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Iterative algorithm versus analytic solutions of the parametrically driven dissipative
quantum harmonic oscillator

Michael Thorwart, Peter Reimann, and Peter Ha¨nggi
Institut für Physik, Universita¨t Augsburg, Universita¨tsstraße 1, 86135 Augsburg, Germany

~Received 31 January 2000!

We consider the Brownian motion of a quantum-mechanical particle in a one-dimensional parabolic poten-
tial with periodically modulated curvature under the influence of a thermal heat bath. Analytic expressions for
the time-dependent position and momentum variances are compared with results of an iterative algorithm, the
so-called quasiadiabatic propagator path-integral algorithm. We obtain good agreement over an extended range
of parameters for thisspatially continuousquantum system. These findings indicate the reliability of the
algorithm also in cases for which analytic results may not be availablea priori.

PACS number~s!: 02.70.2c, 05.30.2d, 05.40.2a
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I. INTRODUCTION

Exactly solvable systems have a special status am
physical models. Although oversimplified in many cas
they may serve as a starting point for testing the reliability
methods which can then be transferred to more realistic,
only numerically solvable models. An important class
such models are quantum systems coupled to a dissip
environment and being driven by a time-dependent exte
field @1#. A wide variety of physical phenomena have be
described by these kinds of models, e.g., electron@2# and
proton @3# transfer, tunneling processes of a macrosco
spin @4#, hydrogen tunneling in condensed phases@5#, single
defect tunneling in mesoscopic quantum wires@6#, or tunnel-
ing of the magnetic flux in a superconducting quantum int
ference device@7#, to name but a few. Usually such dissip
tive quantum systems consist of a model Hamilton
bilinearly coupled to a bath of harmonic oscillators. Add
tional external time-dependent driving fields render
mathematical solution even more difficult or even impo
sible.

One of the few analytically tractable time-dependent d
sipative quantum systems is the parametrically driven h
monic oscillator whose analytic solution was found by Zer
and Hänggi in Ref.@8#. A physical realization of this mode
is the Paul trap@9#, which provides an oscillating quadrupo
potential for the enclosed ion. Furthermore, the parame
cally driven dissipative harmonic oscillator may serve a
benchmark for approximation schemes which were de
oped for more general dissipative systems@10#. The interest-
ing feature is that the parametric driving induces a nontriv
quasienergy spectrum@10#, in contrast to additive driving
where the quasienergy spectrum coincides with the spec
of the undriven system apart from a constant shift. This
further corroborated by the fact that the solution of the pa
metrically driven linear oscillator can be utilized to obta
solutions of certain nonlinear dynamical systems@11#.

Powerful approximative numerical procedures for sim
lating dissipative and possibly time-dependent quantum
tems are the Quantum Monte Carlo method@12# and the
quasiadiabatic propagator path-integral algorithm~QUAPI!
developed by Makri and Makarov@13#. The former method
PRE 621063-651X/2000/62~4!/5808~10!/$15.00
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works very well for problems involving path integrals i
imaginary time, however, the calculation of real time pa
integrals is afflicted by the so-calledsign-problemdue to the
rapidly oscillating integrand. The QUAPI algorithm has be
applied to low dimensional dissipative systems such as
driven spin-1/2-particle coupled to a harmonic oscillator b
~driven spin-boson-system! @13# and to the driven double
well potential in order to study quantum hysteresis and qu
tum stochastic resonance@14,15#. Moreover, the QUAPI al-
gorithm has recently been used as a basis for a very effic
memory equation algorithm for spin-boson-models@16#.

The purpose of this paper is to apply the QUAPI alg
rithm to the parametrically driven harmonic oscillator and
compare the results with the analytic solution from Ref.@8#.
While harmonic-oscillator systems are known to exhi
some untypical features this is not the case with respec
the QUAPI algorithm. Our results thus show that not on
intrinsically discrete models like the spin-boson-system
also spatially continuoussystems can be accurately d
scribed by few energy eigenstates if the temperature is
stricted to a moderate regime. Most importantly, this is
first work in which the numerical approximative QUAPI re
sults are compared againstanalytic solutions of aspatially
continuousdriven dissipative quantum system.

The paper is organized as follows: In Sec. II, we introdu
our model of the parametrically driven dissipative quantu
harmonic oscillator and briefly review the analytic solutio
given in Ref.@8#. Section III is devoted to a short review o
the QUAPI method. The comparative main results are p
sented in Sec. IV, before we give the conclusions in Sec

II. THE MODEL AND ITS ANALYTIC SOLUTION

In this section we briefly review the analytic solution
the parametrically driven dissipative harmonic oscilla
from @8#. A quantum particle with massM, position operator
x and momentum operatorp moving in a one-dimensiona
harmonic potential with periodically modulated curvature
described by the Hamiltonian

HS~ t !5
p2

2M
1

M

2
@v0

21e cosVt#x2. ~1!

Following the common approach@1# to model the influence
5808 ©2000 The American Physical Society
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of the environment by an ensemble of harmonic oscillato
the bath HamiltonianHB ~including the interaction with the
system! is given by

HB5(
j

H j~x!5(
j

1

2 F pj
2

mj
1mjv j

2S qj2
cj

mjv j
2

xD 2G ,

~2!

and the whole system is described by the HamiltonianH(t)
5HS(t)1HB . In the case of a thermal equilibrium bath,
turns out that its influence on the system is fully charac
ized by the spectral density

J~v!5
p

2 (
j

cj
2

mjv j
d~v2v j !. ~3!

With the number of harmonic oscillators going to infinit
we arrive at a continuous spectral density. In the followin
we choose for the sake of definiteness a truncated Oh
spectral density, i.e.,

J~v!5Mgv f c~v,vc!. ~4!

Here, g is the coupling strength to the heat bath a
f c(v,vc) denotes a cutoff function which avoids unphysic
divergences due to high-frequency bath modes. For our
culations, we consider two examples for the cutoff functio
~i! a smooth exponential cutoff

f c~v,vc!5exp~2v/vc! ~5!

and ~ii ! a step function

f c~v,vc!5Q~vc2v! ~6!

with cutoff frequencyvc@v0 ,V ~see discussion given be
low!.

We choose a factorizing initial condition of Feynma
Vernon form @17# which means that at timet5t0, the full
density operatorW(t0) is given as a product of the initia
system density operatorrS(t0) and the canonical bath den
sity operator at temperatureT51/kBb, i.e.,

W~ t0!5rS~ t0!ZB
21 exp~2bHB

0 !, ~7!

whereZB
215Tr exp(2bHB

0) and

HB
05(

j

1

2 F pj
2

mj
1mjv j

2qj
2G . ~8!

By way of integrating out the bath degrees of freedom in E
~2! one obtains the following one-dimensional Heisenb
equation for the position operatorx, i.e.,

ẍ~ t !1E
t0

t

ĝ~ t2t8!ẋ~ t8!dt81~v0
21e cosVt !x~ t !

5
1

M
G~ t !2ĝ~ t2t0!x~ t0!, ~9!
s,

r-

,
ic

l
l-

:

.
g

with the friction kernel given by

ĝ~ t !5
2

MpE0

`

dv
J~v!

v
cos~vt !. ~10!

G(t) is a time-dependent fluctuating~operator! force

G~ t !5(
j

cj S pj~ t0!

mjv j
sin„v j~ t2t0!…1qj~ t0!cos„v j~ t2t0!…D ,

~11!

which contains the initial conditions of the bath and of t
particle’s position at timet0. The last term on the right-han
side @proportional tox(t0)# in Eq. ~9! is the so-called initial
slip, caused by the specific choice~7! of the initial condi-
tions.

Exploiting the thermal distribution of the bath one reco
ers the usual connection@via J(v)# between the random an
the frictional forces of the bath in Eq.~11! in the form of the
fluctuation-dissipation-relation, reading,t>t18

^G~ t !G~ t8!&b5Tr@ZB
21 exp~2bHB

0 !G~ t !G~ t8!#

5\L~ t2t8!, ~12!

L~ t !5
1

pE0

`

dv J~v!FcothS \vb

2 D cos~vt !2 i sin~vt !G ,
~13!

where the subscriptb indicates thermal averaging performe
with the canonical density operator forHB

0 defined in Eq.~8!.
The response functionL(t) will play an important role in the
numerical QUAPI algorithm.

It turns out@8# that for the description of the parametr
dissipative quantum oscillator the solution of the classi
deterministiclimit ( \→0,T→0) with vc→` plays a promi-
nent role. Thus, in Eq.~9! the position operatorx is replaced
by the classical coordinatex and * t0

t ĝ(t2t8) ẋ(t8)dt8 goes

over intog ẋ(t). Moreover, on the right-hand side of Eq.~9!,
the fluctuationsG(t) are zero and the initial slip is also omi
ted, which can be achieved by either a somewhat differ
choice of the initial conditions than in Eq.~7! or by replacing
the coupling coefficientscj in Eq. ~2! by cjQ(t2t0

1) so that
HB andHB

0 from Eq. ~8! coincide att5t0. For convenience
we furthermore introduce scaled quantities

t̃ 5
V

2
t, x̃~ t̃ !5AMV/2\xS t5

2 t̃

V
D , ṽ05

2

V
v0 ,

~14!

ẽ5
2

V2
e, g̃5

2

V
g, T̃5

2kB

\V
T, ṽc5

2

V
vc .

In the remainder of this paper,we exclusively use dimension
less quantitiesbut omit all the tildes for the sake of bette
readability. In order to recover the dimensionful quantitie
one has to reintroduce tildes wherever it makes sense
then exploit Eq.~14!. By substitutingx(t)5y(t)exp@2g(t
2t0)/2# we arrive at an undamped oscillator equation foy
which is the well-known Mathieu equation
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ÿ~ t !1S v0
22

g2

4
12e cos 2t D y~ t !50. ~15!

Its mathematical properties like stability and instability r
gions in the parameter space are well known@18#. Neverthe-
less, there exists no closed analytic expression for the s
tion and the equation has to be integrated numerically. In
following, we will need two linear independent solution
F i(t), i 51,2, of Eq.~15! belonging to two different sets o
initial conditions

F1~ t0!50, Ḟ1~ t0!51,

F2~ t0!51, Ḟ2~ t0!50.

They can be determined numerically, e.g., by means o
regular fourth-order Runge-Kutta integration of the Mathi
equation~15!.

Let us return to the dissipative quantum parametric os
lator. The quantities of interest are the variances of the p
tion and the momentum operator, i.e.,

sxx~ t ![^x2~ t !&2^x~ t !&2,

sxp~ t ![
1

2
^x~ t !p~ t !1p~ t !x~ t !&2^x~ t !&^p~ t !&, ~16!

spp~ t ![^p2~ t !&2^p~ t !&2.

Here, the quantum mechanical expectation value is un
stood as usual aŝ•&5Tr@r(t)•#. By determining the propa
gator U(t,t0)5T exp„2 i * t0

t dt8 H(t8)/\… (T is the time or-

dering operator! for the driven dissipative system accordin
to @8#, the reduced density matrixr(t)5TrBath„U(t,
t0)W(t0)U21(t,t0)… can be calculated analytically. Her
W(t0) denotes the full density operator at timet0 and TrBath
the trace over the bath degrees of freedom. Having obta
the reduced density operatorr(t), the quantum-mechanica
expectation values in Eq.~16! can be evaluated. After som
algebra, we find for the dimensionless variances the exp
sions

sxx~ t !5e2g(t2t0)H FF2~ t !2
g

2
F1~ t !G2

sxx
0

12F1~ t !FF2~ t !2
g

2
F1~ t !Gsxp

0 1F1
2~ t !spp

0 J
1Sxx~ t !, ~17a!

sxp~ t !5
1

2
ṡxx~ t !, ~17b!

spp~ t !5ṡxp~ t !1gsxp~ t !

1@v0
212e cos~2t !#sxx~ t !2Spp~ t !. ~17c!

Thereby, we have rectified@19# some minor misprints in@8#
and simplified the equations in@8# for sxp and spp . Here,
sxx

0 , sxp
0 , and spp

0 denote the initial variances of theun-
coupledsystem at timet5t0 which depend on the choice o
lu-
e

a

l-
i-

r-

ed

s-

the initial state for the bare systemHS(t0). The initial con-
ditions for Eqs.~17! at time t5t0

1 are given by

sxx~ t0
1!5sxx

0 ,

sxp~ t0
1!52gsxx

0 1sxp
0 , ~18!

spp~ t0
1!5g2sxx

0 22gsxp
0 1spp

0 .

The discontinuity of the variances at timet0 is a well-known
consequence@1# of the initial slip term in Eq.~9!; it is due to
the factorizing initial condition~7!. The first terms in the
three equations~17! possess the same form as in the class
case. The specific quantum-mechanical features enter via
functionsSxx(t) andSpp(t), which read

Sxx~ t !5
g

pE0

`

dv v f c~v,vc! cothS v

2TD
3H F E

t0

t

ds G~ t,s!expS g

2
~ t2s! D cos~vs!G2

1F E
t0

t

ds G~ t,s!expS g

2
~ t2s! D sin~vs!G2J ,

~19a!

Spp~ t !5
g

pE0

`

dv v f c~v,vc!cothS v

2TD E
t0

t

ds G~ t,s!

3expS g

2
~ t2s! D cos@v~ t2s!#, ~19b!

where G(t,s)5F1(t)F2(s)2F1(s)F2(t). While in Eq.
~19! a general form of the cutoff functionf c(v,vc) with
vc@v0 is kept, the analytic solution~17! is based@8# on the
assumption of a strictly Ohmic classical dynamics (vc
→`) in Eq. ~10!. The consequence of this assumption is t
discontinuity at t5t0 in Eq. ~18! when the system-bath
interaction is switched on instantaneously. A finite cutoff
the spectral densityJ(v) in the damping kernel~10! would
induce a smoothened time evolution of the variances~17!
close tot5t0 on a time scalevc

21 .
The relations~17!,~19! are evaluated by standard nume

cal methods. The efficiency is improved if one applies F
quet’s theorem for the fundamental solutionsF j (s). Then,
the periodic part of the Floquet solutions can be expande
a Fourier series and the integrations over the intermed
timess in Eq. ~19! can be performed analytically. Finally, th
remaining v integrations and the sum over the Fouri
modes can be readily carried out.
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III. NUMERICAL SOLUTION WITH REAL-TIME
PATH INTEGRALS

In the following section, we recapitulate the essentials
the QUAPI algorithm. Further details can be found in t
original works by Makri and Makarov@13#. In order to de-
scribe the dynamics of the system of interest it is sufficien
consider the time evolution of the elements of the redu
density matrix which reads in position representation

r~xf ,xf8 ;t f !5TrBatĥ xfP jqj uU~ t f ,t0!W~ t0!

3U21~ t f ,t0!uxf8P jqj8&, ~20!

U~ t f ,t0!5T expH 2 i /\E
t0

t f
H~ t8!dt8J .

Here, T denotes the chronological operator,W(t0) the full
density operator at the initial timet0 and TrBath the partial
trace over the harmonic bath oscillatorsqj . Due to our as-
sumption that the bath is initially at thermal equilibrium a
decoupled from the system,W(t0) becomes the product o
the initial system density operatorrS(t0) and the canonica
bath density operator at temperatureT, see Eq.~7!. Then, the
partial trace over the bath can be performed and the redu
density operator be rewritten according to Feynman and V
non @17# as

r~xf ,xf8 ,t f !

5E dx0 dx08 G~xf ,xf8 ,t f ;x0 ,x08 ,t0!r~x0 ,x08 ,t0!,

~21!

with the propagatorG given by

G~xf ,xf8 ,t f ;x0 ,x08 ,t0!

5E Dx Dx8 expH i

\
~SS@x#2SS@x8# !JFFV@x,x8#.

~22!

SS@x# is the classical action functional of the system varia
x along a pathx(t) and FFV@x,x8# denotes the Feynman
Vernon influence functional

FFV@x,x8#5expH 2
1

\Et0

t f
dtE

t

t f
dt8@x~ t8!2x8~ t8!#

3@h~ t82t !x~ t !2h* ~ t82t !x8~ t !#J , ~23!
f

o
d

ed
r-

e

with the integral kernel

h~ t !5L~ t !1 id~ t !
2

pE0

`dv

v
J~v! ~24!

and the autocorrelation functionL(t) given in Eq.~13!. As
usual, the restriction to paths that satisfy the boundary c
ditions x0(t0)5x0 , xf(t f)5xf and similarly forx8(t) is un-
derstood implicitly in Eq.~22!. Likewise, the dependence o
the density operatorr in Eq. ~21! on the initial timet0 and on
rS(t0) has been dropped.

To make the equations numerically tractable, we d
cretizet f2t0 into N stepsDt, such thattk5t01kDt and split
the full propagator over one time stepU(tk11 ,tk) in Eq. ~20!
according to the Trotter formula symmetrically into a syste
and an environmental part:

U~ tk11 ,tk!'exp~2 iHBDt/2\!US~ tk11 ,tk!

3exp~2 iHBDt/2\!, ~25!

US~ tk11 ,tk!5T expH 2
i

\Etk

tk11
dt8 HS~ t8!J .

The symmetric splitting of the propagator in Eq.~25! causes
an error proportional toDt3. This error will be studied in
detail in Sec. IV below. The short-time propagatorUS of the
bare system is numerically evaluated by means of a Run
Kutta scheme with adaptive step-size control. Exploiting
approximation~25!, the propagator in the position represe
tation now factorizes as

^xP jqj uU~ tk11 ,tk!ux8P jqj8&

'^xuUS~ tk11 ,tk!ux8&)
j

^qj ue2 iH j (x)Dt/2\

3e2 iH j (x8)Dt/2\uqj8&, ~26!

where theH j (x) are defined in Eq.~2!. By exploiting this
approximation and performing the partial trace over the b
modes in Eq.~20!, one recovers Eq.~21!, but now with a
discretized version of the propagating function~22!, i.e.,
r~xf ,xf8 ;t f !5E dx0 . . . E dxNE dx08 . . . E dxN8 d~xf82xN8 !d~xf2xN!

3^xNuUS~ t f ,t f2Dt !uxN21& . . . ^x1uUS~ t01Dt,t0!ux0&^x0urS~ t0!ux08&

3^x08uUS
21~ t01Dt,t0!ux18& . . . ^xN218 uUS

21~ t f ,t f2Dt !uxN8 &F FV
(N)~x0 ,x08 , . . . ,xN ,xN8 !. ~27!
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Here,F FV
(N)(x0 , . . . ,xN8 ) is the discrete Feynman-Vernon in

fluence functional~23! where the pathsx(t) andx8(t) con-
sist of constant segmentsxk and xk8 , respectively, within
each time intervaltk2 1

2 Dt,tk,tk1 1
2 Dt and can be rewrit-

ten in the form

F FV
(N)~x0 , . . . ,xN8 !5expH 2

1

\ (
k50

N

(
k85k

N

@xk82xk8
8 #

3@hk8kxk2hk8k
* xk8#J . ~28!

The coefficients$hk8k% are closely related to their continuou
time counterparth(t) in Eq. ~24!. Their explicit form is
lengthy and not very illuminating for our purposes; their d
tailed form can be looked up in Ref.@13#.

To make further progress, it is necessary to approxima
break the influence kernelF FV

(N)(x0 , . . . ,xN8 ) in Eq. ~28! into
smaller pieces. To this end, Makri and Makarov use the
@20,13# that the real part of the integral kernelLR(t) typically
exhibits a pronounced peak att50, and quickly approache
0 for t→6`. The decay to zero depends naturally on t
choice of the cutoff functionf c(v,vc), see Eq.~4!. This
suggests the truncation ofh(t) after a certain numberK of
time stepsDt and, correspondingly, to neglecthk8k if k8
.k1K, i.e.,

F FV
(N)~x0 , . . . ,xN8 !')

k50

N

)
k85k

min$N,k1K%

expH 2
1

\
@xk82xk8

8 #

3@hk8kxk2hk8k
* xk8#J . ~29!

In doing so, we approximateL(t) by zero for t.KDt, cf.
Eqs.~13!,~24!. Of course, this truncation induces an error
the final result which has to be handled with care. The e
becomes increasingly less important for increasing temp
tures since then, the bath-induced correlations fall off
creasingly faster. In other words, for higher temperatures
width of the response functionL(t) decreases. In the othe
limit of decreasing temperature however, the numberK of
relevant time intervals is increasing and in the limit of ze
temperatureT50, it is well known @1# that the response
functionL(t) falls off only algebraically fort→6`. Never-
theless, we will see that this approach allows to deal w
quite low temperatures and produces qualitative agreem
with analytic solutions.

The next goal is to approximate the spatially continuo
integrals in Eq.~27! in terms of finite sums. To this end
Makri and Makarov perform a transformation into a ba
given by the energy eigenstatesufm& of the bare system
HamiltonianHS(t r) ~1!, but with the driving term clamped to
an appropriate but fixed reference timet r , i.e.,

HS~ t r !ufm&5Emufm&, m51,2, . . . . ~30!

Em denotes the energy eigenvalues of the static sys
Hamiltonian HS(t r). In certain cases, symmetry properti
suggest the choice of an appropriatet r . Here, we choose the
unperturbed harmonic oscillator as a reference configurat
-

ly

ct

e

r
a-
-
e

h
nt

s

m

n.

This means for our choice of driving to uset r5p/4, so that
cos(2tr)50 in Eq. ~15!. Reintroducing now the thermal bat
but restricting ourselves to small-to-moderate temperatu
T, the thermal occupation of high energy levelsEm is ex-
pected to be negligible. This argument suggests that theufm&
provide a well adapted basis admitting a fast converg
truncation scheme. In other words, we may approximat
project the dynamics onto the Hilbert subspace spanned
the first few energy eigenstatesufm&, m51, . . . ,M , corre-
sponding to an approximate decomposition of the iden
operatorI'(m51

M ufm&^fmu. Before doing so, we perform
one more unitary transformation within thatM-dimensional
Hilbert space such that the position operator becomes d
onal @discrete variable representation~DVR! @21##:

uum&5 (
m851

M

Rmm8ufm8&,

~31!
^umuxuum8&5xm

DVRdmm8 , m,m851, . . . ,M .

Exploiting the approximate decomposition of the identityI
'(m51

M uum&^umu and the truncation of the bath-induced co
relations in Eq.~29!, it is a matter of straightforward bu
tedious manipulations—starting from Eq.~27!—to arrive at
the final form of the QUAPI recursion scheme. In particul
the integrals in Eq.~27! turn into finite sums due to the
transformation~31! into the DVR basis. We do not presen
the detailed form here and refer the reader again to the o
nal literature@13#.

The above introduced restriction to a finite dimension
subspace induces an error in the evaluation of the redu
density matrix. However, as we will also discuss below, t
error behaves in a controlled way if the relevant parame
such as the temperature and the damping are chosen
moderate regime. This means that for increasing tempera
increasingly more DVR states are necessary to describe
dynamics appropriately. Note that in this regime howev
the numberK of the relevant memory time steps is decrea
ing. In the opposite limit of decreasing temperature, the nu
ber M of relevant basis states can be chosen rather sma
this low-temperature limit the numberK of memory time
steps can therefore be increased. Moreover, we note tha
restriction of the dynamics~at long times! to the
M-dimensional Hilbert subspace is not allowed for syste
with an inherent diverging dynamics. This is also seen in
example of the parametrically driven dissipative quant
harmonic oscillator for a parameter choice in an instabi
region of the Mathieu equation~15!, see Sec. IV below.

The efficiency of the QUAPI algorithm is based on th
choice of the two free parametersM ~the number of basis
states! and K ~the length of the memory!. The numerical
objects that one has to deal with are arrays of sizeM2K12

and M2K. In practice, the calculations have been perform
on conventional IBM RS/6000 workstations~43P-260 and
3CT!. The computation time for an iteration over a typic
time span@0,40# depends strongly on the chosen paramete
It ranges from several milliseconds forM53,K52 ~program
size 7 MB! over several seconds forM53,K54 ~program
size 8 MB! up to several hours forM55,K54 ~program size
176 MB!. The strongly limiting factor is the program siz
since the size of the arrays grows exponentially withK. E.g.,
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the parameter combinationM54,K56 leads to too large
arrays and cannot be treated by standard programming t
niques. In practice, with the choiceM56,K53 or M55,K
54, we already are at the upper limit of the QUAPI alg
rithm.

IV. RESULTS

We proceed in reporting our results for the specific e
ample of the parametrically driven dissipative quantum h
monic oscillator. With the reduced density matrix~27! at
hand, we can calculate the variances~16! within the QUAPI
algorithm and compare them with the analytic predictio
~17!,~19!. Most of the figures contain results for rather e
treme parameter values, e.g., low temperature and large
ing amplitude, in order to show that the QUAPI algorith
performs satisfactorily also in these limits. For more mod
ate choices of the parameters, the agreement~not shown!
between numerical and analytic results is much better.

Our main goal is to study the dependence of the varian
~16! on the QUAPI parametersM , K, andDt. For finite M
andK, the deviation increases proportional toDt3 due to the
Trotter splitting in Eq.~25! with increasingDt. For decreas-
ing Dt, the Trotter error decreases but the error made by
memory truncation in Eq.~29! starts to dominate since mor
and more bath correlations are neglected. Thus, the ov
error increases again. In between there exists an ‘‘opti
time step of least dependence,’’ where the quantities are l
sensitive to variations ofDt. This represents the ‘‘principle
of minimal sensitivity’’ for the optimal choice of the time
stepDt for the QUAPI algorithm~see also@16#!. ForM finite
andK→`, the result would be independent ofDt for small
Dt since the Trotter error would vanish and also the fini
memory error would not exist.

The choice ofM andK should be adapted to the chos
bath parameters. In the case of no driving, if the tempera
is low, only few energy eigenstates are required, i.e.,M may
be chosen small. However, low temperature induces lo
range bath correlations. Therefore, the memory lengthK has
to be assumed large. The opposite holds true in the o
limit of high temperature. In the case of driving, the numb
M of basis states is more important compared to the undr
case, since the variances oscillate strongly and higher ly
energy states are excited. The memory lengthK has to be
reduced instead if one is interested in the oscillation am
tudes. However, for the mean value of the variances, the t
memory lengthK is again more important and should b
maximized~see below!.

We shall choose two representative parameter sets for
considerations. Since the memory in Eq.~28! is truncated in
the QUAPI algorithm according to Eq.~29!, the crucial pa-
rameters are the temperatureT and the damping strengthg.
The relatively high temperatureT51.0 and the small damp
ing g50.1 form the first parameter set(High temperature–
weak damping). For this choice, the numerical results a
expected to agree well with the analytic results because l
T suppresses the long-time memory contributions in Eq.~28!
and additionally, a smallg diminishes the influence of th
bath correlations~12!. Our second parameter set is given
T50.1,g51.0 (Low temperature–strong damping). In this
case, long-range bath correlations~12! play a major role and
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the truncation of them will induce an error which will b
larger than in the case of a high temperature and weak da
ing. For intermediate parameter regimes, we find no qua
tive differences.

In all our calculations, we sett050 and choose as th
initial state the ground state of the maximally curved~i.e.,
v0

2→v0
212e) harmonic oscillator, i.e.,rS(t050)5u0&^0u.

The corresponding initial variances in Eq.~17! readily follow
as sxx

0 51/(2Av0
212e), sxp

0 50, and spp
0 5Av0

212e/2.
Our standard choice for the cutoff function will be the exp
nential cutoff~5!, if nothing else is stated. Furthermore, w
always choose the dimensionless curvaturev051.0 in order
to have a rather small separation of the energy levels in
undriven oscillator. This induces a high sensitivity on t
numberM of basis states since the higher lying states
then easily populated thermally or by driving induced tra
sitions. The choice of a largerv0 would be more in favor of
the numerical algorithm.

A. High temperature–weak damping „no driving …

First, we consider the undriven casee50. Figure 1 de-
picts the results for a high temperatureT51.0 and small
friction g50.1. Here and in the following, we use the dime
sionless quantities which have been introduced in Eq.~14!.
Moreover,v051.0 andvc550.0. We find very good agree
ment with the analytic solution for the variances. The init
transient oscillations are reproduced and the asymptotic
ues for long times as well. The initial jump ofsxp(t) @of Eq.
~18!# is still visible, while the jump ofspp(t) is proportional
to g2 and is not visible on this plot.

To be able to study the dependence of the QUAPI al
rithm on the parametersM , K, and Dt we consider the
asymptotic values of the variances at long times. It is cl
from Eq. ~19! that sxp(`)50, so we focus in Fig. 2 on the
two nontrivial variancessxx(`) andspp(`). The qualitative

FIG. 1. Time dependence of the variancessxx(t), sxp(t), and
spp(t) for the undriven dissipative quantum harmonic oscilla
(e50,v051.0) with bath parametersT51.0,g50.1, and an expo-
nential cutoff Eq.~5! with vc550.0. In all the figures, we have
used dimensionless quantities according to Eq.~14!. The solid lines
depict the analytic results~17!, while the dashed lines represent th
numerical solution obtained by the QUAPI algorithm withM
55,K54,Dt50.2. The asterisks mark the initial variancessxx

0

5spp
0 50.5 andsxp

0 50.
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dependence of both variances on the time stepDt is always
similar: The deviation increases with increasingDt due to
the error proportional toDt3 in the Trotter splitting in Eq.
~25!. For decreasingDt, this error decreases and the ‘‘finite
K’’-error takes over. The relevantDt value on which we
focus in the following is the one for which the numeric
result varies the least, i.e., the minima in the curves in Fig
~‘‘principle of minimal sensitivity’’ @16#!.

The left column of Fig. 2 confirms that for a fixe
memory lengthDt•K, a smaller time stepDt induces a
smaller Trotter-error whereas the finite-K-error rema
roughly the same. While for a fixedM ~left column in Fig. 2!

FIG. 2. Asymptotic values of the position~upper row! and mo-
mentum~lower row! variancessxx(`) andspp(`), respectively, as
a function of the time stepDt and different combinations of the tw
QUAPI parametersM ~number of basis states! and K ~number of
memory time steps! for the undriven dissipative quantum harmon
oscillator (e50,v051.0) and heat bath parametersT51.0, g
50.1, andvc550.0 with exponential cutoff Eq.~5!. For the left
column figures, the numberM of basis states is fixed toM55 and
the memory lengthK is varied, while for the right column figures,K
is fixed toK53 andM is varied. Interconnected symbols: solutio
obtained by QUAPI. Horizontal solid line: analytic result~17!.

FIG. 3. Same as Fig. 1, but for the parametersT50.1,g51.0.
Here, the QUAPI parameters areM53,K56,Dt50.2 ~dashed line!
andM55,K54,Dt50.2 ~dashed-dotted line!.
2

s

QUAPI tends to underestimate the analytic result asK in-
creases, a fixedK and growingM ~right column! leads to an
opposite trend, suggesting that indeed the analytic result
be approached best whenboth M and Kbecome large~at a
plateauDt value tending towards zero!.

B. Low temperature–strong damping

1. No driving

Figure 3 depicts the time dependence of the variance
satisfactory agreement with the analytic result. The init
jumps ofsxp(t) and ofspp(t) are more pronounced in thi
strong damping case since the jumps are proportional tg
andg2 @see Eq.~18!#. The deviations in the transient beha
ior are due to the assumption of a strictly Ohmic classi

FIG. 4. Same as Fig. 2, but for the bath parametersT50.1,g
51.0.

FIG. 5. Time dependence of the variancessxx(t), sxp(t), and
spp(t) for the parametrically driven dissipative quantum harmo
oscillator withv051.0 and a small driving amplitudee50.1. The
bath parameters areT50.1,g51.0, andvc550.0@exponential cut-
off Eq. ~5!#. The QUAPI parameters areM53,K56,Dt50.2
~dashed line! and M55,K54,Dt50.25 ~dashed-dotted line!. The
asterisks mark the initial variancessxx

0 50.45,spp
0 50.55, andsxp

0

50.
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dynamics~infinite cutoff vc) in the analytic solution, see th
discussion at the end of Sec. II. They become more p
nounced for low temperatures and strong friction beca
this assumption induces deviations in the short-time evo
tion of the variances on a time scalevc

21 . The bath-induced
long-range memory at this low temperature carries the de
tions over the whole range of the transient dynamics. T
fact that the memory lengthK is decisive for this low tem-
perature is confirmed by the dashed-dotted line.

The dependence of the asymptotic valuessxx(`) and
spp(`) on the QUAPI parameters is shown in Fig. 4. T

FIG. 6. Time-averaged asymptotic values of the position~upper

row! and momentum~lower row! variancess̄xx(`) and s̄pp(`),
respectively, versus time stepDt for different combinations of the
QUAPI parametersM and K, small driving amplitudee50.1 and
bath parametersT50.1,g51.0,vc550.0 @exponential cutoff Eq.
~5!#. For the left column figures, the numberM of basis states is
fixed to M55 and the memory lengthK is varied, while for the
right column figures,K is fixed to K53 and M is varied. The
oscilllator frequency isv051.0.

FIG. 7. Same as Fig. 5, but for the strongly driven casee
50.5. Here, the QUAPI parameters areM54,K54,Dt50.25
~dashed line! and M55,K54,Dt50.25 ~dashed-dotted line!. The
asterisks mark the initial variancessxx

0 50.35,spp
0 50.71, andsxp

0

50.
-
e
-

a-
e

number M of basis states is not so important, while th
memory lengthK is decisive. Again, the analytic predictio
is correctly approached when bothM andK are increased.

2. With driving

Figure 5 demonstrates for a small driving amplitude re
sonable agreement with the analytics. The long-memory
rameter set withK56 hits best the asymptotic mean valu
but the oscillation amplitudes and frequencies are obtai
best by the choice of a largeM55. In comparison to the
undriven case (e50) the time averaged variances are alm
unchanged~Figs. 4 and 6! while the time-resolved behavio
~Figs. 3 and 5! displays notable differences.

Figure 7 depicts the time evolution for the relatively lar
driving amplitude. As expected, for strong driving, a lar
numberM of basis states are required to describe the os
lations correctly. The averaged asymptotic valuess̄xx(`)

FIG. 8. Same as Fig. 6, but for the strongly driven casee
50.5.

FIG. 9. Time dependence of the position variancesxx(t) for a
parameter set where the classical dynamics is unstable, i.ee
50.5,g50.1. The temperature isT51.0 andvc550.0@exponential
cutoff Eq. ~5!#. The QUAPI parameters areM55,K54,Dt50.25.
The asterisk marks the initial variancesxx

0 50.35. The oscillator
frequency isv051.0.
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and s̄pp(`) are plotted in Fig. 8. Since the strong drivin
mixes high-energy eigenstates, the results are consider
more sensitive to the choice ofM than for weak driving~Fig.
6 upper right panel!. However, the same argumentation a
plies like in the undriven case~see Fig. 4!. Considering the
rather extreme parameters~small level-spacing, strong driv
ing, low temperature, strong damping! the agreement with
the analytic results is still satisfactory.

C. Diverging dynamics and dependence on the cutoffvc

Figure 9 showssxx(t) for parameters belonging to a
instability region of the Mathieu oscillator~15! @18#, i.e., the
variances for the driven quantum harmonic oscillator dive
for long times. Since the QUAPI algorithm is restricted to
~finite! M-dimensional Hilbert subspace it cannot reprodu
such an asymptotic divergence.

The last issue we address is the dependence of the dy
ics on the cutoff parametervc and on the explicitshapeof
the cutoff function~5!,~6!. First, we keep an exponential cu
off but choose a smaller cutoff frequencyvc . It is well
known @1# that for the~undriven! quantum harmonic oscilla
tor spp(`) diverges withvc , while sxx(`) is asymptoti-
cally independent ofvc . In Fig. 10, we choose the ‘‘worst’’
case~i.e., low temperature and strong damping! without driv-
ing and decrease the cutoff tovc510.0. Compared to Fig. 3
the value ofsxx(`) is indeed practically unchanged whi
spp(`) has notably decreased.

Figure 11 shows results for a steplike cutoff~6!. First, we
observe that mainly the short-time behavior of the relaxat
process is affected. Clearly, QUAPI with its restriction
only a few energy eigenstates cannot reproduce the tran
high-frequency oscillations ofspp(t). Second, we note that
steplike cutoff affects the decay of the response funct
L(t) from Eq.~13! for t→`. The real/imaginary part ofL(t)
decays qualitatively like an algebraically damped cos/
function. While this might suggest a strong dependence
the QUAPI results on the memory length, we actually find
rather weak dependence since the agreement between
meric and analytic results in Fig. 11 is not considera

FIG. 10. Time dependence of the variancessxx(t), sxp(t), and
spp(t) for a small cutoff frequencyvc510.0 @exponential cutoff
Eq. ~5!#, v051.0, e50, g51.0, andT50.1. Here, the QUAPI
parameters areM55,K54,Dt50.30. The asterisks mark the initia
variancessxx

0 5spp
0 50.5 andsxp

0 50.
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worse than in Fig. 3. This means that the memory trunca
in Eq. ~29! is in fact not very sensitive to the choice of th
cutoff function f c(v,vc) as long as one is not interested
the detailed short-time behavior.

V. CONCLUSIONS

We have studied the dependence of the QUAPI algorit
on its three numerical parameters, namely the time stepDt,
the numberM of basis states, and the memory lengthK. As
a test system, we have used the analytically solvable d
pative quantum harmonic oscillator and its parametrica
driven generalization. The comparison shows a decent ag
ment of the approximative numerical result with the analy
solution, even in the case with driving. This means tha
spatially continuoussystem can be described reasonably w
by taking only a few basis states and a finite memory len
into account. For low temperatures and weak-to-mode
driving, the numberM of basis states has to be chosen sm
and the memory lengthK large, while in the opposite regim
of high temperature,M has to be large butK may be chosen
small. In both cases, satisfactorily largeM andK values are
still numerically feasible. For strong driving, the deviatio
increase but the QUAPI results are still in qualitative agr
ment with the analytic predictions.

Our findings demonstrate the reliability of the QUAPI a
gorithm even in driven,spatially continuoussystems and no
only in finite, discrete dissipative quantum systems such
the spin-boson-system. Therefore, the QUAPI algorithm m
become a standard procedure for simulating open quan
systems in the presence of a class of time dependent,
necessarily periodic driving fields. This technique is es
cially interesting for the study of decoherence in interact
two-level-systems processing quantum bits. There, the qu
tum gate operation prescribes the time dependence of
external control fields which may exhibit a complex nonp
riodic time dependence.
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FIG. 11. Same as Fig. 3, but for a steplike cutoff Eq.~6! with
vc550.0. Parameters arev051.0, e50, T50.1, andg51.0. The
QUAPI parameters areM55,K54,Dt50.25. The asterisks mark
the initial variancessxx
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