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An algorithm for analyzing stochastic data sets of the diffusion type in order to
find drift and diffusion coefficients of the affiliated Fokker-Planck equation is pre-
sented. The results of an application of the method to data sets of one- and
two-dimensional, stationary and nonstationary systems are discussed.

1 Introduction

Measurements concerning biological, economical, physical or technical systems de-
liver noisy data sets. Looking at these data sets it is of great interest to find the
deterministic and stochastic parts of the dynamics.

In this contribution an algorithm is presented that allows the analysis of fluc-
tuating time series data originating from diffusion processes. Appropriate rules for
the dynamics of the investigated system can be extracted solely from the given data
sets, therefore the method may be called a data-driven approach. However, it has
to be emphasized that not all stochastic processes in general, but at least diffusion
processes (for definition see e.g. [1]) can be investigated by an application of the
algorithm.

2 Diffusion processes

The dynamics of diffusion processes can be formulated either by a Langevin equa-
tion (1) or by a Fokker-Planck equation (2) (see e.g. [2]).

The Langevin equation evaluates the time derivative of the d-dimensional
stochastic variable X(t) as sum of a deterministic part h(X(t)) and a noise term
g(X(¢))T(t), where I'(¢) is a white noise factor with < [;(t)[';(s) >= &;8(t — s):

d
d
(0 = (X(0) + ;g;,-rj(t). (1)
In the following Stratonovich’s interpretation of the Langevin equation and its
stochastic integrals is adopted (see [3]).

Alternatively, the dynamic behaviour of the stochastic process can be described

by a partial differential equation for the conditional probability density p(x,t|y, T),
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where x,y belong to the state space of the stochastic variable X(t):

op(x,t]y,7) _ DV (x (2)
_______ Z 3 1 Z 62:,3:!:_, (x,1) | p(x,t]y, 7).

i,j=1
(2)
D) (x,t) and D™ (x, t) are called drift and diffusion coefficients of the Fokker-
Planck equation. If these coefficients are found by data analysis for an investigated
diffusion process, the dynamic behaviour of the system is completely known. The
coefficients of the Fokker-Planck equation, D(!) and D(?), are connected with the
deterministic and stochastic parts h and g of the Langevin equation by the following
relations

Wy ) = A 4
DiV(x,1) = hi(x, 1) + lg_‘:l gim (%,) 5= Gim (%, 1) (3)
D (x,1) Zg,, x,1)g;1(x,1). (4)

3 Algorithm for analyzing data of diffusion processes

The primary task within the analysis of fluctuating data originating from diffusion
processes is to find drift and diffusion coefficients (4], (6]). They are defined by the
following relations

(1) — L 1 . .

D (x,t) = /:}%mo t<X' t + At) - z;) (t):x’ (5)
(2) - 1 . . . .

D’ (x,t) = £m0 ; (Xi(t+ At) — z;) (X;(t + At) :cJ)> (t)=x. (6)

First, the state space of the investigated system, represented by the data of the
regarded time series, has to be discreticized. For stationary processes drift and
diffusion coefficients are no longer time-dependent. Therefore, the mean values in
expression (5), (6) can be determined numerically for small but finite values of At.
Because the limit At — 0 can never be reached exactly, a higher order relation can
be used for the diffusion term:

D (x,1) = 117<(X,-(t + A1) - 2;) (X;(t + At) - zj)>.x<:)—

1
_ZZ<Xi(t + At) — ;)

A X;(t+ At) - z;)

X(t)y=x

(7)

X(t)=x
For nonstationary processes, an analysis window has to been drawn along the
whole time series. Within one window the process is assumed to be stationary.
Therefore, for this time interval drift and diffusion coefficients can be estimated
according to the way described above. By regarding the analysis results of temporal
overlapping windows the nonstationarity of the dynamics can be reconstructed. The
time dependence of the dynamic behaviour of deterministic and stochastic parts can
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be classified in three groups: stepwise change, continuous change, and fast periodic
change.

If requested, analytic functions may be adapted to the numerically found values
of drift and diffusion coefficients.

4 Application of the algorithm to artificial data sets

4.1 Van-der-Pol oscillator

In fig. 1 extracts from the time series of a Van-der-Pol oscillator with dynamical
noise can be seen. The time series originate from an integration of the Langevin
equations

%Xl(t) = Xz(t), %Xz(t) = X2(03 - X%) - X]_ + 03P(t), (8)

where I'(t) is a Gaussian white noise term. These data sets have been analyzed by
the presented algorithm. In fig. 2 a vector plot of the two-dimensional drift coeffi-
cient can be seen. Additionally, a trajectory that has been integrated according to
the numerically determined drift coefficient field and the affiliated trajectory with
the same starting point, found according to the deterministic part of the differential
equations (8), have been plotted. A quite good conformity can be recognized.

X1(t)
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Figure 1. Artificial time series of system (8): Stochastic variables X;(t), X2(t) over time ¢ in
arbitrary units.
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Figure 2. Vector field of the 2-dimensional drift coefficient D(!), numerically determined for the
time series in fig. 1. The axis refer to the state space of the stochastic variables X, X>.
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4.2 Pitchfork bifurcation

As an example for the analysis of a nonstationary diffusion process a pitchfork
bifurcation has been investigated. The time series in fig. 3 consists of three different
parts according to the Langevin equations

t € (0,8000) : X(t) = 0.1X(t) — X3(t) + 0.05I'(2),
t € (8000, 16000) : X(t) = =X3(t) + 0.05I'(2), (9)
t € (16000, 24000) : X(t) = —0.1X(t) = X3(t) + 0.05T'(2).

An analysis window with a size of 4000 time units has been moved along the
whole time series. If the window regards only data from one of the three segments,
the analysis algorithm delivers the expected results (fig. 4). If an analysis window
covers a part of the time series, that contains two different states of the nonstation-
ary dynamics, the numerical procedure for determining drift and diffusion terms
will deliver weighted average values of the exact coefficients.

X(t)
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Figure 3. Nonstationary time series of system (9): Variable X (t) over time ¢t in arbitrary units.
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Figure 4. Numerically determined drift and diffusion coefficients D(1) and D{?) (points) over state
z for the time series in fig. 3. The solid lines depict the expected functions of the coefficient. The
3 subfigures refer to the 3 different segments of the time series.
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