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In this paper we present the concept of description of random processes in complex systems with discrete
time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference
non-Markov equations for time correlation functiofiSCFg. We have introduced the dynamigme depen-
deny information Shannon entrop$;(t) wherei=0,1,2,3..., as aninformation measure of stochastic
dynamics of time correlation €0) and time memoryi=1,2,3 . ..). The set ofunctionsS;(t) constitute the
guantitative measure of time correlation disorder Q) and time memory disorder£1,2,3 .. .) in conplex
system. The theory developed started from the careful analysis of time correlation involving dynamics of
vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihi-
lation of time correlatior{or time memory in details. We carry out the analysis of vectors’ dynamics employ-
ing finite-difference equations for random variables and the evolution operator describing their natural motion.
The existence of TCF results in the construction of the set of projection operators by the usage of scalar
product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-
Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic
equations for discrete TCFs and memory functi@vi&s). The solution of the equations above thereof brings
to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities
for detecting the frequency spectra of power of entropy func8dn) for time correlation (=0) and time
memory (=1,2,3...). Theresults obtained offer considerable scope for attack on stochastic dynamics of
discrete random processes in a complex systems. Application of this technique on the analysis of stochastic
dynamics ofRRintervals from human ECG’s shows convincing evidence for a non-Markovian phenomemena
associated with a peculiarities in short- and long-range scaling. This method may be of use in distinguishing
healthy from pathologic data sets based in differences in these non-Markovian properties.

PACS numbegps): 02.50.Wp, 05.20.Gg, 05.40a, 05.45.Tp

I. INTRODUCTION modeling in terms of the time discretness, memory and time
long-range effects.

Manifold methods are successfully used in statistical The present article is dedicated to statistical consideration
physics for the description of distinctive characteristics of0f & discretization in temporary changes of complex systems
chaotic dynamics of complex systerifs-26. Nevertheless of a substantial nature on the basis of the first principles. In
three vexing features which are difficult to yield a detailedsec('j I er brleI]Iy outllr;]e g_engral de_ﬂmtu;ng_ and proposals
and strict analysis are available in complex systems. Amon§>€ to Omé t esstoc”lasnc ynammi of discrete tllme e
them: nonstationarity, nonlinearity, and nonequlibrium phe- uences, and in Sec. lll we suggest the geometrical presen-
nomena. Furthermore, the significant peculiarities of comlation of stochastic dynamics of time correlation. Introduc-

plex systems are directly related to the discretness of time jon of projection' operators, 'splitting_ of gqyation Qf states
object-subject registration responée,14,15,17,2% Non- vectors and matrix presentation of Liouville’s quasioperator

Markov and long-range statistical memory effects also pla)Ior the_ statistical descrl_pt|on of fa”don_“ processes with dis-
[crete time are reported in Sec. IV, and introduction of the set

the leading part in the complex systems behavio - .
[7-9,17,27—38 of orthogonal random variables as well as construction of

However, the discretness of time while considering thanfinite chain of finite-difference non-Markov kinetic equa-

complex systems has not been taken into account until nowons fo_r dlscre_te _TCF are framed in Sec. V A psgudohydro-
dynamic description of random processes is provided in Sec.

although it is discretness that is the most commonly encou 1 wh he relai its of thi h forth. |
tered feature of real objects/subjects. On the other hand, th ,» where the relative merits of this approach are set forth. In
ec. VIl we define Shannon dynamid¢iime dependenten-

memory and time long-ranging effects are paramount. As for ti lati dti ) |
rule the state developed is complicated by the fact that thgOPy for time correlation and time memory in compiex sys-

real complex systems are of nonphysical nature. Thereford€Ms- Aplication of technique on the analysis of stochastic

the direct methods of statistical physics derived from Hamil-dynamics ofRR intervals from human ECG's are discussed

tonian formalism, exact equations of motion and Liouville’s N S_ec. VIIl. In Sec. 1X we present the d.|scu33|on anq_ con-
equation are not applicable in this case to its theoretica‘i:lus'ons qf the results obtalned'and possible opportunities for
analysis. Meanwhile the real existence of complex systemi1€ €xperimental data processing.

in time and space generates a reliable evristic basis for the Il BASIC ASSUMPTIONS AND DEFINITIONS
Following Gaspard15] we consider a random process

*Email address: rmy@dtp.ksu.ras.ru such as a sequence of random variables defined at successive
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times. We shall denote the random variable by b—a=c, c=7n. )
X={x(T),x(T+7),x(T+27), ... x(T The first derivative on the right is recorded in H&). The
1K), .. X(THN= D), (1) second derivative on the right is also derived easily,
which corresponds to signal during the time perice(N dzx(t)ﬁﬂ ﬂ
—1)r wherer is time interval of signal discretization. The dt? At | At
mean valugX), fluctuationssx; , absolute ¢?) and relative
(6% dispersion for a set of random variabléd can be =7 2[x(t+27) = x(t+7)]—[x(t+ 1) —x(t)]}
easily found by
- =7 2x(t+27)—2x(t+ 1)+ x(1)}. 9
1 N~
(X)= N 2 X(T+j7), (20 Now let us proceed to the description of the dynamics of the
1=0 process. For real systems valugs=x(T+j7) and ox;
_ . . = Ox(T+j7) result from the experimental data. Thus we can
X =X(T+j7), oXj=x;=(X), ©) introduce in Shannon’s manngt7] the evolution operator
g Nt U(T+t,,T+t,) in as follows ¢,=t,):
2
0'2__ 5)(] y (4) —
N <6 X(T+ty)=U(T+1t,, THt)X(T+1ty). (10
L N1 For brevity let us present E@L0) in the form
) =2 o N . .
, N j=o © x(j))=U(j,kx(k), j=k, jk=0,12... N—-1
6= = - 11
<X>2 1 N—1 ' 2 ( )
N JZO X(T+j7) The time operator of one step shiftalong a discrete trajec-

tory is conviniently considered by means of two nearest val-
The abovementioned values determine the statindepen- — uesx(t+ ) andx(t)

dent from time¢ properties of the system considered. The

normalized time correlation functio(TCF) [1-3,7—9 de- X(t+ 7)=U(t+ 7, )x(1). (12

pending on current timée=m7,N—1=m=1 can be conve- . . L )
niently used for the analysis of dynamic properties of com-oWlng to Eqs(10)~(12) a formal equation of motion is de

plex systems rivable for anyx e (Xg,X1,X2, -+ . XN_1)
1 N—1-m dx  Ax(t)
alt)=——— > X(T+j7r)ox(T+(j+mm). dt At
(N-m)o? =0
(6) =7 Yx(t+7)—x(1)}
TCF usage means that developed method is just for complex =7 HU(t+7t)— 1}x(1). (13

systems, when correlation function exist. In forthcoming pa- ) )

pers we intend to apply developed method for discrete ran-€t us consider Eq13) in terms ofx;

dom processes analysis in complex systems in practical psy-

chology, cardiology (for the development of diagnosis Ax;(t) _ Xj+a(t+7) —x5(t) =7-*1{U(t+r,t)—1}xj(t)

method of cardiovascular diseagefinancial and ecological At T

systems, seismic phenomena, etc. The properties of TCFs R

a(t) are easily determined by E®) and then introduce a Liouville’s quasioperatomas follows:
lima(t)=1, lima(t)=0. (7) dx Ax(t) .
t-0 toce di A Ltox(),

We have to recognize that the second property in(Egis R

not always satistifed for the real systems even with arbitrary L(t,r)=(n) Ut+7t)—1]. (14
big values of timet or number N—1)=t/7. Taken into i _

account fact that the process is discrete, we must rearrang¥W in accordance with Ref$15,1¢ let us present a set of
all standard operation of differentiation and integrationvalues of random variablesx;=éx(T+j7),j=0,1,... N

[34,35 —1 as ak-component vector of system state
dx  AX(t)  x(t+7)—x(1) AR(0)=(8Xg, 8%y, 8%z, -+ - ,OXic—1)
AN - ,
dt At T =[8X(T),X(T+7), ... .oX(T+(k—1)7)].
b n—1 n—-1 (15)
x(t)dt= X(Ty+j7)At= X(Ty+|7)=n7w(X), ) .
L ® jzo (Tat17) szo (Tatj7)=n(X) Now we can introduce the scalar product operation
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k—1
(A- B):JZO A;B; (16)

with or without indication of obvious time dependence of
vectorsA and B, respectively, in the set of vectorsﬁ(O)
andA] ., . (t) wheret=mr and

Am+k(t)={6xmiaxm+lvaxm+21 e 15Xm+kfl}
={X(T+m7),x(T+(m+1)7),5x(T
+(m+2)7), ..., 0x(T+(m+k—1))7}.

(17
FIG. 1. Simple geometrical notion on vectors, their scalar prod-
A numberk<N—1 determines the vectors’ dimension. The yct and normalized TCF of random variables.

functions(4),(5) can be expressed in terms of scalar product
(16) Ill. GEOMETRICAL NOTION OF STOCHASTIC
DYNAMICS OF TIME CORRELATION

02=%<A,(3,-Aﬂ>= N™HARQLZ, First of all let us consider the projection operation in the
set of vectors for different system states. It is easy to intro-
0 o duce it employing the above scalar prod(t6). Then it is
2 N~ (AN AN necessary to introduce vectorsA=Ap(0) and B
- (X)2. =An, (m7). Using Fig. 1 and simple geometrical notions

we can demonstrate the following relations in terms of these
A k- component vectoAMm, (1) displaced to the distande ~ Symbols:
=mr on the discrete time scale can be formally presented by

the time evolution operatdd (t+ 7,t) as follows: (1) (A-B)=|A|-|B|cos®), cosd=a(t),

Al (D)=U(T+m7,T)AY0) (2) B=B+B,,
={U[T+m7,T+(m-1)7]JU[T+(m-21)7,T A A
o (3) By=|Blcosd 7= ra7lBla(t), [B*=[A[*a(t)}?,
+(m=2)7]- - U(T+7,TIA%0). (19 Al [A]
The normalized TCF in Eq(6) can be rewritten in a more (4) |B.|=[B|sin9=|B{1—[a(t)]}" (22)
compact form by means of Eq&l7),(18) (t=mr is discrete _
time here where symbolA| denotes the vectohk length. Geometrical
distanceR(A,B) between two vectoré. andB can also be
Al.AM A2(0)-A™_ (1) found:
a(t)= kO m;—k) :< k . m;—k > (19)
(Ak-Ak) (AL0)9)

k=1 1/2
R(A.B>={|A—B|2}”2=|E (A;—B,—)z} :
Replacement of Eq6) by Eq. (19) is true if the numbers =0

k<N-—1 satisties the condition ) o
Using the latter and taking into account E®, (19) we can

k—1 k—1 find
o?=k"1Y o or o?=lmk 1Y X', (20 . .
=1 ke 170 RIAK(0), Ar (D 1={[AR L (D%}
The condition of quasistationarity of processes under consid- =V2|AR, (D{1-at)}2
eration
The equation above immediately shows that the distance is

da(T,t)‘ da(t)\ determined by the dynamics of evolution of correlation pro-

dT | NEETHE (21)  cess. Owing to the property7) the following relation

lim,_.R(A(0),A, . (1))=y2ka?, where o2 is the vari-

serves the other criterion of validity for such replacementance can be developed. With regard to E2) the correla-
The TCFa(T,t) in Eq. (21) is viewed on a time scalgoint ~ tion decay in limitt—o may result in complete annihilation
T) at the distancefrom the zero point. Such vector notion is Of parallel component of stat(. (t) vector. Then the state
very helpful for the analysis of dynamics of random pro-of the system at the moment- is entirely determined by
cesses by means of finite-difference kinetic equations of northe perpendicular compone#ty | (t) of the full vector
Markov type. A ().




PRE 62 STOCHASTIC DYNAMICS OF TIME CORRELATION IN . .. 6181

It follows from Egs. (22) that in the set of state Operatorsll and P split Euclidean spacé\(k) into two
{Ak(O) AL ()} vectors at different values df m, andk, mutually-orthogonal subspaces. This permits to split dynami-
TCF of random processes(t) plays a crucial role as an cal equation(26) into two equations within two mutually
indicator of two interrelated states of a complex system. Onsupplementary subspack38—-4Q as follows:
of them deals with the creation of correlation and is specified AA'(D)
by the B, component, whereas the second one is related to T g
the annipﬂlation of correlation and determined by the compo- At LA D FILLAYD), (28)
nentB, . It results in the fact that in the limit of gredt

—oo the following relation: AA"(t) . A
At :|L21A,(t)+|L22A"(t). (29)
lim AT (D=0, lim Af,, (D)=A0, (1) (23
e e In the equations above we crossout for short space elements
is immediately fulfilled in correspondence with to Bogol- |nd|cesA A" and A" and matrix elements arguments ,
ubov’s[36] principle of correlation attenuation. Lj=ILLI0, ,=11, ,=P=1~1I1, i=1,2. In line with

From the physical point of view this fact means that TCFRefs. [39 4(] we write down |—|0UV|”e s operator in matrix
a(t) represents two interrelated states determined by creatidi@rm
and annihilation of correlation. Hence it follows that such
consideration must be given to both processes in an explicit
form for stochastic dynamics of random processes’ correla-
tion.

IV. SPLITTING OF EQUATION OF VECTORS MOTION

AND LIOUVILLIAN'S MATRIX PRESENTATION A s A s (30)

It is obvious from Eq(22) that TCFa(t) is originated by A A
projection of vectorA, (1) (18), where timet=m7 on the  Operators,;; act in the following way:L, from A’ to A’,

initial vector of stater(O) [see, for example, formuld9)]. L,, from A” to A”, L, - from A’ to A”, andL,, operates

The following construction of projection operator: from A” to A’.
< 2(0)A™ > To simplify Liouville Egs.(28),(29) we exclude the irrel-
A(O) AL (1) evant partA”(t) and losed ion f I
m 0 k m+kl)7 g partA”(t) and construct closed equation for relevant
AR (D) =Ak(0) <|AE(0)|2> =A0)a(t) (24 part A’ (t). For this purpose let us solve E(R9) step by
step:
results from here. It is turn projection operaidrfrom Eq.
(24) has the following properties {Am+k(t)}"—'|-21{ m (O} Hil AP (D}
AX0)(AY0)] @D

. M2=11, P=1-1I,

(|AY(0)]?) Considering Eq(8) we arrive at finite-difference solution of
this equation in the following form:
P?=pP, IIP=0, PII=0. 25
~ MO _ A )= A"(1) ] =1L A (1) +iLLA"(1),
A pair of projection operatorsl andP are idempotent and T [A'(t+r (D]=IL2AT 1) HIL AT
mutually supplementary. Figure 1 shows that projedior (32
projects on the directioAE(O), whereas the orthogonal op- o o
eratorP transfers all vectors to the orthogonal direction. A"(t+ 1) ={1+i L A" (1) +iTL A (1). (33
Let us consider quasidynamic finite-difference Liouville’s ) )
Eq. (14) for the vector of fluctuations Applying Egs.(32), (33) we find
A . A"(t+27)=(1+i7L ) ?A" (1) + (1+i 7L ) {i 7L A" (1)}
EAm+k(t)=|L(t,7)A$+k(t). (26)

+{irl A (t+7), (34)

The vectorsAp ((t) generate the vector finite-dimensional for m=2 and
spaceA(k) with scalar product in whicliaccording to Egs.
(24),(25)] the orthogonal projection operati¢87,3§ is ex- A"(t+37'):(1+iT|:22)3A”(t)+(l+i7'|:22)2{i TI:21A’(t)}
pressed by
+(1+iTl){iTLoA (t+
A=A +A"(K), AR (D) £ AK), (it iraA ()
+H{irl Al (t+27), ..., (35)
A'(k)=1IA(k), A"(k)=PA(k)=(1-1I)A(k).
(27) for m= 3, respectively. In general case we find
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m—1

[ C i LO=LQ=Lp=(1-L(1-T1 42
A"(t+mT):{1+iTL22}mA"(t)+ 2 {1+iTL22}J 22 22 ( ) ( ) ( )
=0

for a new dynamical variablB™®=iL ,;A2(0). Thus, we can
X{iL A (t+(m—1—]j)7)} (36)  completely repeat foM4(j7) the whole procedure within
Eqgs.(24)—(41), and obtain the following non-Markov kinetic
for the arbitrary number ofn steps. Then after the substitu- equation for the normalized TCF. The infinite chain of equa-
tion of right side of Eq.(36) for Eq. (28) we obtain the tions for the initial TCF and memory functions of increasing
closed finite-difference kinetic equation for the relevant part&brder results from mu|t|p|e repetition of similar procedure.
of vectors However, this chain of equations can be obtained differ-
A ently, i.e. much shorter and less costly. For this purpos let us
— A (t+mr) =il A (tmr) +il 1+ 7l A (1) employ the method developed earlier for the physical Ham-
At ilton systems with the continuous time in Refgl0,41.
m+1 Moreover the lack of Hamiltonian and the time discretness
-7 F R AT must be taken into account.
lejzo {1tirlogt 7l Let us remember that natural equation of motia#d) is
the finite-difference Liouville’s equation

XA'[t+(m=1—]j)7]. (37
To simplify this equation, let us consider the idempotentity Ax(t)ziﬁx(t), (43
property, and then determine fk=m—1) At
A’(t)=0, {1+i7l:2§kA"(t):O. (39) where the Liouville quasioperator is
Transfering from vector&™. , in Eq. (37) to a scalar value L=L(t,n)=(in) HU(t+7t) -1}, (44)

of TCF a(t) by means of suitable projection we come to the ) ) ) . )

closed finite-difference discrete equation for the initial TCF Succesively applying the quasioperatorto the dynamic
variablesA], . (t) (t=m7, wherer is a discrete time step

mt we obtain the infinite set of dynamic functions

Aa(t) _ ioPa(t)— TQE)JZO Miy(jnat—jr). (39

At

Bn(0)={L}"AR(0), n=1. (45)
Here Q4 is the general relaxation frequency whereas fre-

quencyw!? describes the eigenspectrum of the Liouville’s Using variablesB,(0) one can find the formal solution of
. ~ evolution Eq.(43) in the form
quasioperatoL

A ~ A M mi(i-m-i
0 (AROLAY0)  , (AL1l2AR(0)) Am+k(mr)={1+iTE}mAE(0)=ZO %B%_j(oy
(AP T AP ’ (46)
(40)

However, a similar form of dynamic variables is deficient.
That is why we prefer the use the orthogonal variables as
vectorsW,, given below. Employing Gram-Schmidt orthogo-
nalization procedurg42] for the set of variable®,(0) one

Function M 4(j7) in the right side of Eq.39) is the first
order memory function

<AE(O)|:12{1+ i TI:ZZ}jI:ZlA(k)(O»

M.(j7)= - . M, (0)=1. can obtain the new infinite set of dynamical orthogonal vari-
(AX0)L 5L 2,A(0)) ables, i.e., vectorsV,
(41)
(W3 (0),Win(0))=8n,m(IWa(0)[?), (47)

Equation(39) alongside with Eqs(40),(41) present first or-

der discrete non-Markov kinetic equation for the discretewhere the meag- - -) should be read in terms of Eq4.6)—
time correlation functiom(t). However, our consequent step (18) and &, , is Kronecker’s symbol. Now we may easily
will be to perform a further generalization of discrete TCF introduce the recurrence formula in which the senior values
analysis and to obtain finite-difference equation for the firstw =W, (t) are connected with the juniour values

order memory functiorM 1(j 7) and so on.

Wo=A20), W;={L—o®}W,,

V. INTRODUCTION OF THE SET OF ORTHOGONAL (48)
RANDOM VARIABLES AND CONSTRUCTION Wo={L— o MW, ,— Q2 W, ,, n>1.
OF INFINITE CHAIN OF FINITE-DIFFERENCE
NON-MARKOV KINETIC EQUATIONS Here we used the equation, given earlier in &) for num-
FOR DISCRETE MEMORY FUNCTIONS bern=0

The discrete memory functio ,(j 7) (41) in Eq. (29) is
in its turn the normalized TCF, evolution of which is defined Q)

Wk W), (WP
~ A~ 0~ ., 1o
by the deformedcompressedLiouvillian (L(®=L)

) N5, (49
<|Wn|2> <|Wn—1|2>
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where(), is the general relaxation frequency, and frequencyfor the second diagonal matrix elements. Successively apply-
wg”) completely describes the eigenspectrum of Liouville’sing projection operatorsl,, and P, for the discrete equation
quasioperatot. (44). Now the arbitrary variabled/,, may be (43 in the set of normalized TCR € mr)

expressed directly through the inital variaMl:bzAﬁ(O) by

means of Eq(48) (Wo[1+i7L5]™W )

Mp(t)= (55)
o ' (WA(0)[?)
[ — wg ) O, 0 e 0
Q - 1) Q 0 we obtain the infinite hierarchy of connected non-Markov
W= 1 L—wg 2 o finite-difference kinetic equationg € mr)
n 0 Q [-o@ - 0 -
o AMa() - ) . j
0 0 0 - L-af N Mn<t)—rﬂn+1j§O M a(j IMp(t=7),
X Wo. (50) (56)

The physical sense o/, variables(vectors of statecan be ~ Where o’ is the eigen and), is the general relaxation
cleared up in the following way. For example, in the con-frequency as follows:
tinuous matter physics, the local density fluctuations may be 5
considered as initial variables. So the local flow density, en- (n)_<W:1( LaWn) (IWhl%)
ergy density and energy flow density fluctuations are the  “0 (W, ' <|anl|2>.
dynamic variable®V, where numbers=1. The careful us-

age of the abovementioned variables within the long-waven set of functionsM (t) (55),(56) exceptn=0

limits creates the basis for the condensed matter theory in

hydrodynamic approximation. The set of the orthogonal vari- <Ag(0) AT (D)
ables(48) [see also Eq47)] can be connected with the set Mo(t)=a(t)= PPN

of projection operators. The later projects the arbitrary dy- (IAK0)[%)

namic variable(i.e., vector of stateY on the corresponding ) ) . .-
vector of the set can be considered as functions characterizing the statistical

memory of time correlation in the complex systems with
W, ) (W] discrete time. The initial TCF(8 and the set of discrete
L e T | P=1-T11I memory functionaM ,(t) in Eq. (56) are of crucial role for

(|Wn|2) ’ " " " " the further consideration. It is convenient to rewrite the set of
discrete kinetic Eqs(56) as the infinite chain of coupled

pP2=p,, II,P,=0, non-Markov discrete equations of nonlinear type for the ini-

(51) tial discrete TCF @) ( discrete timet=mr everywherg

Ln:L(Zg)! Qﬁ:

, t=mr

n

I IL,= 5n,mHn= PnPn= 5n,mPna P.I1,=0.

Let us take into consideration the fact that both $4% and At e winalt=jn+iwg alt),
(50) are infinite. If we execute the operations in the Euclid-
ean space of dynamic variables then the formal expressions AM.(t m-1
(51) must be understood as follows: Alt( ) _ 702> My(jr)My(t—jn) +iofIMy(t),
j=0
WrY YW, 5
anzwnu, YII, =W} g. (52) m-1 7
(IW,[?) (IW,[?) AMAY) _ g2 - i tie®
At -T2 MMt D) FiefMa().

Now according to Eqs.28)—(30),(51),(52) we can introduce
the following notation for the splitting of the Liouville’s qua- These finite-difference Eq§56) and(57) are very similar to
sioperator into the diagonaL{") and nondiagonal L(i(jn)) famous Zwanzig'-Mori's chainZMC) of kinetic equations

matrix elements with #j, n=1: [43-49, which plays the fundamental role in modern statis-
tical physics of nonequilibrium phenomena with the smooth
LM=p [O-Dp time. It should be noted that ZMC'’s are true only for the

physical quantum and classical systems with smooth time
governed by Hamiltonian. Our finite-difference kinetic equa-
tions(56), (57) are valid for complex systems lacking Hamil-
tonian, the time being discrete and the exact equations of

Lo=L,LP=m" DLy, ij=12,

nV=11,, MP=P,=1-II,. (53)  motion being absent. However, the “dynamics” and “mo-
tion” in the real complex systems are undoubtedly abundant
For example, we come to the following equations: and are immediately registered during the experiment. The
first three of those Eq$57) in the whole infinite chair{56)
LO=Lo=L, L=P,_1Ph s - PoLPq---Pp_oPn_1. form the basis for the quasihydrodynamic description of ran-

(54 dom processes in complex systems.
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VI. A PSEUDOHYDRODYNAMIC DESCRIPTION 1
OF RANDOM PROCESSES IN COMPLEX SYSTEMS |\/|1(37-):[ {a"(37)— ra’ (2r)a’(0)
. //(0
At first let us find the matrix elements;; of complex , ) , , ) ,
systems Liouvillian’s quasioperator. Employing Edg4), —27a’(n)a'(1)+ r*a’(7)a"(0)+ ra’(1)a"(0)},
(25),(30),(53),(54) we successively found
1
_ M (47')=[ }{a”(47')—7'a (3n)a”(0)
R a(r)—a(0 1 "
i|_<1°1>:r1¥:a'(0)n, (58) (0)

—7a'(2n)a"(r)+7a’'(2r)a"(0)—ra"(r)a’(27)

o - , 64
IL(Z(Z)L):{T 1[U(t+ Tvt)_ 1]_3. (0)}H, (59) + TZ[aH(T)]Z_ Ta”(T)a,(T)‘i‘ Tza”(T)a(’T)a"EO))
2 " 2
i Q=T{r [U(t+rt)-1]-a'(0)},  (60) —ra(n[a’(0)]%F.
)i R (0) L P (O)e T (0) Further presentation the following valuds;(j 7) (numbers
il =il —i{Liy + L3+ L5} j=5) constitute the extremely complicated combinatory
= Ut ) —1]— 7 MUt 7,0 — 1) E(ra(;]b;sirgr. As analysis of Eq$64) shows second derivative’s
— 7 M{U(t+7,t)— 1} I+a’(0)II. (61)
N H 1 65
A diagonal matrix elemeril(zg) is the part of “compressed” Maljn)= [ a"(0) alim) €9

evolution quasioperator, which in its turn is equal to
contributes mainly into function® ((j 7).
1+iT|:22=U(t+T,t)+Ta,(O)H—{H,U(t+T,t)—1}+, Now let us move to practical realization of Eq&7),
forming a basis of pseudohydrodynamic description of cor-
(62 . ; : X .
relation dynamics. Thus using orthogonal dynamic variables
where the anticommutator of appropriate operator is desigt47), (48),(50), we immediately obtain
nate by the bracket§A,B} . =AB-+BA. One can see from .
Eqg. (62 that the “compressed” evolution operator differs Wo=A?,
from the natural operatdd (t+ 7,t) because of the presence
of contributions, associated with the first and the following (0) 0]
derivatives of TCF the initial TCR(t). Wa={L— 0"} Wo=LWo=(i7) (U, ~ 1)AK0),
The large-scale presentation of the memory function

M,(t) is suitable mostly for practical applications. Using szﬁwl—ﬂiwo
Egs. (58)—(61),(41),(54) we also find the succession of the - oA
first five points of discrete functions(j7) where j ={L°— QW
= 1,2,3,4 and :(| T)—Z{UT_ 1}2Ak_QiA0'
4 4 ’ 14 (66)
M1(0)=1, My(7)={1/a"(0){a"(r)—27a’(0)a"(0)}. s e 5
(63) Ws=LW,— Q3W,
T (lT2_02\WA/_ — O2[ \A
The “Gaussian” behavior of TCF at the zero poirt 0 =L(L = Q) Wo— Q5L Wo
={L3-(0i+ )W,
(AP, 1ARO) (Lt
a'(0)= = ={(in%U,— 1= (in " HQ3+Q3)(U,—1)}AL.

(|AR0)[?)

imple relation for the eigenfrequencies and general relax-

should be taken into account in the subsequent discussion. It frequencies

is proved accurately and connected directly with the orthogo-
nality property of dynamical variabl€d7)—(50). It gives us

YYRRY, A 12
an opportinity to simplify the memory function formula as gn)zwz ' QZ=M, 02=1a®(0)|,
follows: (W2 " Woal?)
a'r a(4) 0)— a(z) 0 2
M, (0)=1, Ml(T):[ . ] 02= ( )2[ (0)] !
a’(0) |a*(0)]
(67)

a®(0)-2a(0)(03+ Q) - (2]+03)%a®(0)
a®(0)-[a®(0)]?

M1(27)=[ "(10 ]{a” 27)—27a’(0)a’(7)+da"(0)]%, 3=
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should be taken into consideration here. The orthogonal varinformation, namely, the entropy of the underlying stochastic

ablesW, in Eq. (66) can be easily rearranged as follows: information by introduction fidelity evaluation function
v[ P(x,y)]. Here the functiorP(x,y) is the two-dimensional

R 0w cd o A distribution of random variablex(y) and
WOZAk' le_lﬁAk:_IEAk'

V[P(X,Y)]=f fdxdyF(x,y)p(x,y), (69

. d2 2
Wo=1 — +0% +02 1AL,

dt?

A
A(ko): [ (E where the functiop(x,y) has the general nature of the “dis-
68) tance” betweenx andy. As pointed by Shannofl7] the
function p(x,y) is not a “metric” in the strict sense, how-
Wa=i d_+(Qz+Qz)E AQ ever, since in general it does not satisfy eithgix,y)
MRS S T =p(y,x) or p(x,y)+p(y,2)=p(x,z). It measures how un-
desirable it is according to our fidelity criteriq9) to re-
=i|(£ +(92+QZ)A] AQ ceivey whenx transmitted. According to Shanm_ﬁﬂﬂ] any
At 1R evolution of fidelity must correspond mathematically to the
operation of a simple ordering of systems by the transmis-
Those formulag68) have considerable utility inasmuch as sion of a signals within the certain tolerance. According to
they permit to see the structure of formation of orthogonalShannon[17] the following is simple example of fidelity
variables and junior orders memory functions for the num-evaluation function
bersn=1,2,3. Equation$64),(67),(68) open up new fields of
construction of quasikinetic description of random processes v(P(x,y))=((x(t) —y(1))?). (70)

0 m . .
{AK(0), Am(m7)}. By analogy with hydrodynamics the In our case it is convenient to consider the initial vector

variablesWo, Wy, W;, and W5 in Eq. (68) play the role  A%(0) as a variablex and the final vectoA™, (t) at time

similar to that of the local density, local flow, local energy { =y~ for a variabley. The distance functiop(x,y) [17]
density, and energy flow. It is clear that this is only formal ’

3

3

analogy and the variabléd/, do not possess any physical (7
sense. However, such analogies can be helpful in revealing p(X.y)= ?fo dtf{x(t) —y(1)}? (72)
of the real sense of orthogonal variables.
To describe pseudohydrodynamics we have to use the sgf the most commonly used measure of fidelity.
of first three discrete kinetic Eq$57) with frequences()i2 Taking into accout Eq969),(71) and the results in Sec.
(i=1,2,3) derived from Eqg967). It is essential that all fre- 1ll as the fidelity function one can use the following function

quences)? are connected straightly with the properties of of geometrical distance:
the initial TCFa(t) only. The latter can be easily derived 0 m _ 5
directly from the experimental daf@5-47. Thus the sys- V(P(A(0),Am, (1)) =2k {1-a(t)], (72)
tem of Egs.(57) has considerable utility for the experimental here dist function i
investigations of statistical memory effects and non-Markoy//1€T€ distance function 1s
processes in complex systems. 0 m — p2(p0 m

Among them it seems to us that one could propose more P(AK(0), Am (1) =R (A(0), Am (1)) (73
physical interpretation of the different terms in the right sideaccording to Ref[17] partial solution of the general maxi-
of the three Eqgs(68). For example, term-iAA/At is simi-  mjzing problem for determining the rate of generating infor-
lar to a dissipationA’A/At? is similar to an inertia, and mation of a source can be given using Lagrange’s method
QZA(t) is similar to a restoring force. Third derivative and Considering the f0||owing functional:
A3A/At® is the finite-difference generic form of the
Abraham-Lorenz force corresponding to dissipation feed- P(x,y)
back due to radiative lossgsee, for instance, formuld) in f f [P(X:YN”WJFMP(X,Y)P(X,Y)
Ref. [48] for a recent experimental evidence in frictional

system
ystems +v(x)P(x,y)]dxdy, (74)
VII. SHANNON ENTROPY FOR THE TIME . .
CORRELATION AND TIME MEMORY IN COMPLEX where the functiorv(x) and u are unknown. The following
SYSTEMS equation for the conditional probability can be obtained by

variation onP(X,y)

According to the results in Sec. VI, the information mea-
sure for the description of random processes in complex sys- P(x,y)
tems can be expressed not only via TCF, but also by means Py(x)= P(y)
of the certain set of time memory functions. To accomplish
that let us return to Sec. Ill in which we presented the geoThis shows that with best encoding the conditional probabil-
metrical picture of stochastic dynamics of correlation. In aity of a certain cause for various receivgdP,(x) will de-
line with Shannorj17] in case of discrete source of informa- cline exponentially with the distance functign(x,y) be-
tion we were able to determine a definite rate of generatingween values th& andy in problem. Unknown constant is

=B()exp[—Ap(xy)}. (79
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lIimS(t)=—{alnha+(1-a)in(l-a)}=0

BB t—0

for the parametera andc (c=0, O<a=<1) having regard to
these requirements. Among two solutions; €1, a,=0)
P,(t)=P. (1) only the first one {&,=1) has physical sense. Two probabili-
1 cc ties calculated by means of E/7) will satisfy conditions
FIG. 2. Scheme of simplified two-lewel description of a com- (78), (80)

plex systems state. Two probabiliB,.(t) and P,(t) decsribes a _ _
stochastic processes of creati@xistence and annihilatior(decay P1()=Pc(t)=exp{—(In2)[1-a(t)]}, (81)

of time correlation.
Po(1)=Pat)=1—exg—(In2)[1-a(t)]}. (82

defined by the required fidelity, and functid®(x) in the

case of continuous variables obeys the normalization condf—eSpeCt'VeW' In accordance with two-level description it

would be convenient to deal with two dynamic channels of

tion entropy[creation €c) and annihilation &c)] of correlation
(see Fig. 2
f B(x)exp—Ap(X,y)}dx=1. (76)
Sce(t) =(In2){1~a(t)}ex{—(In2)[1—a(t)]}, (83
Since the distance functigin(x,y) (71) is dependent only on
the vectors differencp(x,y) =p(x—y), we get a simple so- Sac(t)=—{1—exgd —(In2)(1—a(t))]}

lution for the special casB(x) =« XIn{1—exd — (In2)(L—a(t))]}. (84)

Py(X)=aexp—Ap(X—y)}=aexp—c[1—-a(t)]} The probabilities obtained are in the line with full dynamic

(time dependentinformation Shannon entropy
instead of Eq(75). Constantsx and\ result from the cor-

responding normalizing condition and in accordance with the So(t) = Sec(t) + Sace(t)

required fideli_ty. From th_e physical point of view the basic =In2{1—a(t)lexp{— (IN2)[1—a(t)]}
value of solution(77) is directly related to the occurence of

the TCFa(t). Therefore,the solutiofi77) describes the state —(1—exg—(In2)[1-a(t)]})

of the system with certain level and scale of correlation.
Now let us employ Shannon’s solution for continuous

variables(75), (77) and pass to simplified discrete two-level . . _ .

description of the system. Then let us consider the condi:rhe entropy introduced in to EqE83)~(85) characterized a

. o . . . . quantitative measure of disorder in the system related to cre-
Z?Qﬁgpggﬁg::;y(i? We:]slcgoc:re;;gfﬁdsir:getét?;i Ogé'arggr?)g? ation and annihilation of dynamic correlation. The probabi-
=mr

correlation. Whereas the other state at the fixed morhent listic and entropy channek81)—(84) possess the following

i havior:
=m~ which accounts for the state with the absefamenihi- aS)i/fm;(tgtE f ehavior
lation) of correlation will exist. Let us introduce two prob- '
abilities (see Fig. 2, which will fit normalizing condition P,(t)=P.(t)=1+(In2)[a(t)— 1],

XIn(1—exp{—(In2)[1—a(t)]}). (85

Pl(t)+P2(t):lv Pl(t):Pcc(t)7 P2(t):Pac(t)v PZ(t):Pac(t)E (ln 2)[1_a(t)],

Pec(t)+Pac(t) =1. 78 See(H)=—{1+(In2)[a(t)—1]}Hn{1+(In2)[a(t)— 1]},
In the case of two levels Shannon entropy &) (N 2)[1—a(t)]in{in 2[1—a() ]}
ac(t)=—(In —a(t)]in{in2[1-a(t)]},

2
§=-2, PilnP, (79 So()=—{1+(In2)[a(t)— 1]}In{1+(In2)[a(t)— 1]}

increases at full disorder and takes its limiting value ~In2[1=am]in{(in2)[1-at]}

lim S= lim S(t)=In 2. go andifa(t)—0,
t—oo t—oo

P1(t)=Pc()=3{1+(In2)a(t)}, (86)

To find unknown parametees andc in two-level description

(creation and annihilation of correlatipnn Eq. (75 we Po(t) =P, (t)= {1—(In2)a(t)}

should take into account normalization condition, principle ac 2 '

of entropy increas¢€80) att—oo and of entropy extremality o .

(presence of minimuinat full order when the following re- See(t)=— z {1+ (In2)a(t)}In{z [1+(In2)a(t)]},

lationship: lim_ ,a(t)=1 is true for the TCF. We obtained

the following equation: Sac(t)=—3{1—(In2)a(t)}In{3[1—(In2)a(t)]},
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So(t)=— z {1+ (In2)a(t)}In{z[1+(In2)a(t)]}

—3{1-(n2)a(t)}In{3[1-(In2)a(t)]}.

Subsequent boundary conditions result from the equations

above in terms of Bogolubov’'s principle of attenuation of
correlation(7) as follows:

imP..=1, lmP,(t)=0, (87)
t—0 t—0
iMmS..(1)=0, lMS,(t)=0, liMmSy(t)=0, (88)
t—0 t—0 t—0
. 1
limP.(t)= 5 lim Paczi!

t—oo t—o

] ) In2
lim S;(t)=1lim S,(t) =

5 limSy(t)=In2. (89

t—oo t—o t—ow

It is conditions(87) that give us an opportunity to present
two different states associated with the creation)((in the
time momentt=0, P..=1) and annihilation &c) [at the
pointt=0, P,.(0)=0] of correlation. Owing to discretness
of the TCFa(t) all functionsP,z, S,z as well asSy(t)
(a=a,c; B=c) are discrete in the real complex systems.
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M(37)=—{a(27)M(27)+a(37)M(7)+a(47)M1(0)}
+e; Ha(4r) —a(57)},

m—1

- -My(m7)=— JEO Mi(jra{(m+1—j)7}

+e; a{(m+1)7—af{(m+2)7}].
(93

In the general case solving the chain of E&&),(57) we can
find the recurrence relations between the memory functions
of junior and higher orders in the following form:

m—1

My(mr)=— JZO M(jIMg_g[(Mm+1—j)7]
+es UM 1 [(M+1)7]— Mg o[ (m+2) 7]},

es=7202%, s=123.... (94)
The relations obtained allow us to derive straightly the nec-
essary memory functionM(t) of any orders=1,2,...
from experimental data using the registered T&fnr)
[46,47). Relaxation frequencie@iz, i=1,2,3...,given in

Eqg. (94) are available to experimental registration. Thus, it is
fair to say that the applications of E@4) will open up fresh

The results obtained in Sec. VI permit us to present the selPPortunities for detailed study of statistical properties of
of entropies for the states connected with the set of orthogd=orelations in the complex systems. The very fact of exis-

nal variablesW; and set of memory functionsvi;(t)
={M(t),My(t),M5(t), ...}. In analogy with Eqs.(81)—
(89) these functions describe non-Markov and memory ef
fects in the system under discussion

PY()=Peow(D=exg{—In2[1-M;(D)]},  (90)

Py (1) =P () =1—exp{—(IN2)[1-M;()]}, (9D

Si(t)=(In2)[1=M;(t) Jexp{(In2)[1—-M;(t)[}
—{l1-exd—(In2)(1-M)]}

XIn{l—exd —(In2)(1—M;) 1}, (92
where i=1,2,3. Four corresponding entropieSy(t),
Si(1),S,(t), andS;(t) and their power frequency spectra are
available from the set of four time functiof$CF a(t) and
three memory function®l,(t), M,(t), M3(t)]. Equations

tence of finite-difference Eq$55),(57) enables us to develop
any functions directly from the experiment. Therefore, the

availability of discretness permits to enhance substantially

the capability to get information for the complex systems’
state.

In conclusion let us show the equations, which character-
ize the rate of entropy production. It is obvious from condi-
tions (87)—(89) as well as Eqs(81)—(85) that the rate of
entropy growthgS/ gt within the interval (Ox) takes differ-
ent sign values and is determined by the entropy behavior in
the channels of creation and annihilation of correlation

(81)—(92) are of great value because they allow us to esti-

mate stochastic dynamics of the real complex systems with
discrete time. As a matter of principle the first three memory

functionsM;(t)(i=1,2,3) are easy to find via E¢7). Us-
ing dimensionless parametes=72Q2 and solution of the
first finite-difference Eq(57) we can calculate the discrete
function M 4(j 7) at the pointg=0,1,2 ..., asfollows:

M1(0)=1, M(7)=—a(27)+e; Ha(27)—a(37)},

Mi(27)=—{a(2r)M(7)+a(37)} +&; Ha(37)—a(41)},

(950_((955”) (685‘”)_ asccm) (asaca))
o e A e e e e
(95
as(t)
p =—(In2)a’(t)exp—(In2)[1—a(t)]}
x{1—(In2)[1—-a(t)]}, (96)
SO (t)
Sfat =—(In2)a’(t)exp—(In2)[1—a(t)]}
X{1l+In[1l—exd —(In2)(1—a(t)]}, (97
3S(t)

pm =(In2)a'(t)exp[—(In2)[1—a(t)]}

X{In{1-exd —(In2)(1—a(t))]}+In2[1—a(t)].
(98
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150 150
a) 100} b)
100
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w50 =0
N 2" 50
-100
0 150
) FIG. 3. Phase-time portrait in orthogonal vari-
%00 100 0 10 200 B0 100 0 100 200 ables Wy, W5) plain[see formulag66),(68) for
LA wyl] fourth group of patients healthy(a), patient with
rhythm driver migration(b), patient after myocar-
2000 400 dial infarction(c), and patient after Ml with sub-
1500 €) 200 sequent SCOd). As a matter of fact we utilized
1000 dimensionless variable&/y /7 andW, /7 L.
W 50 G °
3 0 3" 200
-500
-400
1000
-1500 -600
-200 0 200 400 600 A5  -100  -50 0 50 100
Wo[t] WO[T]

The derivatives’ (t) andS(t) here should be read in terms son had an age, sex, and disease status matched pair serving
of Egs.(8),(13). Since the derivativa’(t) is finite within the  as the control.

whole time interval (0¢): |a’(t)|<c, (wherec is positive Results of our calculations, based on formulas of the
constank the rate of entropy growth obeys the following theory and presented in previous sections, are shown on Figs.
boundary conditions: 3-8. It is necessary to mark that as a matter of convenience
all variables and functions in a Figs. 3—8 are submitted in
lim ﬁ) =0, Iim(ﬁ) —0. (99) dimensionless form. Frequeneyeverywhere is indicated in
o\ Ot te Ot terms of units of Zr/ 7. The orthogonal variable#/, andW,

in a Fig. 3 are written in units of and 71, respectively.
Formulas(95—(99) are useful for the discussion of the ex- Frequency spectrao(w), w11(w), and u,(w) in Figs. 4-6
perimental data. Close inspection of these equations showse figured in terms of units af. Valuese,(w) and ex(w)
that the behavior of derivative’G llat) is described inmany i, Figs. 7, 8 are dimensionless values. Figure 3 shows phase
respects by the functioa’ (t)=r""[a(t+ 7) —a(t)], which  (5iectories, obtained for four different groups of patients in
is in its turn can be obtained from the time series observed, . orthogonal variablesily,W,) plane. Let us remind our-
Relations analogous to Eq(§95)—(9_9) are easily available selves, that in correspondénce with formu(&d), (68) the
for the sequence of memory functiol;(t) (55) as well. variableW, presentR Rintervals fluctuations, and/, is the
second orthogonal variable and due to E&f) is combina-

VD”\I(. I\'IAAI‘DI\IZILCI:EAOTIIZOSF?PN?EQ\L/X?SS|8FH3-IF\;DACNH2(S:1G-I’§ tion of an inertia force minus a restoring force. These vari-
ables have dimensions and 71, respectively, wherer

Let us use the stochastic dynamicsRR intervals from  =(lgrr is the average value of tHeR interval in time se-
human ECG's to illustrate some practical value of the ap-quence. The set of characteristic parameters is collected in
proach developed. It is well knowi24,26,49—60 that the  Table I. Let us mention the strong difference of numerical
statistical analysis of related dynamics allows the reliablevalue of the first general relaxation frequeriey frequency
quantitative characteristics of the human cardiovascular sydor four different groups of patients. Figures 4 —6 show
tem states and trusty diagnostics of the various heart diseaspgwer frequency spectra for three different time functions for
[61-65. typical patients from four different groups. FiguréaBcor-

Most investigators into heart rate dynamics have emphatesponds to a strange attractor, Figb)3corresponds to
sized continuous functions, whereas the heart beat itself is iguasi-periodic motion, Fig.(8) 3(d) demonstrate the obvi-

a crucial respect a discrete event. We present here expemusly expressed correlation of phase variabgsand W,.
mental evidence that by considering this quality, the behavAlthough the frequency is measured in units of2/7 and

ior of RRintervals may be appreciated as a result of discret@ower in 72, respectively. Figure 4 shows the power spec-
dynamics. To demonstrate effectiveness of non-Markoviarrum of TCF fluctuations oRRintervals. The data, shown in
approach we only take four typical particular cases from thd=igs. 5, 6 are correspondingly related to power spectra of
whole the set of experimental d4t@6], which are available first and second memory functions. The functions themselves
at our disposal. They are related to the case of healthy maare calculated from formula&7), (68), and(94).

(@), patient with a rhythm driver migratiotb), patient after Figures 7, 8 require special explanation. They show fre-
myocardial infarction(MI) (c), and patient after myocardial quency spectra of first two points(w) ande,(w) of statis-
infarction (MI) with subsequent sudden cardial deé®CD)  tical spectra of non-Markovity parametédMP) ¢;, where

(d). Following standard medical practice, each from 112 peri=1,2, ... . Apresentation of the NMP spectrum was intro-
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150 400
a) b)
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100 FIG. 4. Frequency spectrum of powep(w)
J for TCF of fluctuation ofRR intervals for fourth
% 01 o0z 03 o2 05 % o1 02 03 04 05 patient groups: healthya), patient with rhythm
ofzwn ] of 2n] driver migration(b), patient after myocardial in-

farction (c), and patient after Ml with subsequent

35 60 SCD (d). The schedule is submitted in dimen-
s} © ol D sionless units. The frequency is marked in terms
25 o of units of (2#/7), the functionuy(w) is figured
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duced earlier in Ref$67,68 and was then used in statistical quasi-Markovian processes correspond to situation with
physics of liquids[69,70. Close to that given in Refs. >1. The limit casee~1 describes non-Markovian pro-
[67,68 definitions of non-Markovity were developed later in cesses. In this case the time scale of memory processes and
Refs.[71-74. In comparision with Refs[67—-69 here we  correlations(or junior and senior memory functionsoin-
generalize NMP conception for frequency dependent case cide with each other.

From Figs. 3—8 one can easily obtain sharp differences

€(w)= Mil(w)]llz between four groups of patients for all types of frequency

: si(w) ' spectra. For instance, frequency spectrum of TCF power for
healthy[Fig. 4(@)] is almost reproduced in NMP;(w) spec-
wherei=1,2, ..., andu;(w) is power frequency spectrum trum given in Fig. 7a). Also it is slightly deformed in the
of ith level. spectra of firsfFig. 5a)] and secondFig. 6(a)] memory

As is shown by Yulmetyeet al.in articles|67—70 NMP  functions and is strongly transformed in NMB(w) spec-
value of ¢ allows us to obtain a quantitative estimate of trum [Fig. 8@)]. Sharp peak in the vicinity of the point with
non-Markovity effects and statistical collective memory in ®~0.125 f.u., being characteristical for the pati€hj, is
random changes of experimentally measured data. Parameten in the power spectrum of first and second MFig.
€; allows us to divide all processes in three important caseS(b), 6(b)]. However, for other spectra of type [for ex-
[67—-70. Markovian processes correspond ¢é& 1, while  ample, Figs. &), 7(b), 8(b)] quite complicated structure ap-

7 250
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200
5
X4 & 150
) el
I8 <100
2
1 50 J FIG. 5. Frequency spectrum of powes(w)
o 0 \ for the first MFM ((t) for fourth patient groups:
o o1 02 [21:,3-3 04 05 oo °-":n[2ﬂf-3 04 05 healthy (a), patient with rhythm driver migration
(b), patient after myocardial infarctiofc), and
30 30 patient after Ml with subsequent SC@). The
) d) schedule is submitted in dimensionless units. The
25 25 frequency is marked in terms of units of £27),
.20 20 the functionu,(w) is figured in units of7?.
X )
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I £
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0 AAJ ./\/M L/\. 0 L/\_4\
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pears. Frequency spectrum of tyjeg which is characteristic sults on non-Markovian properties of temporal behavior of
for IM, contains two sharply expressed spectral peaks nearlR R intervals justify significant and characteristic differences
the frequencies, approximately 0.2 and 0.4 f.u. on the backin data for all four groups of patients. We hope that the use
ground of low intensity white noise. These peaks are conef non-Markovian dynamics in the spirit of developed theory
served in the spectra of firgEig. 5(c)] and secondFig. 6(c)]  will incorporate development of more precise estimate of the
MF. In NMP spectree;(w), €;(w), complicated structure of state of cardiovascular systems for healthy as well as for
spectral lines also appears. In characteristic case of patientore careful diagnostics of different patients.

with SCD frequency spectra of tyde) everywhere contain
sharp peaks close to frequency 0.25 f.u. We would like to
mention that all frequency spect(§, 6, 7, and 8 are per-
suasive for strongly expressed non-Markovity for time The present paper deals with two interrelated important
change ofRR intervals. results. The first one is connected with the establishment of

Figures Ta)-7(d) and 8a)—8(d) shows, that all values of the chain of finite-difference non-Markov kinetic equations

NMP €;(w) ande,(w) lie in small interval of value$0—30.  for the discrete TCF. In this case the state of complex sys-
This fact convincingly tell us about characteristic statistictems at the definite level of correlation is described by two
memory and noticeable non-Markovity effects in statisticalvectors constructed over the strict determined rules. It is
dynamics ofRR intervals from human ECG'’s. Obtained re- natural finite-difference equation of motion, being the pecu-

IX. DISCUSSION

30 6
a) b)
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20 4
215 S5
10 2
5 1 FIG. 7. Frequency spectrum of the first point
0 0 in the statistical spectrum on non-Markovity pa-
o od °"‘;[2ﬂ3]'3 04 05 o o °"‘:n[2ﬂ%'3 04 05 rametere, (w) for fourth patient groups: healthy
(a), patient with rhythm driver migratiofb), pa-
12 14 tient after myocardial infarctioric), and patient
c) after MI with subsequent SCI). The schedule
10 12 is submitted in dimensionless units. The fre-

quency is marked in terms of units of.

e, ()
-]
€,(m)

d)
[ 0.1 0.2 0.3 0.4 0.5 [/} 0.1 0.2 0.3 04 0.5
o[ 2] of 2n/1]
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5 10 FIG. 8. Frequency spectrum of the second
N point in the statistical spectrum on non-
% o1 o0z 03 04 o5 % 01 o0z 03 o4 05 Markovity parametere,(w) for fourth patient
of2wr] of2nf] groups: healthy(a), patient with rhythm driver
migration (b), patient after myocardial infarction
10 35 (c), and patient after Ml with subsequent SCD
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25 units. The frequency is marked in terms of units
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liar analog of Liouville equations for the initial dynamic Another important result of our work is the dynanitne
variables which are of particular interest for our analysis. Independentinformation Shannon entropy given in terms of
the subsequent discussion we employ the strict deducethe TCF. This allows us to use the information measure for
mathematical fact of the existence of the normalized TCFthe quantitative characteristic of two interrelated correlation
Due to the operation of scalar product the availability of TCFchannels. One of them corresponds to the creation of time
makes it possible to introduce the projection operators in theorrelation and the other to the annihilation of correlation.
space of vectors of states. Those projection operations and For that as we employ one of the classical Shannon’s
matrix elements of Liouville’s quasioperator ensure the split+esults[17], related to the introduction of fidelity evolution
ting of natural equations of motion and then they are solvedunction and distance function between two vectors of state.
in the closed finite-difference form. Using Gram-Schmidt or-The existence of a new information measure opens up new
thogonalization procedure we find an infinite set of the or-fields for exploration of information characteristics of com-
thogonal dynamic random variables. This allows us to obtairplex systems. In particular, some interesting data arise from
the whole infinite chain of finite-difference kinetic equations calculations frequency spectra of power of information en-
for the initial discrete TCF. These equations contain the setropy.

of all memory functions characterizing the complete spec- The important consequence of the results obtained is the
trum of non-Markov processes and statistical memory effectsisage of power spectra of memory functisng(mr), where

in the complex system. The presence of discretness and tme=0,1,2,3... andj=1,2,3... . The set ofthree junior
very fact of the existence of finite-difference structure en-memory functions with numberjs=1,2,3 provides the basis
able, in principle, to find all memory functions solving suc- for the pseudohydrodynamical description of the complex
cessively kinetic equations for the TCF. Parameters of thessystem. In practice, any memory function can be extracted
equations can be easily obtained from the experimentalljrom the experimental time sets and experimentally recorded
registered TCF. In chaotic dynamics of complex systems th&CF. These criteria provide the possibility to get reliable
TCF above plays the role similar to that of the statisticalinformation about non-Markov processes and memory ef-
integral in equilibrium statistical physics. fects in natural evolution of complex systems. In principle,

TABLE I. Set of ECG’s data for the various group of patients.

Mean ofRR Absolute Relative A first general
intervals variance variance relaxation frequency
Patient r={lgr (M9 a (m9 5 (%) Q2 [units of (2m/7)?]
Healthy man 781 40.9 5.2 0.24
Rhythm driver migration 756 55.9 7.4 0.57
After myocardial
Infarction 647 45.8 7 2.04

After myocardial infarction
With subsequent sudden
Cardiac death 776 323 4.8 2.34
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the new point in the analysis of complex systems arises fronbeen shown by Grossman and Thomp&] that the
the opportunity to construct the dynamical information Sh-Zwanzig-Mori formalism applied to turbulent systems de-
annon entropy for the experimental memory functions. Un-scribed by Navier- Stokes-like equations.
doubtedly, detection of the frequency spectra of power of Mode coupling equatins have been considered in various
entropy for memory functions gives us new unique informa-areas of many particle physics for an approximate treatment
tion about the statistical non-Markov properties as well aff the dynamics of particles in glassg&7,78. These equa-
memory effects in complex systems of various nature. tions are obtained if one represent within the Zwanzig-Mori
Application of the theory developed on the analysis offormalism[43,44] correlation functions in terms of memory
dynamics ofRR intervals from human ECG'’s strongly sug- kem?'s and _then expressed the latter via a factorlzat]on ap-
gest the substantially non-Markovian properties of the thigProximation in terms of the former for the glass transition of
dynamics. Here we have obtained non-Markovian quantita[mlec‘"l"’lr I|qU|ds[79]. It has bgen founq by Heuet al. [80] :
tive characteristics for the fourth various groups of patientsi'at @ model-free interpretation of higer-order correlation

One might expect this method may be use in distinguishin unction determined by NMR reveals important i_n_formation
healthy from pathalogic data sets based in differences in 820Ut the complex dynamics close to glass transition of poly-

non-Markovian properties mers. This has been demonstrated with spin glag&Hsto

In conclusion it may be said that this paper describes §‘.h0w how a hierarch'ical'model .Of spin glass_es_ relaxation can
first-principle derivation of a hierarchy of finite-difference dlsplay aging behavior in the time scale, similar to what is
equations for time correlation function of out-of-equilibrium found in Spin glasg_es _and other com_plex systems out of ther-
systems without Hamiltonian. The approach developedmdynam'cal equmbnum.. The application of the_approach
seems to have potentials and offer few advantages over t veloped on the a_naIyS|s of the _temporall beha_\/lor of com-
usual Hamiltonian point of view. A similar situation is true P ex.systems of various natures will be available in our forth-
apparently with regard to turbulence, aging, for instance, a§0MINg papers.
in spin glasses and glasses as well as experimental time se-
ries for living, social, and natural complex syste(physiol-
ogy, cardiology, finance, psychology, and seismology).etc. = R.M.Y. wishes to thank the DAAD for support and Le-

By way of illustration it is significant that the anomalous hrstuhl fur Theoretische Physik, Institute of Physics at Augs-
scaling of simultaneous correlation function in turbulence isburg University for hospitality. This work was partially sup-
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many time times scales in the time dependence of timeRussian Humanitar Science Fu(@rant No. 00-06-00005a
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correlation function[76] was addressed within the frame- sor M. Dr. G. P. IschmurziiDepartment of Therapy, Kazan
work the Zwanzig-Mori formalisn{43,44] which was ap- State Medical Universityfor the presentation and discussion
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