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Abstract. We investigate whether for initially localized particles a directed current
in rocked periodic structures is possible in absence of a dissipative mechanism. With
a pure Hamiltonian dynamics the breaking of Time-Reversal-Invariance presents a
necessary condition to find nonzero current values. Numerical studies are presented
for the classical Hamiltonian dynamical case. These support the fact that indeed
a finite current does occur when a time-reversal symmetry-breaking signal, such
as a harmonic mixing signal, is acting. To gain analytical insight we consider the
coherent driven quantum transport in a one-dimensional tight-binding lattice. Here,
a finite coherent current is absent for initially localized preparations; it emerges,
however, when the initial preparation (with zero initial current) possesses finite
coherence. The presence of phase fluctuations will eventually kill any finite current,
thereby rendering the nondissipative currents a transient phenomenon.

1 Introduction

Is it possible to get work out of fluctuations? The answer is a definite “yes”.
This fact is evident from the daily experience with the functioning of mechan-
ical and electrical rectifiers. A typical realization refers to the self-winding
wristwatch that works especially well with gesticulating carriers. It must be
stressed, however, that all these examples refer to macroscopic fluctuations.
The issue becomes more subtle if microscopic fluctuations of classical or quan-
tum Brownian nature are involved. In presence of dissipation, this area of
research has been in the limelight over recent years, and it enjoys an ever
increasing activity. It is known under the label of Brownian motors, ratchet
devices, and in a biological context it is referred to as molecular motors; for
recent reviews see the items [1-4]. The issue we want to address with this
communication is the problem whether such directed transport in periodic
structures can occur if no (!) dissipation is acting on the system. The obvi-
ous answer is again an “of course”: A ballistic, nondissipative particle with
nonzero initial velocity can traverse a periodic structure at no risk. The ob-
jective is more tenuous, however, if we define the generation of fluctuation -
induced directed current only for the situation that initially the particles are
put into the system with zero velocity.

With this prerequisite, a resulting nonvanishing current is indeed counter-
intuitive: It reflects the fact that directed current is obtained out of fluctua-
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tions in absence of a dissipative mechanism. (Note that persistent ring cur-
rents — yielding magnetization — are compatible with thermal equlibrium.)
Such a result may be interpreted as a gain of information that in principle
can be thought of being put into use for a reduction of thermodynamic en-
tropy. This in turn brings back to our minds the thought construction of
a Maxwell’s demon. Such a demon was introduced to a public audience by
James Clerk Maxwell in his 1871 book Theory of Heat [5] with the goal to
“pick a hole in the second law”. In summary, this demon refers to a hypo-
thetical being or device of arbitrarily small mass that possesses for all times
the complete information on all positions and velocities of the molecules in a
vessel which is divided into two parts A and B. These two parts are connected
by a small hole. He can see the individual molecules. Then, without wasting
work, he opens and closes this hole so as to allow only the swifter ones to
pass from A to B, and only the slower ones to pass from B to A. In doing so,
a pressure is build up without having done work, being in violation with the
second law of thermodynamics. This idea actually has also been formulated
by a colleague of Ludwig Boltzmann, namely Josef Loschmidt in 1869 [6].
We note that in thermodynamics, high-ordered energy can degrade sponta-
neously into a disordered form, termed heat. The everyday experience shows
that the time-reversed process seems not to occur naturally. More technically,
the second law of thermodynamics states that the total entropy of a closed
system cannot decrease. Irreversible transport then necessarily requires an
arrow of time — causing dissipation —; i.e. the second law (if such a law ac-
tually is applicable away from thermal equilibrium) determines the direction
of natural processes in a system.

Directed transport is thus generally thought of as being possible only in
presence of irreversibility causing some sort of dissipation. Most sucesseful
theories such as the Boltzmann transport theory (Stosszahlansatz), the the-
ory of stochastic processes being reflected in the schemes of Fokker-Planck
equations or master equations, or also in the approaches that formally start
from the Liouville equation and use a closure procedure and/or introduce a
time direction via the choice of initial condition, such as the fully uncorrelated
many-particle distribution in Bogoliubov’s theory, all involve an element of
Time-Reversal Non-Invariance. It was also the symmetry of Time-Reversal
of the autonomous Liouville equation — causing (on a finite time scale) anti-
kinetic behavior by reversing all the velocities — that led Loschmidt [7] to
his famous objection to Boltzmann’s H-theorem, known as the Loschmidt
paradox. This paradox should not be confused with Zermélo’s paradox [8];
the latter objection to Boltzmann’s kinetic theory is formulated in the form
of a (Poincaré) recurrence paradox.

Our prime challenge here is as follows: Is it possible that a deterministic
Hamiltonian dynamics alone — with no reference to the concept of dissipation
— is able to support a directed current? If the answer is yes, we in essence (on
the level of few-degrees Hamiltonian chaos) deal with a re-incarnation of the
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brainchild created by Maxwell and Loschmidt, namely finite directed trans-
port (carrying information) starting out from zero occurs without dissipation.
The fact that this is — in principle allowed — lies hidden in the Loschmidt para-
dox: What happens when we break Time-Reversal-Symmetry in a purely de-
terministic Hamiltonian dynamics? Before addressing this situation we first
recall the deterministic dissipative case.

2 Periodically Rocked Deterministic Ratchets

2.1 Rocking Ratchets in Presence of Dissipation

By now it is well known that directed transport can occur on a pure dissipa-
tive, deterministic level. The deterministically rocked overdamped dynamics
in a ratchet potential, i.e. a periodic potential profile that breaks the spa-
tial reflection-symmetry, has been studied in Refs. [9-11]. There exist many
macroscopic devices that allow directed transport by use of a periodic rock-
ing force. The situation is typified by the deterministic, overdamped ratchet
dynamics

= ——%UR(CE) + A cos(wt) 1)
with the ratchet potential from Ref. [11] given explicitly by

Ur(z) = —%[Sin(%m:) + zll—sin(47rx)] (2)

Given the simple one-dimensional non-autonomous first order differential
equation the resulting current behavior is rather rich, exhibiting co-existing
stable periodic solutions z(t), current quantization phenomena [11] and a
devil staircase behavior for the current itself {10,11]. In particular, in this
case of overdamped motion no deterministic current reversal occurs. The
latter happens only in presence of noise within the non-adiabatic driving
regime [11], note also the contribution by Reimann in this volume. In Figure
1 we depict this complex phase-diagram for the current behavior as a function
of driving frequency w and driving amplitude A.

The influence of finite inertia with a Z - contribution occurring in Eq.(1)
has been studied in Ref. [13], and recently in Ref. [14]. Now the current
behavior is even richer, exhibiting multiple deterministic current reversals,
current carrying solutions in the regular regime and chaotic regime as well,
an universal Gaussian scaling regime [13], intermittent chaotic behavior and
anomalous deterministic diffusion [13, 14]. Note, however, that the dissipative
term proportional to & breaks Time-Reversal Symmetry. Finite dissipation
thus generically yields a stationary current in an extended parameter regime
of driving strength, driving frequency, and mass value. As noted already in
Ref. [13], see footnote [16] therein, this very form of a driven inertial dynamics
in absence of dissipation is now invariant under Time Reversal Symmetry
t — —t: as a consequence, the absence of the z — term allows for zero
current throughout the whole parameter regime.



10 I. Goychuk and P. Hanggi

0 2 4 6 8

Fig. 1. Phase diagram for finite directed current (white areas) and zero current
(black areas) for the overdamped periodically rocked ratchet dynamics in (1), in
the potential (2), as a function of dimensionless amplitude strength A and di-
mensionless driving frequency w. Note that the onset of current with increasing
driving frequency requires an increased amplitude strength over the adiabatic limit
A = 0.75. This figure has originally been provided by Peter Talkner et al. in (1995)
[12].

2.2 Directed Transport in Absence of Dissipation

We next take a closer look at an inertial Hamiltonian dynamics in a periodic
potential U(z) = U(z + a) which is subject to a time-periodic, on average
unbiased forcing F'(t+T) = F(t). The time-dependent Hamiltonian dynamics
for a particle of mass m in scaled units thus reads

mi = —%Ua(ax) +F(Y) . 3)

We shall define the mean velocity v of this driven Hamiltonian dynamics by

considering (with £(0) = 0) the limiting procedure
o _z(®)

v=fim o) ==~ )

For Eq.(4) to make sense, we implicitly assume here a self-averaging be-

havior for the current. By merely glancing at Figure 2, which exhibits the

tilted potential profile at a maximal forward and backward tilt, one naively

conceives that the condition of breaking the reflection symmetry (a ratchet

profile) should suffice to induce a directed current for symmetric rocking
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F(t) = E; cos(wt). As already noted above, however, this inertial dynamics
satisfies the Time - Reversal Symmetry, ¢ — —t + to, with ¢ in general
being a nonvanishing constant. In our case of a pure cos - drive this constant
is zero. Recently, Flach and collaborators [15] realized that the introduction
of a broken time-space symmetry can indeed yield nonzero directed current.
In particular, they considered the case of a harmonic mixing drive, see [16],
consisting of two harmonics with commensurate frequencies at w and 2w, i.e.

F(t) = E; coswt + ¥(t)] + E; cos[2wt + 24(t) + ¢), (5)

where ¢ denotes a fixed relative phase between the harmonics. Flach et al.
[15] considered the case with () set identically to zero.
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Fig. 2. Sketch of the untilted and (left and right) maximally tilted ratchet potential
configurations for the scaled Hamiltonian dynamics & = — £ Ug(z) + 5 cos(t) with
Ugr(z) = —sin(2rz) — 0.2sin(4nz).

For later purposes, we allow in general, however, for realistic locked fluc-
tuations of the absolute phases of the two harmonics. These nonzero phase
fluctuations do reflect the fact that under realistic conditions the quality of
coherent sources is never perfect, so that the case 1(t) = 0 must be considered
as a (mathematical) idealization. Nevertheless, we shall defer the impact of
such finite phase fluctuations to section 3.2 below and consider first the ideal
situation. As noted by Flach and collaborators, this harmonic mixing signal
F(t) yields Time-Reversal-Non-Invariance for the Hamiltonian dynamics in
(3). Our numerical findings for the time evolution of the position z(t) and the
mean velocity, or current, are depicted with Figures 3(a) and 3(b). Care must
be involved in integrating the Hamiltonian dynamics so as not to introduce a
spurious dissipation induced by the numerical scheme. In doing so, we have
employed a symplectic integrator [17], which guarantees the conservation of
phase volume.
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Fig. 3. Position (a) and mean velocity (b) of a particle in the ratchet potential
Ur(z) = —sin(2wz)—0.2 sin(4nz) driven by the harmonic mixing force (5) with unit
frequency w = 1. The particle is initially localized at the bottom of the potential well
near z = 0, and starts out with zero velocity. The strength of the first harmonic in
(5) was fixed, 1 = 5, which just corresponds to the situation depicted in Fig. 2. The
strength of the second harmonic is chosen either zero, or E2 = 2. Moreover, we use
¥(t) := 0, and the relative phase ¢ is chosen either zero, or 7/2. The numerics were
performed according to the leapfrog/ Verlet algorithm, cf. Eq. (6), with the time
step At = 2m/6 x 1072, or smaller. When the time reversal symmetry is unbroken,
i.e. E2 =0 or E2 # 0, but ¢ =0, no mean velocity emerges. However, the particle
experiences large, Levy-flight like excursions (cf. inset in Fig. 3a). Moreover, the
mean velocity itself undergoes zero-mean random fluctuations (cf. inset in Fig. 3b).
The Time-Reversal-Non-Invariance of the dynamics yields nonzero current.
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In practice, we have used the symplectic integrator given by the leap-
frog/Verlet scheme:

Tpi1 = Tn + At% — %(At)z [ 7 Un(zn) — F(tn)]
Pris = P = 348[ V Un(@n) + VUR(n1) = Flt) = Ftas)]. (6)

We thus find that the breaking of Time-Reversal Invariance presents the key
to obtain possible finite, rocking induced directed current. The breaking of
reflection symmetry is not important for this result; a finite current appears
as well for a reflection - symmetric potential when driven by a harmonic mix-
ing signal. We further note that the trajectories z(t), as well as the current
v(t), exhibit some intermittent, Levy-flight [18] like diffusive behavior. There-
fore, we suspect that the x-motion and the velocity, eq. (4), are not strictly
self-averaging, but presumably (no strong super-diffusion) exhibit long-time
fluctuations that decay for the velocity variable as ¢ — oo. Moreover, the
condition of Time-Reversal-Non-invariance is only necessary (but not suffi-
cient; see Eq. (12) below) to induce a finite current. With the relative phase
set at ¢ = 0 one regains Time-Reversal Symmetry, yielding again a zero
current as depicted in Fig. 3 (a) and 3 (b), note the dashed line behavior
therein. We conjecture here, that the slightest amount of absolute phase fluc-
tuations 1(¢) # 0 will kill any nonvanishing asymptotic, stationary current.
In practice, this then implies that the current induced by the Time-Reversal
Non-Invariance will survive at most only as a transient.

To gain deeper analytical insight into this intriguing question we next
study the ratchet transport in a one-dimensional tight-binding lattice for
which exact analytical results can be derived. This requires the consideration
of a quantum transport scheme.

3 Directed Versus Nondirected Quantum Current
in Absence of Dissipation

3.1 Quantum Rectifiers Working Without Dissipation

To start, let us consider a charged particle such as an electron e < 0 moving
on a periodic lattice under the influence of a harmonic mixing electric field
signal F(t)/e := £(t) of the form in (5) with the force amplitudes Ei, E;
having now the meaning of scaled electric field amplitudes. We set again the
phase fluctuations ¢ (t) = 0. The undriven energy levels for the electron in
the periodic potential possess a band structure. For the sake of simplicity
and clarity, we restrict our analysis to the motion of the electron in the
lowest energy band, neglecting thereby interband transitions. Then, in the
representation of localized Wannier states, |n), the Hamiltonian of the driven
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quantum transport problem acquires the form [19, 20]

m N N ‘
Hrp(t) = Z (In}{n + 1| + |n + 1)(n|) — eal(t) Z nln)(n| , (7)

n=—N n=—N

where hA is the tunneling matrix element between neighboring states and
2N + 1 denotes the number of sites. We shall describe the dynamics in terms
of the density matrix p, . By doing so, we go beyond the standard picture
of pure Bloch states. The density matrix approach allows one to consider
electrons prepared in mixed quantum-mechanical states as well. In the limit
of an infinite (N — oo) number of states this single-band tight-binding model
is integrable and can be solved exactly for arbitrary external driving fields £(t)
[19,21,22]. By the term “exactly” we mean that one can obtain an ezplicit
analytical expression for the characteristic function, F(k,t) = Y e*"p,(¢)
(with —7 < k < 7), of the probability distribution p,(t) = pp . (t) to find the
electron on the site n [22]. Following the reasoning in Ref. [19], we find (in
the limit N — oo) the explicit result

F(k,t) = an ntm(0) dkl i{[k' —n(t,0)Jm+kn—X (k&' ,t)} , (8)

where
Yk, Kk t)y=A /t{cos[k' —n(t,7)] — cos[k’ — k — n(t,7)]}dr, (9)
0
and
n@ﬂ:%[%mw. (10)

With Eq. (8) at hand, any moment of the probability distribution p,(t) can be
found from Eqs. (8), (9), (10) by taking the respective number of derivatives.
The first moment, (z(t)) = —iaF}(0,t), describes the mean position of the
electron on the lattice, (z(t)) = a ), npn(t). It reads [21,22]

t
(@(t) = (@(0)) +alK|4 [ drsinla(r,0) + ], (1)
0
with K = ) pnn-1(0) being the coherence parameter and tan¢p = ;’2%
Next we introduce the quasi-momentum p(t) obeying the so-called accelera-
tion theorem, i.e., p(t) = e£(t), with the pseudo-Hamiltonian given by [20]

H((z),p,t) = |Kle(p) — e{z)E(1),

where €(p) = —hAA cos(pa/F) is the undriven energy spectrum. One can read-
ily demonstrate that Eq. (11) provides the explicit solution of the driven non-
linear classical dynamics described with the pseudo-Hamiltonian H((z),p)
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for the initial quasi-momentum p(0) = fip/a and the initial position (x(0)).
These latter two quantities are defined by the initial density matrix py m, (0).

The result in Eq. (11) has some truly remarkable consequences: for ar-
bitrary external fields we find the prominent result that for a particle be-
ing prepared in a mixed state characterized by the diagonal density matrix
Pn,m(0) = pp(0)dpnm, implying a zero coherence parameter K = 0, the mean
particle position (z(t)) = (x(0)) is not affected by the arbitrary driving fields.
As a consequence we find that the current is identically zero [22], i.e.,

j=0. (12)

This initial diagonal preparation mimics the classical situation of an ini-
tially localized particle. In clear contrast to the motion of a classical particle
in a periodic potential, the quantum mechanical motion of an initially local-
ized particle — being restricted to the single band dynamics — does not support
a net current. This result is counter-intuitive, — even for a fixed bias there
results no finite current. On the other hand it is also intuitive because a finite
current generically would cause dissipation. The counterintuitive classical re-
sult in section 2.2 can therefore be approached from a quantum transport
scheme only if we allow as well for interband transitions.

Is a directed quantum current in absence of dissipation possible never-
theless? There is still the possibility that with a finite coherence parameter
K # 0 afinite current emerges, e.g., due to broken Time-Reversal-Invariance.
In doing so, we prepare pure initial states given by the Bloch waves |#(0)) =
Y nCnln), where ¢, = \/ﬁei”(o)m/h. For this case, pnm(0) = cnc), and the
coherence parameter is maximal, |K| = 1 (N — o). Note that, in the ab-
sence of the external driving, Eq. (11) indicates that any Bloch state carries
a current j = e(#(t)) = eaAsin(p(0)a/k). In view of our stated prerequisite
in the introduction, we consider here the case that the initial current is zero,
yielding p(0) = 0. Then, the tight-binding dynamics driven by a harmonic
mixing signal with fized relative phase, Eq. (5), yields a finite limit in Eq.
(4). The current in absence of dissipation emerges in this case as

Jam = €da Y Jar(61)Jk(&2/2)

k=—o00

X sin [kqs — & sin() — %52 sin(2y + ¢)] ) (13)

where §12 = eaF 2/(hw). This result holds for the fixed phase 1 (t) := 9, cf.
Eq. (5). In the lowest order of the electric field amplitudes and for ¥(t) = 0
we find

Ei\2eaF
ec’;wl) eaFs _leaAeaE2

dhm = [11—66Aa( 22— cead S ] sin(g)- (14)
We notice that the current is identically zero when ¢ = 0, cf. Eq. (14). How-
ever, this current is finite for ¢ # 0. This fact can — misleadingly — be inter-
preted as a current that originates due to broken Time-Reversal-Invariance.
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Note, however, if we put E; = 0 in Eq. (14) the current still exists for ¢ # 0,
although the time-reversal symmetry is restored. This means that the finite
current emerges already in the presence of a single harmonic driving due to
the initial phase shift, ¢ # 0. The latter one generates an effective initial
momentum of the particle, and thus results in a finite current. In absence
of any phase fluctuations this (coherent) current carries no dissipation and
it fails to decohere. Nevertheless, if we assume that the initial field phase 9
is randomly distributed in the interval [0,27] with the probability density
P(y) = 1/2m, one can show that after the corresponding static averaging
over v the current jp,, in Eq. (13) is zero independently of the relative phase
shift ¢. Moreover, we will show now that the dynamical phase fluctuations
¥ (t) also yield decaying current toward zero.

3.2 Role of Phase Fluctuations

Let us consider a simple model of dichotomous Markovian phase fluctuations
¥(t). This model allows for an exact analytic treatment, i.e. we set

P(t) = voa(t), (15)

where 1o denotes the amplitude of phase fluctuations and a(t) = =*1 is
the dichotomous Markov process (DMP) with the stationary autocorrelation
function (a(t)a(t')) = exp(—v|t — t'|) [24]. The parameter v is the mean
frequency of random phase jumps and defines the dephasing time 70 = 1/v.
Using the relations, cos[t)(t)] = cos(¢o) and sin[p(t)] = sin{tpo)a(t), the
external driving can be recast into the form

£(t) = E() ~ g(t)a(s), (16)

where £(t) is given by Eq. (5) for ¢(t) = 0, but with the renormalized am-
plitudes E; — E; = Ej cos(¢y) and E; — Es = E5 cos(21p). Moreover, the
function g(¢) in Eq. (16) reads

g(t) = g1 sin(wt) + g2 sin(2wt + ¢), (17)

where the amplitudes g; = eaF; sin(iyo)/h and g2 = eaFEs sin(2¢y) /R have
the dimension of a frequency.

In the presence of random phase fluctuations the stochastically averaged
time-dependent current is given by [22]

i) = 2. (13)

where the outer average (...)y denotes the average over the phase fluctua-
tions. The stationary current then is given by j = limy—, o j(¢). For the most



Directed current without dissipation 17

interesting case with a coherence parameter of |K| = 1, it follows from Eq.
(11) that

i) = eadd x Im{ exp (ifi(t,0) + p(0)a/H] ) (U (1)) }, (19)

where 7j(t,0) is defined in Eq. (10), but with £(t) taken from Eq. (16). The
function (U(t))y = <exp [——ifotoz(T)g(T)dT]>¢ in Eq. (19) is the averaged

solution of the auxiliary stochastic differential equation
U(t) = —ig(t)a(U(2), (20)

which describes a generalized Kubo oscillator [24] with the stochastic fre-
quency {2(t) = g(t)a(t). The averaged solution of Eq. (20) can be written by
virtue of the Floquet theorem in the form

(U#)y = e Mur () + e uy(2), (21)

with positive-valued Floquet values I3 > 0, and time-periodic Floquet
modes ug 2(t+27/w) = uy 2(t). It then follows from Eq. (19) that the smallest
of the two Floquet exponents, I" = min{I3, I3} in Eq. (21) characterizes the
time scale on which the (transient) current due to the broken Time Rever-
sal Symmetry does exist. Even if the current exists in the absence of phase
fluctuations (), it will relax in real life situations for times ¢ 3> I'!. This
result that in the presence of a random driving a stationary (¢ — oo) current
cannot be realized in absence of dissipation has been shown by us previously
in Ref. [22]. Next, we shall evaluate this time scale explicitly.

The averaged solution of Eq. (20) with g(t) = const has been given by
Kubo [25]. It can also be looked up in the book by Van Kampen [24]. In our
case, the problem is more intricate. To solve the task we apply the formalism
of the so-termed “formulae of differentiation” [26] to yield the coupled set of
differential equations

LW = =gV D),
St B)y = ~Aa(U O - igOU O (22)

for the average (U(t))y and the correlation (a(t)U(t))y. The initial conditions
in Eq. (22) follow as (U(0))y = 1 and ((0)U(0))y = 0. From here on, sailing
becomes smooth by observing that the set (22) is indeed equivalent to a Hill
equation for (U(t))y. To solve (22) we use the transformation (U(t))y =
r(t) cos[®(t) /2], (a(t)U(t))y = ir(t) sin[®(t)/2], and end up with

() = v sin’((t)/2)r (t),
&(t) = —vsin[P(t)] - g(¢) (23)



18 I. Goychuk and P. Hinggi

for the new variables r(¢) and $(¢). The initial conditions transform into
r(0) = 1, and ¢#(0) = 0. In terms of the unknown solution &(t), Eq. (23)
yields for the averaged solution of the stochastic differential equation (20)
the result,

(U(®)y = expf—v /0 sin2[8(r) /2]dr} cos[B(2) /2]. (24)

This formal expression holds for an arbitrary function g(t) and is not re-
stricted to the class of periodic functions only. Because the second equation
in (23) cannot be integrated in closed form for g(t) given in Eq. (17) the
solution (U (t))y remains implicit. However, one can deduce the correspond-
ing decay rate I" in an analytical form for relevant limiting cases. The most
interesting one is the case of a highly coherent field with small field strengths
such that ¥ < w and g1 2 < w. In this case, the amplitude of oscillations of
&(t) is small, $(t) < 1, and one can expand sin[®(t)] = H(t) in (23). After
some straightforward calculations we obtain in the lowest order in the driving
field strengths for the rate

eaE1

r= %u{ sin2(¢o)( — )2 + sinz(wo)(ezaﬁ%)z} (25)

implying for the transient current (for ¢ > v~!) the central result
J(t) = Jhm exP(—Ft)> (26)

with jp., is given in Eq. (14).

This result inherits the following consequences. (i) A nonzero stationary
current does not exist. (ii) The decay rate I" for the transient current is deter-
mined by the mean rate of phase fluctuations v, the amplitude of the phase
fluctuations o and further also by the intensities of the field components
eaE; 5 /hw. (iii) With the increasing field strength, not only does the field-
induced current j., increase, cf. Eq. (14), but at the same time the current
decay rate is also enhanced, cf. Eq. (25). This latter fact may render consid-
erably more difficult the experimental observation of the decaying transient
current. )

To decide whether the coherent field induced current is stationary or not
one can put forward the following criterion: (1) introduce small phase fluc-
tuations 1(t) in the otherwise strictly periodic field £(t), cf. Eq. (5), and (2)
evaluate the limits in the sequence

j=e lim lim —d((m(t)))w (27)

v or Po—0t—00 dt

The order of limits in Eq. (27) is very important and cannot be interchanged.
The application of this criterion to the current in the absence of dissipation
yields j = 0, meaning that no finite stationary contribution survives.
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3.3 Stationary Quantum Current in the Presence of Dissipation

In the previous section we demonstrated that the field-induced current is at
most a transient phenomenon under realistic conditions. The role of finite
dissipation is thus crucial to produce possibly nonvanishing, stationary di-
rected currents. Directed net current emerging in a tight-binding model due
to the combined action of dissipation and external driving has been studied
in the recent literature in Refs. [16,22,23]. The main result of these works
is as follows: The directed current appears in form of a nonlinear response
to the external driving field if any odd moment of the unbiased driving field,
(EPF1(t)),, is different from zero. Here, {...), denotes averaging over the
period of driving. In the lowest third order of the harmonic mixing driving
strengths one finds that the dissipative result j,; [16,23] is proportional to

st o< (E3(t))w o< E2E, cos(o). (28)

The nontrivial prefactor involves the dissipation strength and temperature,
see in Ref. [16,23]. We state (without proof) that the application of the
criterion in (27) does not influence the result in Eq. (28); the current is
stationary and does not decay in time.
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