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Abstract. By use of external periodic driving sources, we demonstrate the
possibility of controlling the coherent as well as the decoherent dynamics of a
two-level atom placed in a lossy cavity. The control of the coherent dynamics is
elucidated for the phenomenon of coherent destruction of tunnelling (CDT), i.e.
the coherent dynamics of a driven two-level atom in a quantum superposition
state can be brought practically to a complete standstill. We study this
phenomenon for diå erent initial preparations of the two-level atom. We then
proceed to investigate the decoherence originating from the interaction of the
two-level atom with a lossy cavity mode. The loss mechanism is described in
terms of a microscopic model that couples the cavity mode to a bath of
harmonic � eld modes. A suitably tuned external cw-laser � eld applied to the
two-level atom slows down considerably the decoherence of the atom. We
demonstrate the suppression of decoherence for two opposite initial prepara-
tions of the atomic state: a quantum superposition state as well as the ground
state. These � ndings can be used to decrease the in� uence of decoherence in
qubit manipulation processes.

1. Introduction
The idea of controlling the coherent dynamics of a quantum system by an

external time-dependent force has found wide spread experimental and theoretical
interest in many areas of physics (for reviews see [1–3]). It is, for example, a
commonly used tool to manipulate trapped atoms in quantum optics [4, 5] as well
as to control chemical reactions by a strong laser � eld [1–3]. In the context of
quantum optics, it has been demonstrated experimentally [6] that a frequency-
modulated excitation of a two-level atom by use of a microwave � eld driving
transitions between two Rydberg Stark states of potassium signi� cantly modi� es
the time evolution of the system. In the context of tunnelling systems it has also
been demonstrated that it is in principle possible to completely suppress the
coherent tunnelling of an initially localized wave packet in a double-well potential
by an external, suitably designed time-periodic continuous-wave (cw) perturbation
(coherent destruction of tunnelling) [7].
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However, real quantum systems are always in contact with their environment.
The coherent dynamics is then usually destroyed due to the in¯ uence of the large

number of environmental degrees of freedom. Not only the phase of the quantum

system is disturbed (decoherence) [8] but also energy exchange (dissipation) [9, 10]

takes place between the system under consideration and the environment. An

example of such a system± bath interaction is the ensemble of electromagnetic ® eld

modes in a cavity, each of which is described as a quantum mechanical harmonic
oscillator [4]. Each mode interacts with an atom trapped in the cavity. On the other

side, the cavity modes themselves are also not isolated from the macroscopic

environment; as such they are more realistically described as damped quantum

harmonic oscillators. A topic of fundamental interest is the decay of quantum

superpositions of states. In [11] it is shown how quantum optical non-classical
states are highly sensitive to dissipation stemming from a zero-temperature heat

bath. Experimental works studying decoherence systematically are rare. In [12] the

decoherence of mesoscopic superpositions of ® eld states in the cavity has been

investigated. In a recent work, Wineland and collaborators [13] demonstrate that

the decoherence rate scales with the square of a quantity which describes the

separation between two initial states. Moreover, Knight and co-workers [14]
proposed an experimental scheme to probe the decoherence of a macroscopic

object.

In this spirit, the question arises to what extent it is possible to control the

dynamics of a quantum system in the presence of decoherence and, moreover,

whether the eå ect of decoherence can be minimized by an external time-dependent
force, e.g. by a laser ® eld [1, 7, 15± 19]. To achieve this goal, various approaches

have been undertaken in recent years. (i) It has been shown that the eå ect of

coherent destruction of tunnelling (see above) can be used to slow down the

relaxation of a quantum system to its asymptotic equilibrium [16]. (ii) Moreover,

a suitable tailored sequence of radio-frequency pulses (` quantum bang-bang’ [17]

or ` parity kicks’ [18]) that repeatedly ¯ ip the state of a two-level atom may be used

to suppress decoherence. (iii) The cavity-induced spontaneous emission of a two-
level atom can be manipulated by a strong rf ® eld which couples to the cavity mode

[20]. (iv) The manipulation of the system± bath interaction by a fast frequency

modulation also results in slowing down decoherence and relaxation [19].

The objective of this work is to study the in¯ uence of a time-periodic driving
® eld on the dynamics of a two-level atom. In the ® rst part of this work (section 2),

we deal with the objective to ` freeze’ coherent dynamics, i.e. we shall employ an

eå ect known as coherent destruction of tunnelling. Most importantly, we inves-

tigate this freezing phenomenon from the viewpoint of its dependence on diå erent

initial preparations.

In the second part of this work (section 3), we do not elaborate further on the

eå ect of coherent destruction tunnelling, but instead investigate the control of
decoherence of a two-level atom placed in a lossy cavity. Our model consists of a

two-state system which is coupled to a time-dependent periodic ® eld. The driven

two-state system interacts furthermore with one mode of the cavity having the

frequency O. This mode is itself damped by coupling to a bath of harmonic

oscillators (lossy cavity). It is known [21] that a Hamiltonian consisting of (1) a
system part, (2) a harmonic oscillator with frequency O that is being coupled to the

system, and (3) a bath of harmonic oscillators which are coupled to this very single

harmonic oscillator can be mapped onto a Hamiltonian composed of the system
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part coupled to a harmonic bath with an eå ective spectral density. This eå ective
spectral density possesses a Lorentzian-shaped peak at O. The completely isolated

atom (no driving, no cavity) evolves in time in a coherent way according to the

SchroÈ dinger equation. It is this dynamics which we want to preserve and protect as

far as possible from the decoherent in¯ uence of the environment. Our major

® nding is that a cw-control ® eld can indeed be used to (i) reduce decoherence and

(ii) to restore to some extent the unperturbed, non-dissipative time evolution.

2. The driven two-level atom
2.1. Floquet formalism

To start we consider a Hamiltonian describing a two-level atom with
the ground state j1i and an excited state j2i. The energy levels are separated by

the energy -hD0. The atom with the transition dipole moment · is driven within the

long wavelength approximation by an external, time-dependent laser ® eld of the

form E…t† ˆ E0 cos …!Lt† with frequency !L and amplitude E0, yielding the driven

quantum system

H…t† ˆ ¡
-h

2
‰D0¼̂z ‡ s…t†¼̂xŠ: …1†

Here, the matrices ¼̂i ; i ˆ x ;y ;z denote the Pauli spin matrices. The part involving

s…t† ˆ s cos …!Lt† with s ˆ 2·E0= -h presents the time-dependent driving which

couples to the transition dipole moment · of the atom. Note that within this
scaling the amplitude s possesses the dimension of a frequency. The driven time

evolution of the populations of the energy levels exhibits an oscillatory behaviour.

For an initial preparation of the atom in the ground state and for a resonant

driving, i.e. !L ˆ D0, and with s not large, we can invoke the rotating wave

approximation. The population of each state then oscillates between 0 and 1 with
the Rabi frequency OR ˆ s=2. Because the Hamiltonian (1) is periodic in time with

the period T ˆ 2º=!L, i.e. H…t ‡ T † ˆ H…t†, we next apply the Floquet formalism

[1] to the general case away from resonance. The time-dependent SchroÈ dinger

equation may be written as

‰H…t† ¡ i -h@=@tŠjÁ…t†i ˆ 0: …2†
According to the Floquet theorem, there exist solutions to equation (2) of the form

jC¬…t†i ˆ exp …¡i"¬t= -h†jF¬…t†i; …3†
with ¬ ˆ 1 ;2. The periodic function jF¬…t†i are termed the Floquet modes and

these obey

jF¬…t ‡T †i ˆ jF¬…t†i: …4†
Here, "¬ is the so-called Floquet characteristic exponent or the quasi-energy, which

is real-valued and unique up to multiples of -h!L. Upon substituting equation (3)

into the SchroÈ dinger equation (2) one obtains the eigenvalue equation for the

quasi-energy "¬

H…t†jF¬…t†i ˆ "¬jF¬…t†i; …5†
with the Hermitian operator

H…t† ² H…t† ¡ i -h@=@t: …6†
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We stress that the Floquet modes

jF¬ 0 …t†i ˆ jF¬…t†i exp …in!Lt† ² jF¬n…t†i; …7†

with n being an integer number n ˆ 0;§1 ;§2 ; . . . yield equivalent solutions to
equation (3) but with the shifted quasi-energy

"¬ ! "¬ 0 ˆ "¬ ‡n -h!L ² "¬n: …8†

Therefore, the index ¬ corresponds to a whole class of solutions indexed by

¬ 0 ˆ …¬;n†. The eigenvalues f"¬g can thus be mapped into a ® rst Brillouin zone

obeying ¡ -h!L=2 µ " < -h!L=2. It is clear that for our choice of the external driving

force, i.e. s…t† ˆ s cos …!Lt† the quasi-energies are functions of the driving ampli-
tude s and the driving frequency !L. For adiabatically vanishing external driving

they merge into the eigenvalues of the time-independent part of the Hamiltonian

(1), i.e.

"¬n…s;!L† ¡!s!0 ¨ -hD0=2 ‡n -h!L ; …9†

where the negative (positive) sign corresponds to ¬ ˆ 1 …¬ ˆ 2†. The Floquet

modes, correspondingly, turn into the eigenfunctions j¬i multiplied by an addi-

tional phase factor, i.e.

jF¬n…t†i ¡!s!0 j¬i exp …i!Lnt†: …10†

For a ® nite driving strength s 6ˆ 0, the determination of the quasi-energies "¬

requires the use of numerical methods. The interested reader is referred in this

context to the literature [22, 23]. However, we here state without proof that in the

high-frequency regime D0 ½ max ‰!L ;…s!L†1=2Š the diå erence between the two

quasi-energies is given by [15]

"2;¡1 ¡ "1;1 ˆ -hD0J0…s=!L† ; …11†

where J0 denotes the zeroth-order Bessel function of the ® rst kind.

2.2. Freezing the coherent dynamics of a driven two-level system
Equation (11) implies a most interesting consequence for a driven two-level

system [15]: if one chooses the driving parameter s and !L in such a way that the

argument of the Bessel function is at a zero of the Bessel function, the splitting

between the quasi-energy vanishes. Possible transitions between the Floquet states
are then at most induced by the remaining periodic time-dependent parts of the

corresponding Floquet modes jF¬…t†i. This eå ect has been discovered in the

context of tunnelling systems. There, a wave packet, being an equally weighted

superposition of the symmetric and antisymmetric ground state, is initially

localized at one side of a double-well potential. By applying an external suitably
tailored periodic ® eld, the wave packet can be stabilized and can be prevented from

coherently tunnelling back and forth between the two wells, i.e. one ® nds coherent
destruction of tunnelling (CDT) [1, 7]. We emphasize here that the crossing of two

tunnelling related quasi-energy levels yields a necessary (but not suæ cient) cri-

terion for the suppression of coherent tunnelling [15]. Furthermore, we note that
the driven two-level system approximation (1) of the full driven double-well

potential is appropriate [7, 15] since it has been shown that excitations to higher

energy levels are negligible for the case of an initial superposition state (see below).
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The challenge we want to address next is as follows: how does the driven
dynamics of a two-level atom, which is being prepared in some arbitrary initial
state, evolve when the corresponding condition for the parameters obey the CDT
condition? The system dynamics can be described by its density operator »̂…t†,
which is a 2 £ 2 matrix, i.e.

»̂…t† ˆ Î=2 ‡
iˆx;y;z

¼i…t†¼̂i=2 ; …12†

where the expectation values ¼i…t† :ˆ Tr f»̂…t†¼̂ig, i ˆ x ;y;z are the dynamical
quantities of interest. Î denotes the unit matrix and ¼x…t† and ¼y…t† are related to
the coherences (the o å -diagonal elements) of »̂…t† while ¼z…t† is the population
diå erence between the two energy eigenstates j¬i. This implies that the state of the
quantum system at time t is fully determined by the knowledge of the three
expectation values ¼i…t†.

To determine the state of the driven two-level system at time t, we consider the
Heisenberg equation of motion for the density matrix. Using the commutation
relations for the ¼̂i, we arrive at the equation of motion for the expectation values
¼i…t† in (12), i.e.

_¼x…t† ˆ ¡D0¼y…t† ;

_¼y…t† ˆ D0¼x…t† ¡ s…t†¼z…t† ;

_¼z…t† ˆ s…t†¼y…t†: …13†

To study the dependence of the e å ect of coherent destruction of tunnelling on the
initial preparation we � rst choose as the initial state an equally weighted coherent
superposition of the two unperturbed energy eigenstates, i.e.

jC…t ˆ 0†i ˆ 1
21=2 …j1i ‡ j2i† ; …14†

corresponding to ¼x…t ˆ 0† ˆ 1, ¼y…t ˆ 0† ˆ ¼z…t ˆ 0† ˆ 0. We solve the set of
coupled diå erential equations (13) numerically by a standard fourth order Runge–
Kutta integration algorithm with adaptive step-size control. In � gure 1 (a), the
time-dependence of the three expectation values is depicted. The driving par-
ameters are chosen such that the CDT condition is ful� lled: in doing so we use
!L ˆ 50D0 and s ˆ 120:241 : : : D0. Surprisingly all three expectation values ¼i…t†
can be brought simultaneously to an almost perfect standstill!

Next, we choose the ground state as the initial state, i.e. we use jC…t ˆ 0†i ˆ j1i.
This corresponds to ¼x…t ˆ 0† ˆ ¼y…t ˆ 0† ˆ 0, ¼z…t ˆ 0† ˆ 1. The result is de-
picted in � gure 1 (b). Applying to the so prepared two-level system a laser � eld
obeying the CDT condition, we � nd that the y component, ¼y…t†, and the z
component, ¼z…t†, exhibit strong oscillations. These oscillations follow from the
numerically evaluated Floquet theory for the driven two-level system, and are not
described by the Rabi oscillations as predicted from a rotating wave approxima-
tion; this latter approximation is strongly violated for our chosen set of driving
parameters. In contrast, ¼x…t† can be stabilized around the initial value of zero.
This � nding is in accordance with the CDT phenomenon: it re� ects the fact that
the corresponding two equally weighted (‘left ’ and ‘right’ ) localized parts of the
ground state wave function of a double-well potential, as represented within a
localized representation, can each be stabilized too.
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This CDT eå ect opens the doorway to manipulate the in¯ uence of an

environment on a quantum system. It is known [16] that the coherent destruction

of tunnelling survives to some extent in the presence of a coupling to the
environment. Certainly, the system will relax in the presence of an environment;

however, as it is demonstrated in [16], the relaxation process can be slowed down

considerably in the presence of a CDT ® eld.

In view of using diå ering initial preparations, the following remark should be

made. From the viewpoint of stabilizing the state of a qubit (characterized by a

quantum mechanical two-level system) in a quantum information processor [24], it
is of foremost interest to stabilize the coherent superposition of two states of the

qubit. Thus, our ® rst choice (14) is of relevance in the context of the possibility for

quantum computing. Moreover, fundamental questions concerning the decoher-

ence of superposition states arise for the physics that occurs when one crosses the

interface between the classical and quantum world, and vice versa [8, 13].

3. Control of decoherence for a two-level atom
In this section we shall study the in¯ uence of an applied cw-control ® eld for

reducing decoherence of a two-level atom placed in a lossy cavity.

3.1. Driven two-level atom in a lossy cavity
To start we consider a two-level atom in a dissipative environment, e.g. a lossy

cavity wherein the leakage of photons damps the radiation ® eld. Additionally, the

atom may be manipulated by a time-dependent external ® eld like a laser beam. In
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Figure 1. (a) Time-dependence of the expectation values ¼j…t†, j ˆ x;y;z, determining
the dynamics of the full density matrix of the two-level atom according to (12) and
(15). The driving parameters are chosen such that the CDT condition for coherent
destruction of tunnelling is ful® lled, i.e. the driving amplitude is set to
s ˆ 120:241D0 and the driving frequency !L ˆ 50D0. The two-level system is
prepared in an equally weighted superposition of the two energy eigenstates, i.e.
¼x…t ˆ 0† ˆ 1; ¼y…t ˆ 0† ˆ ¼z…t ˆ 0† ˆ 0. (b) The same as in (a) but for an initial state
preparation being the ground state of the two-level system, i.e.
¼x…t ˆ 0† ˆ ¼y…t ˆ 0† ˆ 0, ¼z…t ˆ 0† ˆ 1.



our model, the driven two-level atom is represented by the Hamiltonian (1). It is
coupled to one mode of the cavity which is described by one harmonic oscillator

with frequency O, characterized by the annihilation and creation operators B̂ and

B̂y which ful® ll the usual commutation relations for bosonic ® eld operators. The

coupling constant is denoted by g and has the dimension of a frequency. This

cavity mode is damped by a bilinear coupling to a bath of harmonic oscillators of

frequencies !i. They are similarly described by bosonic annihilation and creation
operators b̂i and b̂ y

i . The coupling constants of the cavity mode to the harmonic

bath are given by µi and have the dimension of a frequency. The total system± bath

Hamiltonian is therefore written as

H…t† ˆ ¡
-h

2
‰D0¼̂z ‡ s…t†¼̂xŠ

‡ -hO…B̂yB̂ ‡ 1
2
† ‡ -hg…B̂y ‡ B̂†¼̂x

‡
XN

iˆ1

-h!i…b̂y
i b̂i ‡ 1

2† ‡ -h…B̂y ‡ B̂†
XN

iˆ1

µi…b̂y
i ‡ b̂i†: …15†

The in¯ uence of the bath on the two-level atom plus cavity mode is fully

characterized by the spectral density

J…!† ˆ 2º
XN

iˆ1

µ2
i ¯…! ¡ !i†: …16†

We let the number of bath modes go to in® nity (N ! 1) and choose an ohmic

spectral density for the bath oscillators with an exponential cut-oå at some large

frequency !c ¾ D0 ;!L ;O, i.e.

J…!† ˆ 2G
O

! exp …¡!=!c†: …17†

Here, we have introduced the damping constant G which is related to the quality

factor of the cavity. Since the cavity mode as well as the bath oscillators are

described by harmonic oscillators, we follow the approach in [21] and map the

Hamiltonian (15) onto a Hamiltonian where the central system, i.e. the two-level

atom, is now bilinearly coupled to a bath of mutually non-interacting harmonic
oscillators with an eå ective spectral density Jeff…!†. Upon letting the cut-oå

frequency go to in® nity, i.e. !c ! 1, this eå ective spectral density emerges as

Jeff…!† ˆ 16G
O

g2!O2

…O2 ¡ !2†2 ‡ 4!2G2
: …18†

For small frequencies !, it increases linearly like in the original ohmic spectral
density J…!†. However, it has a Lorentzian shaped peak at ! ˆ O with a line width

G < O.

In the following section, we make extensive use of the bath autocorrelation

function M…t† ˆ M 0…t† ‡ iM 00…t†, which is obtained in terms of the eå ective

spectral density Jeff…!†, i.e.

M…t† ˆ 1

º

…1

0

d!Jeff…!† coth
-h!

2kBT
cos …!t† ¡ i sin …!t† : …19†
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All our further considerations treat the case when the bath is at zero temperature,
i.e. T ˆ 0. In this limit, and for our choice of the eå ective spectral density (22), we

obtain for the real and imaginary part, respectively, the analytical results

M 0…t† ˆ 16G
ºO

g2O2 º

4

1

G…O2 ¡ G2†1=2
exp …¡Gt† cos ‰…O2 ¡ G2†1=2tŠ

"

¡
…1

0

dy
y exp …¡yt†

…y2 ‡O2†2 ¡ 4y2G2

#

;

M 00…t† ˆ ¡4g2 O

…O2 ¡ G2†1=2
exp …¡Gt† sin ‰…O2 ¡ G2†1=2tŠ: …20†

The quantity of interest is the reduced density matrix for the two-level system

which we denoteÐ just as in the undamped caseÐ by »̂…t†. It follows by tracing

over the bath degrees of freedom in the full density operator Ŵ…t† which

corresponds to the system-plus-bath Hamiltonian (15), i.e. »̂…t† ˆ trB Ŵ…t†. Like
in the deterministic case in equation (12), »̂…t† is fully characterized by the

expectation values ¼i…t†, i ˆ x ;y ;z. We shall determine their corresponding

equations of motions next.

3.2. Bloch± Red® eld formalism
To deal with quantum dissipative systems, several techniques have been

developed [1, 9, 10, 22]. A very eæ cient numerical algorithm for a general

quantum system with a discrete eigenvalue spectrum has been developed by

Makri and Makarov within the real-time path-integral formalism [25]. It has

also been applied to spatially continuous tunnelling systems in the presence of
driving [26]. Moreover, the real-time path-integral formalism has been used

extensively to describe a moderate-to-strong (!) two-level system± bath interaction

[1, 9, 21, 27]. Recently, the former scheme has been generalized to describe multi-

level, driven vibrational and tunnelling dynamics in [28]. At weak system± bath

coupling the Nakajima± Zwanzig projector operator theory [29] provides a power-
ful tool to describe the corresponding reduced density matrix dynamics.

For our quantum optical problem at hand, the suitable method of choice, in the

presence of a physically realistic weak system± bath coupling, is the projection

operator technique: it yields in the Born approximation the generalized master

equation. It can be simpli® ed further without loss of accuracy in leading order in

the (weak) coupling strength g by invoking the Markovian approximation [30]. For
strong harmonic driving, this objective was formally (only) developed a long time

ago by Argyres and Kelley [30]. Following the reasoning in [30] (see in this context

also [31]) we recently derived, for the case of a driven spin± boson problem with an

arbitrary control ® eld, the explicit set of coupled, Bloch± Red® eld type equations

[32]

_¼x…t† ˆ ¡D0¼y…t† ;

_¼y…t† ˆ D0¼x…t† ¡ s…t†¼z…t† ¡ G1…t†¼y…t† ¡ G2…t†¼x…t† ¡ Ay…t† ;

_¼z…t† ˆ s…t†¼y…t† ¡ G1…t†¼z…t† ¡ G3…t†¼x…t† ¡ Az…t†: …21†
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The time-dependent rates Gi…t† ˆ
„ t
0 dt 0M 0…t ¡ t 0†bi…t;t 0†, together with the

inhomogeneities Ay…t† ˆ Re F…t†, Az…t† ˆ Im F…t†, with F…t† ˆ …1=2†„ t

0
dt 0M 00…t ¡ t 0†‰u2…t ;t 0† ¡ v2…t; t 0†Š, determine the dissipative action of the thermal

bath on the two-level atom. The functions M 0 and M 00 denote the real part and

imaginary part, respectively, of the correlation function M given in equations (20).

The quantities u…t ;t 0† ˆ h1jÛ…t;t 0†j1i ‡ h2jÛ…t; t 0†j1i and v…t ;t 0† ˆ h1jÛ…t ;t 0†j2i ‡
h2jÛ…t ;t 0†j2i are sums of matrix elements of the time evolution operator Û…t ;t 0† of
the isolated (i.e. g ˆ 0) driven two-level system. The functions bi read b1 ˆ Re uv¤,
b2 ˆ ¡…1=2† Im …u2 ¡ v2†, and b3 ˆ …1=2† Re …u2 ¡ v2†. Note that this set of equa-

tions is valid in the parameter regime g ½ D0=2. One can demonstrate that for the

undriven case, i.e. s ˆ 0, the analytic solution of equation (21) in ® rst order in g
reproduces the analytical path-integral weak-damping results in [9, 33].

3.3. Controlling the decoherence of a quantum superposition of states
The idea of controlling the decohering in¯ uence of the environment on a

quantum system by an external time-dependent ® eld is demonstrated for the case

of the two-level atom which is initially prepared in an equally weighted super-

position of the two energy eigenstates given by ¼x…t ˆ 0† ˆ 1, ¼y…t ˆ 0† ˆ
¼z…t ˆ 0† ˆ 0. In doing so, we consider four diå erent situations: (1) ® rst, we

look at the isolated two-level atom dynamics without driving and without coupling
the atom to the lossy cavity mode. This case corresponds to setting s ˆ 0 and g ˆ 0.

Case (2) is devoted to the driven two-level dynamics. We switch on a coherent

driving cw ® eld but keep the system isolated from the bath, i.e. s 6ˆ 0 and g ˆ 0. In

case (3) we investigate how the undriven system dynamics relaxes in the presence

of a dissipative coupling to the bath. We therefore set s ˆ 0 and g 6ˆ 0, G 6ˆ 0.
Finally, we demonstrate with case (4) how this decoherent dynamics can be

manipulated with the help of an externally applied time-dependent control ® eld

and set s 6ˆ 0, g 6ˆ 0 and G 6ˆ 0.

In order to preserve the coherent evolution of the two-level atom and to protect

it as far as possible from the decoherent in¯ uence of the environment, we choose
the following control scheme. Guided by the physics of a rotating wave approx-

imation for the driven system that most closely retains the unperturbed dynamics

of an initial superposition state (14) we choose the following parameters: the

frequency and the amplitude of the driving ® eld are taken to be in resonance with

the level spacing of the two-level system, i.e. !L ˆ D0 and s ˆ D0, which corre-

sponds to a moderately large driving strength. This choice implies a value of 0:5
for the ratio of the corresponding Rabi frequency and driving strength. This

indicates that the rotating wave approximation should be used with caution. Note

that under the CDT condition, the ® eld strength would assume an even larger

value of s ˆ 2:4048D0. Furthermore, we remark that for such strong driving ® elds,

higher energy levels of the atom could be signi® cantly populated [34] at long times.
However, for short times the oå -resonant eå ects should be less important [15].

Such eå ects should also depend on the initial preparation. Indeed, this issue is a

topic of current research interest [28, 35] and pulse-control schemes have been

proposed [35] to avoid transitions to higher states of multi-level qubits.

For the following, the temperature is set to T ˆ 0. For the strength of the
coupling between the two-level atom and the cavity mode we assume g ˆ 0:05D0.

This value is consistent with the range of validity of the Bloch± Red® eld formalism

in Born approximation (see above). The dissipative system± bath mechanism is
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speci® ed as follows: the frequency of the cavity mode is chosen to be in resonance
as well, i.e. O ˆ D0. By doing so, in essence we maximize the in¯ uence of the bath.

For the line width of the cavity mode we set G ˆ 0:1D0. This rather large value

mimics (on purpose) an extreme situation. In most realistic optical situations this

line width is generally much smaller. Nevertheless, such smaller values would

intensify our appealing ® nding of a driving-induced, enhanced recovery of coher-
ence even more. The motivation for our choice originates from numerical and
pedagogical reasons. A considerably smaller (but certainly more realistic) value for

G would render the result for the driven dissipative dynamics indistinguishable

from the result for the undriven coherent dynamics on our considered intermedi-

ate time scale (see ® gures 2 and 3 below). The underlying principal mechanism is

not aå ected by the speci® c choice for G; the recovery of coherence with a smaller
value for G then occurs over a much longer time scale. Moreover, we remark here

that our model possesses a wider range of application, e.g. in solid-state two-level

systems where dissipative eå ects are generally stronger. Typical such systems are

¯ ux-coupled [36, 37] and charge-coupled [38] Josephson qubits.

Our novel results are depicted in the ® gures 2 (a)± (c) and the ® gures 3 (a)± (c).

Figure 2 (a) depicts the time-evolution of the x component, ¼x…t†. The isolated
two-level dynamics (dashed line) shows coherent oscillations between ¡1 and 1 at

the frequency of the level spacing D0. On top of this line one ® nds (barely visible

dotted line) the results for the driven two-level dynamics. This good agreement

follows also from the corresponding rotating wave approximation, yielding for this

preparation just the undriven result. The decoherence in the presence of a ® nite
bath coupling (g ˆ 0:05D0 ;G ˆ 0:1D0), see the dashed-dotted line, yields an

oscillatory decay towards equilibrium ¼x…t ! 1† ˆ 0, whose envelope is made

visible by the connecting solid line. Next we switch on the cw-laser control ® eld.

As a main result we ® nd that the decoherence becomes considerably slowed

downÐ following closely the isolated driven dynamics. This enhanced recovery

of coherence for the dissipative driven dynamics is made visible to the eye by the

connecting weakly decaying and oscillating envelope. This surprising result is
rooted in the following facts: the dissipative, non-driven dynamics experiences a

most eå ective dissipation. This is due to the resonant coupling at O ˆ D0 of the

two-level atom to bath with the eå ective spectral density in (18) which peaks at

! ˆ O. In contrast, the strong driving now dresses this level spacing, and moves it
out of resonance with the lossy cavity mode. This results in a considerable slow

down of driven decoherence for ¼x…t†.
The decoherent dynamics of the y component, ¼y…t†, is qualitatively similar to

¼x…t†. It is depicted in ® gure 2 (b) for the same choice of parameters.

The population diå erence ¼z…t† is shown in ® gure 2 (c). For the isolated two-

level dynamics, ¼z…t† remains constant at zero (dashed line) since the system is in

an equally weighted superposition of two eigenstates, yielding an obvious zero
population diå erence. In the presence of the cw-laser control ® eld, the driven

dynamics (dotted line) yields a ® nite oscillation of population diå erence. This

deviation from zero also re¯ ects the deviation from the corresponding rotating

wave solution (being identically zero for this preparation). Nevertheless, this

driven dynamics still exhibits an approximate periodicity that closely coincides
with the Rabi value OR ˆ D0=2.

The undriven, dissipative relaxation to equilibrium (dashed-dotted line) pro-

ceeds with temperature T ˆ 0 almost completely towards the ground state with
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corresponding maximal population diå erence ¼z…t ! 1† º 1. Owing to the coup-

ling to the cavity mode performing zero point oscillations, the value of 1 is not fully

reached. The driven, dissipative relaxation (solid line) to the time periodic

asymptotic state exhibits oscillations around zeroÐ following initially (up to

D0t º 50) closely the driven coherent dynamics. In view of Floquet theory for

the long-time limit of the time-periodic generalized Bloch± Red® eld equations in

(21), this asymptotic periodicity matches in the long-time limit the frequency of

driving, i.e. !L ˆ D0 (not depicted).

Controlling decoherence of a two-level atom 2915

Figure 2. Time-dependence of the expectation values (a) ¼x…t†, (b) ¼y…t† and (c) ¼z…t†
for the two-level atom initially prepared in an equally weighted superposition of the
energy eigenstates, i.e. ¼x…t ˆ 0† ˆ 1, ¼y…t ˆ 0† ˆ ¼z…t ˆ 0† ˆ 0. Shown are four
cases: (1) no driving (s ˆ 0), zero system-cavity mode coupling (g ˆ 0) (dashed line),
(2) with resonant driving (s ˆ D0, !L ˆ D0), but zero coupling (g ˆ 0) (dotted line),
(3) zero driving (s ˆ 0), but with ® nite coupling (g ˆ 0:05D0, G ˆ 0:1D0) (dashed-
dotted line) and (4) with resonant driving (s ˆ D0, !L ˆ D0) and with coupling
(g ˆ 0:05D0, G ˆ 0:1D0) (full line). The temperature is chosen to be T ˆ 0 and the
cavity-mode frequency is set to O ˆ D0. As a guide for the eye, we mark the
envelope of the decaying oscillations by solid lines in (a) and (b).



3.4. Controlling the decoherence from the atom ground state

To answer the question whether the proposed control scheme works as well in

the opposite limit of an initial state which is an eigenstate we next choose the

ground state as the initial preparation, i.e. we use ¼x…t ˆ 0† ˆ ¼y…t ˆ 0† ˆ 0,

¼z…t ˆ 0† ˆ 1. The remaining parameters are taken to be the same as in the

previous subsection 3.3.

Figure 3 (a) shows the decoherent dynamics for ¼x…t†. Since the chosen initial

state is an eigenstate of the isolated two-level system no dynamics is exhibited

(note the ® lled squares on the line at zero in the ® gure). This situation remains

unaltered in the presence of a dissipative coupling of the quantum system, as
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Figure 3. Time-dependence of the expectation values (a) ¼x…t†, (b) ¼y…t† and (c) ¼z…t†
for the two-level atom initially prepared in the ground-state, i.e. ¼x…t ˆ 0† ˆ
¼y…t ˆ 0† ˆ 0, ¼z…t ˆ 0† ˆ 1. Similar to ® gure 2 four cases are depicted: (1) no
driving (s ˆ 0), isolated two-level system (g ˆ 0) (dashed line with ® lled squares &),
(2) with resonant driving (s ˆ D0, !L ˆ D0), no dissipation (g ˆ 0) (dotted line), (3)
no driving (s ˆ 0), with dissipation (g ˆ 0:05D0, G ˆ 0:1D0) (dashed-dotted line with
asterisks ¤) and (4) with resonant driving (s ˆ D0, !L ˆ D0) and with dissipation
(g ˆ 0:05D0, G ˆ 0:1D0) (full line). The temperature is chosen to be T ˆ 0 and and
the cavity-mode frequency is set to O ˆ D0.



indicated by the asterisks on the line at zero. At zero temperature the system at
weak dissipation remains essentially in its ground state. Upon switching on the

driving with no coupling to the lossy cavity present, the driven two-level dynamics

exhibits a Rabi-like quasiperiodic, oscillatory behaviour (dotted line). This non-

periodic behaviour is rooted in the deviation of the full Floquet dynamics from a

rotating wave prediction. With our strong driving strength we a priori cannot

expect good agreement with the corresponding rotating wave approximation. The
coupling to the lossy cavity mode damps this quasiperiodic behaviour, following

for short times the driven isolated dynamics (see solid line), before settling down to

asymptotic, long-time oscillations at the frequency of driving !L ˆ D0 with a ® nite,

but strongly reduced amplitude (not depicted).

The decoherent dynamics of the y component, ¼y…t†, is again qualitatively
similar to that of ¼x…t†. It is presented in ® gure 3 (b) for the same set of coupling

and driving parameters.

Finally, the time evolution of the population diå erence ¼z…t† is depicted in

® gure 3 (c). Clearly, the isolated dynamics from a prepared initial ground state

remains constant at ¼z…t† ˆ 1 (® lled squares). The driven dynamics of the two-
level system exhibits strong non-detuned Rabi oscillations at frequency OR ˆ D0=2

between ¡1 and 1 (dotted line). In this case the rotatating wave prediction (not

depicted) actually yields surprisingly good qualitative agreement with the exact

dynamics.

The case of no driving (s ˆ 0) but with a coupling to the bath (g ˆ 0:05D0,

G ˆ 0:1D0) shows again a trivial dynamics. It relaxes in this case of weak
dissipation with a small relaxation rate towards a slightly reduced constant value

close to 1 (indicated by the asterisks).

The case with resonant driving (s ˆ D0, !L ˆ D0) switched on and simul-

taneous coupling to the lossy cavity mode (with g ˆ 0:05D0 ;G ˆ 0:1D0), exhibits

damped Rabi oscillations (solid line); it eventually settles down in the asymptotic
long-time limit to periodic asymptotic oscillations at twice the Rabi frequency and

amplitude smaller than 1 (not depicted).

4. Conclusions
In this work we have investigated the possibility to control the time evolution

of a two-level atom by time-dependent external, periodic control forces. We have

demonstrated that the coherent dynamics of the system can be brought to an
almost perfect standstill by choosing the ratio of driving amplitude s and driving

frequency !L at a zero of the Bessel function J0…s=!L† (coherent destruction of
tunnelling). For an initially prepared quantum superposition of states all three

components ¼i, i ˆ x ;y ;z, and therefore the entire density matrix »̂ can be locked

simultaneously. For the initially prepared ground-state, the x component, ¼x, can
be stabilized; the other two components, ¼y and ¼z, however, depict strong (non-

Rabi) oscillations.

In the presence of decoherence in a lossy cavity we illustrate that the atomic

states can be dressed by a time-dependent force which moves the atom and the

cavity mode out of resonance. As a consequence, decoherence becomes strongly
suppressed. We have illustrated this eå ect for two diå erent initial preparations of

the atom: (i) for a quantum superposition of states we show that the decoherence

can be suppressed eæ ciently. (ii) The second preparation uses the ground-state
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wave function of the isolated system. In that case the decoherence may also be
slowed down, but the decohering dynamics never approaches the initial state

again.

These ® ndings put the idea across that the method can be used to bring back

the state of the atom close to its initial preparation. For case (i) of a superposition

state as initial state the decoherent dynamics of the x and y components, ¼x and ¼y,

are similar to the undriven dynamics of the isolated two-level system (qubit). Even
the z component, ¼z, of the driven dissipative dynamics matches at distinct

instants of time the undriven non-dissipative dynamics. For the second case (ii)

of the ground state as initial state this idea, however, seems to fail for the z
component, ¼z.

To summarize, our proposed scheme for controlling the coherent and deco-
herent dynamics of a two-level atom works very well for initially prepared

quantum superpositions of states. This presents good news for the manipulations

of quantum bits (two-level systems) being in a superposition of states. It is this

very feature which makes quantum computation interesting and superior to

classical computation.
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