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Iterative algorithm versus analytic solutions of the parametrically driven dissipative
quantum harmonic oscillator
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We consider the Brownian motion of a quantum-mechanical particle in a one-dimensional parabolic poten-
tial with periodically modulated curvature under the influence of a thermal heat bath. Analytic expressions for
the time-dependent position and momentum variances are compared with results of an iterative algorithm, the
so-called quasiadiabatic propagator path-integral algorithm. We obtain good agreement over an extended range
of parameters for thispatially continuousquantum system. These findings indicate the reliability of the
algorithm also in cases for which analytic results may not be avaiklpligori.

PACS numbgs): 02.70—c, 05.30-d, 05.40-a

[. INTRODUCTION works very well for problems involving path integrals in
imaginary time, however, the calculation of real time path
Exactly solvable systems have a special status amonigtegrals is afflicted by the so-callesign-problemdue to the
physical models. Although oversimplified in many cases,fapidly oscillating integrand. The QUAPI algorithm has been
they may serve as a starting point for testing the reliability Ofapplled to low d|m¢n3|onal dissipative systems S.UCh as the
methods which can then be transferred to more realistic, biff V€N spin-1/2-particle coupled to a harmonic oscillator bath

only numerically solvable models. An important class of iven spin-boson-systen13] and to the driven double-
y y ‘ P well potential in order to study quantum hysteresis and quan-

such models are quantum systems coupled to a dissipati\§y, stochastic resonan€g4,15. Moreover, the QUAPI al-
environment and being driven by a time-dependent externgyorithm has recently been used as a basis for a very efficient
field [1]. A wide variety of physical phenomena have beenmemory equation algorithm for spin-boson-modél§].
described by these kinds of models, e.g., elecf@nhand The purpose of this paper is to apply the QUAPI algo-
proton [3] transfer, tunneling processes of a macroscopiaithm to the parametrically driven harmonic oscillator and to
spin[4], hydrogen tunneling in condensed phagssingle  compare the results with the analytic solution from Réf.
defect tunne“ng in mesoscopic quantum WIEG}S or tunnel- While harmlonic-oscillator _Sy;tems are knowr) to exhibit
ing of the magnetic flux in a superconducting quantum interSOmMe untypical features this is not the case with respect to
ference devicé7], to name but a few. Usually such dissipa- the QUAPI algorithm. Our results thus show that not only

tive quantum systems consist of a model Hamiltonian'm”ns'ca”y discrete models like the spin-boson-system but

. . . - also spatially continuoussystems can be accurately de-
bilinearly coupled to a bath of harmonic oscillators. Addi- scribed by few energy eigenstates if the temperature is re-

tional extgrnal timg-dependent driying fields rend_er thestricted to a moderate regime. Most importantly, this is the
mathematical solution even more difficult or even impos-fist work in which the numerical approximative QUAPI re-
sible. sults are compared againshalytic solutions of aspatially
One of the few analytically tractable time-dependent dis-continuousdriven dissipative quantum system.
sipative quantum systems is the parametrically driven har- The paper is organized as follows: In Sec. Il, we introduce
monic oscillator whose analytic solution was found by Zerbeour model of the parametrically driven dissipative quantum
and Hanggi in Ref.[8]. A physical realization of this model harmonic oscillator and briefly review the analytic solution
is the Paul traf9], which provides an oscillating quadrupole given in Ref.[8]. Section Il is devoted to a short review of
potential for the enclosed ion. Furthermore, the parametrithe QUAPI method. The comparative main results are pre-
cally driven dissipative harmonic oscillator may serve as aented in Sec. 1V, before we give the conclusions in Sec. V.
benchmark for approximation schemes which were devel-
oped for more general dissipative systdih8]. The interest- Il. THE MODEL AND ITS ANALYTIC SOLUTION
ing feature is that the parametric driving induces a nontrivial
quasienergy spectrurfilQ], in contrast to additive driving
where the quasienergy spectrum coincides with the spectru
of the undriven system apart from a constant shift. This i
further corroborated by the fact that the solution of the par
metrically driven linear oscillator can be utilized to obtai
solutions of certain nonlinear dynamical systers].
Powerful approximative numerical procedures for simu-
lating dissipative and possibly time-dependent quantum sys-
tems are the Quantum Monte Carlo methd@] and the
guasiadiabatic propagator path-integral algoritt@UAPI)
developed by Makri and Makard\.3]. The former method Following the common approadhii] to model the influence

In this section we briefly review the analytic solution of
the parametrically driven dissipative harmonic oscillator
Bom [8]. A quantum particle with madsl, position operator
% and momentum operat@ moving in a one-dimensional
@harmonic potential with periodically modulated curvature is
" described by the Hamiltonian

p> M
Hs(t):er?[wngecoth]xz. )
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of the environment by an ensemble of harmonic oscillatorswith the friction kernel given by
the bath HamiltoniarHg (including the interaction with the

system is given by (1) = iJ deCOS{wt). 10
L p-2 . 2 M Jo w
_ _ i 2 i
HB_; Hi(x)_; 2 Hjerjwi qj—mx) ’ I'(t) is a time-dependent fluctuatirigperatoy force
2
r0=3 ¢ 2 gina (t to)) + g (to) o, (t—to))
and the whole system is described by the Hamiltorti) (t) : G m; o, sin(w;(t—1o))+qj(to) codw;(t—to)) |,
=Hg(t)+Hg. In the case of a thermal equilibrium bath, it (1)
turns out that its influence on the system is fully character-
ized by the spectral density which contains the initial conditions of the bath and of the
5 particle’s position at timeg. The last term on the right-hand
. i side[proportional tox(tp)] in Eq. (9) is the so-called initial
Jw)=7 21: M, o= ). ) slip, caused by the specific choi¢@) of the initial condi-

tions.
With the number of harmonic oscillators going to infinity,  Exploiting the thermal distribution of the bath one recov-
we arrive at a continuous spectral density. In the following,ers the usual connectidmia J()] between the random and
we choose for the sake of definiteness a truncated Ohmithe frictional forces of the bath in E@L1) in the form of the

spectral density, i.e., fluctuation-dissipation-relation, readinggzt;
J(w)=Myof (v, o). 4 (TOT(t')) g=TrZg " exp(— BHHT(HT(t')]
Here, v is the coupling strength to the heat bath and =AL(t—t"), (12

f.(w,w) denotes a cutoff function which avoids unphysical

divergences due to high-frequency bath modes. For our cal- 1 (=
culations, we consider two examples for the cutoff function: L(t)= ;j do J(w)
(i) a smooth exponential cutoff 0

hwpB .
cot?-(T) coq wt) —i sin(wt) |,
(13

fe(w,0c) =X~/ we) © where the subscrigs indicates thermal averaging performed
and (i) a step function with the canonical density operator fe defined in Eq(8).
The response function(t) will play an important role in the
numerical QUAPI algorithm.
folw,w)=0(w;— w) (6) It turns out[8] that for the description of the parametric
dissipative quantum oscillator the solution of the classical

with cutoff frequencyw > wo,Q (see discussion given be- deterministidimit (4 —0,T—0) with wc—< plays a promi-
low). nent role. Thus, in Eq.9) the position operatax is replaced

We choose a factorizing initial condition of Feynman- by the classical coordinate and f{o}(t—t’)k(t’)dt’ goes
Vernon form[17] which means that at timé=to, the full o1 jnig % (t). Moreover, on the right-hand side of E@),
density operatoiV(to) is given as a product of the initial e fctuationd™(t) are zero and the initial slip is also omit-
system density operatgis(to) and the canonical bath den- yoq \vhich can be achieved by either a somewhat different
sity operator at temperatufe=1/kgp, i.e., choice of the initial conditions than in E({) or by replacing

the coupling coefficients; in Eq. (2) by c,—@(t—tg) so that
7) Hg and Hg from Eq. (8) coincide att=t,. For convenience

W(to) = ps(to)Zg * exp(— BHY), . "
(to)=ps(to) 25~ exp — SHg) we furthermore introduce scaled quantities

whereZg'=Trexp(—pBHY) and ) 57 >
T=—t, 7((T)=\/MQ/2ﬁx(t= —), ©o=—= g,
2 2 Q Q
HO-S 1P w2 8
B4 2| m; m; @jq; ®) (14
~ 2 ~ 2 ~ 2kg ~ 2

By way of integrating out the bath degrees of freedom in Eq. € 0?2 ANV RA = hQ T P Ve
(2) one obtains the following one-dimensional Heisenberg
equation for the position operatar i.e., In the remainder of this papewe exclusively use dimension-

less quantitiedbut omit all the tildes for the sake of better
readability. In order to recover the dimensionful quantities,
one has to reintroduce tildes wherever it makes sense and
then exploit Eq.(14). By substitutingx(t) =y(t)exd —t
—tg)/2] we arrive at an undamped oscillator equation yor
which is the well-known Mathieu equation

X(t)+ f: Y(t—t)x(t")dt’ + (wi+ e cosQt)x(t)

1 “
= Mr(t)—Y(t_to)X(to), 9
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. 5 Y the initial state for the bare systeHy(ty). The initial con-
y(O)+| wg— 5 +2ecos 2 |y(1)=0. (159 gitions for Egs.(17) at timet=t, are given by

Its mathematical properties like stability and instability re-
gions in the parameter space are well knd4@]. Neverthe-
less, there exists no closed analytic expression for the solu-
tion and the equation has to be integrated numerically. In the
following, we will need two linear independent solutions
®,(t), i=1,2, of Eq.(15) belonging to two different sets of
initial conditions

+y_ 0
O-XX(tO )_ o-xxl

pr(tg) =— 'yagx-i- a'gp, (18

®y(t)=0, Dy(tg)=1,

+\_ .20 0 0
. O'pp(to )=y Uxx_270'xp+ Opp
Dy(tg) =1, Py(ty)=0.

They can be determined numerically, e.g., by means of dhe discontinuity of the variances at tirtgis a well-known
regular fourth-order Runge-Kutta integration of the Mathieuconsequenckl] of the initial slip term in Eq(9); it is due to
equation(15). the factorizing initial condition(7). The first terms in the

Let us return to the dissipative quantum parametric oscilthree equationgl7) possess the same form as in the classical
lator. The quantities of interest are the variances of the posicase. The specific quantum-mechanical features enter via the
tion and the momentum operator, i.e., functionsX,(t) andX,,(t), which read

T ) =(X3(1)) = (X(1))?,

1 _2|” i
(D=5 (XOP(D) +POX(D) ~ (X(OXP(D),  (16) ZodO=7 fo do ofe(w,0c) C‘“*( 2T>
t Y 2
opp(H)=(P?(1)) —(p(1))?. x{ f ds G(t,s)exp(i(t—s))cos(ws)
to
Here, the quantum mechanical expectation value is under- . 2
stood as usual as )=Tr[p(t) - ]. By determining the propa- + ds G(t S)exp(z(t_s))sm(ws) ]
gatorU(t,to)zTexp(—ifEOdt’ H(t")/#) (7 is the time or- to 2
dering operatgrfor the driven dissipative system according (199

to [8], the reduced density matrixp(t)=Trgan(U(t,

to)W(to) U (t,tp)) can be calculated analytically. Here,

W(t,) denotes the full density operator at timeand T4,

the trace over the bath degrees of freedom. Having obtained S ()= wadw of (0.0 )cot)—( o) )
the reduced density operatp(t), the quantum-mechanical PP 7)o cme
expectation values in Eq16) can be evaluated. After some

t
o7 f ds G(t,s)

to

algebra, we find for the dimensionless variances the expres- Y. B
sions ><exp( 5 (t s))cos{w(t s)], (19b
¥ 2
axx(t)zeV“‘o)H<D2(t)—§<I>1(t) o2y where G(t,s)=®(t)P(s) — D,(s)P,(t). While in Eq.

(19 a general form of the cutoff functiofi.(w,w.) with
0 5 0 WS wg is kept, the analytic solutiofiL7) is based 8] on the
ot P1(t) oy, assumption of a strictly Ohmic classical dynamics, (
—) in Eg. (10). The consequence of this assumption is the
+2,(1), (179 discontinuity att=ty in Eq. (18 when the system-bath-
interaction is switched on instantaneously. A finite cutoff in
: the spectral density(w) in the damping kernel10) would
oxp(t) = Eo'xx(t)1 (17D induce a smoothened time evolution of the varianced
close tot=t, on a time scalav_ *.
opp(t)=<}xp(t)+ Yoyp(t) The reIations(l?),(l'g') are gva}luated by'standard r!umeri-
cal methods. The efficiency is improved if one applies Flo-
+[w§+ 2e o9 2t) oy, (1) —Zpp(t). (170 quet’s theorem for the fundamental solutiodbg(s). Then,
the periodic part of the Floquet solutions can be expanded in
Thereby, we have rectifid 9] some minor misprints ifi8]  a Fourier series and the integrations over the intermediate
and simplified the equations {8] for oy, and o,,. Here, timessin Eq.(19) can be performed analytically. Finally, the
%, ¢° , and ng denote the initial variances of then-  remaining o integrations and the sum over the Fourier

XX Xp?
coupledsystem at timé =t, which depend on the choice of modes can be readily carried out.

Y

+2<1>1(t){¢z(t)—
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IIl. NUMERICAL SOLUTION WITH REAL-TIME with the integral kernel
PATH INTEGRALS

In the following section, we recapitulate the essentials of 5 red
the QUAPI algorithm. Further details can be found in the n(t)=L(t)+i5(t)—J' _‘"J(w) (24)
original works by Makri and Makaro{13]. In order to de- mJo @
scribe the dynamics of the system of interest it is sufficient to
consider the time evolution of the elements of the reduced

density matrix which reads in position representation and the autocorrelation functidn(t) given in Eq.(13). As
) usual, the restriction to paths that satisfy the boundary con-
p(X¢ , X{ 3t0) = Trgam(XeI1;q;[U(ts ,1o) W(to) ditions xg(tg) =Xg, X¢(tf) =X; and similarly forx’(t) is un-
-1 / / derstood implicitly in Eq(22). Likewise, the dependence of
XU™H(ts,to) [x¢ 11505 ), (20 the density operatqs in Eq. (21) on the initial timet, and on
t ps(to) has been dropped.
U(tf,to)zTexp[—i/h H(t’)dt’]. To make the equations numerically tractable, we dis-
to cretizet; —tg into N stepsAt, such that,=t,+ kAt and split

the full propagator over one time stélgt, . 1,t,) in Eq.(20)
according to the Trotter formula symmetrically into a system
and an environmental part:

Here, 7 denotes the chronological operatd¥,(ty) the full
density operator at the initial timg and Tg,., the partial
trace over the harmonic bath oscillatars. Due to our as-
sumption that the bath is initially at thermal equilibrium and
decoupled from the systeriy(t;) becomes the product of _ .
the initial system density operatpk(t,) and the canonical U(ticr 1 ti) ~ exp —iHpAL/2) Ug(ti 1. t)

bath density operator at temperatdiesee Eq(7). Then, the X exp(—iHgAt/2h), (25)
partial trace over the bath can be performed and the reduced

density operator be rewritten according to Feynman and Ver-

i rt
non[17] as Us(tkﬂ,tk):Texp[ - %f L Hs(t')]-
%

p(Xt X ,t5)
The symmetric splitting of the propagator in E§5) causes
=f dxo dxg G(Xs, Xt ,tf:X0,Xg,t0) (X0, X5, t0), an error proportional ta\t3. This error will be studied in
detail in Sec. IV below. The short-time propagatdy of the
(21)  bare system is numerically evaluated by means of a Runge-
Kutta scheme with adaptive step-size control. Exploiting the
approximation(25), the propagator in the position represen-
tation now factorizes as

with the propagatoG given by

G(Xf vxf, vtf ;XO=X(,) 1t0)

[
:f Dx Dx' exp[g(ss[x]—ss[x’])}}‘Fv[x,x’]. (XIT,0|U(ts 1, b X' T

22 A
2 ~<X|Us(tk+1,tk)|X’>H (q|e"HiCIAt2A
Sq x] is the classical action functional of the system variable !
x along a pathx(t) and Fr\[x,x’] denotes the Feynman- XefiHj(x’)At/2h|q]> (26)
Vernon influence functional .

1 (t t
]—',:V[x,x’]=ex% - %f fdtf fdt’[x(t’)—x’(t’)] where theH;(x) are defined in Eq(2). By exploiting this
fo ! approximation and performing the partial trace over the bath
modes in Eq.(20), one recovers Eq21), but now with a
X[ p(t" =t)x(t)— r;*(t’—t)x’(t)]], (23 discretized version of the propagating functi@®), i.e.,

p(X¢,X¢ ;tf)=f dxg ... f def dxg . . . f dxgy S(X; —Xy) S(Xs—Xp)

X (Xn[Us(ts,t= AD)[Xn-1) .+ . . (Xq|Ug(to+ At,to) [Xo){Xo| ps(to) [X0)
X (x| Us H(to+ At to)|X7) . . . (Xj_1/Us M (tr, tr= AD X F N (X0, X5, - - - X XR)- (27)
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Here, FN)(xq, . .. x{) is the discrete Feynman-Vernon in- This means for our choice of driving to use= /4, so that

fluence functional23) where the pathg(t) andx’(t) con-  cos(2,)=0 in Eq. (15). Reintroducing now the thermal bath

sist of constant segments, and x,, respectively, within but restricting ourselves to small-to-moderate temperatures

each time intervat,— 2 At<t,<t,+ 1At and can be rewrit- T, the thermal occupation of high energy levéls, is ex-

ten in the form pected to be negligible. This argument suggests thaighe
provide a well adapted basis admitting a fast convergent

N) ) 1 NN ) truncation scheme. In other words, we may approximately
Frv(Xo, - Xn)=exp — o > > [Xe—xu] project the dynamics onto the Hilbert subspace spanned by
k=0 =k i i -
the first few energy eigenstat¢#,,), m=1, ... M, corre-

sponding to an approximate decomposition of the identity
X[ pereX— n:,kx&]]_ (29 operatorﬂ~2m:l|¢m>(¢m|. Before doing so, we perform
one more unitary transformation within thist-dimensional
Hilbert space such that the position operator becomes diag-
The coefficientd 7} are closely related to their continuous onal[discrete variable representatidBVR) [21]]:
time counterpartp(t) in Eq. (24). Their explicit form is

lengthy and not very illuminating for our purposes; their de- M
tailed form can be looked up in RefL3]. |Um) = E R |6

To make further progress, it is necessary to approximately m=1 (31)
break the influence kernéT)(x,, . .. x{) in Eq.(28) into (Ul XU ) =XPVRE, s mm =1, ... M

smaller pieces. To this end, Makri and Makarov use the fact
[20,13 that the real part of the integral kerrigi(t) typically ~ Exploiting the approximate decomposition of the identity
exhibits a pronounced peak a0, and quickly approaches ~>M . |u,)(u,| and the truncation of the bath-induced cor-
0 for t—=*c. The decay to zero depends naturally on therelations in Eq.(29), it is a matter of straightforward but
choice of the cutoff functionf (w,w.), see Eq.(4). This  tedious manipulations—starting from E@®7)—to arrive at
suggests the truncation of(t) after a certain numbeK of  the final form of the QUAPI recursion scheme. In particular,
time stepsAt and, correspondingly, to negleef. if k'  the integrals in Eq(27) turn into finite sums due to the
>k+K, i.e., transformation(31) into the DVR basis. We do not present
the detailed form here and refer the reader again to the origi-
N NS 1 , nal literature[13].
Fev(Xo, - ’XN)NKHO H exp — 7 [Xe =Xy The above introduced restriction to a finite dimensional
Kk subspace induces an error in the evaluation of the reduced
. density matrix. However, as we will also discuss below, this
XE7Xe™ MienXi] | - (29) error behaves in a controlled way if the relevant parameters
such as the temperature and the damping are chosen in a
In doing so, we approximate(t) by zero fort>KAt, cf. moderate regime. This means that for increasing temperature
Egs.(13),(24). Of course, this truncation induces an error inincreasingly more DVR states are necessary to describe the
the final result which has to be handled with care. The erroflynamics appropriately. Note that in this regime however,
becomes increasingly less important for increasing temperdhe numbe of the relevant memory time steps is decreas-
tures since then, the bath-induced correlations fall off ining. In the opposite limit of decreasing temperature, the num-
creasingly faster. In other words, for higher temperatures th€er M of relevant basis states can be chosen rather small. In
width of the response functioh(t) decreases. In the other this low-temperature limit the numbét of memory time
limit of decreasing temperature however, the numikeof  Steps can therefore be increased. Moreover, we note that the
relevant time intervals is increasing and in the limit of zerorestriction of the dynamics(at long times to the
temperatureT=0, it is well known [1] that the response M-dimensional Hilbert subspace is not allowed for systems
function L (t) falls off only algebraically fot— + . Never- ~ With an inherent diverging dynamics. This is also seen in our
theless, we will see that this approach allows to deal witfexample of the parametrically driven dissipative quantum
quite low temperatures and produces qualitative agreemefR@rmonic oscillator for a parameter choice in an instability
with analytic solutions. region of the Mathieu equatiofi5), see Sec. IV below.

The next goal is to approximate the spatially continuous The efficiency of the QUAPI algorithm is based on the
integrals in EqQ.(27) in terms of finite sums. To this end, choice of the two free parametek$ (the number of basis
Makri and Makarov perform a transformation into a basisStates and K (the length of the memojy The numerical
given by the energy eigenstats,) of the bare system objects that one has to deal W|th are arrays of $i& ™"
HamiltonianH(t,) (1), but with the driving term clamped to andM 2K, In practice, the calculations have been performed

N min{N,k+K}

3CT). The computation time for an iteration over a typical
Het)|ém)=Emlém), mMm=1,2,.... (30)  time spar{ 0,40] depends strongly on the chosen parameters.

It ranges from several milliseconds fivk=3,K=2 (program
E., denotes the energy eigenvalues of the static systersize 7 MB over several seconds fdl =3 K=4 (program
Hamiltonian Hg(t,). In certain cases, symmetry properties size 8 MB) up to several hours fdvl =5 K =4 (program size
suggest the choice of an approprigte Here, we choose the 176 MB). The strongly limiting factor is the program size
unperturbed harmonic oscillator as a reference configuratiorsince the size of the arrays grows exponentially WtHe.g.,
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the parameter combinatioll =4 K=6 leads to too large ®=1.0, =0, T=1.0, ¥=0.1, ©,=50.0

arrays and cannot be treated by standard programming tech- ' ' ' o (t)
niques. In practice, with the choidd =6K=3 orM=5K | _.coeecosssscsssssey i
=4, we already are at the upper limit of the QUAPI algo- 1.0 ¢ 1
rithm.

—— analytic result
---- QUAPI: M=5, K=4, At=0.2

IV. RESULTS 3

We proceed in reporting our results for the specific ex-
ample of the parametrically driven dissipative quantum har- |
monic oscillator. With the reduced density matii7) at W/\/\A,V\______ pr(t)
hand, we can calculate the varian¢&6) within the QUAPI . ‘ .
algorithm and compare them with the analytic predictions 02 0 10 20 30 40
(17),(19). Most of the figures contain results for rather ex- t
treme parameter values, e.g., low temperature and large driv-
ing amplitude, in order to show that the QUAPI algorithm
performs satisfactorily also in these limits. For more moder
ate choices of the parameters, the agreenfeat shown
between numerical and analytic results is much better.

Our main goal is to study the dependence of the varianc
(16) on the QUAPI parametendl, K, andAt. For finite M
andK, the deviation increases proportionalA6® due to the —5K=4At=0.2. The asterisks mark the initial varianced
Trotter splitting in Eq.(25) with increasingAt. For decreas- _ 0 _5's ande® = 0. X
ing At, the Trotter error decreases but the error made by the " ®
memory truncation in Eq29) starts to dominate since more
and more bath correlations are neglected. Thus, the over
error increases again. In between there exists an “optim ; . ) , X
time step of least dependence,” where the quantities are lealltd: F_or intermediate parameter regimes, we find no qualita-
sensitive to variations oAt. This represents the “principle tive differences. .
of minimal sensitivity” for the optimal choice of the time . In all our calculations, we seth=0 and choose as the
stepAt for the QUAPI algorithm(see alsd16]). For M finite |n|2t|al sztate the grounq statg of the_ maximally curge.,
andK—ss, the result would be independent &f for small @0~ @o+2€) harmonic oscillator, i.e.pg(to=0)=0)(0].

At since the Trotter error would vanish and also the finite-1h€ corresponding initial variances in &) readily follow

memory error would not exist. as oy, =1/(2Jwi+2¢), 03,=0, and op,=Jwi+2e/2.

The choice ofV andK should be adapted to the chosen Our standard choice for the cutoff function will be the expo-
bath parameters. In the case of no driving, if the temperaturBential cutoff(5), if nothing else is stated. Furthermore, we
is low, only few energy eigenstates are required, Memay ~ always choose the dimensionless curvatge= 1.0 in order
be chosen small. However, low temperature induces longto have a rather small separation of the energy levels in the
range bath correlations. Thereforey the memory |e“7©ﬂas undriven oscillator. This induces a h|gh SenSitiVity on the
to be assumed large. The opposite holds true in the othéfumberM of basis states since the higher lying states are
limit of high temperature. In the case of driving, the numberthen easily populated thermally or by driving induced tran-
M of basis states is more important compared to the undrivefitions. The choice of a larges, would be more in favor of
case, since the variances oscillate strongly and higher lyin§€ numerical algorithm.
energy states are excited. The memory lengthas to be
reduced instead if one is interested in the oscillation ampli-
tudes. However, for the mean value of the variances, the total
memory lengthK is again more important and should be First, we consider the undriven case=0. Figure 1 de-
maximized(see below picts the results for a high temperatufe=1.0 and small

We shall choose two representative parameter sets for odiriction y=0.1. Here and in the following, we use the dimen-
considerations. Since the memory in E8) is truncated in  sionless quantities which have been introduced in (£4).
the QUAPI algorithm according to E@29), the crucial pa- Moreover,wy=1.0 andw.=50.0. We find very good agree-
rameters are the temperatufeand the damping strengti. ~ ment with the analytic solution for the variances. The initial
The relatively high temperatufe= 1.0 and the small damp- transient oscillations are reproduced and the asymptotic val-
ing y=0.1 form the first parameter s@tligh temperature  ues for long times as well. The initial jump of, () [of Eq.
weak damping) For this choice, the numerical results are (18)] is still visible, while the jump oo, (t) is proportional
expected to agree well with the analytic results because large y? and is not visible on this plot.

T suppresses the long-time memory contributions in(2§) To be able to study the dependence of the QUAPI algo-
and additionally, a smally diminishes the influence of the rithm on the parameter®, K, and At we consider the
bath correlationg12). Our second parameter set is given by asymptotic values of the variances at long times. It is clear
T=0.1,y=1.0 (Low temperaturestrong damping) In this  from Eq. (19) that o,,(*) =0, so we focus in Fig. 2 on the
case, long-range bath correlatiod?) play a major role and  two nontrivial variancesr,,(«) ando, (). The qualitative

FIG. 1. Time dependence of the varianegg(t), o,(t), and
opp(t) for the undriven dissipative quantum harmonic oscillator
(e=0,wo=1.0) with bath parameteff=1.0, y=0.1, and an expo-
nential cutoff Eq.(5) with .=50.0. In all the figures, we have
eused dimensionless quantities according to #¢). The solid lines
gepict the analytic resultd7), while the dashed lines represent the
numerical solution obtained by the QUAPI algorithm witi

je truncation of them will induce an error which will be
grger than in the case of a high temperature and weak damp-

A. High temperature—weak damping (no driving)
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®,=1.0, =0, T=1.0, y=0.1, ©,=50.0
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FIG. 2. Asymptotic values of the positidupper row and mo-
mentum(lower row) variancesry,(«) ando, (), respectively, as

a function of the time stept and different combinations of the two

QUAPI parameterdM (number of basis statesnd K (number of

memory time stepsfor the undriven dissipative quantum harmonic

oscillator (e=0,0p=1.0) and heat bath parametefs=1.0, y
=0.1, andw,=50.0 with exponential cutoff EQ5). For the left
column figures, the numbé of basis states is fixed ol =5 and
the memory lengti is varied, while for the right column figurek,

is fixed toK =3 andM is varied. Interconnected symbols: solutions

obtained by QUAPI. Horizontal solid line: analytic res(f7).

dependence of both variances on the time stéeps always
similar: The deviation increases with increasig due to
the error proportional ta\t® in the Trotter splitting in Eq.

®y=1.0, £=0, T=0.1, y=1.0, ©,=50.0

1371 o—oK=4 11 i
11t =---0K=5 1L i
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T 09} {1t 1
607 | M 11 ]
05 M=3 [ 1
03 | \ . \ it . L L L
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E15 T sty N .
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O

11 . . . . . .
00 02 04 06 08 00 02 04 06 08 1.0
At At

FIG. 4. Same as Fig. 2, but for the bath parameferd.1,y
=1.0.

QUAPI tends to underestimate the analytic resultkam-
creases, a fixell and growingM (right column) leads to an
opposite trend, suggesting that indeed the analytic result will
be approached best whéoth M and Kbecome largdat a
plateauAt value tending towards zero

B. Low temperature—strong damping

1. No driving

Figure 3 depicts the time dependence of the variances in
satisfactory agreement with the analytic result. The initial

(25). For decreasingt, this error decreases and the “finite- JUMPS 0f oy(t) and of o,,(t) are more pronounced in this

K”-error takes over. The relevanAt value on which we

strong damping case since the jumps are proportiongl to

focus in the following is the one for which the numerical @1d” [see Eq(18)]. The deviations in the transient behav-
result varies the least, i.e., the minima in the curves in Fig. 20F are due to the assumption of a strictly Ohmic classical

(“principle of minimal sensitivity” [16]).

The left column of Fig. 2 confirms that for a fixed

memory lengthAt-K, a smaller time stepAt induces a

smaller Trotter-error whereas the finite-K-error remains

roughly the same. While for a fixed (left column in Fig. 2

0,=1.0, £=0, T=0.1, y=1.0, ©,=50.0

—— analytic result
---- QUAPI: M=3, K=8, At=0.2 1
—-—- QUAPI: M=5, K=4, At=0.2

2.0 |

FIG. 3. Same as Fig. 1, but for the parameférs0.1,y=1.0.
Here, the QUAPI parameters ak=3K=6,At=0.2 (dashed ling
andM=5K=4,At=0.2 (dashed-dotted line

w,=1.0, £=0.1, T=0.1, y=1.0, ©,=50.0

— analytic result
2.0 ---- QUAPI: M=3, K=6, At=0.20
—-—- QUAPI: M=5, K=4, At=0.25

] Gpp(t)

o, (t)
o,

-1.0

FIG. 5. Time dependence of the varianegg(t), o,,(t), and
(1) for the parametrically driven dissipative quantum harmonic
oscillator with wy=1.0 and a small driving amplitude=0.1. The
bath parameters aile=0.1, y= 1.0, andw.=50.0[exponential cut-
off Eq. (5)]. The QUAPI parameters art=3K=6At=0.2
(dashed ling and M =5K=4,At=0.25 (dashed-dotted line The
as(t)erisks mark the initial variances,=0.45, o),=0.55, andoy),
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FIG. 6. Time-averaged asymptotic values of the posifigmper
row) and momenturn{lower row) variancesoy,(*) and op,,(),
respectively, versus time stext for different combinations of the
QUAPI parameterdM and K, small driving amplitudee=0.1 and
bath parameter§ =0.1,y=1.00.=50.0 [exponential cutoff Eq.
(5)]. For the left column figures, the numbbt of basis states is
fixed to M=5 and the memory lengtK is varied, while for the
right column figuresK is fixed to K=3 and M is varied. The
oscilllator frequency isvy=1.0.
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FIG. 8. Same as Fig. 6, but for the strongly driven case
=0.5.

number M of basis states is not so important, while the
memory lengthK is decisive. Again, the analytic prediction
is correctly approached when bdth andK are increased.

2. With driving

Figure 5 demonstrates for a small driving amplitude rea-
sonable agreement with the analytics. The long-memory pa-

dynamics(infinite cutoff w) in the analytic solution, see the ;meter set withK =6 hits best the asymptotic mean value,

discussion at the end of Sec.

tion of the variances on a time scalg *. The bath-induced

IIl. They become more prop i the oscillation amplitudes and frequencies are obtained
nounced for low temperatures and strong friction becausggagt by the choice of a largel =5.

this assumption induces deviations in the short-time evolu

In comparison to the
undriven cased=0) the time averaged variances are almost
unchangedFigs. 4 and §while the time-resolved behavior

long-range memory at this low temperature carries the deviaﬂ:igs_ 3 and b displays notable differences.
tions over the whole range of the transient dynamics. The Figyre 7 depicts the time evolution for the relatively large

fact that the memory lengtK is decisive for this low tem-
perature is confirmed by the dashed-dotted line.
The dependence of the asymptotic valugg(e) and

app() on the QUAPI parameters is shown in Fig. 4. The

©,=1.0, e=0.5, T=0.1, y=1.0, ©,=50.0

—— analytic result
---- QUAPI: M=4, K=4, At=0.25
—-—- QUAPI: M=5, K=4, At=0.25

-1.0 : ' :

FIG. 7. Same as Fig. 5, but for the strongly driven case
=0.5. Here, the QUAPI parameters aM=4K=4At=0.25
(dashed ling and M =5K=4,At=0.25 (dashed-dotted line The
as(t)erisks mark the initial variances),=0.35, o),=0.71, andoy,

driving amplitude. As expected, for strong driving, a large
numberM of basis states are required to describe the oscil-

lations correctly. The averaged asymptotic valugs()

©,=1.0, £=0.5, T=1.0, =0.1, ©,=50.0

[ —— analytic result
---- QUAPI: M=5, K=4, At=0.25

FIG. 9. Time dependence of the position variatgg(t) for a
parameter set where the classical dynamics is unstable,ei.e.,
=0.5,y=0.1. The temperature i= 1.0 andw.= 50.0[exponential
cutoff Eq. (5)]. The QUAPI parameters afd =5K=4,At=0.25.
The asterisk marks the initial varianeg),=0.35. The oscillator
frequency iswy=1.0.
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®,=1.0, e=0, T=0.1, ¥=1.0, ©=10.0 ®,=1.0, €=0, T=0.1, y=1.0, »=50.0

3.0
20 r —— analytic result 1
---- QUAPI: M=5, K=4, At=0.3 —— analytic result
2.0 -——- QUAPI: M=5, K=4, At=0.25
Opp(t) 10}
Gxx(t) 3
0.0 >
pr(t) 0.0
-1.0 : ; . ‘ -1.0
0 2 4 6 8 10 0 2 4 6 8 10
t t
FIG. 10. Time dependence of the varianeg(t), ox(t), and FIG. 11. Same as Fig. 3, but for a steplike cutoff Eg). with

app(t) for a small cutoff frequencys = 10.0 [exponential cutoff w,=50.0. Parameters ate,=1.0, e=0, T=0.1, andy=1.0. The
Eq. ()], @o=1.0, €=0, y=1.0, andT=0.1. Here, the QUAPI  QUAPI parameters ar®l=5K=4At=0.25. The asterisks mark
parameters arl =5K=4At=0.30. The asterisks mark the initial the initial variancesr?, = ngzolg, ando-gp=0.
variancesoy,= o= 0.5 andoy,=0.
worse than in Fig. 3. This means that the memory truncation
in Eq. (29 is in fact not very sensitive to the choice of the

and o,,() are plotted in Fig. 8. Since the strong driving cytoff function f.(w,.) as long as one is not interested in
mixes high-energy eigenstates, the results are considerabiife detailed short-time behavior.

more sensitive to the choice bf than for weak drivingFig.
6 upper right pangl However, the same argumentation ap- V. CONCLUSIONS

plies like in the undriven casesee Fig. 4 C_:onS|der|ng th_e We have studied the dependence of the QUAPI algorithm
rather extreme parametetsmall level-spacing, strong driv- o, ts three numerical parameters, namely the time Atep
ing, low temperature, strong dampinthe agreement with  {he numbem of basis states, and the memory lengthAs
the analytic results is still satisfactory. a test system, we have used the analytically solvable dissi-
pative quantum harmonic oscillator and its parametrically
driven generalization. The comparison shows a decent agree-
ment of the approximative numerical result with the analytic
Figure 9 showsao,,(t) for parameters belonging to an solution, even in the case with driving. This means that a
instability region of the Mathieu oscillat@d5) [18], i.e., the  spatially continuousystem can be described reasonably well
variances for the driven quantum harmonic oscillator divergdly taking only a few basis states and a finite memory length
for long times. Since the QUAPI algorithm is restricted to ainto account. For low temperatures and weak-to-moderate
(finite) M-dimensional Hilbert subspace it cannot reproducedriving, the numbeM of basis states has to be chosen small
such an asymptotic divergence. and the memory lengtK large, while in the opposite regime

The last issue we address is the dependence of the dyna@f high temperatureM has to be large but may be chosen
ics on the cutoff parametes, and on the explicishapeof small. In both cases, satisfactorily laryeandK values are

the cutoff function(s),(6). First, we keep an exponential cut- _stiII numerically feasible. For strong d.riv_ing, thg d_eviations
off but choose Q(s)nga)ller cutoff freqﬂenay plt is well increase but the QUAPI results are still in qualitative agree-
-

. . . ment with the analytic predictions.
known[1] th?‘ for the(u_ndrlver) guantum har_momc OSC'”.a' Our findings demonstrate the reliability of the QUAPI al-
tor o,p() diverges withw., while oy,(«) is asymptoti-

; . " ., gorithm even in drivenspatially continuousystems and not
cally independent ok, . In Fig. 10, we choose the “worst” o in finite, discrete dissipative quantum systems such as
case(i.e., low temperature and strong dampimgthout driv- 6" pin-hoson-system. Therefore, the QUAPI algorithm may
ing and decrease the cutoff &= 10.0. Compared to Fig. 3, phecome a standard procedure for simulating open quantum
the value ofoy,() is indeed practically unchanged while systems in the presence of a class of time dependent, not
opp() has notably decreased. necessarily periodic driving fields. This technique is espe-
Figure 11 shows results for a steplike cut@j. First, we  cially interesting for the study of decoherence in interacting
observe that mainly the short-time behavior of the relaxationwo-level-systems processing quantum bits. There, the quan-
process is affected. Clearly, QUAPI with its restriction to tum gate operation prescribes the time dependence of the
only a few energy eigenstates cannot reproduce the transieexternal control fields which may exhibit a complex nonpe-
high-frequency oscillations af,,,(t). Second, we note that a riodic time dependence.
steplike cutoff affects the decay of the response function
L(t) from Eq.(13) for t—«. The real/imaginary part df(t) ACKNOWLEDGMENTS
decays qualitatively like an algebraically damped cos/sin  This work has been supported by the Deutsche For-
function. While this might suggest a strong dependence ofchungsgemeinschaft, Grant No. HA 1517/1RH., M.T),
the QUAPI results on the memory length, we actually find ain part by the Sonderforschungsbereich 486 of the Deutsche
rather weak dependence since the agreement between rieerschungsgemeinschaft(P.H), and by the DFG-
meric and analytic results in Fig. 11 is not considerablyGraduiertenkolleg 283.

C. Diverging dynamics and dependence on the cutofb,
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