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Amorphous thin film growth: Minimal deposition equation

Martin Raible, Stefan J. Linz, and Peter Ha¨nggi
Theoretische Physik I, Institut fu¨r Physik, Universita¨t Augsburg, D-86135 Augsburg, Germany

~Received 3 March 2000!

A nonlinear stochastic growth equation is derived from~i! the symmetry principles relevant for the growth
of vapor deposited amorphous films,~ii ! no excess velocity, and~iii ! a low-order expansion in the gradients of
the surface profile. A growth instability in the equation is attributed to the deflection of the initially perpen-
dicular incident particles due to attractive forces between the surface atoms and the incident particles. The
stationary solutions of the deterministic limit of the equation and their stability are analyzed. The growth of the
surface roughness and the correlation length of the moundlike surface structure arising from the stochastic
growth equation is investigated.

PACS number~s!: 68.35.Bs, 61.43.Dq
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I. INTRODUCTION

The understanding of the kinetics of surface growth p
cesses has recently developed into a highly active rese
area of statistical physics~see Ref.@1#!. The dynamics of the
surface evolution, e.g., in molecular beam epitaxy~MBE! or
physical vapor deposition is dominated by the competit
between roughening mechanisms due to deposition of
ticles and smoothening mechanisms due to surface diffu
@2–6#. The growing surface can evolve into self-simil
structures or, in the presence of a growth instability, in
periodic patterns. In particular, the growth of amorphous t
films represents an attractive system for the understandin
surface growth processes because of the spatially isotr
nature of the amorphous structure and the absence of
range structural order. Experimental studies of amorph
thin films, deposited by electron beam evaporation, disp
the formation of moundlike structures on a mesosco
length scale@7,8#. Despite the complexity of the growth pro
cess on the atomic scale this indicates that coarse-gra
continuum models based on stochastic growth equations@1#
can be useful for the understanding of the growth dynam

Our investigation focuses on the development and
analysis of a minimal deposition equation appropiate for
modeling of amorphous film growth under physical vap
deposition conditions~low-energetic particles! and normal
incidence.

Our paper is organized as follows. In Sec. II we pres
the basic experimental setup under consideration and a s
mary of constructive elements leading to a heuristic ans
for the deposition equation for amorphous film growth.
Sec. III, we use a systematic approach to obtain the mini
functional form of the deposition equation and relate the
tering terms to their underlying surface relaxation mec
nisms. This yields an additional justification of the heuris
ansatz in Sec. II. In Sec. IV, we give a thorough discuss
of the existence and stability of the stationary solutions
the deterministic deposition equation which constitutes
skeleton of time evolution of the stochastic deposition eq
tion. A detailed numerical investigation of the time evolutio
of the correlation length and the surface roughness resu
from the deposition equation is presented in Sec. V. Sec
VI summarizes the major results of our study.
PRE 621063-651X/2000/62~2!/1691~15!/$15.00
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II. BASICS

As a tool for the theoretical description of the time ev
lution of the surface morphologyH(xW ,t) where H denotes
the z coordinate of the growing surface at the substrate
sition xW5(x,y) and timet ~see also Fig. 1!, we use the well-
established phenomenological approach that is based on
chastic nonlinear partial differential equations@1#

] tH5G~¹W H !1F1h. ~1!

In Eq. ~1!, G denotes a functional that contains the vario
surface relaxation phenomena and only depends on the
rivatives of the surface height since the growth process
determined by thelocal surface properties. The functiona
form of G depends strongly on the considered experimen
setup and the details of the kinetics of the deposition proc
Moreover,F in Eq. ~1! denotes the mean deposition rate a
h(xW ,t) is the corresponding deposition noise that determi
the fluctuations of the deposition flux about its meanF.
These fluctuations are assumed to be Gaussian white,

^h~xW ,t !&50; ^h~xW ,t !h~yW ,t8!&52Ddd~xW2yW !d~ t2t8!,
~2!

where the brackets denote ensemble averaging,D the fluc-
tuation strength,d the spatial dimension of the surface (d

FIG. 1. Sketch of the vapor deposition of an amorphous film
a substrate.
1691 ©2000 The American Physical Society
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51 or 2!. For an estimate of the magnitude ofD we refer to
Appendix A. Moreover, it proves useful to introduce th
height profile

h~xW ,t !5H~xW ,t !2Ft ~3!

in the frame comoving with the mean deposition rateF.
Then, the spatiotemporal evolution ofh(xW ,t) is given by
] th5G(¹W h)1h. If the deposition process has no excess
locity, ^] th&50, there is a simple, linear relation betwe
the mean growth or layer thickness^H& and time,̂ H&5Ft,
yielding ^h&50. This assumption is justified if the substra
temperature is low enough to suppress particle desorp
and if the film grows with constant density.

The simplest equation of this type,] th5n¹2h1h, was
suggested by Edwards and Wilkinson@9# in order to describe
the sedimentation of a granular aggregate in the presenc
a gravitational field. In the context of surface growth ph
nomena, the desorption of particles from the surface co
also cause the Laplacian term with positiven @10#. This ef-
fect, however, is negligibly small at usual substrate tempe
tures used in vapor deposition experiments. Moreover,
experimentally observed moundlike surface structure@7,8#
suggests the presence of a growth instability, i.e.,n,0 as we
shall argue in this paper. This kind of growth instability w
proposed by Villain@3# as the consequence of a diffusio
bias on the terraces of a crystalline layer due to a poten
barrier at the step edges. Although this effect is absen
amorphous film growth, a termn¹2h with negativen can
still appear due to the deflection of the initially perpendicu
incident particles caused by the interatomic forces betw
the surface atoms and the incident particles, see Sec. III

Because the deposited particles prefer to relax at sur
sites that offer the strongest binding, a surface current of
type jW5K¹W (¹2h) adds the term2K¹4h to the growth
equation @2,4,10#. The resulting growth equation] th
5n¹2h2K¹4h1h with negativen and positiveK needs to
be supplemented by a nonlinear term to avoid exponen
growth at large length scales. If the growth instabilityn¹2h
and the conserved Kardar-Parisi-Zhang~KPZ! equation] th

52K¹4h1l1¹2(¹W h)21h @3,5# are combined one obtain
the stochastic field equation ] th5n¹2h2K¹4h

1l1¹2(¹W h)21h, that has been proposed by Siegert a
Plischke@6# as a continuum model for the MBE growth o
crystalline layers in the presence of a step edge barrier.
nonlinear terml1¹2(¹W h)2 can be motivated by a surfac
current, that equilibrates the slope dependent adatom con
tration @3#.

For amorphous film growth, the adatom concentration
pends on the surface slope because of a simple geome
argument by Moske@11# ~see Appendix B for a variant o
this argument!. If only freshly deposited particles are a
lowed to diffuse before their relaxation their surface conc

tration follows a behavior given byn;1/A11(¹W h)2'1
2(¹W h)2/2. This causes a diffusion current of the typejW;

2¹W n;¹W (¹W h)2 and leads to thel1¹2(¹W h)2 term with l1
,0. This argument is also valid, ifadditionally thermally
activated surface diffusion is present.
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Therefore, after renaming of the coefficients, a reasona
heuristic model for the stochastic growth equation govern
deposited amorphous thin films is determined by

] th5a1¹2h1a2¹4h1a3¹2~¹W h!21h ~4!

with negative coefficientsa1 , a2, anda3.

III. MODEL EQUATION

In this section, we first derive the simplest nonlinear fun
tional form of the deterministic part of the surface grow
equation using the symmetry principles governing the am
phous growth process, no excess velocity and a low-or
expansion in the gradients of the height profileh(xW ,t) ~for
the growth equation that allows for a finite excess veloc
see Appendix D!. Then we relate the various terms enteri
in this minimal deposition equation to microscopic proces
governing the amorphous surface growth.

A. Derivation of the minimal deposition equation

Following Ref. @1#, the invariances under translation
time, translation along and perpendicular to the growth
rection imply a phenomenological ansatz for the surfa
growth dynamics of the form] th5G(¹W h)1h. Here, the
functional G(¹W h) only depends on the gradients ofh(xW ),
higher order spatial derivatives and their combinatio
Moreover, the rotation and reflection invariance in the pla
perpendicular to the growth direction, see Fig. 1, that refle
the isotropy of the amorphous phase determinesG(¹W h) to be
a scalar, i.e., odd derivatives are ruled out and the¹W opera-
tors must be multiplied in couples by scalar multiplication.
G(¹W h) is not allowed to produce any excess velocity, it mu
be given by the divergence of a vector field, i.e.,G(¹W h)5

2¹W • jW(¹W h).
Next, we expandG(¹W h) in orders ofh and¹W , following

the aforementioned symmetry principles. The allowed lin
terms are¹2h, ¹4h, ¹6h, etc. Only the first two of them are
regarded in the following and terms of orderO(¹6) are
omitted. Therefore, the first and the second term ofG(¹W h)
reada1¹2h anda2¹4h.

The only functional form ofG(¹W h) being quadratic inh
and ¹W , not being explicitly dependent onh, and being a
scalar reads (¹W h)2. But this term~a KPZ nonlinearity@12#!
does not satisfy the condition of no excess velocity. The
fore, the possible terms being quadratic inh are at least of
order O(¹4). One obtains¹W @(¹W ¹W h)(¹W h)# as the common
type of terms of orderO(¹4,h2). Now, the ¹-operators
have to be multiplied in couples, yielding tw
combinations: 2b3¹W •@(¹W ¹W h)•(¹W h)#5b3¹2(¹W h)2 and
b4¹W •@(¹W h)(¹2h)#. Other possible terms ofG(¹W h) are of
order O(¹6,h3); we only mention that adding the term
¹W •@(¹W h)(¹W h)2# would complete the list of terms up t
fourth order in¹W .

In summary, the functional form ofG(¹W h) is determined
by
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G~¹W h!5a1¹2h1a2¹4h1b3¹2~¹W h!21b4¹W •@~¹W h!~¹2h!#

1O~¹6,h3!. ~5!

Since the fourth term in Eq.~5! can be decomposed in th
form

¹W •@~¹W h!~¹2h!#5
1

2
¹2~¹W h!212M ~6!

with

M5detS ]x
2h ]y]xh

]x]yh ]y
2h

D ~7!

the functional form of the lowest-order nonlinear determ
istic surface growth equation reads after renaming of the
efficients

] th5G~¹W h!

5a1¹2h1a2¹4h1a3¹2~¹W h!21a4M . ~8!

Apart from the terma4M , the systematically derived depo
sition equation~8! coincides with the Heuristic ansatz~4!.
The last term in Eq.~8!, a4M , is only present in the two-
dimensional case. In the one-dimensional case whereh only
depends on one spatial coordinate,M50 holds. As we shall
see in the next section, the physical origin of the terma4M
suggests that it is small and negligible. The two nonlin
terms a3¹2(¹W h)2 and a4M in Eq. ~8! both break the up/
down symmetry of the height profileh(xW ,t). Equation~8!,
however, is invariant with respect to the combined transf
mation$h,a3 ,a4%→$2h,2a3 ,2a4%. As a consequence, th
signs ofa3 and a4 are of minor relevance as far as glob
properties such as the roughness of the surface are
cerned.

B. Physical interpretation of the minimal deposition equation

The second and the third term on the right-hand s
~RHS! of Eq. ~8! are directly related to the known micro
scopic mechanisms of~i! the surface diffusion suggested b
Mullins @10# and~ii ! equilibration of the inhomogeneus con
centration of the diffusing particles on the surface as s
gested by Villain@3# and Moske@11# ~see for alternative
argumentation Appendix B!. This also implies that the coef
ficientsa2 anda3 are negative. The microscopic origin of th
first and the last term on the RHS of Eq.~8!, as far as the
amorphous surface growth is concerned, does not seem
available in the literature yet.

Here we propose a simple microscopic argument t
leads toboth terms as a result ofonedynamical mechanism
Initially, the particles in the beam move in a direction pe
pendicular to the substrate towards the surface. But w
they are close to the surface, they are attracted by interato
forces in a direction perpendicular to the surface and
perpendicular to the substrate. As a consequence, more
ticles arrive at places with¹2h,0 than at places with¹2h
.0. This picture is also confirmed by molecular dynam
simulations@13,14# where impinging particles are accele
ated towards the surface. For an indication of the releva
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of this effect, we refer to the recent experimental study@15#.
In a simplified model, the deflection happens instantaneou
when a particle arrives at a distanceb from the surface where
b characterizes the typical range of the interatomic for
Before and after the change of direction the particles m
straight, as shown in Fig. 2. This simplification is justified
the kinetic energy of the particles~typically several 0.1 eV
for electron beam evaporation! is very small compared to the
binding energy on the surface~being typical several eV!.
Because of this interaction the particles feel an imagin
surface~dashed line in Fig. 2! that is located at a distanceb
from the real surface, as also shown in Fig. 2. The unit vec
perpendicular to the real surface reads

nW 5
1

A11~¹W h!2
S 2¹W h

1
D . ~9!

The imaginary surface felt by the particles can be para
etrized by

xW85xW2
b

A11~¹̂h!2
¹W h, ~10!

h85h1
b

A11~¹W h!2
. ~11!

Therefore, the number of particles arriving at a place of
real surface~full line in Fig. 2! is increased by a factor

a5detS 12b]x

]xh

A11~¹W h!2
2b]y

]xh

A11~¹W h!2

2b]x

]yh

A11~¹W h!2
12b]y

]yh

A11~¹W h!2

D .

~12!

For small gradients¹W h, this factor simplifies to

a5detS 12b]x
2h 2b]y]xh

2b]x]yh 12b]y
2h

D
512b¹2h1b2M . ~13!

FIG. 2. Sketch of the deflection effect. Particles of the incide
beam being perpendicular to the substrate feel at a distanceb from
the surface~full line! interatomic forces and their trajectories a
bent such that they arrive perpendicular to the surface.
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To obtain the total number of particles arriving at the s
face,a has to be multiplied with the mean surface growthF,

Fa5F2Fb¹2h1Fb2M . ~14!

Since only the deviations from the mean growthF count in
the deposition equation~4!, the contribution arising from the
attraction of the surface to the particles in the growth eq
tion reads

2Fb¹2h1Fb2M . ~15!

Sinceb is positive,a152Fb,0 anda45Fb2 holds. The
a4 term can be omitted ifb is small. As our numerical cal
culations confirm, the incorporation of smalla4 does not
qualitatively change the results.

A different expression for the contribution of the partic
attraction to the growth of the surface height was derived
Shevchik@16#. His theory should apply well in the limit o
large incident velocities of the incoming particles. By co
trast, our theory deals with the limit that the kinetic energy
the deposited particles is small before they are attracted
the surface atoms.

In Sec. II, it has been stated that the concentration of
diffusing particles on the surface is given byn

}1/A11(¹W h)2. In the spirit of the aforementioned consid
eration, this statement must be reexamined. In fact, the n
ber of diffusing particles per surface unit is determined b

n}
a

A11~¹W h!2
512b¹2h2

1

2
~¹W h!21O~¹4,h3!.

~16!

This causes a surface currentjW}2¹W n that contributes to the
growth equation

2¹W • jW52l1b¹4h1l1¹2~¹W h!21O~¹6,h3! ~17!

with l1,0. Here, 2l1b is absorbed into thea2-term. There-
fore, the functional form of the growth equation in the sm
gradient expansion remains unchanged by the fact that

concentration of diffusing particles isn}a/A11(¹W h)2 and

not n}1/A11(¹W h)2.

IV. STATIONARY SOLUTIONS OF THE DETERMINISTIC
FIELD EQUATION

In this section, we investigate the stationary solutions
the deterministic limit of Eq.~4!,

] th5a1¹2h1a2¹4h1a3¹2~¹W h!2 ~18!

on an interval@0,L#d (d51,2) subject to periodic boundar
conditions. We also discuss their existence and their stab
as function of the entering coefficientsa1 , a2 , anda3. To
keep the discussion general we allow here for arbitrary si
of the coefficientsa1 , a2 , anda3. Stationary solutions of Eq
~18! are determined by] th50 and, therefore, solve
¹2@a1h1a2¹2h1a3(¹W h)2#50. Integrating the latter and
using periodic boundary conditions leads toa1h1a2¹2h

1a3(¹W h)25const. The arbitrary constant that reflects t
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translational invariance of Eq.~18! in growth direction can
be scaled out by the transformationh→h2const/a1. There-
fore, the stationary solutions of Eq.~18! are determined by

a1h1a2¹2h1a3~¹h!250. ~19!

A. The solutions

Obviously, Eq.~18! possesses the homogeneous stati
ary solutionh50 for any combination of the coefficientsa1 ,
a2 , anda3. Due to the nonlinearitya3(¹W h)2 in Eq. ~19!, also
nonhomogeneous stationary solutions must be expected
however, the sign of the ratio ofa1 anda2 is negative, then
the homogeneous stationary solutionh50 is theonly exist-
ing stationary solution. This can be seen as follows. A p
sible nonhomogeneous stationary solution possesses ma
where¹W h50 and¹2h<0 holds and minima where¹W h50W
and ¹2h>0 is satisfied. At the extrema, Eq.~19! reduces
to 2(a1 /a2)h5¹2h. This yields the conditions
2(a1 /a2)hmax<0 at maxima and2(a1 /a2)hmin>0 at
minima. Necessarily,hmax.hmin must hold. As a conse
quence, nonhomogeneous stationary solutions cannot ex
a1 /a2,0 holds. Here, the sign ofa3 is arbitrary.

If the ratio a1 /a2 is positive, spatially varying stationar
solutions of Eq.~18! can exist. To understand the appearan
of periodic stationary solutions we first consider the casd
51 and the fact that Eq.~19! can then be interpreted as th
spatial analog of the oscillator with quadratic friction@17#.
For d51, Eq. ~19! reduces to

a1h1a2h91a3~h8!250 ~20!

with the prime denoting the derivative with respect to t
spatial variable. It proves useful to apply the transformat

Z5expS a3

a2
hD ~21!

to Eq. ~20!. As a result, one obtainsZ91(a1 /a2)Z ln Z50
or, equivalently, after integration with respect to the spa
variable

1

2
Z821

a1

2a2
Z2S ln Z2

1

2D5k5const. ~22!

For positive ratiosa1 /a2, the second term on the LHS of Eq
~22! determines a potentialV(Z)5(a1/2a2)Z2(ln Z21/2)
and possesses the shape of a well with a minimum atZmin
51 andV(Zmin)52a1/4a2, a local maximum atZmax50 and
V(Zmax)50, and diverges proportionalZ2 ln Z for largeZ as
depicted in Fig. 3. Only in the interval2a1/4a2,V(Z),0,
the potential possesses two valuesZ1 and Z2 for the same
fixed value ofV(Z). Therefore, periodic solutions can on
exist if k lies in that interval. The pointsZ1 and Z2 deter-
mine the maximum and minimum values of the height pro
h(x). The minimum value ofV(Z) at Z51 corresponds to
h(x)50. Moreover k50 corresponds to a height profil
h(x) that varies betweenhmax5a2/2a3 (hmin5a2/2a3) and
hmin52` (hmax51`) for a2 /a3.0 (a2 /a3,0). In the vi-
cinity of the minimum atZ51, Eq. ~22! can be approxi-
mated by thelinear differential equation
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Z91
a1

a2
~Z21!50. ~23!

Therefore, decreasingk to V(Zmin), the periodicity lengthL
of the periodic height profileh(x) converges to 2pAa2 /a1.
On the other hand, sinceV8(0)50, increasingk to zero
from below,L increases towards infinity. This implies, how
ever, that periodic solutions of Eq.~20! exist if the condition

L.2pAa2 /a1 ~24!

is fulfilled.
The stationary, spatially periodic solution of Eq.~20! can

be obtained using the shooting method. The boundary v
problema1h1a2h91a3(h8)250 with h beingL periodic is
transformed to an initial value problem whereh8(0)50 is
kept fixed andh(0) is varied untilh fulfills h8(L/2)50. The
fact that only half of the periodicity interval needs to b
considered results from the invariancex→L2x of Eq. ~20!
in that case. A representative example of the stationary p
odic solution fora15a25a3521 is depicted in Fig. 4. Its
characteristic and in general nonsinusoidal shape combin
wide mound and a narrow steep well. The larger the peri
icity length is, the narrower is the well. Note, however, th
the bottom part of the well is not cuspid for finiteL, but
possesses a rounding on a length scale that cannot b
solved in Fig. 4. Therefore, the resulting height profile is s
smooth on the periodicity interval.

Next, we determine the dependence of the roughnessw of
the nonhomogeneous stationary pattern being defined b

w25~h2h̄!2 ~25!

on the length of the intervalL. As a representative exampl
we show in Fig. 5 a numerical calculation ofw(L) for 2p
<L<100 anda15a25a3521 using the shooting metho
mentioned above. The result can be fitted to

w~L !5b01b1L1b2L2 ~26!

with b0520.121, b150.00427, b250.0186. As a conse
quence, the difference between the minimum and maxim

FIG. 3. Dependence of the rescaled potentialv(Z)
52a2V(Z)/a15Z2(ln Z21/2) as function ofZ.
ue
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of the nonhomogeneous stationary solutions scales withL2

for large enough interval lengthL. This can be explained a
follows. Shifting the maximum of the nonhomogeneous s
tionary solutions tox50 and the periodicity interval to
@2L/2,L/2#, these solutions converge to

h~x!5
a2

2a3
2

a1

4a3
x2 ~27!

on the interval@2L/2,L/2# for L→`. In fact, Eq.~27! is a
solution of Eq. ~20!, but it does not satisfy the periodi
boundary conditions on@2L/2,L/2#. It corresponds to the
case that the constant on the RHS of Eq.~22! is set to zero.
The difference between the maximum and minimum of~27!
on @2L/2,L/2# is ua1L2/16a3u and its roughness on that in
terval is determined by

FIG. 4. Stationary solution in 1D:2h2h92(h8)250, L
5100, solved by the shooting method. The height was transform
by h(x)→h(x)1const in order to obtain*dx h(x)50. x was trans-
formed byx→x194.6 in order to shift the minimum ofh(x) to x
594.6. Thereby coincidence was achieved with the final state of
simulation of the nonlinear deterministic growth equation~36!, that
is shown in Fig. 6~f!.

FIG. 5. Surface roughnessw(L) of the stationary nonhomo
genous solutions as a function of the periodicity intervalL.
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w~L !5
1

8A45
Ua1

a3
UL2'0.0186Ua1

a3
UL2. ~28!

This is in perfect agreement with the numerical result, E
~26!, for largeL.

The generalization to the two-dimensional caseh(x,y) is
comparatively simple. Despite the fact that Eq.~19! is non-
linear, it is straightforward to see that an ansatz being
additive combination of functions of the different spati
variablesh(x,y)5h1(x)1h2(y) solves Eq.~19!. Moreover,
h1 andh2 are directly given by the aforementioned statio
ary nonhomogeneous solution in the cased51 that exist for
L.2pAa2 /a1. Due to the rotational invariance in thex-y
plane~perpendicular to the growth direction!, one also infers
that even more general solutions of the functional form

h~x,y!5h1S mx1ny

Am21n2D 1h2S my2nx

Am21n2D ~29!

exist wherem andn are arbitrary integer numbers andh1 and
h2 are given by the stationary solutions in one dimension
straight analogy to the one-dimensional case, they exist

L

Am21n2
.2pAa2

a1
~30!

holds sinceL/Am21n2 is the period ofh1 and h2 in Eq.
~29!. Another consequence is that also the squared rough
w2 of the two-dimensional solutions is anadditivecombina-
tion of the squares of the roughnesses of the one-dimens
solutions

w25w1
21w2

2 , ~31!

wherewi is the roughness ofhi . As in the one-dimensiona
case,w scales asL2 for largeL.

B. Stability of the solutions

Next, we investigate the stability of the stationary so
tions of the deterministic field equation~18!. Since the initial
state of the growth process is a basically plain surface of
substrate, it is useful to know the conditions for the stabi
of the homogenous solutionh50. These can be obtained b
solving the linear limit of Eq.~18!

] th5a1¹2h1a2¹4h. ~32!

Using the solution ansatzh5exp@ikW•xW1s(k)t# one obtains
the dispersion relations(k)52a1k21a2k4 from Eq. ~32!.

If a2.0, the growth rates(k) is positive at least for large
enoughk. Therefore, the homogenous solution is unstable
that case. Furthermore,s(k) increases to infinity fork→`.
There is no upper limit for the growth rate of Fourier mod
with largek, and, as an aside, the nonlinearitya3¹2(¹W h)2 in
Eq. ~18! makes this worse by doubling the wave vectorkW .
This implies that for most initial conditions the determinis
field equation~18! has no bounded solution ifa2 is positive.
.
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Moreover, ifa2,0 anda1.0, s(k) is negative for all non-
zerok, and, therefore, the homogenous stationary solution
Eq. ~18! is linearly stable.

The realistic scenario is thata1 and a2 are negative as
explained in the previous chapter. In this case,s(k) is posi-
tive if 0,k,Aa1 /a2. The homogenous solution will be un
stable if a wave vectorkW exists in that range. Since we in
vestigate Eq.~18! on an interval@0,L#d subject to periodic
boundary conditions, the possible wave vectors arekW
5(2pnx /L,2pny /L) wherenx andny are integer numbers
Therefore, the smallest nonzerok5ukW u is k52p/L. This im-
plies that the homogenous solution is unstable if 2p/L
,Aa1 /a2, or equivalently

L.2pAa2 /a1. ~33!

This condition is surely fulfilled in the experiment, becau
the substrate usually measures about 1 cm in length
width and 2pAa2 /a1 is only several nm@18#. Therefore, Eq.
~33! is a necessary condition for numerical and analyti
investigations of Eq.~18! since its neglection would remov
the instability of the homogenous solutionh50 against the
growth of Fourier modes with wave numberk,Aa1 /a2. The
conditions for stability and instability of the homogeneo
stationary solution are depicted in Fig. 7.

To investigate the stability of the nonhomogenous stati
ary solutions of Eq.~18! we solve this equation numericall
with a1 and a2 being negative and the assumption that E
~33! holds becausea1 /a2.0 and Eq.~33! are necessary con
ditions for the existence of the nonhomogenous station
solutions. Starting from a random height distribution close
the homogenous solutionh50, a periodic surface structur
with a wave length of aboutlc52pA2a2 /a1 arises and in-
creases in height as depicted in Fig. 6~a!. lc corresponds to
the critical wave numberkc5Aa1/2a2 where s(k) has its
maximum. At later stages of the evolution, the nonlinear
a3¹2(¹W h)2 causes a coarsening of the moundlike struct
where the mounds grow in lengthandheight and the numbe
of mounds decreases. This coarsening precedes in su
way that smaller mounds are ‘‘eaten’’ by their bigger neig
bors, as shown in Fig. 6. The final state is always a non
mogenous stationary solution with onlyonemound@see Fig.
6~f!#. In the two-dimensional case, this is the stationary
lution h(x,y)5h1(x)1h2(y) where h1 and h2 are nonho-
mogenous stationary solutions in one dimension with
maximum periodL. We conclude that the nonhomogeno
stationary solutions with one mound are stable whereas
nonhomogenous solutions with more than one mound
unstable. The similarity of the results in one and two spa
dimensions is a consequence of the fact thath(x,y,t)
5h1(x,t)1h2(y,t) is a solution of Eq.~18! in the two-
dimensional case ifh1 andh2 are solutions of Eq.~18! in the
cased51.

If a1 anda2 are positive and Eq.~33! holds, this can be
regarded as the result of a time inversion of the case wh
a1 anda2 are negative. Therefore, the nonhomogenous
tionary solutions are unstable. Moreover, for most init
conditions a solution of Eq.~18! does not exist, and numeri
cal simulation is therefore not reasonable in this case.
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conditions for the existence and stability of the nonhom
genous stationary solutions are also depicted in Fig. 7.

V. QUANTITATIVE INVESTIGATION
OF THE MOUND GROWTH

At the end of the last chapter we have described
growth of the moundlike structure arising from the nonline
deterministic field equation~18! under the conditions thata1
anda2 are both negative. Because these conditions comb
with a3,0 are relevant in the context of amorphous surfa
growth ~see Sec. II! we apply them in the rest of this study
Furthermore, we must prevent any artificial effect of the
nite sizeL of the interval@0,L#d on the surface structure

FIG. 6. Height profileh(x,t) calculated from the nonlinear de
terministic growth equation in one dimension~36! using the param-
etersa15a25a3521 on an interval@0,100# subject to periodic
boundary conditions. The initial values ofh on the 400 grid points
are random numbers taken from a uniform distribution betw
10.5 and20.5. ~a! t52,6,11, ~b! t511,22,33,~c! t533,66,100,
~d! t5100,150,200, ~e! t5800,900,1000, ~f! t
51200,1400,1600,3000,5000,10000. The height profiles at
53000,5000,10 000 are coincident with the stationary solution
Eq. ~36!, that is shown in Fig. 4. The height profiles at differe
times can be distinguished in such a way that the maximum oh
increases with time in the pictures~a!–~f!.

FIG. 7. Stability of the stationary solutions in the parame
space spanned bya1 anda2, h: homogeneous, nh: nonhomogenou
-

e
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ed
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because the substrate is usually much larger than the le
scale of the observed surface structure@7,8#. Therefore,L
must be large compared to the length scale of the calcul
surface structure, that is aboutlc52pA2a2 /a1 at the begin-
ning of the simulation and is increasing afterwards.

In this section, we first quantitatively investigate th
growth of the moundlike structure arising from the nonline
deterministic growth equation~18! under the aforementione
conditions. Subsequently, we extend our investigation to
nonlinear stochastic field equation~4!. For that purpose
quantities need to be introduced, that describe the evolu
of the height and the length of the surface structure. T
height-height-correlation is defined by

C~r ,t !5K K 1

LdE ddx@h~xW ,t !2h̄~ t !#

3@h~xW1rW,t !2h̄~ t !#L L
urWu5r

, ~34!

whereh̄(t)5(1/Ld)*ddxh(xW ,t) denotes the spatially averag
of the height, and̂ ^ . . . && urWu5r denotes the ensemble an
radially average. Then the surface roughnessw(t) is given
by w2(t)5C(0,t), and the correlation lengthRc(t) is defined
as the radius of the first maximum ofC(r ,t) occuring at
nonzeror ~see Fig. 8!. The quantitiesw(t) andRc(t) char-
acterize the height and length of the surface structure.
nally, we define the height-difference correlation by

H~r ,t !5K K 1

LdE ddx„h~xW ,t !2h~xW1rW,t !…2L L
urWu5r

.

~35!

Rc(t), w(t), and H(r ,t) are experimentally accessible@7#
and, therefore, candidates for a comparison of experime
data and theory.

n

f

r
.

FIG. 8. Height-height correlationC(r ,t) at the timet5100 re-
sulting from the nonlinear deterministic growth equation~18! in
two dimensions on an interval@0,100#2 subject to periodic bound-
ary conditions, using the parametersa15a25a3521. The initial
values ofh on theN253012 grid points are random numbers take
from a uniform distribution between10.5 and20.5.
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A. Nonlinear deterministic growth equation in one dimension

Here, we investigate the deterministic field equation~18!
in the cased51 reading explicitly

] th5a1]x
2h1a2]x

4h1a3]x
2~]xh!2. ~36!

As a representative example, we solve this equation by
merical simulation~see for details of the method Append
C! with the coefficientsa15a25a3521 and the interval
length given byL5400. The number of grid points isN
5800 and the initial values ofh on these grid points are
independent random numbers taken from a uniform distri
tion between10.0005 and20.0005. The corresponding re
sults for the correlation lengthRc(t) and the surface rough
nessw(t) are shown in Figs. 9, 10, and 11.

At early stages the linear limit of Eq.~36! ] th5a1]x
2h

1a2]x
4h is sufficient to describe the surface growth. Th

implies that a Fourier mode with wave numberk grows with
a growth rates(k)52a1k21a2k4. Becauses(k) has its
maximum atkc5Aa1/2a2 ands(kc)52a1

2/4a2, thiscritical
modebegins to dominate the surface growth after a sh
time. Therefore, the correlation lengthRc(t) first increases
and then remains constant atRc(t)52p/kc52pA2a2 /a1

until the timet5t1, when the nonlinearitya3]x
2(]xh)2 raises

Rc(t) above this value~see Fig. 9!. For the same reason, th
surface roughnessw(t) follows approximately a time evolu
tion exp@s(kc)t#5exp(2a1

2t/4a2) for t,t1, as soon as the
cricital mode begins to dominate the other Fourier mo
~see Fig. 11!. Actually, the growth ofw(t) at t,t1 can be
fitted by an exp(0.235t)-behavior~see solid line in Fig. 11!
yielding that the growth rate ofw(t) is a little bit smaller
thans(kc)50.25. This deviation is caused by the contrib

FIG. 9. Correlation lengthRc(t) calculated from the nonlinea
deterministic growth equation~36! in one dimension using the pa
rametersa15a25a3521 on an interval@0,400# subject to peri-
odic boundary conditions. The initial values ofh on the 800 grid
points are random numbers taken from a uniform distribution
tween10.0005 and20.0005. t1534.6 ~left dashed line! denotes
the time whenRc(t) climbs over 2pA2a2 /a1, andt25117.5~right
dashed line! denotes the time whenRc(t) reaches 4pA2a2 /a1. The
solid line that fits Rc(t) for t.t2 is calculated byRc(t)5p0

1Ap11p2t with the parametersp05212.4, p15414.7, andp2

54.3.
u-

-

rt

s

tion of Fourier modes with growth rates(k),s(kc). We
mention that a reduction of the initial values ofh would
extend the time interval@0,t1#, before the effect of the non
linear term sets in. Therefore, the critical mode would ha
more time to dominate the other Fourier modes. This yie
that the growth rate ofw(t) for t,t1 converges tos(kc)
from below in the limit of very small initial values ofh.

After t5t1 has been reached, the nonlinear te
a3]x

2(]xh)2 is no longer negligible and is roughly doublin
the correlation lengthRc(t) in the time interval@ t1 ,t2# as
shown in Fig. 9 between the dashed lines. Then the curva
of Rc(t) changes andRc(t) follows asymptotically aAt be-
havior. The growth ofRc(t) for t.t2 can be fitted by
Rc(t)5p01Ap11p2t with the parametersp05212.4, p1
5414.7, andp254.3 as depicted in Fig. 9~solid line!. The
surface roughnessw(t) grows linearly beyondt5t2 with the
slopedw/dt50.05 as shown in Fig. 10~solid line!.

Next, we investigate the effect of the initial distributio
or, equivalently, the initial surface roughness of the heighh

-

FIG. 10. Surface roughnessw(t) resulting from the same simu
lation as the correlation length in Fig. 9. The solid line that fitsw(t)
for t.t2 is determined byw(t)50.05t1const.

FIG. 11. Surface roughnessw(t) resulting from the same simu
lation as the correlation length in Fig. 9. The solid line that fitsw(t)
for t,t1 is determined byw(t)5const3exp(0.235t).
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on the growth ofRc(t) andw(t). Again, we solve Eq.~36!
on the interval@0,400# with the coefficientsa15a25a35
21. The initial values ofh on theN5800 grid points, how-
ever, are random numbers taken from four different unifo
distributions, namely, between10.0005 and 20.0005,
10.005 and20.005,10.05 and20.05, and10.5 and20.5.
The results for the correlation lengthRc(t) and surface
roughnessw(t) are depicted in Figs. 12 and 13. Figure

FIG. 12. Correlation lengthRc(t) calculated from the nonlinea
deterministic growth equation~36! in one dimension using the pa
rametersa15a25a3521 on an interval@0,400# subject to peri-
odic boundary conditions. The initial values ofh on the 800 grid
points are random numbers taken from uniform distributions
tween 10.0005 and20.0005 ~right line!, 10.005 and20.005
~second line from the right!, 10.05 and20.05 ~third line from the
right!, and10.5 and20.5 ~left line!, respectively.

FIG. 13. Surface roughnessw(t) calculated from the nonlinea
deterministic growth equation~36! in one dimension using the pa
rametersa15a25a3521 on an interval@0,400# subject to peri-
odic boundary conditions. The initial values ofh on the 800 grid
points are random numbers taken from uniform distributions
tween 10.0005 and20.0005 ~right line!, 10.005 and20.005
~second line from the right!, 10.05 and20.05 ~third line from the
right!, and10.5 and20.5 ~left line!, respectively.
indicates that the larger the initial values ofh are, the smaller
is the time t1 when Rc(t) begins to exceedlc

52pA2a2 /a1 and also the timet2 when Rc(t) reaches
2lc54pA2a2 /a1. The dependence of the characteris
times t1 and t2 on the initial surface roughnessw(0) is de-
picted in Fig. 14. As a result,t1 can be approximated byt1
524 ln@w(0)#11 or equivalently w(0)exp(0.25t1)
5exp(0.25)5const. This implies that the nonlinear ter
a3]x

2(]xh)2 begins to take an effect, when the surface roug
nessw(t), that follows thew(0)exp(0.25t) behavior for t
,t1, comes up to a fixed value. We emphasize that the c
stant in this law is still dependent on the rescaled init
height distributionh(x,0)/w(0). Furthermore,t2 can be ap-
proximated by t2524 ln@w(0)#185, yielding t25t1184.
Figures 12 and 13 also indicate that the long time behavio
Rc(t) andw(t), i.e.,Rc(t);At andw(t);t for t.t2, is not
influenced by the initial height distribution except that t
curves are shifted to later times if the initial values ofh are
decreased. Another result of Figs. 12 and 13 is that
curves ofRc(t) andw(t) in the transition period@ t1 ,t2# are
changed from convex into straight, if the initial heighth(x,0)
increases.

Finally, we extend the discussion of Eq.~36! to general
coefficientsa1 , a2 , anda3. We have explained that in th
validity regime of the linear equation fort,t1 Rc(t)
reacheslc52pA2a2 /a1 and remains constant untilt5t1

and thatw(t) follows approximately an exp(2a1
2t/4a2) be-

havior, as soon as the cricital mode begins to dominate
surface growth.

It is straightforward to see that2a2 /a1
2 is a time constant,

Aa2 /a1 is a length constant, anda2 /a3 is a height constan
in Eq. ~36!. Changinga2 /a3 by an arbitrary factor would
change all heights by the same factor. The same holds
Aa2 /a1 and all lengths and2a2 /a1

2 and all times, respec
tively. Therefore, all relations that hold in the casea15a2
5a3521 can be generalized by division of all heights b
a2 /a3, all lengths byAa2 /a1, and all times by2a2 /a1

2. For

-

-

FIG. 14. t1 ~circles! and t2 ~squares! as functions of the initial
surface roughnessw(0) calculated from the same simulations
Rc(t) andw(t) in Figs. 12 and 13. The solid line that fitst1 is given
by t1524 ln@w(0)#11. The dashed line that fitst2 is given by t2

524 ln@w(0)#185.
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instance t1 is determined by @a3w(0)/
a2#exp(20.25a1

2t1 /a2)5const where the constant in th

law depends on the functionĥ(x,0)5h(Aa1 /a2x,0)/w(0) in
the same way as it would depend onĥ(x,0)5h(x,0)/w(0) in
the casea15a25a3521. The relation betweent2 and t1

can be generalized byt25t1284a2 /a1
2. These relations

yield that, if ua3u is decreased,t2 and t1 increase. By means
of Rc(t);At one obtainsRc(t);const3Aa2 /a1A2a1

2t/a2

5const3A2a1t for t.t2 where the constant does not d
pend on the coefficientsa1 , a2, or a3. This seems paradoxi
cal because the coarsening of the surface structure is ca
by the nonlinearitya3]x

2(]xh)2. But, on the other hand, by a
increase ofua3u one could decreaset1 and t2 and shift the
Rc(t) curve to smaller times and thereby increaseRc(t) at
any fixed timet.t2. Finally, w(t) grows linearly att.t2

with the slope dw/dt50.05(a2 /a3)(2a1
2/a2)5

20.05a1
2/a3.

B. Nonlinear deterministic growth equation in two dimensions

Next, we investigate the nonlinear deterministic grow
equation~8! in the cased52. Except for some quantitativ
deviations, the same considerations as in one dimension
also valid in two dimensions.

In the regime of the linear growth equation~32! with t
,t1, the critical mode with wave numberkc5Aa1/2a2 be-
gins to dominate the other Fourier modes after a short ti
Then, the surface roughnessw(t) follows again approxi-
mately an exp@s(kc)t#5exp(2a1

2t/4a2) behavior and the cor
relation length remains constant atRc(t)57.0156/kc

57.0156A2a2 /a1. The difference in the behavior ofRc(t)
between the cased52 and the cased51 is due to the radi-
ally average in the definition ofC(r ,t).

We solved Eq.~8! on an interval@0,100#2 subject to pe-
riodic boundary conditions with the coefficientsa15a2
5a3521 and witha450, a450.08 anda450.2, respec-
tively. The initial values ofh on N253012 grid points were
random numbers taken from a uniform distribution betwe
10.5 and20.5. The results forRc(t) andw(t) are depicted
in Figs. 15 and 16, respectively. The long time behavior
Rc(t) and w(t) is the same as in the cased51, i.e., Rc(t)
;At and w(t);t for t.t2 with the slope ofw(t) deter-
mined bydw/dt50.08. The deviations from this behavior
later stages are due to the finite size of the interval@0,100#2.

Figures 15 and 16 also indicate that the term proportio
to a4 has noqualitativeeffect, except for a little acceleratio
of the growth ofRc(t) and w(t). Because of the relation
a45Fb2 and a152Fb, a4 is not independent ofa1. In a
comparison with experimental results@18# we have self-
consistently checked that the inclusion of thea4 term does
not quantitativelyimpact the results.

The growth behavior ofRc(t) and w(t) at later stages
i.e., Rc(t);At andw(t);t for t.t2, can be obtained if one
applies the transformationxW→bxW , h→bah, andt→bzt to all
lengths, heights, and times wherea andz are positive con-
stants andb is a positive number. Because the coefficients
Eq. ~18! have the dimensions@a1#5 length2/time, @a2#
5 length4/time, and@a3#5 length4/(time3height), they are
transformed thereby according toa1→b22za1 , a2
sed

re

e.

n

f

al

f

→b42za2, anda3→b42z2aa3. Then, Eq.~18! is transformed
to

] th5b22za1¹2h1b42za2¹4h1b42z2aa3¹2~¹W h!2.
~37!

This equation would correspond to the original Eq.~18! if
22z542z542z2a50 held. Because this condition can
not be fulfilled, we neglect one of the three terms on the R
of Eq. ~18!. We neglect the term proportional toa2 because
at large length scales fourth order derivatives are sma

FIG. 15. Correlation lengthRc(t) calculated from the nonlinea
deterministic growth equation~8! in two dimensions using the pa
rametersa15a25a3521, a450 ~solid line!, a450.08 ~dotted
line!, anda450.2 ~dashed line! on an interval@0,100#2 subject to
periodic boundary conditions. The initial values ofh on the N2

53012 grid points are random numbers taken from a uniform d
tribution between10.5 and20.5.

FIG. 16. Surface roughnessw(t) calculated from the nonlinea
deterministic growth equation~8! in two dimensions using the pa
rametersa15a25a3521, a450 ~solid line!, a450.08 ~dotted
line!, anda450.2 ~dashed line! on an interval@0,100#2 subject to
periodic boundary conditions. The initial values ofh on the N2

53012 grid points are random numbers taken from a uniform d
tribution between10.5 and20.5.
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than second order derivatives and at large heights lin
terms are smaller than quadratic terms. Soa2¹4h is small
compared toa1¹2h anda3¹2(¹W h)2. Therefore, we can omi
the condition 42z50 and we retain the conditions 22z
542z2a50, yielding z5a52. Then one obtains tha
Rc(t) follows a time evolution determined byRc(t);t1/z

5t1/2, w(t) follows a dynamics given directly byw(t)
;ta/z5t, and the surface roughness of the stationary so
tions of Eq. ~18! is governed byw(L);La5L2. Further-
more, the height-difference correlation can be written
H(r ,t)5r 2ag(t/r z)5r 4g(t/r 2) for t.t2, as we confirmed
by numerical simulations of the deterministic growth equ
tion ~18!. This, however, doesnot imply thatH(r ,t) follows
a r 4 behavior at a fixed timet.t2 and smallr, becauseg(j)
doesnot saturate for largej5t/r 2.

C. Linear stochastic growth equation

As a first approach to obtain insights in the dynamics
the nonlinear stochastic growth equation~4!, we investigate
its linear limit

] th5a1¹2h1a2¹4h1h ~38!

on an interval@0,L#d subject to periodic boundary conditio
and the initial conditionh(xW ,0)50. Equation~38! has proved
to be sufficient to describe the surface growth of amorph
ZrAlCu films up to a layer thickness of about̂H&
5240 nm @18#. The height-height correlationC(r ,t) that
arises from this equation is determined by

C~r ,t !5K D

Ld (
kWÞ0

exp~ ikW•rW !
exp@2s~k!t#21

s~k! L
urWu5r

,

~39!

where ^•••& urWu5r denotes radially average ands(k)5
2a1k21a2k4 the growth rate of the Fourier modes. Since
possible wave vectors kW have the form kW
5(2pnx /L,2pny /L), wherenx andny are integer numbers
C(r ,t) converges in the limit of largeL, yielding

C~r ,t !5K D

~2p!dE ddk exp~ ikW•rW !
exp@2s~k!t#21

s~k! L
urWu5r

.

~40!

Therefore, the RHS of Eq.~39! is basically independent ofL.
Next, we investigate the scaling behavior of the surfa

growth arising from Eq.~38! at early stages. Ift.0 is small
compared to2a2 /a1

2, the wave numberk must be large
compared toAa1 /a2 if a noticeable difference between th
term $exp@2s(k)t#21%/s(k) in Eq. ~39! and 2t should appear.
Therefore,C(r ,t) varies on a length scale that is muc
smaller thanAa2 /a1. On that length scale, the term propo
tional to a1 in Eq. ~38! can be neglected yielding] th

5a2¹4h1h. If one applies the transformationxW→bxW , h
→bah, and t→bzt, the coefficients of this equation ar
changed bya2→b42za2 and D→b2a1d2zD. This implies
that the equation is not changed if the condition 42z52a
1d2z50 holds. This yieldsz54 anda5(42d)/2. There-
ar

-

s

-

f

s

l

e

fore, Rc(t) follows a t1/z5t1/4 behavior andw(t) follows a
ta/z5t (42d)/8 behavior if t is small compared to2a2 /a1

2.
At later stages, the critical mode dominates the surf

growth. Then the surface roughnessw(t) follows an
exp(2a1

2t/4a2) law and the correlation lengthRc(t) saturates
into Rc(t)52pA2a2 /a1 in the cased51 and into Rc(t)
57.0156A2a2 /a1 in the cased52.

D. Nonlinear stochastic growth equation in one dimension

In this section, we discuss the nonlinear stochastic gro
equation~4! in the cased51:

] th5a1]x
2h1a2]x

4h1a3]x
2~]xh!21h. ~41!

For this, we solve Eq.~41! on an interval@0,400# subject to
periodic boundary conditions and the initial conditio
h(x,0)50, using the parametersa15a25a3521 and D
5101,100,1021,1022,1024,1026, respectively. Figures 17
and 18 depict the corresponding correlation lengthRc(t) and
surface roughnessw(t).

At early stages the linear growth equation~38! is suffi-
cient to describe the surface growth. Then the heighth of the
surface profile is proportional toAD whereas the length scal
of the surface structure does not depend onD. If the noise
strengthD is small, it takes longer time, before the nonline
terma3]x

2(]xh)2 gains an effect. Then, the critical mode h
enough time to dominate the other Fourier modes. Theref
w(t) follows an exp(2a1

2t/a2) behavior andRc(t) remains
constant atRc(t)52pA2a2 /a1 until the time t5t1, when
Rc(t) begins to exceed this value by the effect of the no
linear term. On the other hand, for largeD this behavior is
not seen, because the critical mode has not enough tim
dominate the other modes before the effect of the nonlin
term sets in.

Figures 17 and 18 also indicate that the growth of
correlation lengthRc(t) and the surface roughnessw(t) at
later stages is not changed by the stochastic term ifD is

FIG. 17. Correlation lengthRc(t) resulting from the nonlinear
stochastic growth equation~41! in one dimension on an interva
@0,400# subject to periodic boundary conditions, using the para
eters a15a25a3521 and D5101,100,1021,1022,1024,1026

~from the left line to the right line!, respectively.



i
fa
n

er

n

fa
d

m
e

ht

ta
e
nd

stic

sto-
try
on
s of
f
the
of

face
ne-

the
the
dic

i.e.,
the

he
s a
th

m
the
th
e, a
Cu
ia-
nt
tion

e
ria-

-
.

l
m

1702 PRE 62MARTIN RAIBLE, STEFAN J. LINZ, AND PETER HÄNGGI
small, i.e.,Rc(t) still follows a At law andw(t) grows lin-
early for t.t2 with the slopedw/dt520.05a1

2/a3. This is a
consequence of the fact that the stochastic term is not
creasing whereas the magnitude of the moundlike sur
structure is increasing. Therefore, we expect the same lo
time behavior also for large noise strengthD at later stages
of the surface growth.

E. Nonlinear stochastic growth equation witha1Ä0

To ascertain the relevance of the growth instability det
mined by the terma1¹2h ~with a1,0) for the growth of a
periodic moundlike structure, we investigate the case whe
is absent. Thus, we discuss Eq.~4! in the limit a150:

] th5a2¹4h1a3¹2~¹W h!21h, ~42!

wherea2 anda3 are negative numbers. This equation~with
a3.0) was proposed by Lai and Das Sarma@5# as the rel-
evant growth equation forideal MBE growth of crystalline
layers at higher temperatures. They stated that the sur
arising from Eq.~42! evolves into a self-similar structure an
they derived the growth exponentsa5(42d)/3, z5(8
1d)/3, and b5a/z5(42d)/(81d) from a dynamic
renormalization-group analysis.

These exponents describe the scaling behavior of Eq.~42!
at later stages and large distances. At early stages and s
distances the dynamic exponents resulting from the lin
limit of Eq. ~42! are valid:a5(42d)/2, z54 andb5a/z
5(42d)/8. By a numerical calculation of the height-heig
correlationC(r ,t) corresponding to Eq.~42! we have con-
firmed that no periodic structures arise. Therefore,C(r ,t)
possesses no maximum at nonzeror ~see Fig. 19! and the
correlation lengthRc(t) is not defined.

We conclude that the incorporation of the growth ins
bility induced by the terma1¹2h is necessary to describe th
experimentally observed formation of a mesoscopic mou
like structure of the growth of amorphous thin films.

FIG. 18. Surface roughnessw(t) resulting from the nonlinear
stochastic growth equation~41! in one dimension on an interva
@0,400# subject to periodic boundary conditions, using the para
eters a15a25a3521 and D5101,100,1021,1022,1024,1026

~from the left line to the right line!, respectively.
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VI. CONCLUSIONS

In this study, we have proposed a nonlinear stocha
field equation~4! for amorphous thin film growth. Starting
from a phenomenological approach based on nonlinear
chastic partial differential equations, using the symme
principles relevant for amorphous film growth, the conditi
of no excess velocity, and an expansion in the gradient
the surface profileh(xW ,t) we obtained the functional form o
the equation. Furthermore, we related the constituents of
growth equation to processes determining the interaction
the depositing particles with the already condensed sur
atoms. Most importantly, we have demonstrated that the o
dimensional and deterministic limit of Eq.~4! already con-
tains many major ingredients for the understanding of
two-dimensional and/or stochastic case. In particular,
growing surface morphology typically possesses a perio
moundlike structure that coarsens with increasing time,
with increasing time mounds successively disappear and
moundlike structure widens. In the nonlinear regime t
characteristic length scale of the surface structure follow
At behavior whereas its typical height grows linearly wi
time t.

The condition of no excess velocity implies that the fil
growth occurs at constant density. On the other hand,
possibility of density variations at amorphous film grow
cannot be rejected by physical arguments. Furthermor
comparison of experimental results for amorphous ZrAl
films indicates the necessity of incorporating density var
tions @18# at least for that material. Therefore, it is importa
as a next step to extend our analysis of the growth equa
for the case of a basically homogeneous density~4! to a
thorough investigation of the long-time behavior of th
growth equation in the presence of significant density va
tions ~D4!.
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APPENDIX A

In this chapter, we discuss the role of the deposition no
by means of statistical considerations. We also presen
estimation of the noise strengthD in microscopic terms.

If n undistinguishable particles arrive on the surfa
within a time and space interval of the size (Dx)2Dt, the
number of distributions of then particles within that time,
and space interval scales such as@(Dx)2Dt#n/n!. This im-
plies that, if N particles arrive on the total surface areaL2

within the time interval@0,T#, the probability thatn of the
particles arrive on a surface area (Dx)2 within a time interval
of the lengthDt, is given by

P~n!5
N!

n! ~N2n!! S ~Dx!2Dt

L2T
D nS 12

~Dx!2Dt

L2T
D N2n

.

~A1!

The total number of deposited particles is given byN
5F0L2T whereF0 is the number of deposited particles p
surface area and time. Therefore, the probabilityP(n) reads

P~n!5
N!

n! ~N2n!! S F0~Dx!2Dt

N D nS 12
F0~Dx!2Dt

N D N2n

.

~A2!

Because ofF0(Dx)2Dt!F0L2T5N, one obtainsn!N,
yielding

P~n!5
1

n!
@F0~Dx!2Dt#nexp@2F0~Dx!2Dt#. ~A3!

Equation~A3! constitutes the Poisson distribution. It has t
mean ^n&5F0(Dx)2Dt and the variance^(n2^n&)2&
5F0(Dx)2Dt. The spatially averaged height increaseDH
that is caused on a surface area (Dx)2 by the deposition ofn
particles of the volumeV during a time intervalDt reads
DH5nV/(Dx)2. It possesses the mean ^DH&
5^n&V/(Dx)25F0VDt5FDt and, therefore, the variance

^~DH2^DH&!2&5^~n2^n&!2&V2/~Dx!4

5F0V2Dt/~Dx!25FVDt/~Dx!2.

~A4!

On the other hand, the height increase produced by dep
tion reads

DH5FDt1
1

~Dx!2Et

t1DtE
(Dx)2

h~xW ,t !d2x dt ~A5!

yielding ^DH&5FDt and finally

^~DH2^DH&!2&52DDt/~Dx!2. ~A6!

By a comparison of Eqs.~A4! and ~A6! one obtains the
relation

2D5FV ~A7!
l

e
an

si-

for the noise strength whereF is the mean surface growt
andV is the particle volume.

APPENDIX B

Here, we present a derivation of the nonlinear te
a3¹2(¹W h)2 in Eq. ~8! that is a modification of the argumen
in Ref. @11#. It allows for an estimation of the size of th
coefficienta3 in microscopic terms and also the determin
tion of its sign. The flux of incoming particles per surfac
area and time unit generally depends on the slope of
surface

F~yW !5F0 /A11~¹W h!2'F0S 12
1

2
~¹W h!2D . ~B1!

A particle that arrives at the locationyW diffuses along the
surface until it relaxes at the locationxW with probability
d2x P(uxW2yW u). Here, xW and yW are coordinates in the loca
system of the surface. The mean square of the diffus
length is defined byl 25*d2x(xW2yW )2P(uxW2yW u). The number
of particles that relax atxW per surface area and time unit
therefore given by

E d2y F~yW !P~ uxW2yW u!5F~xW !1
1

4
l 2¹2FuxW1O~ l 4!.

~B2!

The product of this quantity withVA11(¹W h)2 determines
the growth velocity in growth direction whereV5F/F0 is
the particle volume. Therefore, the growth velocity reads

F2
1

8
Fl 2¹2~¹W h!21O~ l 4!, ~B3!

in the case of small gradients and small diffusion lengthl. As
a consequence, the spatial deviation of the growth velo
from the mean growth velocityF being the relevant term
entering in the gradient expansion of Eq.~8! is basically
determined by the second term in Eq.~B3!,

a352
1

8
Fl 2 ~B4!

with a3 being negative.
An alternative derivation of the coefficienta3 is explained

as follows. Because of a geometrical reason@11# the concen-
tration of diffusing particles on the surface is given byn

5n0 /A11(¹W h)2 with n05F0t5F0l 2/4D8. Here,t is the
mean time of particle diffusion before relaxation, andD8 is
the diffusion constant of the particles on the surface. Unl
this, the adatom density oncrystalline layers is slope depen
dent because of the capture of particles at steps. A us
interpolation formula in that connection isn5n0 /@1
1 l 2(¹W h)2/a'

2 # wherea' is the thickness of one atomic laye
@19#. The inhomogeneous particle concentration leads t
diffusion currentjW52D8¹W n and therefore to a contribution
VD8¹2n to the deposition equation. This contribution to th
deposition equation reads



t
lin

ic

e

m
e

a
lm

er

trate

o-
ed

th,
sly

lies

e

th
the

t
pon

addi-
A
us

1704 PRE 62MARTIN RAIBLE, STEFAN J. LINZ, AND PETER HÄNGGI
Fl 2

4
¹2

1

A11~¹W h!2
'2

Fl 2

8
¹2~¹W h!2 ~B5!

at amorphous film growth and

Fl 2

4
¹2

1

11 l 2~¹W h!2/a'
2

'2
Fl 4

4a'
2

¹2~¹W h!2 ~B6!

at the growth of crystalline layers@19# and shows mos
clearly the difference between amorphous and crystal
growth processes.

APPENDIX C

To integrate numerically the growth equation~4!, a
forward-backward difference method on a quadratic latt
combined with a Euler algorithm in time has been used@20#.
In discrete form, Eq.~4! can be rewritten as

hi , j
n115hi , j

n 1
Dtn

~Dx!2
@wi 11,j

n 1wi 21,j
n 1wi , j 11

n 1wi , j 21
n 24wi , j

n #

1A24DDtn

~Dx!2
r i , j

n , ~C1!

wi , j
n 5a1hi , j

n 1
a2

~Dx!2
@hi 11,j

n 1hi 21,j
n 1hi , j 11

n 1hi , j 21
n 24hi , j

n #

1
a3

3~Dx!2
@~hi 11,j

n 2hi , j
n !2

1~hi 11,j
n 2hi , j

n !~hi , j
n 2hi 21,j

n !1~hi , j
n 2hi 21,j

n !2

1~hi , j 11
n 2hi , j

n !21~hi , j 11
n 2hi , j

n !~hi , j
n 2hi , j 21

n !

1~hi , j
n 2hi , j 21

n !2#, ~C2!

wherehi , j
n denotesh(xi ,yj ,tn) and everyr i , j

n is an indepen-
dent random number taken from a uniform distribution b
tween21/2 and 1/2. The prefactorA24DDtn /(Dx)2 guar-
antees that the noiseA24DDtn /(Dx)2r i , j

n has the same
variance as the spatial average of the Gaussian noiseh on
the quadratic area (Dx)2 around (xi ,yj ) integrated over the
time interval@ tn ,tn1Dtn#:

A24DDtn /~Dx!2r i , j
n

5
1

~Dx!2Etn

tn1Dtn
dtE

xi2Dx/2

xi1Dx/2

dxE
yj 2Dx/2

yj 1Dx/2

dyh~x,y,t !.

~C3!

Equation~C3! means only that its two sides have the sa
mean and variance. During the simulation the time increm
Dtn5tn112tn has been dynamically adjusted.

APPENDIX D

In Sec. III we derived the simplest nonlinear growth equ
tion using the symmetries relevant for amorphous fi
e

e

-

e
nt

-

growth, the condition of no excess velocity and a low-ord
expansion in the gradients of the height profileh(xW ,t): ] th

5a1¹2h1a2¹4h1a3¹2(¹W h)21a4M1h, yielding ] tH

5a1¹2H1a2¹4H1a3¹2(¹W H)21a4M1F1h. If the film
grows at contant densityr0, the number of atoms of the
amorphous film per substrate area above a given subs
position readsc5r0H, yielding

] tc5r0@a1¹2H1a2¹4H1a3¹2~¹W H !21a4M1F1h#.

~D1!

If significant density variations occur during the growth pr
cess, the condition of no excess velocity is no more justifi
even if all deposited particles contribute to the film grow
i.e., if desorption is absent. If the density of the amorphou
grown material depends on the surface slope,r5r(¹W H),
] tc5r(¹W H)] tH holds instead ofc5r0H. Herer(¹W H) de-
notes the density at the surface. On the other hand, Eq.~D1!
still holds since the absence of particle desorption imp
that the rate of change ofc is given by a continuity equation
] tc5r0@2¹W • jW1F1h#. Division of Eq. ~D1! by r(¹W H)
leads to

] tH5
r0

r~¹W H !
@a1¹2H1a2¹4H1a3¹2~¹W H !2

1a4M1F1h#. ~D2!

Next we expandr0 /r(¹W H) in terms of the gradients¹W H:
r0 /r(¹W H)511(a5 /F)(¹W H)21O@(¹W H)4#. Then, the ex-
pansion of the deterministic part of the RHS of Eq.~D2! up
to the orderO(¹4,H2) and neglecting all corrections to th
deposition noise yields

] tH5a1¹2H1a2¹4H1a3¹2~¹W H !21a4M

1a5~¹H !21F1h. ~D3!

Finally, by the transformationh(xW ,t)5H(xW ,t)2Ft, one ob-
tains

] th5a1¹2h1a2¹4h1a3¹2~¹W h!21a4M1a5~¹W h!21h
~D4!

as the relevant continuum model for amorphous film grow
in the presence of local density variations depending on
surface slope. The fifth term on the RHS of Eq.~D4! is of
Kardar-Parisi-Zhang~KPZ! form @12# and leads to a finite
excess velocity. Note thata5 must be positive, because a
oblique particle incidence exposed atoms cast a shadow u
unoccupied places on the surface and thereby cause an
tional volume increase if the surface diffusion is weak.
comparison with experimental results on amorpho
Zr65Al7.5Cu27.5-film growth @18# ascertains that Eq.~D4! con-
stitutes a valid model for amorphous thin film growth.
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