Nonlinear Properties of an Inter-Electrode Current Through a Short Molecular Wire

ELMAR G. PSTROYA, YAROSLAV R. ZELINSKIB and PETER HÄNGELF

A) Bogolyubov Institute for Theoretical Physics, Ukrainian National Academy of Science, 14-b Metrologichna street, UA-03683 Kiev, Ukraine and B) Institut für Physik, Universität Augsburg, Universitätsstraβe 1, D 86135 Augsburg, F.R. Germany

The formation of current through a short molecular wire is determined not only by jumps of separate transporting electrons between the sites of electron localization within the wire, but the effects of Coulomb repulsion of the electrons must be accounted for as well. This requirement blocks the appearance of an additional transporting electron in the wire if the wire already contains the transferring electron at an adjacent wire site. The Coulomb blockade effect results in a strong nonlinearity of both, the theodic inter-electrode current-voltage characteristic and current temperature characteristics. Among the characteristic novel features are the oscillations of the current at high voltage bias and its suppression at both, low and high temperatures.

Keywords: molecular wire; nano-electronic current; Coulomb blockade

INTRODUCTION

There are a number of synthesized macromolecular nanostructures like metallo-macrocyclic assemblies[10], metal containing fullerene architectures[11], conductive polymers[12], rigid oligopyrrophenine[13], to name only a few.
where electron transfer (ET) proceeds as an inelastic electron hopping localization within the specific structure units of a molecular nanostructure. When such a molecular nanostructure is embedded between two microelectrodes we deal with a so-called molecular wire. In recent years, the main focus has centered around the behavior of the static tunnel current mediated by a molecular wire18,19. At the same time, inelastic tunnel current has previously been studied in the simplest model of a molecular wire20,21, namely when inelastic ET involves the terminal units only while all inter wire sites play solely a virtual bridging role for a superexchange mechanism. Thus nonlinear effects caused by Coulomb repulsion between the transferring electrons have previously not been taken into consideration.

The objective of the present work is to clarify the basic properties of an inelastic inter-electrode current formed by electron hopping across the wire units. The hopping mechanism assumes a fast relaxation process within each wire unit. When the molecular wire is rather short in length, a strong Coulomb repulsion appears between the transferring electrons captured by the wire units. Here, the role of such a repulsion along with the character of inter-unit and site-electrode transfer quantum rate is studied in the context of nonlinear properties for the emerging current.

THEORETICAL MODEL

Let a voltage V be applied between the left (L) and the right (R) electrodes connected by a regular molecular wire of N identical units. Fig. 1.

![Diagram](image)

FIGURE 1 Scheme of kinetic processes in molecular wire of N units.
The units are separated by spaces/blankets (B); this implies that the site-site couplings are far too small to keep the coherency in the course of inter-electrode ET. Therefore, the relaxation process within each wire unit with forward (α) and backward (β) site-site quantum transfer rates. Correspondingly, the hopping between terminal wire units and adjacent leads is characterized by the site-electrode (γ) and the electrode-site (δ) transfer rate. The form of all these rates can be obtained within the framework of a Gellman rule calculation. Generally, one has to solve a set of quantum kinetic equations for the wire occupations which has a complicated structure due to a Coulomb repulsion of the electrons in the course of their transfer across a molecular wire.

In the present paper, a model of strong Coulomb repulsion is considered which assumes that the molecular wire is closed for the ET if the wire already contains the transferring electron. Such a situation can be realized with a short molecular wire (not more than about 5 Å in length). In the framework of model, the number of possible wire states involved in the ET, becomes drastically reduced. Only those states with zero and single transferring electron per wire are the working wire states. Let \mathcal{W}_n and \mathcal{W}_N ($n = 1, 2, \cdots, N$) denote the weights of corresponding working states. As far as only a single transferring electron can occupy the wire in the course of ET, it is useful to introduce the average site occupancy \bar{F}, which characterizes the chance for the transferring electron to be captured by the n-wire unit. In terms of these average site occupations the weight for the empty wire state is of the form $W'_0 = \prod_{i=1}^{N}(1 - F_i) = \prod_{i=1}^{N}(1 + F_i)^{-1}$ whereas the weight of wire state with the transferring electron captured by the n-unit reads instead $W_0 = \prod_{i=1}^{N}(1 - F_i) - W_0$. The weights specify the probabilities $F_i = W_i/\mathcal{W}_n$ ($\sum_{i=1}^{N} W_i$) and $F_n = W_n/\mathcal{W}_N$ ($\sum_{i=1}^{N} W_i$) to find the wire with no transferring electron and with single captured electron, respectively. Thus, the average number of captured electrons is

$$\bar{n} = \sum_{i=1}^{N} F_i = -\frac{\sum_{i=1}^{N} W_i}{1 + \sum_{i=1}^{N} W_i}.$$

(1)
The current itself is given by \(I = \frac{2eN_i}{h} \) (the factor 2 appears due to two equivalent spin projections of an electron). In accord with the scheme of Fig. 1, the time derivation of number of electrons related to the 1-th electrode is \(\dot{N}_1 = -x_1 \frac{W_i}{N} + x_1 \frac{W_i}{N} \). This equation has to be completed by the set of equations for \(W_0 \) and all \(W_i \). These quantities follow from the set of nonlinear kinetic equations for the site occupancies \(P_i \). We have derived those nonlinear equations from a quantum master equation for the corresponding many-particle system. Simultaneously, we specified all transfer rates \(x_1, x_2, \alpha, \) and \(\beta \). Below, we restrict ourselves by the analysis of steady state ET only. In this case, set of nonlinear kinetic equations for \(P_i \) reduces to the set of linear equations for the auxiliary quantities \(U_i \), if thus can be solved in the form

\[
U_i = M_i^{(n)} f_i^{(n)} = \frac{1 - \gamma^{(n-1)} + \sum_j \gamma^{(n-1)}(1 - \gamma)}{1 - \gamma^{(n-1)}} \frac{(1 + \gamma)(1 + \gamma^{(n-1)})}{(1 + \gamma)(1 + \gamma^{(n-1)})}.
\]

in Eq. (2), the quantities \(x = x_1 / x_2, \gamma = \beta / \alpha, \) and \(\zeta = \alpha / x_1 \) characterize the ratio of transfer rates while the function \(f_i^{(n)} \) specifies the transfer properties of the wire. It follows from the solution of the set of nonlinear equations that the current can be represented in form \(I = 2eW_i x_1 (1 + f_i^{(n)}) \) where \(W_i \) can be looked upon as a transmission factor.

To estimate the order of magnitude for \(I \), one notes that the electrode transfer rate \(x \), determines the width \(\Gamma \) of the localization energy level coupled to the leads \(\Gamma_{0,0} \), i.e. with the value being of the order of \((\Gamma^2 \cdot 10^4) \text{ cm}^{-1} \), depending on distance from the lead surface, e.g. at \(x_1 = 1 \text{ cm}^{-1} = 3 \cdot 10^{-15} \text{ sec}^{-1} \), we obtain that \(I = 10^{-7} \text{ A} \). As far as the width \(\Gamma \) possesses only a minor dependence on temperature, we find that parameter \(I_0 \) presents a temperature insensitive value as well. Bearing this fact in mind we shall analyze just a relative current.
\[i = i_{0}L = \Phi_{0}(1 - f_{c}^{\infty}) \quad (3) \]

RESULTS AND DISCUSSION

Below, we discuss the results of our model for the case \(\zeta << 1 \). This situation corresponds to a slow site-site hopping in comparison with the site-electrode hopping. The case occurs when the site-site distance exceeds the site-electrode distance, cf. Fig.1. At \(\zeta << 1 \), we have \(f_{c}^{\infty} \approx 1 \) and \(1 - f_{c}^{\infty} \approx \zeta(1 - \gamma) \), yielding

\[i \propto \frac{i_{s}}{i_{0}} \sim \zeta \exp(-d\gamma/(1 - \gamma)) \exp(-d/\gamma) \quad (4) \]

where \(k = \exp(-d) \) and \(d = \Delta E_{c}/k_{B}T \). Here, \(\Delta E_{c} = E_{c} - E_{f} \) is the energy difference between the position of the transferring electron being captured by a wire unit, and the position of an electron on the Fermi surface of the electrode. \(T \) denotes the temperature and \(k_{B} \) is the Boltzmann constant.

In accord with the form (4), the complete voltage dependence of nonlinear ET is dictated by the ratio \(\gamma = \exp(-E_{c}/k_{B}T)(eV)/e \), where \(E_{c} = E_{c} - E_{f} = eV/k_{B}T \), the voltage drop caused by the site-site energy bias for two neighbouring wire units. Because the ratio \(\gamma = \exp(-V/k_{B}T/e) \) vanishes at \(V = eV/k_{B}T \), the current then reaches its saturation value which is a function of the temperature \(T \) and the number \(N \) of wire units. E.g. we take \(i_{s} \approx 10^{-5} \) A/sec according to the preceding discussion, then for a wire of \(6 \) units one obtains \(i_{s} \approx 3.5 \) mA. At a small voltage bias, \(V \ll V_{c} \), the current rises with the voltage \(eV \) according to Ohm's law, \(i = \text{const} \cdot V \), where \(\text{const} \) is the conductance. Analytically, this result follows from Eq. (3) if one takes into consideration the relation that \(1 - \gamma \approx V/k_{B}T/e \).

Next, let the voltage be a fixed value. Upon introducing parameter \(\alpha = \Delta E_{c}/k_{B}T_{c} \) and the dimensionless temperature \(\Theta = T/T_{c} \), where \(T_{c} = eV/k_{B} \), we can rescale Eq. (3) as follows

\[i = i_{0}L \approx \zeta^{\alpha} \exp(-\Theta^{\alpha}(1 - \exp(-d/\gamma))) \exp(-d/\gamma) \quad (5) \]
This form depicts clearly that the inter-electrode current vanishes in the two limiting cases of low and high temperatures, see Fig. 2. In order to

\[I = I_0 \cdot 10^{-6} \]

FIGURE 2 Inter-electrode current vs temperature \((I_0 = I_0 \cdot 10^{-6})\)

comprehend its temperature dependence, we note that at low temperature \((T \ll 1)\) the result (5) reduces to a simple law \(I = \zeta \exp(-\Theta)\).

The factor \(\exp(-\Theta)\) determines the efficiency of a thermal process which delivers the electrons from the Fermi surface of electrode into the molecular wire. When \(\Theta\) is very low, essentially no electrons can get onto the wire, yielding \(J = 0\). With increasing temperature, the thermal process starts to deliver electrons to the wire, the wire captures these electrons, and hence the average number of captured electrons, \(\bar{N}\), increases as well, but consistently does not exceed one, as in Fig. 3.

This rise of current is accompanied by an increase of \(\bar{N}\); it can also be deduced from the analytic form

\[\bar{N} = N_e \cdot (1 - N_e \cdot x)^{-1} \]

(6)
which follows from Eq. (1) at \(\zeta \ll 1 \). The saturation of \(n \) occurs around a temperature \(T = (10^{-2})T_s \). In this very same temperature regime the current reaches its maximal value. The following decrease of the current with increasing rise of temperature, results from the enhanced role of backward ET. At \(T = T_s \) we have \(\alpha = \beta \) and thus the forward and backward ET fluxes become compensated.

![Graph showing the relationship between captured electrons and temperature.](image)

FIGURE 3 Average number of captured electrons vs. temperature.

CONCLUSION

A kinetic model for a nonlinear electron transfer process has been presented with this work. The model is based on Coulomb repulsion of transferring electrons captured by the structural units of a molecular wire. The important case of a short wire with strong Coulomb repulsion is considered. Then, the wire is assumed to be closed for the transfer and even a single transferring electron has been already captured by the wire in the course of ET. In this case, only a limited number of wire states participate in the formation of an inter-electrode electron current. The current is thus determined by virtue of the competition between various
transverse quantum rates and the mechanism of strong Coulomb repulsion. Our novel approach may as well be applied to studies of transfer processes in polymer and biopolymer structures and in ion channels.

Acknowledgements

The work was supported in part by the Sonderforschungsbereich 466 of the Deutsche Forschungsgemeinschaft (P.H., E.P.) and Russian-Ukrainian Programme on Nanophysics and Nanoelectronics (E.P., V.A.Z.)

References