t!2a~4t!%,
ns

et
o-

f-

i-
th
y

M1~3t!52$a~2t!M1~2t!1a~3t!M1~t!1a~4t!M1~0!%

1«1
21$a~4t!2a~5t!%,

•••M1~mt!52 (
j 50

m21

M1~ j t!a$~m112 j !t%

1«1
21@a$~m11!t%2a$~m12!t%#.

~93!

In the general case solving the chain of Eqs.~55!,~57! we can
find the recurrence relations between the memory functi
of junior and higher orders in the following form:

Ms~mt!52 (
j 50

m21

Ms~ j t!Ms21@~m112 j !t#

1«s
21$Ms21@~m11!t#2Ms21@~m12!t#%,

«s5t2Vs
2 , s51,2,3, . . . . ~94!

The relations obtained allow us to derive straightly the n
essary memory functionsMs(t) of any orders51,2, . . .
from experimental data using the registered TCFa(mt)
@46,47#. Relaxation frequenciesV i

2 , i 51,2,3, . . . , given in
Eq. ~94! are available to experimental registration. Thus, it
fair to say that the applications of Eq.~94! will open up fresh
opportunities for detailed study of statistical properties
correlations in the complex systems. The very fact of ex
tence of finite-difference Eqs.~55!,~57! enables us to develop
any functions directly from the experiment. Therefore, t
availability of discretness permits to enhance substanti
the capability to get information for the complex system
state.

In conclusion let us show the equations, which charac
ize the rate of entropy production. It is obvious from cond
tions ~87!–~89! as well as Eqs.~81!–~85! that the rate of
entropy growth]S/]t within the interval (0,̀ ) takes differ-
ent sign values and is determined by the entropy behavio
the channels of creation and annihilation of correlation

]S0

]t
5S ]S1

(0)

]t D 1S ]S2
(0)

]t D 5S ]Scc~ t !

]t D1S ]Sac~ t !

]t D ,

~95!

]S1
(0)~ t !

]t
52~ ln 2!a8~ t !exp$2~ ln 2!@12a~ t !#%

3$12~ ln 2!@12a~ t !#%, ~96!

]S2
(0)~ t !

]t
52~ ln 2!a8~ t !exp$2~ ln 2!@12a~ t !#%

3$11 ln@12exp@2~ ln 2!~12a~ t !#%, ~97!

]S0~ t !

]t
5~ ln 2!a8~ t !exp$2~ ln 2!@12a~ t !#%

3$ ln$12exp@2~ ln 2!„12a~ t !…#%1 ln 2@12a~ t !#.

~98!
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FIG. 3. Phase-time portrait in orthogonal var
ables (W0 , W2) plain @see formulas~66!,~68! for
fourth group of patients#: healthy~a!, patient with
rhythm driver migration~b!, patient after myocar-
dial infarction~c!, and patient after MI with sub-
sequent SCD~d!. As a matter of fact we utilized
dimensionless variablesW0 /t andW2 /t21.
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The derivativesa8(t) andS08(t) here should be read in term
of Eqs.~8!,~13!. Since the derivativea8(t) is finite within the
whole time interval (0,̀ ): ua8(t)u,c, ~wherec is positive
constant! the rate of entropy growth obeys the followin
boundary conditions:

lim
t→0

S ]S0

]t D50, lim
t→`

S ]S0

]t D50. ~99!

Formulas~95!–~99! are useful for the discussion of the e
perimental data. Close inspection of these equations sh
that the behavior of derivative (]S0 /]t) is described in many
respects by the functiona8(t)5t21@a(t1t)2a(t)#, which
is in its turn can be obtained from the time series observ
Relations analogous to Eqs.~95!–~99! are easily available
for the sequence of memory functionsMi(t) ~55! as well.

VIII. APPLICATION ON ANALYSIS OF STOCHASTIC
DYNAMICS OF RR INTERVALS IN HUMAN ECG’S

Let us use the stochastic dynamics ofRR intervals from
human ECG’s to illustrate some practical value of the
proach developed. It is well known@24,26,49–60# that the
statistical analysis of related dynamics allows the relia
quantitative characteristics of the human cardiovascular
tem states and trusty diagnostics of the various heart dise
@61–65#.

Most investigators into heart rate dynamics have emp
sized continuous functions, whereas the heart beat itself
a crucial respect a discrete event. We present here ex
mental evidence that by considering this quality, the beh
ior of RR intervals may be appreciated as a result of discr
dynamics. To demonstrate effectiveness of non-Markov
approach we only take four typical particular cases from
whole the set of experimental data@66#, which are available
at our disposal. They are related to the case of healthy
~a!, patient with a rhythm driver migration~b!, patient after
myocardial infarction~MI ! ~c!, and patient after myocardia
infarction ~MI ! with subsequent sudden cardial death~SCD!
~d!. Following standard medical practice, each from 112 p
ws

d.

-

e
s-
ses

a-
in
ri-

v-
te
n
e

an

r-

son had an age, sex, and disease status matched pair se
as the control.

Results of our calculations, based on formulas of
theory and presented in previous sections, are shown on F
3–8. It is necessary to mark that as a matter of convenie
all variables and functions in a Figs. 3–8 are submitted
dimensionless form. Frequencyv everywhere is indicated in
terms of units of 2p/t. The orthogonal variablesW0 andW2

in a Fig. 3 are written in units oft and t21, respectively.
Frequency spectram0(v), m1(v), andm2(v) in Figs. 4–6
are figured in terms of units oft2. Valuese1(v) ande2(v)
in Figs. 7, 8 are dimensionless values. Figure 3 shows ph
trajectories, obtained for four different groups of patients
the orthogonal variables (W0 ,W2) plane. Let us remind our-
selves, that in correspondence with formulas~64!, ~68! the
variableW0 presentsRR intervals fluctuations, andW2 is the
second orthogonal variable and due to Eq.~68! is combina-
tion of an inertia force minus a restoring force. These va
ables have dimensionst and t21, respectively, wheret
5^ l RR& is the average value of theRR interval in time se-
quence. The set of characteristic parameters is collecte
Table I. Let us mention the strong difference of numeric
value of the first general relaxation frequencyV1 frequency
for four different groups of patients. Figures 4 –6 sho
power frequency spectra for three different time functions
typical patients from four different groups. Figure 3~a! cor-
responds to a strange attractor, Fig. 3~b! corresponds to
quasi-periodic motion, Fig. 3~c! 3~d! demonstrate the obvi
ously expressed correlation of phase variablesW0 and W2.
Although the frequencyv is measured in units of 2p/t and
power in t2, respectively. Figure 4 shows the power spe
trum of TCF fluctuations ofRR intervals. The data, shown in
Figs. 5, 6 are correspondingly related to power spectra
first and second memory functions. The functions themse
are calculated from formulas~57!, ~68!, and~94!.

Figures 7, 8 require special explanation. They show f
quency spectra of first two pointse1(v) ande2(v) of statis-
tical spectra of non-Markovity parameter~NMP! e i , where
i 51,2, . . . . Apresentation of the NMP spectrum was intr



t
-
s

PRE 62 6189STOCHASTIC DYNAMICS OF TIME CORRELATION IN . . .
FIG. 4. Frequency spectrum of powerm0(v)
for TCF of fluctuation ofRR intervals for fourth
patient groups: healthy~a!, patient with rhythm
driver migration~b!, patient after myocardial in-
farction ~c!, and patient after MI with subsequen
SCD ~d!. The schedule is submitted in dimen
sionless units. The frequency is marked in term
of units of (2p/t), the functionm0(v) is figured
in units of t2.
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duced earlier in Refs.@67,68# and was then used in statistic
physics of liquids @69,70#. Close to that given in Refs
@67,68# definitions of non-Markovity were developed later
Refs. @71–74#. In comparision with Refs.@67–69# here we
generalize NMP conception for frequency dependent cas

e i~v!5H m i 21~v!

m i~v! J 1/2

,

where i 51,2, . . . , andm i(v) is power frequency spectrum
of i th level.

As is shown by Yulmetyevet al. in articles@67–70# NMP
value of e i allows us to obtain a quantitative estimate
non-Markovity effects and statistical collective memory
random changes of experimentally measured data. Param
e i allows us to divide all processes in three important ca
@67–70#. Markovian processes correspond toe@1, while
ter
s

quasi-Markovian processes correspond to situation withe
.1. The limit casee;1 describes non-Markovian pro
cesses. In this case the time scale of memory processes
correlations~or junior and senior memory functions! coin-
cide with each other.

From Figs. 3–8 one can easily obtain sharp differen
between four groups of patients for all types of frequen
spectra. For instance, frequency spectrum of TCF power
healthy@Fig. 4~a!# is almost reproduced in NMPe1(v) spec-
trum given in Fig. 7~a!. Also it is slightly deformed in the
spectra of first@Fig. 5~a!# and second@Fig. 6~a!# memory
functions and is strongly transformed in NMPe2(v) spec-
trum @Fig. 8~a!#. Sharp peak in the vicinity of the point with
v;0.125 f.u., being characteristical for the patient~b!, is
seen in the power spectrum of first and second MF’s@Fig.
5~b!, 6~b!#. However, for other spectra of type b@for ex-
ample, Figs. 6~b!, 7~b!, 8~b!# quite complicated structure ap
he
FIG. 5. Frequency spectrum of powerm1(v)
for the first MFM1(t) for fourth patient groups:
healthy~a!, patient with rhythm driver migration
~b!, patient after myocardial infarction~c!, and
patient after MI with subsequent SCD~d!. The
schedule is submitted in dimensionless units. T
frequency is marked in terms of units of (2p/t),
the functionm1(v) is figured in units oft2.
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FIG. 6. Frequency spectrum of powerm2(v)
for the second MFM2(t) for fourth patient
groups: healthy~a!, patient with rhythm driver
migration ~b!, patient after myocardial infarction
~c!, and patient after MI with subsequent SC
~d!. The schedule is submitted in dimensionle
units. The frequency is marked in terms of uni
of (2p/t), the functionm2(v) is figured in units
of t2.
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pears. Frequency spectrum of type~c!, which is characteristic
for IM, contains two sharply expressed spectral peaks ne
the frequencies, approximately 0.2 and 0.4 f.u. on the ba
ground of low intensity white noise. These peaks are c
served in the spectra of first@Fig. 5~c!# and second@Fig. 6~c!#
MF. In NMP spectrae i(v), e2(v), complicated structure o
spectral lines also appears. In characteristic case of pa
with SCD frequency spectra of type~d! everywhere contain
sharp peaks close to frequency 0.25 f.u. We would like
mention that all frequency spectra~5, 6, 7, and 8! are per-
suasive for strongly expressed non-Markovity for tim
change ofRR intervals.

Figures 7~a!-7~d! and 8~a!–8~d! shows, that all values o
NMP e1(v) ande2(v) lie in small interval of values~0–30!.
This fact convincingly tell us about characteristic statis
memory and noticeable non-Markovity effects in statisti
dynamics ofRR intervals from human ECG’s. Obtained re
ly
k-
-

nt

o

l

sults on non-Markovian properties of temporal behavior
RR intervals justify significant and characteristic differenc
in data for all four groups of patients. We hope that the u
of non-Markovian dynamics in the spirit of developed theo
will incorporate development of more precise estimate of
state of cardiovascular systems for healthy as well as
more careful diagnostics of different patients.

IX. DISCUSSION

The present paper deals with two interrelated import
results. The first one is connected with the establishmen
the chain of finite-difference non-Markov kinetic equatio
for the discrete TCF. In this case the state of complex s
tems at the definite level of correlation is described by t
vectors constructed over the strict determined rules. I
natural finite-difference equation of motion, being the pec
nt
-

e-
FIG. 7. Frequency spectrum of the first poi
in the statistical spectrum on non-Markovity pa
rametere1(v) for fourth patient groups: healthy
~a!, patient with rhythm driver migration~b!, pa-
tient after myocardial infarction~c!, and patient
after MI with subsequent SCD~d!. The schedule
is submitted in dimensionless units. The fr
quency is marked in terms of units oft2.
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FIG. 8. Frequency spectrum of the seco
point in the statistical spectrum on non
Markovity parametere2(v) for fourth patient
groups: healthy~a!, patient with rhythm driver
migration ~b!, patient after myocardial infarction
~c!, and patient after MI with subsequent SC
~d!. The schedule is submitted in dimensionle
units. The frequency is marked in terms of uni
of t2.
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liar analog of Liouville equations for the initial dynami
variables which are of particular interest for our analysis.
the subsequent discussion we employ the strict dedu
mathematical fact of the existence of the normalized TC
Due to the operation of scalar product the availability of TC
makes it possible to introduce the projection operators in
space of vectors of states. Those projection operations
matrix elements of Liouville’s quasioperator ensure the sp
ting of natural equations of motion and then they are sol
in the closed finite-difference form. Using Gram-Schmidt o
thogonalization procedure we find an infinite set of the
thogonal dynamic random variables. This allows us to obt
the whole infinite chain of finite-difference kinetic equatio
for the initial discrete TCF. These equations contain the
of all memory functions characterizing the complete sp
trum of non-Markov processes and statistical memory effe
in the complex system. The presence of discretness and
very fact of the existence of finite-difference structure e
able, in principle, to find all memory functions solving su
cessively kinetic equations for the TCF. Parameters of th
equations can be easily obtained from the experiment
registered TCF. In chaotic dynamics of complex systems
TCF above plays the role similar to that of the statisti
integral in equilibrium statistical physics.
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-
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Another important result of our work is the dynamic~time
dependent! information Shannon entropy given in terms
the TCF. This allows us to use the information measure
the quantitative characteristic of two interrelated correlat
channels. One of them corresponds to the creation of t
correlation and the other to the annihilation of correlation

For that as we employ one of the classical Shanno
results@17#, related to the introduction of fidelity evolution
function and distance function between two vectors of sta
The existence of a new information measure opens up
fields for exploration of information characteristics of com
plex systems. In particular, some interesting data arise f
calculations frequency spectra of power of information e
tropy.

The important consequence of the results obtained is
usage of power spectra of memory functionsM j (mt), where
m50,1,2,3, . . . and j 51,2,3, . . . . The set ofthree junior
memory functions with numbersj 51,2,3 provides the basi
for the pseudohydrodynamical description of the comp
system. In practice, any memory function can be extrac
from the experimental time sets and experimentally recor
TCF. These criteria provide the possibility to get reliab
information about non-Markov processes and memory
fects in natural evolution of complex systems. In princip
y

TABLE I. Set of ECG’s data for the various group of patients.

Mean ofRR Absolute Relative A first general
intervals variance variance relaxation frequenc

Patient t5^ l RR& ~ms! s ~ms! d ~%! V1
2 @units of (2p/t)2#

Healthy man 781 40.9 5.2 0.24
Rhythm driver migration 756 55.9 7.4 0.57
After myocardial
Infarction 647 45.8 7 2.04
After myocardial infarction
With subsequent sudden
Cardiac death 776 32.3 4.8 2.34



ro
h
n
o
a
a

o
-
hi
ita
ts
in
i

s
e
m
e

r t
e
, a
e

c.
s
i

ri
el

e

le
-

as

e-

ous
ent

ori
y
ap-
of

on
n
ly-

can
is

her-
ch
m-

th-

-
s-
-

arch

es-
n
n

6192 PRE 62RENAT YULMETYEV, PETER HÄNGGI, AND FAIL GAFAROV
the new point in the analysis of complex systems arises f
the opportunity to construct the dynamical information S
annon entropy for the experimental memory functions. U
doubtedly, detection of the frequency spectra of power
entropy for memory functions gives us new unique inform
tion about the statistical non-Markov properties as well
memory effects in complex systems of various nature.

Application of the theory developed on the analysis
dynamics ofRR intervals from human ECG’s strongly sug
gest the substantially non-Markovian properties of the t
dynamics. Here we have obtained non-Markovian quant
tive characteristics for the fourth various groups of patien
One might expect this method may be use in distinguish
healthy from pathalogic data sets based in differences in
non-Markovian properties.

In conclusion it may be said that this paper describe
first-principle derivation of a hierarchy of finite-differenc
equations for time correlation function of out-of-equilibriu
systems without Hamiltonian. The approach develop
seems to have potentials and offer few advantages ove
usual Hamiltonian point of view. A similar situation is tru
apparently with regard to turbulence, aging, for instance
in spin glasses and glasses as well as experimental tim
ries for living, social, and natural complex systems~physiol-
ogy, cardiology, finance, psychology, and seismology, et!.

By way of illustration it is significant that the anomalou
scaling of simultaneous correlation function in turbulence
intimately related to the breaking of temporal scale inva
ance, which is equivalent to the appearence of infinit
many time times scales in the time dependence of tim
correlation functions. In Refs.@75# temporal multiscaling on
the basis of the continued fraction representation of turbu
correlation function@76# was addressed within the frame
work the Zwanzig-Mori formalism@43,44# which was ap-
plied to the time correlation function in turbulence. It h
,
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been shown by Grossman and Thomas@76# that the
Zwanzig-Mori formalism applied to turbulent systems d
scribed by Navier- Stokes-like equations.

Mode coupling equatins have been considered in vari
areas of many particle physics for an approximate treatm
of the dynamics of particles in glasses@77,78#. These equa-
tions are obtained if one represent within the Zwanzig-M
formalism @43,44# correlation functions in terms of memor
kernels and then expressed the latter via a factorization
proximation in terms of the former for the glass transition
molecular liquids@79#. It has been found by Heueret al. @80#
that a model-free interpretation of higer-order correlati
function determined by NMR reveals important informatio
about the complex dynamics close to glass transition of po
mers. This has been demonstrated with spin glasses@81# to
show how a hierarchical model of spin glasses relaxation
display aging behavior in the time scale, similar to what
found in spin glasses and other complex systems out of t
modynamical equilibrium. The application of the approa
developed on the analysis of the temporal behavior of co
plex systems of various natures will be available in our for
coming papers.
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