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We investigate on a unified basis tunneling and vibrational relaxation in driven dissipative multistable
systems described by their N lowest lying unperturbed levels. By use of the discrete variable represen-
tation we derive a set of coupled non-Markovian master equations. We present analytical treatments that
describe the dynamics in the regime of strong system-bath coupling. Our findings are corroborated by

“ab initio” real-time path integral calculations.

PACS numbers: 05.30.—d, 05.40.—a, 33.80.Be, 82.20.Pm

Dissipative tunneling in bistable systems finds wide-
spread applications in many physical and chemical
contexts. Usually, the dynamics is described by restricting
a double-well potential to its lowest tunneling doublet of
energy eigenstates [1]. This two-level system (2LS) de-
scribes well the dynamics at low temperature, but becomes
increasingly invalid at higher temperatures, when higher
lying doublets are populated. Then both tunneling between
the metastable quantum wells and vibrational relaxation
within the wells mix the dynamics. In the presence of
an external field, e.g., a laser, the different doublets are
additionally coupled. Such dissipative multilevel systems
occur in the context of tunneling of magnetization in
organic high-spin molecules, i.e., Mnj, [2] and Feg [3].
Moreover, they mimic tunneling of defects in metals [4]
and hydrogen pair transfer in benzoic acid [5]. Also,
resonant tunneling of the magnetic flux in SQUIDS
exhibits a multilevel structure [6]. An example, where
a picosecond laser driving accelerates intramolecular
isomerization in malonaldehyde, is given in [7]. There, a
pumping mechanism for fast hydrogen transfer (‘“hydro-
gen subway”) is proposed (see also [8]). This complex
driven dissipative multilevel system has been investigated
numerically in [7,9] within a weak coupling approach,
and in [10] within the real-time path integral tensor
multiplication scheme [11]. In absence of driving, the
dissipative bistable system has been researched by a
numerical reactive flux analytic continuation scheme in
[12]. The only analytical approach previous to our work
has been attempted in [8]. In these works, however,
the dynamics restricted to the two lowest tunneling
doublets was investigated in the weak coupling regime.
Because of its complexity, even the nondriven multistate
dynamics has barely been studied [13,14]. Common
to all prior works [8,13,14] is that the position opera-
tor is incorrectly assumed to be diagonal in the localized
(spin) representation. This, however, holds true only
when the lowest tunneling doublet rules the dynamics,
cf. (1) below. Moreover, the harmonic approximation
for the two wells proposed in [13] can be justified
only for a large barrier height where a semiclassical
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description is already applicable [15]. Furthermore, the
research in [14] is not completely based on a full micro-
scopic Hamiltonian.

The prime objective of this work is the development of a
first consistent treatment wherein tunneling (TU), driving,
and vibrational relaxation (VR) are treated analytically on
a common footing, beyond a Redfield approach, and for an
arbitrary number N of levels. A unified, consistent treat-
ment becomes possible only if one uses the termed discrete
variable representation (DVR) [16]. It is in this DVR basis
that the position operator is diagonal. A real-time path
integral approach is used to derive a set of coupled gener-
alized master equations for the combined VR and TU dy-
namics. The predictions of these equations well agree with
precise numerical quantum simulations. Analytical results
for the rate matrix of a N-level system are obtained.

The model.—To start, we consider the Hamiltonian
H(t) = Hy + Hex(r) + Hg which accounts for quan-
tum dissipation and external, generally time-dependent

control fields. The term Hy = 47 + V(q) denotes
the Hamiltonian of the isolated system. We consider
a particle of mass M moving in the bistable quartic
potential V(q) = (M2w{/64Ep)q* — (M wd/4)q*, where
Ep is the barrier height, and wq is the frequency of
classical oscillations around the potential minima at
*qo/2. For the isolated system, the energy spectrum
follows from the Schrédinger equation Hyln) = E,|n),
n=1,2,.... For energies well below the barrier, the
spectrum consists of a ladder of doublets. To illustrate
the method, we consider the case in which only two dou-
blets AA; = E, — E;, and hA, = E4 — E3 contribute
significantly to the dynamics. They are separated by the
energy gap hwgy = %(E4 + E3) — %(Ez + Ep) > hA;.
We consider then the reduction Hy— Hyrs, with
Hj s being the Hamiltonian for the isolated four-
level system (4LS). The external field is characterized
by Hex(t) = —s(t)gq, with s(¢) being a time-dependent
field. In the basis of the vectors |R;) = (1//2) (1) + [2)),
L) = (1/v/2) (1) = 12)), and [Ry) = (1/3/2) (I3) + |4)),
|L,) = (1/32)(13) = |4)), with |L;) (IR;)) localized in
the left (right) well, the discrete position operator of the
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system reads

g = Z a;ij(IR)(R;| — |Li)<L;l)
ij=12
+ b(IL1)(R2| + |R2) (L]
— |R) (L2l — |L2)(R1), ()

with aj; = (1lgq|2), ax, = (3l¢l4), aix = az; = (1lgl4) +
(21q13))/2, and b = ((1|q|4) — (2lq|3))/2 < a;j. Note
that, in clear contrast to the 2LS case, it is nondiag-

onal. For the following analytical treatment, we set
b =0. In all results shown in the figures, however,
we use b # 0. Finally, we model quantum dissipa-

tion by an ensemble of harmonic oscillators that are
bilinearly coupled to the system [15], i.e., Hg = % X
Sil(pi/mi) + miwilx; — (c;/miwi)qP}, with J(0) =
(m/2)>; /(miw)d(w — ;) being the spectral density.
We assume Ohmic dissipation with an exponential cutoff
w: > w( and a viscous friction strength vy, such that
J(w) = Mywe ®/®. We wish to evaluate the proba-
bility Py (¢) := X ;(Lilp(t)|L;) to find at time ¢t > t; the
system in the left well. Here, p(¢) denotes the reduced
density matrix (RDM) of the system. We belabor the
case in which the particle initially is prepared in the lower
left state: p(tg) = |L{){Li|, with the bath in thermal
equilibrium at temperature T = (kgB) .

DVR description of vibrational relaxation and tunnel-
ing.—For a harmonic bath, path integral techniques allow
one to trace out analytically the bath degrees of freedom
in the eigenbasis of the position operator g (DVR basis).
Let us start with the introduction of the DVR vectors:

lay) = v(|IL1) — ulLy)), [B1) = v(IR1) — ulRy)),
laz) = v(ulLi) + |L2)), | B2) = v(ulRy) + |Ry)),
2

with |a;) (| B;)) being localized in the left (right)

well, respectively. Here, v = 1/v1 + u? and u =
(@11 + Ag)/ar = —(axn + Ay,)/ai, and Ay, = —Ag,
denote the position eigenvalues:  A,,, = [—(a; +

axn) ¥ y/(ai — ax»)* + 4a?,1/2. Upon the introduction
of the DVR tunneling matrix elements,

Aup, = v7(A1 + u?Ay),
Ag,p, = V2 (?A; + Ay), 3)
Aalﬁz = Aazﬁl = UZM(AI - AZ)’

being a linear combination of the tunneling splittings A,
and A,, the 4L.S Hamiltonian reads, in this DVR basis,

4LS == ﬁAa ,Bj(lal><ﬁjl + |Bj><al|)
i,j=1,2
+ > (Folai(ail + FglBi){Bil)
=12
— viuliwoR, (4)

with Fo = Fg =u 2v2hmy, Fq,
The matrix R = |a;){a,| + |a2><a1| +

= F& =v ﬁa)()
B1){Bal +

| B2){B1] accounts for intrawell transitions. It is sugges-
tive to introduce the DVR intrawell transition elements

Aalﬂtz = Aazal = Aﬁlﬁz

Because Ay g, = App, = Agyp, < 2v%uwy, different
time scales determine this VR assisted tunneling dy-
namics. For the left well population, one finds Py () =
> {a;lp(t) |a;), with the initial RDM p(t9) = |L1){L{| =
v(lap{ail + w?laz){(azl + ulai){asl + ulaz) (ail)
being nondiagonal. By use of the notation u = a1, as,
B1, B> for the index of the DVR states, the formally exact
path integral expression for the diagonal elements of the
RDM in the DVR basis reads (p, = (ulp(t)|v))

pu) = ¥ [ Dq [ Dy ALY

MoPo

X Flq,q"1puon (t0) ,

with the paths subject to the constraint ¢(1) = ¢'(r) = A,,
and ¢(t9) = Ay, q'(to) = Ay, with {A,} being the po-
sition operator eigenvalues. A[g] is the path weight in
the absence of dissipative forces, while the influence func-
tional F[q, q'] accounts for the bath effects.

N-level dynamics.— Although derived for a 4LS, these
equations hold for a finite number N of levels. We switch
to center of mass 7(s) = [¢(s) + ¢'(s)] and relative
coordinates £(s) = [¢g(s) — ¢'(s)]. Then, the double
path integral over the “N-state” paths g(s) or ¢'(s) is
expressed as a single path integral over the N2 states of
the RDM in the (g, q’) plane. The case of the 4LS is
depicted in Fig. 1. Any such path can be described as
a sequence of time intervals spent in a diagonal state of
the RDM (“sojourns”) and time intervals between two
successive visits of the diagonal states (“clusters”). The
functional F couples different path segments. For a path
with n transitions at times #q,...,1,, we introduce the
cumulative off-diagonal charge p; Z, 1 &, associated
to the path derivative &(s):=>"_,&:8(s — ;). With
Ei= Ay — Ay) — (A, — Ay ), it yields p, =0
within each cluster of n jumps. Thus, the clusters are
“neutral” objects, being only weakly interacting at high
temperature and/or large Ohmic damping, due to the
short range of the intercluster interaction. This suggests a

= Ap,p, = 2v*umy. (5)
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FIG. 1. The sixteen states of the reduced density matrix of a
four-level system (4LS) in the discrete variable representation.
Shown are two typical paths starting and ending in the diagonal
states <. Solid lines indicate vibrational relaxation transitions,
dotted lines tunneling events.
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generalization of the noninteracting-cluster-approximation
(NICA) scheme in [17] to our driven situation, with 0.003 1.0
combined VR and TU transitions also among non-nearest os L R
- ---- QUAPI

neighbors and with an initially nondiagonal RDM. We
call this the VRTU-NICA. It yields the set of coupled
generalized master equations (GME)

N t
Pov(t,10) = 1,(t,19) + Z] dt' Hy,(t,1")puu(t' 10)
u=17"1

(6)

where all intercluster as well as non-nearest-neighbors
sojourn-cluster interactions are neglected, while keeping
fully the intracluster interactions. The VRTU-NICA is
expected to yield reliable results as long as the friction
strength does not exceed level broadening among neigh-
boring doublets or the temperature is not too low. For the
case of a single tunneling doublet the DVR basis coincides
with the localized basis. Then, the VRTU-NICA reduces
to the familiar (driven) noninteracting-blip approximation
for a 2LS [1]. If more than two levels are involved, the
functions H,,, and I, are expressed as power series in the
DVR-Hamilton matrix elements A, .
Sequential dynamics.—To lowest order one finds
A2
H,,(t,1) = —22 7 2ul=" cos[ @, (1,1")

= 0y, = 1],

IV(I’IO) = (51/012 - 5va1)Repalaz(IO)Aalaze_Q;mZ(t_to)
1"

X sin[@q,a,(f,10) = O a,(t — t0)],
VFE M. (7

The conservation of probability yields for the diagonal
elements H,, = —> ., H,,. The driving influence is
captured by @, (t,t') = [}, dt"[e,(t") — &,(t")], where
e,(t) = F, — A,s(t), with F, given below (4). Finally,
the bath influence is encapsulated in the correlation func-
tions Q. = Q},, + Q). with Q. = (A, — A,)*Q(),
and  Q(1) = 4= [5 do [J(0)/w?]({cosh(Bliw/2) —
cosh[w(% — it)]}/[sinh(BAw/2)]). Hence, to each
transition an effective friction strength,

a; = (§j/q0)2a, with & = Myq;/Qmh), (8)

is associated. The prediction for the population Py (r) of
the left well is depicted in the inset of Fig. 2, together
with the results of the quasiadiabatic propagator path-
integral method (QUAPI) [11] adapted to the 4LS case.
For the chosen parameters, higher order coherent paths
yield only minor corrections. The inset also shows that
the dynamics described by (6) is well approximated by a
Markovian master equation, being independent of
the initial off-diagonal preparation, i.e., p,,(t) =
3 Tou()pupu(t), where T, (1) = Jodt' Hyu(t,t — t').
The explicit time dependence of I',, reflects the time
dependent external forcing. It is apparent that the dy-
namics is in this regime governed by a single exponential
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FIG. 2. Averaged transfer rate of a 4LS vs the scaled (s =
Fwo/qo, o = /ii/Mwg) driving amplitude of a resonant () =
wo = 0.815wg) ac field ssin{)¢ as obtained from the smallest
nonzero eigenvalue of the rate matrix (9). The three asterisks ()
denote findings of an exponential fit to the QUAPI results. Note
the resonant enhancement at finite driving strength as the tem-
perature is lowered (Typ = fiwo/kp). Here and in the inset, we
set Ep = 14hwy, v = 0.1wy, w. = 10wq. Inset: Evolution
of the population of the left well as predicted by the GME (6)
with (7), by its Markovian approximation and by the quasiadia-
batic path integral method. We choose 7" = 0.17, s = 1.0sy.

decay. To extract this decay rate, we observe that for
high-frequency fields (such as an interdoublet resonant
field), averaging over a driving period is appropriate. This
yields the time-independent rate matrix

A (7 25 . (Q
ray = 2/‘ fo dr exp[—QL#(T)]JO[{Wﬁs sin({)}

>< COS[(F/.L - FV)T - Q://M(T)], 14 # lu’, (9)
where £, = A, — A,, with Jo(x) being the zeroth Bessel

function. The main part of Fig. 2 shows the 4L.S averaged
decay rate I'*Y, being the smallest nonzero eigenvalue of
the Markovian rate matrix I'2Y , vs the amplitude s of a
resonant ({} = @) driving field s(¢) = ssin({27). Note
the perfect agreement between the GME predictions and
those of the QUAPI, together with the characteristic
nonmonotonic behavior. The important issue of the
contribution of the higher lying states is investigated in
Fig. 3, where the undriven (s = 0) decay rate is depicted
vs the number N of DVR states used to truncate the full
double-well problem. It is clearly seen that, for mod-
erate friction, obeying A; < y < @y, the truncation to
the lowest two doublets is adequate even at moderate
temperature kg7 = 0.1/iwg. This condition implies that
neighboring doublets do not overlap due to frictional
broadening. Clearly, the convergence is expected to
improve as the temperature is lowered. We find (not
shown) that a truncation to a 4LS is adequate for low
temperatures and slow driving fields () < 0.1wg). For
high-frequency fields also higher lying states are involved
in the dynamics as depicted in the inset of Fig. 3. Hence,
a reduction of the driven double-well problem to a 4LS is
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FIG. 3. Static decay rate I" vs the number N of levels used to

truncate the full double-well dynamics. Even at moderate tem-
peratures T = (.17, the reduction to the two lowest doublets
is appropriate for moderate damping. Here and in the inset,
we set Ep = 1.4hwy, o, = 10wy. Inset: Averaged transfer
rate I'*¥ vs driving strengths s of a resonant field () = @) at
T = 0.17T,. Convergence requires now N > 4.

problematic in the presence of a strong resonant field and
moderate temperatures.

Beyond sequential dynamics.—Upon increasing the
temperature (kg7 = hwg), a truncation to a few levels
only starts to be inadequate. Because the effective
friction strengths «; scale quadratically with &;, upon
increasing the number N of DVR states involved, the
NLS effectively flows to weak coupling. For small «;,
however, the noise action does not suppress long intervals
in the off-diagonal states, and the higher order paths
start to contribute. For y < 0.1wg, kT = hiwy, and
w. > kT /h, wg, we can approximate Q(¢) = 2a[w|t]/
AB + In(ABw./27)] + imTasgnt. Now the intercluster
correlations cancel out exactly. The corresponding aver-
aged Markovian rates read

av_:)C n_5,-in~ 27 aj
FVM - Z Z l_[( 1) <2> AMjVi’Mlej1<18ﬁwc>

n=2 {u;v;} j=I
X e—iﬂ(—l)éfajpj/é:/fj , (10)
fi= f " dr o lCma /(B EN JO[ p 2 Sin(&ﬂ
' 0 Q 2

X e_i(F“.i_F"./)T,
where p; = fff i» 0; = 0(1) for a vertical (horizontal)
jump and A v v 18 the DVR-Hamilton matrix ele-
ment for the transition from (u;—1,v;-1) to (u;, 7)), e.g.,
for a horizontal jump, A, , 4. v, , = A, . Since (10)
describes well the high temperature dynamics, this rate
matrix with s = 0 constitutes the starting point for an
evaluation of the crossover to the classical regime. With
s # 0, however, a chaotic dynamics may occur.
Conclusions.—We put forward a real-time path
integral approach to investigate the interplay between

vibrational relaxation and tunneling in driven, dissipative
multilevel quantum systems. We succeeded in deriving
a novel GME within the DVR basis which treats tun-
neling and intrawell dynamics on a common basis: Its
Markovian approximation in (9) and (10) yields novel
analytical results that well agree with those of the full
GME. In contrast to semiclassical imaginary-time rate
calculations [15], we are not limited by the requirement
of thermal equilibrium at adiabatically varying external
fields. Hence, our results provide a powerful tool to
investigate the crossover from a quantum to a classical
dynamics beyond the restrictions of the semiclassical
approximation. Our choice of parameter finely mimics
the situation of a picosecond laser which accelerates iso-
merization in malonaldehyde [7]. There a barrier height
of Ep = 1.7 is given, to be contrasted with Ep = 1.4
here. Also Mnj; and Feg nanomagnets, which have a
spin ground state of § = 10 (N = 21 levels), provide an
interesting example of where to apply our theory [2].
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