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Amorphous thin film growth: Minimal deposition equation
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A nonlinear stochastic growth equation is derived fréinhe symmetry principles relevant for the growth
of vapor deposited amorphous filn{8) no excess velocity, an(ii) a low-order expansion in the gradients of
the surface profile. A growth instability in the equation is attributed to the deflection of the initially perpen-
dicular incident particles due to attractive forces between the surface atoms and the incident particles. The
stationary solutions of the deterministic limit of the equation and their stability are analyzed. The growth of the
surface roughness and the correlation length of the moundlike surface structure arising from the stochastic
growth equation is investigated.

PACS numbds): 68.35.Bs, 61.43.Dq

I. INTRODUCTION Il. BASICS

. N As a tool for the theoretical description of the time evo-
The understanding of the kinetics of surface growth pro- . -

cesses has recently developed into a highly active researé ion of thg surface morphplogyi(x,t) whereH denotes
area of statistical physidsee Ref[1]). The dynamics of the t_? £co ordinate of t_he growing surf_ace at the substrate po-
surface evolution, e.g., in molecular beam epitédBE) or  Sitionx=(x,y) and timet (see also Fig. 1 we use the well-
physical vapor deposition is dominated by the competitioreStablished phenomenological approach that is based on sto-
between roughening mechanisms due to deposition of pafhastic nonlinear partial differential equatidrig
ticles and smoothening mechanisms due to surface diffusion .
[2—6]. The growing surface can evolve into self-similar dH=G(VH)+F+ n. 1)
structures or, in the presence of a growth instability, into
periodic patterns. In particular, the growth of amorphous thinn Eq. (1), G denotes a functional that contains the various
films represents an attractive system for the understanding surface relaxation phenomena and only depends on the de-
surface growth processes because of the spatially isotropitvatives of the surface height since the growth process is
nature of the amorphous structure and the absence of lomdetermined by thdocal surface properties. The functional
range structural order. Experimental studies of amorphouform of G depends strongly on the considered experimental
thin films, deposited by electron beam evaporation, displapetup and the details of the kinetics of the deposition process.
the formation of moundlike structures on a mesoscopidvioreover,F in Eqg. (1) denotes the mean deposition rate and
length scald7,8]. Despite the complexity of the growth pro- 4(x,t) is the corresponding deposition noise that determines
cess on the atomic scale this indicates that coarse-graingHe fluctuations of the deposition flux about its me@an

continuum models based on stochastic growth equafibhs These fluctuations are assumed to be Gaussian white,
can be useful for the understanding of the growth dynamics.

Our investigation focuses on the development and the 1 t)=0" L7Vt ) =2D 8% X— V) S(t—1t'
analysis of a minimal deposition equation appropiate for the (n(x1)=0:  (n(x.Hn(y.t) (x=y)ol )('2)
modeling of amorphous film growth under physical vapor

deposition conditionglow-energetic particlgsand normal  \yhere the brackets denote ensemble averagnthe fluc-

incidence. . tuation strengthd the spatial dimension of the surfacd (
Our paper is organized as follows. In Sec. Il we present
the basic experimental setup under consideration and a sum- vapor particle beam

mary of constructive elements leading to a heuristic ansatz
for the deposition equation for amorphous film growth. In
Sec. lll, we use a systematic approach to obtain the minimal
functional form of the deposition equation and relate the en-
tering terms to their underlying surface relaxation mecha-
nisms. This yields an additional justification of the heuristic
ansatz in Sec. Il. In Sec. IV, we give a thorough discussion
of the existence and stability of the stationary solutions of
the deterministic deposition equation which constitutes the amorphous film Hix.y.b)
skeleton of time evolution of the stochastic deposition equa-
tion. A detailed numerical investigation of the time evolution
of the correlation length and the surface roughness resulting
from the deposition equation is presented in Sec. V. Section FIG. 1. Sketch of the vapor deposition of an amorphous film on
VI summarizes the major results of our study. a substrate.

substrate
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=1 or 2). For an estimate of the magnitude Dfwe refer to Therefore, after renaming of the coefficients, a reasonable
Appendix A. Moreover, it proves useful to introduce the heuristic model for the stochastic growth equation governing
height profile deposited amorphous thin films is determined by
_ 2 4 25 h)2
h(X,t):H(X,t)—Ft (3) (?th alv h+a2V h+a3V (Vh) +77 (4)

. _ . N with negative coefficienta,, a,, andas.
in the frame comoving with the mean deposition r&te

Then, the spatiotemporal evolution h()?,t) is given by

ath=G(€ h) + ». If the deposition process has no excess ve-
locity, (#;h)=0, there is a simple, linear relation between In this section, we first derive the simplest nonlinear func-
the mean growth or layer thicknegsl) and time,(H)=Ft,  tional form of the deterministic_pa.rt of the sur.face growth
yielding (h)=0. This assumption is justified if the substrate €quation using the symmetry principles governing the amor-
temperature is low enough to suppress particle desorptioBhous growth process, no excess velocity and a low-order
and if the film grows with constant density. expansion in the gradients of the height profilex,t) (for

The simplest equation of this type,h=v»V?h+ 7, was the growth equation that allows for a finite excess velocity
suggested by Edwards and Wilkins[@®] in order to describe see Appendix D Then we relate the various terms entering
the sedimentation of a granular aggregate in the presence of this minimal deposition equation to microscopic processes
a gravitational field. In the context of surface growth phe-governing the amorphous surface growth.
nomena, the desorption of particles from the surface could
also cause the Laplacian term with positivé10]. This ef-
fect, however, is negligibly small at usual substrate tempera-
tures used in vapor deposition experiments. Moreover, the Following Ref.[1], the invariances under translation in
experimentally observed moundlike surface strucfutg]  time, translation along and perpendicular to the growth di-
suggests the presence of a growth instability, ze0 as we ~ rection imply a phenomenological ansatz for the surface
shall argue in this paper. This kind of growth instability was growth dynamics of the formy,h=G(Vh)+ 5. Here, the

proposed by Villain[3] as the consequence of a diffusion functional G(Vh) only depends on the gradients bfx),

bias on the terraces of a crystalline layer due to a potentighigher order spatial derivatives and their combinations.
barrier at the step edges. Although this effect is absent ifjoreover, the rotation and reflection invariance in the plane
amorphous film growth, a termV?h with negativer can  perpendicular to the growth direction, see Fig. 1, that reflects

still appear due to the deflection of the initially perpendicularthe isotropy of the amorphous phase determ@e‘éh) to be

incident particles caused by the interatomic forces between

the surface atoms and the incident particles, see Sec. Ill B2 Scalar, i.e., odd derivatives are ruled out andWhepera-

Because the deposited particles prefer to relax at Suncactgrsamust be multiplied in couples by scalar multiplication. If
sites that offer the strongest binding, a surface current of th&(Vh) is not allowed to produce any excess velocity, it must

type j=KV(V2h) adds the term—KV*h to the growth be given by the divergence of a vector field, i€(Vh)=
equation [2,4,10. The resulting growth equations;h -V-j(Vh).

=vV?h—KV*h+ 7 with negativer and positivek needs to Next, we expand3(Vh) in orders ofh andV, following

be supplemented by a nonlinear term to avoid exponentiahe aforementioned symmetry principles. The allowed linear
growth at large length scales. If the growth instabiliy*h  terms arev2h, V*h, V°h, etc. Only the first two of them are
and the conserved Kardar-Parisi-Zhalt@>Z) equationdh  regarded in the following and terms of ordé{V®) are
=—KV*h+\,;V?(Vh)?+ 7 [3,5] are combined one obtains omitted. Therefore, the first and the second ternGow h)

the stochastic field equation d;h=rV?h—KV*h reada,Vh anda,V*h.

+X{V?(Vh)?+ 5, that has been proposed by Siegert and The only functional form ofG(Vh) being quadratic ith
Plischke[6] as a continuum model for the MBE growth of and V, not being explicitly dependent oh, and being a

crystalline layers in the presence of a step edge barrier. The - _ . .
Y . I y '2 - g . b ecd scalar readsV(h)2. But this term(a KPZ nonlinearity{12])
nonlinear termx,;V<(Vh)< can be motivated by a surface

L. does not satisfy the condition of no excess velocity. There-
current[, t]hat equilibrates the slope dependent adatom CONCeRia  the possible terms being quadratichirare at least of
tration [3]. '

For amorphous film growth, the adatom concentration de®'der O(V*). One obtainsV[ (VVh)(Vh)] as the common
pends on the surface slope because of a simple geometricﬁfpe of terms of order_(Q(V '.h ). Now, the Y—operators
argument by Moské11] (see Appendix B for a variant of nave to be multiplied in couples, yielding two
this argument If only freshly deposited particles are al- combinations: ~ B3V-[(VVh)-(Vh)]=bsV*(Vh)? and
lowed to diffuse before their relaxation their surface concenb,V -[(Vh)(V2h)]. Other possible terms dB(Vh) are of
tration follows a behavior given by~ 1/y1+(Vh)2~1 ()erder€(’)(Vf,h3); we only mention that adding the term
—(Vh)?2/2. This causes a diffusion current of the type V'[(Vh)(Vh)z]* would complete the list of terms up to
—Vn~V(Vh)2 and leads to the.;V2(Vh)? term with »,  fourth order inV. )
<0. This argument is also valid, #dditionally thermally In summary, the functional form d&(Vh) is determined
activated surface diffusion is present. by

Ill. MODEL EQUATION

A. Derivation of the minimal deposition equation
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G(Vh)=a,V?h+a,V*h+b3V3(Vh)2+b,V-[(Vh)(V2h)]
+0O(V8,h3). )

Since the fourth term in Eq5) can be decomposed in the
form

. 1.
V-[(Vh)(V2h)]=5V*(Vh)2+2M (6)

with FIG. 2. Sketch of the deflection effect. Particles of the incident

2h  au9-h beam being perpendicular to the substrate feel at a distafrcen
=det( X yx ) (7) the surface(full line) interatomic forces and their trajectories are
dydyh 07§h bent such that they arrive perpendicular to the surface.
Fh(_a functional form of the_lowest-order nonliner_;\r determin- ¢ this effect, we refer to the recent experimental st{i5.
istic surface growth equation reads after renaming of the co, 4 simplified model, the deflection happens instantaneously
efficients when a particle arrives at a distaricérom the surface where
- b characterizes the typical range of the interatomic force.

dh=G(Vh) Before and after the change of direction the particles move
straight, as shown in Fig. 2. This simplification is justified if
the kinetic energy of the particle$ypically several 0.1 eV
for electron beam evaporatipis very small compared to the
binding energy on the surfadieing typical several eV
Because of this interaction the particles feel an imaginary
surface(dashed line in Fig. Pthat is located at a distande
from the real surface, as also shown in Fig. 2. The unit vector
perpendicular to the real surface reads

=a,V?h+a,V*h+asV2(Vh)2+a,M. (8

Apart from the terma,M, the systematically derived depo-
sition equation(8) coincides with the Heuristic ansat#).
The last term in Eq(8), a;M, is only present in the two-
dimensional case. In the one-dimensional case whemly
depends on one spatial coordindiés=0 holds. As we shall
see in the next section, the physical origin of the teyiv

suggests that it is small and negligible. The two nonlinear 1 _%h
termsa;V2(Vh)2 and a;M in Eq. (8) both break the up/ ﬁ:—*( ) (9)
down symmetry of the height profile(x,t). Equation(8), V1+(Vh)? 1

however, is invariant with respect to the combined transfor- ) ) i
mation{h,as,a,}—{—h,—as, —a,}. As a consequence, the The imaginary surface felt by the particles can be param-

signs ofa; anda, are of minor relevance as far as global €fized by
properties such as the roughness of the surface are con-

I b R
cerned. X' =x— \/:Vh, (10)
T2
B. Physical interpretation of the minimal deposition equation 1+(Vh)
The second and the third term on the right-hand side b
(RHS) of Eg. (8) are directly related to the known micro- h'=h+ —— . (11)
scopic mechanisms df) the surface diffusion suggested by \ /1+(5h)2

Mullins [10] and(ii) equilibration of the inhomogeneus con-

centration of the diffusing particles on the surface as sugtherefore, the number of particles arriving at a place of the
gested by Villain[3] and Moske[11] (see for alternative req| surface(full line in Fig. 2) is increased by a factor
argumentation Appendix B This also implies that the coef-

ficientsa, andaz are negative. The microscopic origin of the a.h a.h

first and the last term on the RHS of E@®), as far as the 1-biy—— —bay;

amorphous surface growth is concerned, does not seem to be \ /1+(§h)2 \ /1+(§h)2

available in the literature yet. a=de .
Here we propose a simple microscopic argument that bo ayh 1 b dyh

leads tobothterms as a result aine dynamical mechanism. 0 T—— 17Dy ———

Initially, the particles in the beam move in a direction per- V1+(Vh)? V1+(Vh)?

pendicular to the substrate towards the surface. But when (12

they are close to the surface, they are attracted by interatomic .

forces in a direction perpendicular to the surface and nobor small gradient¥ h, this factor simplifies to
perpendicular to the substrate. As a consequence, more par-

ticles arrive at places witW2h<0 than at places witfv2h 1-bdh —bdyd,h

>0. This picture is also confirmed by molecular dynamic a=de —ba,h  1-bdZh
simulations[13,14] where impinging particles are acceler- Y
ated towards the surface. For an indication of the relevance =1-bV2h+b?M. (13
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To obtain the total number of particles arriving at the sur-translational invariance of Eq18) in growth direction can
face,a has to be multiplied with the mean surface growth  be scaled out by the transformatibr-h—consta,. There-
fore, the stationary solutions of E(L8) are determined by

Fa=F—FbV?h+Fb?M. (14)
a;h+a,V?h+as(Vh)?=0. 19
Since only the deviations from the mean grovigltount in ! 2 3(Vh) 9
the deposition equatiof#), the contribution arising from the _
attraction of the surface to the particles in the growth equa- A. The solutions
tion reads Obviously, Eq.(18) possesses the homogeneous station-

ary solutionh=0 for any combination of the coefficienss,

a,, andas. Due to the nonlinearitaz(Vh)?2 in Eq. (19), also
Sinceb is positive,a;=—Fb<0 anda,=Fb? holds. The nonhomogeneous stationary solutions must be expected. If,
a, term can be omitted ib is small. As our numerical cal- however, the sign of the ratio @f, anda, is negative, then
culations confirm, the incorporation of smadl, does not the homogeneous stationary solutior 0 is theonly exist-
qualitatively change the results. ing stationary solution. This can be seen as follows. A pos-

A different expression for the contribution of the particle Sible nonhomogeneous stationary solution possesses maxima

attraction to the growth of the surface height was derived bywvhereVh=0 andV2h<0 holds and minima wher&h=0
Shevchik[16]. His theory should apply well in the limit of and V2h=0 is satisfied. At the extrema, E¢L9) reduces
large incident velocities of the incoming particles. By con-to  —(a;/a,)h=V?h. This yields the conditions
trast, our theory deals with the limit that the kinetic energy of — (a, /a,)h,,=0 at maxima and—(a,/a,)h,;=0 at

the deposited particles is small before they are attracted byinima. Necessarilyhachmin Must hold. As a conse-

—FbV2h+Fb2M. (15)

the surface atoms. quence, nonhomogeneous stationary solutions cannot exist if
In Sec. Il, it has been stated that the concentration of the, /a,<0 holds. Here, the sign & is arbitrary.
diffusing particles on the surface is given by If the ratioa, /a, is positive, spatially varying stationary

«1/7/1+(Vh)2. In the spirit of the aforementioned consid- solutions of Eq(18) can exist. To understand the appearance

eration, this statement must be reexamined. In fact, the nun®f periodic stationary solutions we first consider the cdse

ber of diffusing particles per surface unit is determined by =1 and the fact that Eq19) can then be interpreted as the
spatial analog of the oscillator with quadratic frictibh7].

a 1 . Ford=1, Eq.(19) reduces to
not ————=1-bV?h— —(Vh)2+ O(V4 h3).
V1+(Vh)? 2 a;h+a,h”+az(h’)?=0 (20)

(16) _ _ . o .
with the prime denoting the derivative with respect to the
This causes a surface currgnt— Vn that contributes to the Spatial variable. It proves useful to apply the transformation

growth equation
as
Z= ex;{ —h
a

2

(21)

—V.[=2\bV*h+\,VA(VHh)2+O(VE,h3)  (17)

with \;<0. Here, A b is absorbed into the,-term. There-  t5 Eq. (20). As a result, one obtain&” + (a;/a,)Z In Z=0
fore, the functional form of the growth equation in the small oy equivalently, after integration with respect to the spatial
gradient expansion remains unchanged by the fact that thgyriaple
concentration of diffusing particles isxa/y1+(Vh)? and
notne1/y1+(Vh)2 lZ’2+ &1 22 InZ—1 = k=const. (22
2 2a, 2
IV. STATIONARY SOLUTIONS OF THE DETERMINISTIC . .
FIELD EQUATION For positive ratios, /a,, the second term on the LHS of Eq.
(22) determines a potentiaV/(Z) = (a,/2a,)Z%(In Z—1/2)
In this section, we investigate the stationary solutions ofand possesses the shape of a well with a minimurd,at

the deterministic limit of Eq(4), =1 andV(Z i) =—a&/4a,, a local maximum ak,,,,=0 and
5 . SN V(Zma)=0, and diverges proportiondf In Z for large Z as
dh=a,V°h+a,V*h+asV(Vh) (18)  depicted in Fig. 3. Only in the intervat a,/4a,<V(Z)<O0,

) d ra_ ) o the potential possesses two valugsand Z, for the same
onan interval 0L ]" (d=1,2) subject to periodic boundary fyeq value ofv(z). Therefore, periodic solutions can only
condltlor_ls. We also dlsc_uss thelr_e_X|stence and their stability i« it « lies in that interval. The pointZ, andZ, deter-
as funcnon of th? entering coefficiends, a,, and ds. To .__mine the maximum and minimum values of the height profile
keep the discussion general we allow here for arbitrary SIGN(x). The minimum value oi(Z) at Z=1 corresponds to
of the coefficienta_l, a,, andas. Stationary solutions of Eq. h(x)=0. Moreover k=0 corresponds to a height profile
(18) are determlneq byg;h=0 and, therefore, solve h(x) that varies betweem, . ~=a,2a; (h,,=a,/2as) and
V?[a;h+a,V?h+a3(Vh)?]=0. Integrating the latter and h_ . =— (h, . =+)for a,/a;>0 (a,/as<0). In the vi-
using periodic boundary conditions leads ag@h+a,V2h cinity of the minimum atZ=1, Eq. (22) can be approxi-
+a3(ﬁh)2:const. The arbitrary constant that reflects themated by thdinear differential equation
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FIG. 3. Dependence of the rescaled potentia(Z) FIG. 4. Stationary solution in 1D:—h—h"—(h")2=0, L

_ —72 _ i
=2a,V(2)/a,=Z%(InZ—1/2) as function oF. =100, solved by the shooting method. The height was transformed

by h(x) —h(x) + const in order to obtaifidx h(x) =0. x was trans-

formed byx—x+94.6 in order to shift the minimum di(x) to x

=94.6. Thereby coincidence was achieved with the final state of the

simulation of the nonlinear deterministic growth equati@f), that

Therefore, decreasing to V(Z,n), the periodicity length. is shown in Fig. ).

of the periodic height profilé(x) converges to zZva,/a;.

On the other hand, sinc¥’(0)=0, increasingx to zero  of the nonhomogeneous stationary solutions scales Wfth

from below, L increases towards infinity. This implies, how- for large enough interval length. This can be explained as

ever, that periodic solutions of E(RO) exist if the condition  follows. Shifting the maximum of the nonhomogeneous sta-
tionary solutions tox=0 and the periodicity interval to

a
7'+ =2(z-1)=0. (23)
a

L>2mVa/a, (24 [-L/2L/2], these solutions converge to
is fulfilled. a a
The stationary, spatially periodic solution of EG0) can h(x)= Z2 92 (27)
be obtained using the shooting method. The boundary value 2a; 4ag

problemajh+ a,h”+as(h’)2=0 with h beingL periodic is
transformed to an initial value problem whemé(0)=0 is  on the interval —L/2,L/2] for L—c. In fact, Eq.(27) is a
kept fixed anch(0) is varied untilh fulfills h’(L/2)=0. The  solution of Eq.(20), but it does not satisfy the periodic
fact that only half of the periodicity interval needs to be boundary conditions ofi—L/2,L/2]. It corresponds to the
considered results from the invariance-L —x of Eq. (20)  case that the constant on the RHS of E2p) is set to zero.
in that case. A representative example of the stationary perithe difference between the maximum and minimun{2
odic solution fora;=a,=az=—1 is depicted in Fig. 4. Its on[—L/2L/2] is |a;L?/16a| and its roughness on that in-
characteristic and in general nonsinusoidal shape combinesterval is determined by
wide mound and a narrow steep well. The larger the period-
icity length is, the narrower is the well. Note, however, that 200 '
the bottom part of the well is not cuspid for finite but
possesses a rounding on a length scale that cannot be r
solved in Fig. 4. Therefore, the resulting height profile is still 150
smooth on the periodicity interval.

Next, we determine the dependence of the roughwess
the nonhomogeneous stationary pattern being defined by

W(L) 100 |

w?=(h—h)? (25
on the length of the intervdl. As a representative example, 50 |
we show in Fig 5 a numerical calculation of/(L) for 27
<L=<100 anda;=a,=a3=—1 using the shooting method
mentioned above. The result can be fitted to .

0 e 1 I I
W(L)=bo+ byl +b,l 2 26) 0 20 40 L 60 80 100

with bg=-0.121, b;=0.00427,b,=0.0186. As a conse- FIG. 5. Surface roughness(L) of the stationary nonhomo-
guence, the difference between the minimum and maximumenous solutions as a function of the periodicity intedval
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Moreover, ifa,<0 anda;>0, o(k) is negative for all non-
L2, (28) zerok, and, therefore, the homogenous stationary solution of
Eqg. (18) is linearly stable.
The realistic scenario is tha; and a, are negative as
This is in perfect agreement with the numerical result, Eqexplained in the previous chapter. In this casék) is posi-
(26), for largeL. _ . ~ tive if 0<k<\/a;/a,. The homogenous solution will be un-
The generalization to the two-dimensional cagg,y) is stable if a wave vectok exists in that range. Since we in-

comparatively simple. Despite the fact that E49) is non- ; ; d : i
linear, it is straightforward to see that an ansatz being aﬁ/estlgate Eq(18) on an interval OL |7 subject to periodic

additive combination of functions of the different spatial Poundary conditions, the possible wave vectors #re
variablesh(x,y) = hy(x) + h,(y) solves Eq(19). Moreover, =(2mn,/L,27n /L) wheren, and ny are integer numbers.
h, andh, are directly given by the aforementioned station- Therefore, the smallest nonzeke: |k| is k=2/L. This im-
ary nonhomogeneous solution in the cdsel that exist for ~ plies that the homogenous solution is unstable /2
L>2m\a,/a;. Due to the rotational invariance in they =~ <vai/ay, or equivalently

plane(perpendicular to the growth directiprone also infers

that even more general solutions of the functional form L>2w\/ﬁ. (33

1
W(L)—s—\/4_5

a
L2~0.018%—1
as

ai
as

mx+ny my—nx Thi dition i . , .
h(x,y)=h; +h, (29 is condition is surely fulfilled in the experiment, because
JmZ+n? JmZ+n? the substrate usually measures about 1 cm in length and
width and 27+/a,/a; is only several nnh18]. Therefore, Eq.
exist wheran andn are arbitrary integer numbers ahgdand  (33) is a necessary condition for numerical and analytical
h, are given by the stationary solutions in one dimension. Innvestigations of Eq(18) since its neglection would remove
straight analogy to the one-dimensional case, they exist if the instability of the homogenous solutibi=0 against the
growth of Fourier modes with wave numbex \a,/a,. The
L a, conditions for stability and instability of the homogeneous
2T\ 5 (30)  stationary solution are depicted in Fig. 7.
m=+n ! To investigate the stability of the nonhomogenous station-
ary solutions of Eq(18) we solve this equation numerically
holds sincel./ym?+n? is the period ofh; andh, in EQ.  with a, anda, being negative and the assumption that Eq.
(29). Another consequence is that also the squared roughnegsg) holds becausa, /a,>0 and Eq(33) are necessary con-
w? of the two-dimensional solutions is awditivecombina- ditions for the existence of the nonhomogenous stationary
tion of the squares of the roughnesses of the one-dimensiongglutions. Starting from a random height distribution close to
solutions the homogenous solutiom=0, a periodic surface structure
with a wave length of about.=2m/2a,/a; arises and in-
W2=W§+W§, (3D creases in height as depicted in Figa)6 \ . corresponds to

the critical wave numbek.= \a,/2a, where o (k) has its
wherew; is the roughness df;. As in the one-dimensional maximum. At later stages of the evolution, the nonlinearity

2 > . .
casew scales as.“ for largeL. a;V%(Vh)2 causes a coarsening of the moundlike structure
where the mounds grow in lengéimd height and the number
B. Stability of the solutions of mounds decreases. This coarsening precedes in such a

way that smaller mounds are “eaten” by their bigger neigh-
bors, as shown in Fig. 6. The final state is always a nonho-
mogenous stationary solution with ordyie mound[see Fig.
%(f)]. In the two-dimensional case, this is the stationary so-
lution h(x,y)=hy(X)+h,(y) whereh; and h, are nonho-
mogenous stationary solutions in one dimension with the
maximum periodL. We conclude that the nonhomogenous
dh=a,V2h+a,V*h. (32)  stationary solutions with one mound are stable whereas the
nonhomogenous solutions with more than one mound are
unstable. The similarity of the results in one and two spatial
dimensions is a consequence of the fact théx,y,t)

Next, we investigate the stability of the stationary solu-
tions of the deterministic field equatid®8). Since the initial
state of the growth process is a basically plain surface of th
substrate, it is useful to know the conditions for the stability
of the homogenous solutidm=0. These can be obtained by
solving the linear limit of Eq(18)

Using the solution ansath=exgik-x+o(k)t] one obtains
’ : ; A k2 4
the dispersion relationr(k) = —a;k“+a,k* from Eg. (32). —hy(x,t)+hy(y,t) is a solution of Eq.(18) in the two-

If a,>0, the growth rater(k) is positive at least for large jiensional case ti, andh, are solutions of Eq(18) in the
enoughk. Therefore, the homogenous solution is unstable irbasedzl.

that case. Furthermor_e,(k) increases to infinity fo.k_’w' If a; anda, are positive and Eq.33) holds, this can be
There is no upper limit for_ the growth rate qf Fouger mOdeSregarded as the result of a time inversion of the case where
with largek, and, as an aside, the nonlineawiyVv*(Vh)? IN a, anda, are negative. Therefore, the nonhomogenous sta-
Eq. (18) makes this worse by doubling the wave veckor tionary solutions are unstable. Moreover, for most initial
This implies that for most initial conditions the deterministic conditions a solution of Eq18) does not exist, and numeri-
field equation(18) has no bounded solution &, is positive.  cal simulation is therefore not reasonable in this case. The
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FIG. 8. Height-height correlatio@(r,t) at the timet=100 re-

FIG. 6. Height profileh(x,t) calculated from the nonlinear de- sulting from the nonlinear deterministic growth equatid®) in
terministic growth equation in one dimensié86) using the param-  two dimensions on an intervaD,100* subject to periodic bound-
etersa;=a,=az=—1 on an interva[ 0,100 subject to periodic ~ary conditions, using the parameters=a,=as=—1. The initial
boundary conditions. The initial values bfon the 400 grid points  Values ofh on theN?=307 grid points are random numbers taken
are random numbers taken from a uniform distribution betweerfrom a uniform distribution betweer 0.5 and—0.5.
+0.5 and—0.5. (a) t=2,6,11,(b) t=11,22,33,(c) t=33,66,100,

(d) t=100,150,200, () t=800,900,1000, (f) t because the substrate is usually much larger than the length
=1200,1400,1600,3000,5000,10000. The height profilestat Scale of the observed surface struct(ire8]. Therefore,L
=3000,5000,10 000 are coincident with the stationary solution ofmust be large compared to the length scale of the calculated
Eq. (36), that is shown in Fig. 4. The height profiles at different surface structure, that is about=21+/2a,/a; at the begin-
times can be distinguished in such a way that the maximurh of ning of the simulation and is increasing afterwards.
increases with time in the picturéa)—(f). In this section, we first quantitatively investigate the
growth of the moundlike structure arising from the nonlinear
conditions for the existence and stability of the nonhomo-deterministic growth equatiofi8) under the aforementioned
genous stationary solutions are also depicted in Fig. 7. conditions. Subsequently, we extend our investigation to the
nonlinear stochastic field equatio@). For that purpose
gquantities need to be introduced, that describe the evolution
of the height and the length of the surface structure. The
height-height-correlation is defined by

At the end of the last chapter we have described the
growth of the moundlike structure arising from the nonlinear 1 g - —
deterministic field equatiofil8) under the conditions that; Clri= Ff d*x[h(x,t) =h(t)]
anda, are both negative. Because these conditions combined
with az<<0 are relevant in the context of amorphous surface .. _
growth (see Sec. )lwe apply them in the rest of this study. X[h(x+r,t)— h(t)]>> , (39
Furthermore, we must prevent any artificial effect of the fi-
nite sizeL of the interval[0,L]% on the surface structure, o

whereh(t) = (1/LY) fd% h()?,t) denotes the spatially average
_ of the height, and( .. .))=, denotes the ensemble and
a0 ot radially average. Then the surface roughness) is given
h: unstable by w?(t)=C(0,), and the correlation lengtR.(t) is defined
rh: not existent as the radius of the first maximum @& (r,t) occuring at
h: unstable nonzeror (see Fig. 8 The quantitiesv(t) andR.(t) char-
nh: unstable acterize the height and length of the surface structure. Fi-
a, nally, we define the height-difference correlation by

V. QUANTITATIVE INVESTIGATION
OF THE MOUND GROWTH

Ir|=r

a,

h: unstable
nh: stable

h: stable 1 d - - - 2
nh: not existent H(r,t): 4 d X(h(X,t)—h(X+r,t))
h: stable L |F\:r

nh: not existent (35)

L=2n(a,/a,)"

R.(t), w(t), andH(r,t) are experimentally accessibl&]
FIG. 7. Stability of the stationary solutions in the parameterand, therefore, candidates for a comparison of experimental
space spanned ta; anda,, h: homogeneous, nh: nonhomogenous. data and theory.
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FIG. 9. Correlation lengthR.(t) calculated from the nonlinear
deterministic growth equatio(86) in one dimension using the pa-
rametersa;=a,=az=—1 on an interval 0,400 subject to peri-
odic boundary conditions. The initial values lofon the 800 grid

points are random numbers taken from a uniform distribution betion of Fourier modes with growth rate(k) <o (k). We

FIG. 10. Surface roughnesgt) resulting from the same simu-
lation as the correlation length in Fig. 9. The solid line thatwifs)
for t>t, is determined by(t) =0.0% + const.

tween +0.0005 and—0.0005.t,=34.6 (left dashed ling denotes
the time wherR(t) climbs over 2r\/2a,/a,, andt,=117.5(right
dashed lingdenotes the time wheR,(t) reaches 42a,/a;. The

mention that a reduction of the initial values bfwould
extend the time intervdlOt,], before the effect of the non-
linear term sets in. Therefore, the critical mode would have

solid line that fits R.(t) for t>t, is calculated byR.(t)=pg
++/p1tpot with the parameterpy=—12.4, p,=414.7, andp,
=4.3.

more time to dominate the other Fourier modes. This yields
that the growth rate ofv(t) for t<t; converges too(k.)
from below in the limit of very small initial values di.

After t=t; has been reached, the nonlinear term
a3a§(axh)2 is no longer negligible and is roughly doubling
the correlation lengtiR (t) in the time intervalt,,t,] as
shown in Fig. 9 between the dashed lines. Then the curvature
of R(t) changes an®.(t) follows asymptotically aJt be-
havior. The growth ofR.(t) for t>t, can be fitted by
As a representative example, we solve this equation by nuR:(t)=po+ Vp1+pot with the parameterpy=—12.4, p;
merical simulation(see for details of the method Appendix =414.7, andp,=4.3 as depicted in Fig. &olid ling). The
C) with the coefficientsa;=a,=az=—1 and the interval ~surface roughness(t) grows linearly beyond=t, with the
length given byL=400. The number of grid points il slopedw/dt=0.05 as shown in Fig. 1(olid line).
=800 and the initial values ofi on these grid points are Next, we investigate the effect of the initial distribution
independent random numbers taken from a uniform distribuor, equivalently, the initial surface roughness of the hefght
tion between+ 0.0005 and—0.0005. The corresponding re-
sults for the correlation lengtR.(t) and the surface rough- 10' '
nessw(t) are shown in Figs. 9, 10, and 11.

At early stages the linear limit of EJ36) athzal&ih
+a2(9§h is sufficient to describe the surface growth. This
implies that a Fourier mode with wave numbegrows with
a growth rateo(k)= —a;k?>+a,k*. Becauseo(k) has its 107 L
maximum atk,= ya,/2a, ando(k;) = — a§/4a2, this critical
modebegins to dominate the surface growth after a short
time. Therefore, the correlation lengky.(t) first increases 10°
and then remains constant B(t)=2n/k.=2m+2a,/a;
until the timet=t,, when the nonlinearityzelg,af((axh)2 raises
R.(t) above this valuésee Fig. 9. For the same reason, the
surface roughness(t) follows approximately a time evolu-
tion ex;{a(kc)t]:exp(—aimaz) for t<t,, as soon as the 10
cricital mode begins to dominate the other Fourier modes 0 10 20 30 40 50
(see Fig. 11 Actually, the growth ofw(t) att<t; can be

A. Nonlinear deterministic growth equation in one dimension
Here, we investigate the deterministic field equatib8)
in the cased=1 reading explicitly

ath=a,02h+a,dih+azd2(dsh)2. (36)

fitted by an exp(0.23j-behavior(see solid line in Fig. 11
yielding that the growth rate ofv(t) is a little bit smaller

FIG. 11. Surface roughnesgt) resulting from the same simu-
lation as the correlation length in Fig. 9. The solid line thatWifs)

thano(k;)=0.25. This deviation is caused by the contribu- for t<t, is determined byv(t) = constx exp(0.235).
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FIG. 14. 1, (circles andt, (squaresas functions of the initial
surface roughnesw(0) calculated from the same simulations as

FIG. 12. Correlation lengtR.(t) calculated from the nonlinear
deterministic growth equatio(86) in one dimension using the pa-
rametersa; =a;=a;=—1 on an interval 0,400 subject to peri-  p (+) andw(t) in Figs. 12 and 13. The solid line that fitsis given

od!c boundary conditions. The initial values.bfon the SOO.grid by t;= — 4 In[w(0)]+1. The dashed line that fits is given byt,
points are random numbers taken from uniform distributions be-=_ 4 In[w(0)]+85.

tween +0.0005 and—0.0005 (right line), +0.005 and—0.005
(second line from the right +0.05 and—0.05(third line from the jndicates that the larger the initial valuestoére, the smaller
right), and +0.5 and— 0.5 (left line), respectively. is the time t; when R.(t) begins to exceed\,
=2m+2a,/a; and also the time, when R.(t) reaches
on the growth ofR.(t) andw(t). Again, we solve Eq(36)  2\.=4m2a,/a,;. The dependence of the characteristic
on the interval[0,400 with the coefficientsa;=a,=az=  timest,; andt, on the initial surface roughnes®0) is de-
— 1. The initial values oh on theN =800 grid points, how- picted in Fig. 14. As a result; can be approximated by
ever, are random numbers taken from four different uniform=—4|n[w(0)]+1 or equivalently w(0)exp(0.2%5,)
distributions, namely, betweent0.0005 and —0.0005, =exp(0.25)=const. This implies that the nonlinear term
+0.005 and-0.005,+0.05 and—0.05, and+0.5 and—0.5.  a,42(4,h)? begins to take an effect, when the surface rough-
The results for the correlation lengtR.(t) and surface nessw(t), that follows thew(0)exp(0.25) behavior fort
roughnessw(t) are depicted in Figs. 12 and 13. Figure 12 <t, comes up to a fixed value. We emphasize that the con-
stant in this law is still dependent on the rescaled initial

60 . . . height distributionh(x,0)/w(0). Furthermoret, can be ap-
proximated byt,=—4 Infw(0)]+85, yielding t,=t,+84.
Figures 12 and 13 also indicate that the long time behavior of
R.(t) andw(t), i.e.,R(t)~ Jt andw(t)~t for t>t,, is not
influenced by the initial height distribution except that the
curves are shifted to later times if the initial valueshoére
decreased. Another result of Figs. 12 and 13 is that the
curves ofR;(t) andw(t) in the transition periodit,,t,] are
changed from convex into straight, if the initial heidit{tx,0)
increases.

Finally, we extend the discussion of E@6) to general
coefficientsa;, a,, andas. We have explained that in the
validity regime of the linear equation fot<t; R.(t)
reaches\.=2m+/2a,/a; and remains constant unti=t,
and thatw(t) follows approximately an exp(aft/4a2) be-

0 200 400 600 800 1000  havior, as soon as the cricital mode begins to dominate the
surface growth.

Itis straightforward to see thata,/a? is a time constant,
Ja,/a, is a length constant, aral, /a5 is a height constant

20

FIG. 13. Surface roughnesg(t) calculated from the nonlinear
deterministic growth equatio(86) in one dimension using the pa- . . .
rametersa,=a,=a;= — 1 on an interva[ 0,400 subject to peri- in Eqg. (36). Changmgazlas by an arbitrary factor would
odic boundary conditions. The initial values lofon the 800 grid change all heights by the same l;actor. Th? same holds for
points are random numbers taken from uniform distributions be-V ay/a; and all lengths ar_ld— a,/ajy and "f‘” times, respec-
tween +0.0005 and—0.0005 (right line), +0.005 and—0.005 tively. Therefore, all relations that hold in the caag=a,
(second line from the right +0.05 and—0.05 (third line from the =~ =a3=—1 can be generalized by division of all heights by
right), and +0.5 and— 0.5 (left line), respectively. a,/as, all lengths by\/a,/a;, and all times by-a,/aZ?. For
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instance  t; is determined by [azw(0)/ 50 ' '
az]exp(—O.ZEaftllaz)=const where the constant in this
law depends on the functidn(x,0)=h(+/a; /a,x,0)/w(0) in

the same way as it would depend Iﬁ)@(,O)= h(x,0)/w(0) in

the casea;=a,=az=—1. The relation betweet, andt;

can be generalized by2=t1—84a2/af These relations
yield that, if |as| is decreased, andt; increase. By means R,
of R¢(t)~ Jt one obtainsR.(t) ~consiX ya,/a;\— azlt/az
=consiX y—ayt for t>t, where the constant does not de-
pend on the coefficients, , a,, or az. This seems paradoxi-

cal because the coarsening of the surface structure is cause
by the nonlinearit;ay?i(axh)z. But, on the other hand, by an
increase oflas| one could decreasg andt, and shift the

R.(t) curve to smaller times and thereby incredggt) at

any fixed timet>t,. Finally, w(t) grows linearly att>t, 0 100 200 300 400
with the slope  dw/dt=0.05@,/a3)(— ai/az) = t
_0-0535/33- FIG. 15. Correlation lengtiR.(t) calculated from the nonlinear

deterministic growth equatio(8) in two dimensions using the pa-
rametersa,=a,=az=—1, a,=0 (solid line), a,=0.08 (dotted
line), anda,=0.2 (dashed lingon an interval 0,100 subject to

Next, we investigate the nonlinear deterministic growthperiodic boundary conditions. The initial values lofon the N?
equation(8) in the cased=2. Except for some quantitative =3012 grid points are random numbers taken from a uniform dis-
deviations, the same considerations as in one dimension aféoution betweent0.5 and—0.5.
also valid in two dimensions. .y P _

In the regime of the linear growth equatiéd?) with t ~ —bP" ‘@, andag—b “ag. Then, Eq.(18) is transformed
<t,, the critical mode with wave numbdi,=+/a,/2a, be- to
gins to dominate the other Fourier modes after a short time.
Then, the surface roughnesgt) follows again approxi-
mately an ex[lr(kc)t]=exp(—aft/4a2) behavior and the cor-

relation length remain_s constgnt a‘RC(t):?'OlSGKC This equation would correspond to the original Ef8) if
=7.0156/2a,/a,. The difference in the behavior ®.(t)  »_ ;-4 7-4-7— =0 held. Because this condition can-
between the case=2 and the casd=1 is due to the radi- 1o pe fylfilled, we neglect one of the three terms on the RHS
ally average in the definition d&(r,t). of Eq. (18). We neglect the term proportional & because

. 2 .
~ We solved Eq(8) on an interval0,100“ subject to pe- 4t |arge length scales fourth order derivatives are smaller
riodic boundary conditions with the coefficients;=a,

B. Nonlinear deterministic growth equation in two dimensions

ah=b?"7a;V?h+b* Za,V*h+b* 2~ %a,V3(Vh)2.
(37)

=az=—1 and witha,=0, a,=0.08 anda,=0.2, respec- 70 , , , ,

tively. The initial values oth on N?=301? grid points were

random numbers taken from a uniform distribution between 4, |
+0.5 and—0.5. The results foR.(t) andw(t) are depicted e

in Figs. 15 and 16, respectively. The long time behavior of
R.(t) andw(t) is the same as in the cade=1, i.e., R.(t)
~t and w(t)~t for t>t, with the slope ofw(t) deter-
mined bydw/dt=0.08. The deviations from this behavior at
later stages are due to the finite size of the intef0al 002 e

Figures 15 and 16 also indicate that the term proportional
to a, has noqualitative effect, except for a little acceleration -
of the growth ofR.(t) andw(t). Because of the relations
a,=Fb? anda,;=—Fb, a, is not independent of,. In a
comparison with experimental resulfd8] we have self- 10 » i
consistently checked that the inclusion of theterm does
not quantitativelyimpact the results. 0 0 160 260 360 460 560 660 700

The growth behavior oR.(t) and w(t) at later stages,
€ RC(t)N \/f andW(t).~E for £>t2’ can be obtalnzed if one FIG. 16. Surface roughnesg(t) calculated from the nonlinear
applies the transformation—bx, h—b®h, andt—b*tto all  yeterministic growth equatiot8) in two dimensions using the pa-
lengths, heights, and times whesieandz are positive con-  rametersa,=a,=a;=—1, a,=0 (solid line), a,=0.08 (dotted
stants and is a positive number. Because the coefficients ofiine), anda,=0.2 (dashed lingon an interval 0,100 subject to
Eg. (18 have the dimensionga,]=lengttf/time, [a,]  periodic boundary conditions. The initial values lofon the N2
=lengttf/time, and[a]=lengtt/(timex height), they are =301 grid points are random numbers taken from a uniform dis-
transformed thereby according toa;—b? %a;, a, tribution betweent+ 0.5 and—0.5.

50 - T

40 1 P .
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than second order derivatives and at large heights linea 80 .
terms are smaller than quadratic terms. && *h is small

compared ta,V2h anda;V2(Vh)Z2. Therefore, we can omit
the condition 4-z=0 and we retain the conditions—2 60
=4—-z7—a=0, yielding z=a=2. Then one obtains that
R.(t) follows a time evolution determined bR,(t)~t*?
=t2 w(t) follows a dynamics given directly byv(t)

~t%?=t, and the surface roughness of the stationary solu-Rc 40
tions of Eq.(18) is governed byw(L)~L%=L2. Further-
more, the height-difference correlation can be written as
H(r,t)=r2g(t/r?)=r4g(t/r?) for t>t,, as we confirmed

by numerical simulations of the deterministic growth equa- 20
tion (18). This, however, doesotimply thatH(r,t) follows
ar* behavior at a fixed time>t, and smallr, because( &)
doesnot saturate for largg=t/r?. 0

0 200 400 600 800 1000
t

C. Linear stochastic growth equation
fi h btain insiahts in the d . f FIG. 17. Correlation lengtiiR.(t) resulting from the nonlinear
As a first approach to obtain insights in the dynamics o stochastic growth equatio@1) in one dimension on an interval

the nonlinear stochastic growth equatieh, we investigate ¢ 400 subject to periodic boundary conditions, using the param-
its linear limit eters a;=a,=a;=—1 and D=10.10°,10"%,1072,107%10°°
&th=a1V2h+a2V4h+ - (38) (from the left line to the right ling respectively.

. . . . fore, Ry(t) follows at¥?=tY4 behavior andw(t) follows a
d » Re
on an interval[ O,L]® subject to periodic boundary condition /2= (4~ 018 pehavior ift is small compared t aglai.

and the initial conditior(x,0)=0. Equation(38) has proved At later stages, the critical mode dominates the surface
to be sufficient to describe the surface growth of amorphouarowth_ Then the surface roughness(t) follows an
ZrAlCu films up to a Iayer. thickness .Of aboutH) exp(—a%t/4a2) law and the correlation lengtR.(t) saturates
=240 nm[18]. The height-height correlatio&(r,t) that into R(t)=2m\2a,/a; in the cased=1 and intoR(t)
arises from this equation is determined by —7 Olcsa/m inzthel casal— 2 ¢

=l 2/dy =c<.

D. Nonlinear stochastic growth equation in one dimension

C(r’t)=<ﬁ* explik-r) (k)

k#0

D s N gexq20(k)t]—1> |
Ir|=r

In this section, we discuss the nonlinear stochastic growth
(39 equation(4) in the cased=1:

where (- - -)Zm:r denotes radially average and(k)= dth=a,02h+a,0%h+az02(3,.h)2+ 7. (41)
—a,k?+a,k* the growth rate of the Fourier modes. Since all

possible wave vectors K have the form k  For this, we solve Eq4l) on an interval 0,400 subject to
=(2mn,/L,27ny /L), wheren, andn, are integer numbers, periodic boundary conditions and the initial condition

C(r,t) converges in the limit of large, yielding h(x,0)=0, using the parameters, =a,=az=—1 and D
=10',10°,10"1,10 2,10 4,10 °, respectively. Figures 17
D . . exg2o(k)t]-1 and 18 depict the corresponding correlation lerigtft) and
C(r,t)= df ddk exp(ik-r)—k . surface roughness(t).
(27) (k) IF|=r At early stages the linear growth equati@B) is suffi-

(400 cient to describe the surface growth. Then the helighitthe
. . ) surface profile is proportional tgD whereas the length scale

Therefore, the RHS of Eq39) is basically independent & f the surface structure does not dependDorif the noise

Next, we investigate the scaling behavior of the surfacestrengthD is small, it takes longer time, before the nonlinear
growth arising from 2Eq(38) at early stages. >0 is small  taym a,9%(5,h)? gains an effect. Then, the critical mode has
compared to—a,/aj, the wave numbek must be large enough time to dominate the other Fourier modes. Therefore,
compared toya, /a, if a noticeable difference between the \y(t) follows an exp(-ait/a,) behavior andR(t) remains
term{ex 2a(K)t]—1}/o(K) in Eq. (39) and 2 should appear. constant aR (t)=2m2a,/a, until the timet=t,, when
Therefore, C(r,t) varies on a length scale that is much g (1) pegins to exceed this value by the effect of the non-
smaller thanya, /a;. On that length scale, the term propor- |inear term. On the other hand, for lar@ethis behavior is
tional to a; in Eq. (38) can be neglected yieldingih  not seen, because the critical mode has not enough time to
=a,V*h+ 7. If one applies the transformation—bx, h dominate the other modes before the effect of the nonlinear
—b%h, and t—b?, the coefficients of this equation are term sets in.
changed bya,—b* %a, and D—b%**97?D. This implies Figures 17 and 18 also indicate that the growth of the
that the equation is not changed if the condition Z=2« correlation lengthR;(t) and the surface roughnesgt) at
+d—z=0 holds. This yieldg=4 anda=(4—d)/2. There- later stages is not changed by the stochastic term i
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FIG. 19. Height-height correlatio@(r,t) at the timet=100
resulting from the nonlinear stochastic growth equati42) in two
dimensions on an intervdl0,300 subject to periodic boundary
conditions, using the parametas=a;=—1 andD=1.

FIG. 18. Surface roughness(t) resulting from the nonlinear
stochastic growth equatiof41) in one dimension on an interval
[0,40Q subject to periodic boundary conditions, using the param
eters a;=a,=as;=—1 and D=10,10°,10 %10 2,10 4,10 ®
(from the left line to the right ling respectively. VI, CONCLUSIONS
small, i.e.,R.(t) still follows a 't law andw(t) grows lin- In this study, we have proposed a nonlinear stochastic
early fort>t, with the slopedw/dt=—0.0%a3/a,. Thisis a  field equation(4) for amorphous thin film growth. Starting
consequence of the fact that the stochastic term is not iffom a phenomenological approach based on nonlinear sto-
creasing whereas the magnitude of the moundlike surfacghastic partial differential equations, using the symmetry
structure is increasing. Therefore, we expect the same longinciples relevant for amorphous film growth, the condition
time behavior also for large noise strenddhat later stages Of no excess velocity, and an expansion in the gradients of

of the surface growth. the surface profilé(x,t) we obtained the functional form of
the equation. Furthermore, we related the constituents of the
E. Nonlinear stochastic growth equation witha,;=0 growth equation to processes determining the interaction of

the depositing particles with the already condensed surface

To ascertain the relevance of the growth instability deter;yms. Most importantly, we have demonstrated that the one-

mined by the ternalVZh (with &, <0) for the growth of @ gimensjonal and deterministic limit of EG4) already con-
penodlc moundlike strycture, we |_nvest|gat§ the case when ins many major ingredients for the understanding of the
is absent. Thus, we discuss E¢) in the limit a,=0: two-dimensional and/or stochastic case. In particular, the
- rowing surface morphology typically possesses a periodic
ath=a;V*h+a;V*(Vh)*+ 7, (42) ?nound?ike structure tFk:at cggrs)tla?ls W?;hpincreasing tirFr)1e, ie.,
) . o with increasing time mounds successively disappear and the
wherea, andas are negative numbers. This equatiovith  moundlike structure widens. In the nonlinear regime the
a;>0) was proposed by Lai and Das Sarpdd as the rel-  characteristic length scale of the surface structure follows a

evant growth equation fadeal MBE growth of crystalline ' pehavior whereas its typical height grows linearly with
layers at higher temperatures. They stated that the surfaggne t.

arising frqm Eq(42) evolves into a self-similar structure and  The condition of no excess velocity implies that the film
they derived the growth exponenig=(4-d)/3, z=(8  growth occurs at constant density. On the other hand, the
+d)/3, and B=alz=(4-d)/(8+d) from a dynamic possibility of density variations at amorphous film growth
renormalization-group ana]yss. . ) cannot be rejected by physical arguments. Furthermore, a
These exponents describe the scaling behavior of 8. comparison of experimental results for amorphous ZrAICu
at later stages and large distances. At early stages and smfjns indicates the necessity of incorporating density varia-
distances the dynamic exponents resulting from the lineagions[18] at least for that material. Therefore, it is important
limit of Eq. (42) are valid:a=(4-d)/2, z=4 andB=alz a5 a next step to extend our analysis of the growth equation
=(4—d_)/8. By a numerical cglculation of the height-height {5 the case of a basically homogeneous denéliyto a
correlationC(r,t) corresponding to Eq42) we have con-  thorough investigation of the long-time behavior of the

firmed that no periodic structures arise. TherefdZgr.t)  growth equation in the presence of significant density varia-
possesses no maximum at nonzertsee Fig. 19 and the  tions (D4).

correlation lengtiR.(t) is not defined.

We conclude that the incorporation of the growth insta-
bility induced by the terna, V2h is necessary to describe the
experimentally observed formation of a mesoscopic mound- This work has been supported by the DFG-
like structure of the growth of amorphous thin films. Sonderforschungsbereich 438" Minen/Augsburg, TP Al.
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APPENDIX A APPENDIX B

In this chapter, we discuss the role of the deposition noise Here, we present a derivation of the nonlinear term

by means of statisti_cal consideratiops. We also present 8 y2(vh)2 in Eq. (8) that is a modification of the argument
estimation of the noise strengthin microscopic terms. in Ref. [11]. It allows for an estimation of the size of the

If n undistinguishable particles arrive on tzhe surfacecpefficienta, in microscopic terms and also the determina-
within a time and space interval of the sizax)°At, the  {jon of its sign. The flux of incoming particles per surface

number of distributions of the particles within that time, 5163 and time unit generally depends on the slope of the
and space interval scales such[&4x)2At]"/n!. This im- surface

plies that, ifN particles arrive on the total surface are

within the time interval 0,T], the probability thain of the . _
particles arrive on a surface are&x)? within a time interval ®(y)=do/V1+(Vh)?~d,
of the lengthAt, is given by

N! (Ax)2At\"
n!'(N—n)! L2T

1 2)
1-5(Vh?|.  (BY)

P(n)=

(Ax)2At N-n A particle that arrives at the Iocatiofl diffuses along the
- ) surface until it relaxes at the location with probability

d?x P(|x—y|). Here,x andy are coordinates in the local
system of the surface. The mean square of the diffusion
The total number of deposited particles is given Ny length is defined by?= [d?x(x—y)?P(|x—y|). The number

=®oLT whered, is the number of deposited particles per of particles that relax ak per surface area and time unit is
surface area and time. Therefore, the probabMify) reads  therefore given by

L2T
(A1)

N! Do(Ax)2AL\" ®o(AX)2AL\N7N 1
P(n):n!(N—n)!( N ) (1_—N ) f d?y (Y)P(X—y)) = D(X) + F12V2D|5+0(1%).
Because of®y(Ax)2At<d,L2T=N, one obtainsn<N, _ o - _
yielding The product of this quantity witlf) V1+(Vh)? determines

the growth velocity in growth direction whe®@ =F/®, is

1 - ) the particle volume. Therefore, the growth velocity reads
P(n)=n—|[d>0(Ax) At]"exd —Po(AX)°At]. (A3)

1 -
Equation(A3) constitutes the Poisson distribution. It has the F- §FI2V2(Vh)2+O(|4)’ (B3)
mean (n)=®y(Ax)?’At and the variance{(n—(n))?)
=d,(Ax)2At. The spatially averaged height increasel  in the case of small gradients and small diffusion lerigtks
that is caused on a surface aréax? by the deposition o  a consequence, the spatial deviation of the growth velocity
particles of the volume) during a time intervalAt reads from the mean growth velocit§ being the relevant term
AH=nQ/(Ax)2. It possesses the mean(ﬁ) entering in the gradient expansfion of E®) is basically
=(n)Q/(AX)2= DO At=FAt and, therefore, the variance determined by the second term in E§3),

((AH=(AH))?)=((n—(n))?) Q% (Ax)*

=D Q2At/(AX)>=FQALt/(AX)2.

(A4) with a; being negative.
An alternative derivation of the coefficieag is explained
On the other hand, the height increase produced by deposis follows. Because of a geometrical reagbh the concen-
tion reads tration of diffusing particles on the surface is given by

. =ng/ ;+(€h)z with ng=®,7=d,|%/4D’. Here, r is the
f j n(x,Hd2xdt (A5) ~ Mean time of particle diffusion b_efore relaxation, abd is _

t (ax)? the diffusion constant of the particles on the surface. Unlike
o this, the adatom density amrystallinelayers is slope depen-
yielding (AH)=FAt and finally dent because of the capture of particles at steps. A useful
interpolation formula in that connection isi=ngy/[1
+1%(Vh)?/a?] wherea, is the thickness of one atomic layer
By a comparison of Eqs(A4) and (A6) one obtains the [19]. The inhomggeneogs particle concentration leads to a
relation diffusion currentj =—D’Vn and therefore to a contribution

QD’V?n to the deposition equation. This contribution to the
2D=FQ (A7) deposition equation reads

1 2
2= Fl (B4)

1

AH=FAt+
(Ax)?

((AH—(AH))2)=2DAt/(Ax)2. (A6)
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F|2 1 Fl2 growth, the condition of no excess velocity and a low-order
— V2~ —V4Vh)? (B5)  expansion in the gradients of the height profil,t): 9;h
4 J1+(Vhy? 8 =a,V2h+a,V*h+azV4(Vh)2+a,M+ 7, yielding aH

=a;V2H+a,V*H+azV4(VH)2+a,M +F + 7. If the film
grows at contant density,, the number of atoms of the
Fl2 1 El4 amorphous film per substrate area above a given substrate

—V2————~— —VVh)? B6 position reads = poH, yielding
oV e a1 ©9 °

at amorphous film growth and

at the growth of crystalline layerg19] and shows most  d,c=po[a;V2H+a,V*H+agV3(VH)?+a,M +F+ 7].
clearly the difference between amorphous and crystalline (D1)
growth processes.

If significant density variations occur during the growth pro-
APPENDIX C cess, the condition of no excess velocity is no more justified
To integrate numerically the growth equatiq#), a  €Ven if all deposi_ted particles contribu_te to the film growth,
forward-backward difference method on a quadratic latticd &~ If desorption is absent. If the density of the amorphously
combined with a Euler algorithm in time has been ug2@].  grown material depends on the surface slope, P(VH)
In discrete form, Eq(4) can be rewritten as ac=p(VH)dH holds instead ot =p,H. Herep(VH) de-
notes the density at the surface. On the other hand(Eh.
hHLopn Aty N N N _4 still holds since the absence of particle desorption implies
T A )z[WIHJ Wis g W0t W =AW that the rate of change dfis given by a continuity equation
0c=po[— V- [+ F+7]. Division of Eq. (D1) by p(VH)

24D At leads to
+ (A% — (C1

H=—22[2,V2H+a,V*H+a,V?(VH)?
wij=ah;+ ) [h|+lj hi_y+hi+h_ —4hl] p(VH)

(A +asM+F+7]. (D2)

2[( i+1, hin,j)2 = . . =0,
3(AX) Next we expandgg/p(VH) in terms of the gradient¥ H:
n i N 22 Ip(VH)=1+(ag/F)(VH)?+ O[(VH)*]. Then, the ex-
(Mg = (e = Ay + (hiy =ity ) Sgnﬁon (2f the (Ele?ernzi(nistigz part[(()f th)e a?HS of ED2) up
+ (" —h )2+ (Y —h (Y —hP p) to the orderO(V*,H?) and neglecting all corrections to the
’ ’ ’ deposition noise yields
+(h—hf_ 2], (C2)

whereh('; denotesh(x;,y; .t,) and everyr{; is an indepen- gH=a;V?H+a,V*H +a3V?(VH)?+a,M

dent random number taken from a unlform distribution be- 2

tween —1/2 and 1/2. The prefactof24DAt,,/(Ax)? guar- Fag(VH)"+F+7. (©3)
antees that the nois@24DAtn/(Ax)2rﬂj has the same

variance as the spatial average of the Gaussian npisa  Finally, by the transformatioh(i,t)zH()Z,t)—Ft, one ob-
the quadratic areaA(x)? around ; ,Y;j) integrated over the tains
time intervallt, ,t,+At,]:

V24D At, /(AX)?r] ah=a,V?h+a,V*h+asV3(Vh)2+a,M +as(Vh)2+ 5
' (D4)
1 ta+ Aty Xj+Ax/2 yj+Ax2
= J dtJ de dyn(x,y,t). ) .
(Ax)?Jt, X — AX/2 yj—Ax/2 as the relevant continuum model for amorphous film growth

(C3) in the presence of local density variations depending on the
surface slope. The fifth term on the RHS of EB4) is of

Equation(C3) means only that its two sides have the sameKardar-Parisi-ZhangKPZ) form [12] and leads to a finite

mean and variance. During the simulation the time incremerfxcess velocity. Note thats must be positive, because at
At,=t,.,—t, has been dynamically adjusted. obligue particle incidence exposed atoms cast a shadow upon

unoccupied places on the surface and thereby cause an addi-

tional volume increase if the surface diffusion is weak. A

comparison with experimental results on amorphous
In Sec. Il we derived the simplest nonlinear growth equa-ZrgsAl 7 <Cuy; sfilm growth [18] ascertains that E§D4) con-

tion using the symmetries relevant for amorphous filmstitutes a valid model for amorphous thin film growth.

APPENDIX D
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