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Control of reaction rate by asymmetric two-state noise
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We revisit the far from equilibrium escape problem across a fluctuating potential barrier that is
driven by asymmetric, unbiased dichotomous noise. Our closed analytical solution for arbitrary
noise strengths reveals new aspects of the so-called “resonant-activation” effect and leads to
interesting implications regarding far from equilibrium or externally controlled chemical reaction
processes. Specifically, a genuine asymmetry-induced variant of resonant activation within the
constant intensity scaling scheme is discovered, and a new possibility to manipulate reaction rates
and vyields, as well as the balance between reactants and products, is put forwat®99©
American Institute of Physic§S0021-96069)51332-9

I. INTRODUCTION under the influence of asymmetric but unbiased dichotomous
. noise? % in addition, it is assumed that inertia effects as
Most objects around us look reasonably steady, yet theye|| as thermal equilibrium fluctuations can be neglected.
will clearly not keep their present appearance for eternityjowever simple this model may be from the technical view-
that is, they are in a metastable state. The cause for the “'%oint, conceptionally it goes beyond Kramers' framework:
mate decay of such a metastable state is always some perty; sjtuation refers to a steady-state nonequilibrium situa-
bation by the “environment,” either in the form of random yion. Moreover, the potential experienced by the Brownian
thermal fluctuations or any other I_<|nd]’of external “noise,” particle cannot realistically be regarded as static, but as sub-
which is then termed “nonequilibrium:*To determine the  jected to random fluctuations with a characteristic time scale
typical decay time of a metastable state is a problem encoufay js comparable with one of the time scales governing the
tered in many different fields of natural scienée$.Ex- escape problem itself. An example is the escape of 0O
amples range from the emergence, evolution, and extinctiop ligand molecule out of a myoglobin “pocket” after
of whole species down to short-living “resonances” in photodissociationt’ Further, a model for the ion channel ki-
nuclear and high-energy physics. A detailed quantitative Unqetics in the lipid cell membrane based on fluctuations in the
derstanding of how metastable states decay is obviously Qfctiyation energy barriers has been proposed in Ref. 18. In a
forgmost practical importance in t_he cpntext of chemical renew paradigm for the intracellular motion of a molecular
actions and complex molecular-biological processes. motor along a microtubule put forward in Ref. 19, the bind-
The basic theoretical tools to properly describe and S“Crng of ATP (adenosine triphosphatand the release of ADP

cessfully tac_kle ;uch problems.have been put forwarq by H(adenosine diphosphatserve to randomly modulate the po-
A. Kramers in his groundbreaking pageBesides a deriva- iontiq) experienced by the motor protein as it travels along

tion of the relevant Fokker—Planck equation practically fromy, biopolymer backbone. Also, in other strongly coupled

scratch and a wealth of ingenious technical inventions, anzhemical system@2 the dynamics of dye lasef$,and

other cornerstone in his paper is the flux-over-population fore,en for some aspects of protein folding and relaxation in

mulgtion of the decay rate, bgsed on a preyious !ine of r3gjasses, fluctuating potentials are likely to be of
soning by Farka_%.The underlying physu_:al picture is t_hat of relevanced’2525|n all those examples, one has in mind the
a Brownian particl2in a metastable or bistable potential that_picture that the potential fluctuations experienced by the

is subjected to fluctuations due to its environment and dissig o \ynjan particle are controlled by some collective motion
pates energy back into this environment, typically via a Vi the environment with a much larger real or effective mass,
cous friction mechanism. Even in the often-considered Casgch that back-coupling effects can be neglected. On top of

that the random noise is weak, a large fluctuation may ocCapq;  this collective environmental fluctuations must fae
S|ona_lly arise that is able to push th(_a particle across somgy thermal equilibriumsince they would be negligibly
barnerl out of the ’met.agtable pqter?tlgl'well. small otherwise due to their corresponding lafgéective
While Kramers’ original derivation involves an ap- a5 |n the above-mentioned example of a ligand escaping
prOX|mat|or_1 that be_comes_ asy_mptc_mcally exact for Wea‘_kfrom the (“heavy”) myoglobin, the far from equilibrium
thermal noise, we will consider in this paper a model that i ation is created by the sudden photodissociation, while in
technically much easier to handle and one of the few €Xye jon channel kinetics and the molecular motors it is main-
amples which can be solved exactly for arbitrary noiseineg by permanent chemical reactions which are them-

strengths. In this model, an overdamped Brownian particlgeyes far from thermal equilibrium. Specifically, nonthermal
moves in a one-dimensional metastable or bistable potentigl ise of the asymmetric dichotomous type arises, e.g., in

point contact devices with a defect tunneling incoherently
dElectronic mail: schmidg@physik.uni-augsburg.de between two states, see Ref. 27 and further references
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therein. In particular, the noise-strength and correlation-time &(t)
properties can be controlled externally at \&fi?® Finally, a -
besides those examples of complex nonequilibrium systems,
potential fluctuations without back-coupling, as we will
study here, may be realized also by means of external noise
imposed on a suitably designed experimert>2For ex- t
ample, a random-telegraph fluctuating electric field stimu-
lates the RB-pumping mode of the Na,K-ATPase. It was
observed that electric or electromagnetic fields have an effect
on a cel33 mostly apparent on plasma membrane, where af'G. 1. Cartoon of one realizatiog(t) of the asymmetric dichotomous
" . e ' process as defined in Sec. Il A.
external field is greatly amplified. Yet another example pro-

vides the nonthermal driven chemical reaction of the iodategee Fig. 1 for an example. The intendiyand the correlation

arsenous acid system J& 3H;AsO;=1"+3H;ASO,. An time 7 of an arbitrary noise in the stationary state are defined
additive dichotomous noise process could be applied to thigd6é

system by randomly switching the composition of the iodide

and iodate input feeds to the reacfbr ] and[ 105 ] between D:}f“ 4
two values. The exchange must be synchronized in such a 2 7oo|<§(t)§(0)>| dt, @
way that the total input concentratigi™ ]+[IO5 ] stays

ConstanﬁS : T= D/< 52(0»1 (5)

The quantity of foremost interest in this context is thewhen, the correlation of the asymmetric dichotomous noise
mean escape time from the metastable state across the flup-the steady state follows as
tuating barrier as a function of the characteristic time scale of
these fluctuations. The possibility that this dependence may (g(t)g(t’))= Ee—|t—t’|/71 (6)
be nonmonotonous has been exemplified first in Ref. 34 and T
has been termed “resonant activation” therein. This phe-yith
nomenon has been further investigated in Refs. 35-55, and is ) . )
by now qualitatively well understood, see 47 for a recent 7—L#'tu] 5, D=ra al. ()

review. As already emphasized in Refs. 38, 39, 44, 45, an¢or any >0, we are thus dealing with so-called colored
55, the occurrencéor noy of resonant activation may cru- noise. Special cases are*?°® (i) symmetric dichotomous
cially depend on how the distribution of the potential fluc- noise whena=—a’ and u’'=pu, (ii) white (non-Gaussian
tuations changes upon variation of their characteristic timghot noise wher— 0 anda, D=a?/ u fixed, and(iii ) white
scale. This point will be reconsidered here with particularGaussian noise when’, u—%, 7—0, a’, |a|»«, andD
emphasis on the two most natural options tfiathe distri-  fixed.

bution of the potential fluctuations is kept constafton- A suitable measure for the asymmetry of the noise is the
stant variance scaling; or (ii) the intensity of those fluctua- following asymmetry parameter:
tions (i.e., their integrated time correlatipns kept fixed

(“constant intensity scaling). _a- |al

=— ®)
a’'+|a|
Il. MODEL With (3) and(7), one then finds that
A. Asymmetric dichotomous noise 1+A D
a'=\———, 9
Our starting point is a dichotomous stochastic process 1-A 7 ©
(also called telegraphic noisé(t) that can take on the two )
values a=— o~ v (10)
1+A 7’
a’>0, a<Oo. ()
The probability to switch during an infinitesimal time inter- w'= 1+A, (1)
val [t,t+dt] into the opposite state islitu’ when the 27
present state ig(t)=a’ anddt x when ¢(t)=a, indepen- 1—A
dent of what happened in the pdbtarkov property. In the w=—_- (12
steady statethe probabilities thag(t) is in the statea’ and T
a are given, respectively, by Thus, in the steady state, the dichotomous né{sg is com-
N , o pletely specified by its intensitp, correlation timer, and
P@)=ul(pn'+un), P@=u'l(n +un). 2 asymmetryA,

While we will not require symmetrya=—a’ and/or u’ ) _
= u, we will always assume that the noise is unbiased, B Fluctuating potential

, , We consider a one-dimensional Brownian particle in a
(£(t))= MIO, 3) potential that consists of a static paf{x) and a fluctuating

Ja ) part V(x) &(t), with &(t) an unbiased stationary dichoto-
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mous noise as specified in the preceding subse¢siem also  whereP(x) denotes the steady stateng time limit) of the
Fig. 1). The particle is furthermore subjected to viscous fric-particle distribution. Since doubling the source-strength
tion and we assume that inertia effects as well as thermadill also double the populatiorf P(x) dx, this definition is
fluctuations are negligible. The equation of motion for theclearly independent of the actuglvalue. The usual choice

particlex(t) thus reads for x;, is at or near thémetastable potential well, while in
q q the context of the Kramers ratg,, is typically assumed to
ﬂd_X(t) S d—{U(x(t))+V(x(t)) )} (13)  be sufficiently far away from the basin boundary of this well
t X

such that it is very unlikely that a partichgt), had it not
It is convenient to absorb the friction coefficientinto the ~ P€en taken out of the game by the sink, would return into this

definition of the time unit and to make both the time and thePaSin ofX;, in the near future. .
coordinate dimensionless by further appropriate scalinq: Besides the flux-over-population ragela Kramers and
transformations. For simplicity, we will continue to use the Farkas, various other quantities are available on the market
same symbols for the rescaled quantities. Finally, we introin Order to characterize the lifetime of a _meta%tablg state:
duce the force field§(x) = — U’ (x) andg(x) =V’ () to ob- Most notably the;e ar@) themean escape tlﬂ?é" defined
tain as the average tlm“éxout(xm) that a particlg14) with seedx,

q needs to reack,, for the first time, and(ii) the smallest

el _ nonvanishing eigenvalue of the relevant time-evolution op-

dtx(t) Fx(®)+9(x(1)) &(1). (14 erator in(15). While they all are known to become equiva-
lent for asymptotically weak noise, they may notably differ
when the timescales of the escape itself is no longer well-
separated from all other characteristic relaxation times of the
problem. As we will demonstrate in detail in a companion
paper®® two of them, namely the Kramers rakeas defined
in (16) and the associated mean escape fl'r;]ﬁ(xm) satisfy
the exact relation

Equivalent to this stochastic differential equation is the fol-
lowing master equation for the joint probability density
P(x,a,t) that at timet the particle resides at the positian
and the dichotomous proces§(t) is in the state a
e{a’,a}:

J J
E P(X!a!t) = &{[f(x) +a g(X)] P(X,a,t)}
K=11T,, (%) a7

—uP(x,a,t)+u’ P(x,a’,t)+S(x,a,t).
(15 for arbitrary strength®, correlationsr, and asymmetrieé
of the dichotomous noise. Since our choice of the sigkis
The first term on the right-hand side accounts for thenot at the potential barrier but rather beyond$ee abovg
Liouville-type evolution of the probability densiti(x,a,t) we avoid here the more common temmean first passage
under the action of the force fiek{x) + a g(x) that prevails  time>’~>°for the quantityT,_ (Xin)-

while the noise is in the Staﬁt):a. The second term is a Our g0a| is to calculate the Kramers flux-over-
loss term due to transitions frominto a’ and similarly the  population rate in the case of constafite., time-

third term accounts for the gain of probability due to tranSi'independer)t point-sources and -sinks of particles at some
tions froma’ to a. The last term represents the sources antrescribed positions;, andx,,;, respectively

sinks of particles. A completely analogous equation is ob-

tained forP(x,a’,t) by interchanging primed and unprimed S(X,@,t) =0, S(X—Xin) =Sy S(X—Xou), (18

antities in(15). .
quantities in(15) ae{a’,a}. So, g, and g, can be viewed as streams of

particles that are injected at, in the statesa anda’ of the
noise, respectively, and similarly for the outflowing stream at
C. Kramers rate and mean escape time Xout- Since the master Ed15) is linear, the case of more
complicated source- and sink-distributions than(18) im-
mediately follows by way of superposition.
According to the definition of the Kramers ratg), it is
the solution in thesteady stateor equivalently, the long-time
limit t—o, which matters and on which we will focus fur-
ther. For the sake of convenience, we will indicate the steady

We imagine an ensemble of particlesdependent real-
izations of the stochastic dynami¢44)] with a constant
sourceq at an arbitrary poink;,, that is, in any time interval
[t,t+dt] a numberdt q of new particles are joining the en-
semble with seed;,. Similarly, we imagine a sink atg

such that particles are removed instantaneolsiynediate X o _ :
absorptioh as soon as they reach this poiq, for the first ~ Stéte simply by omitting time arguments, i.eR(x,a)
time. If, in the long-time limit a steady state is reached, the~ P (X.@,t—), and similarly forS(x,a,t). Furthermore, in
average number of particles absorbed per time unit by th@rder to avoid a flurry of cases that have to be treated sepa-
sink is thus equal to those injected by the sougc&he rate rately but do not lead to much new ph.yS|caI |ns_|ght, we wil

k according to Kramers and FarR&d is thendefinedas this "W make some additional assumptions to single out the

resulting constant net flux of particle through the system norMoSt interesting setup. First, we assume that the static force-
malized by the population of particles field f(x) derives from a bistable potentidl(x). The source
of particles atx;, is assumed to be located in the “left”

B potential well ofU(x) and the sink in the “right” one. We

k—q/f P(x) dx, (16 will be interested in transition rates froxy, to X, but also
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in the transition rates just in the opposite direction, frog
to X;,. This allows us to examine the effects of thgymmet-
ric noise &£(t) on those rates, especially sfymmetric poten-
tials. To guarantee that the dynamig&4) admits such tran-
sitions betweerx;, and x,,; in both directions, we have to
require that the quantity

Der(x)=—7[f(x)+ag(x)][f(x)+a’ g(x)] (19

is strictly positive in an entire open intervak (,x,) that
compriseq Xin » Xoutl, 1-€-,
Dex(x)>0 for xe(x_,Xy), (20
XX <Xour<X . - (21

For simplicity, we further assume that both factors

f(x)+a’'g(x) and f(x)+ag(x) in (19) are negative for all
x<x_ and positive fox>x, , which, in particular, guaran-
tees that particle$14) cannot leave the intervadix_ ,x_].
Therefore, we can infer tha®(x,a)=0 for x&[Xx_ ,X,],
and since particles are completely absorbed,gt<x, , we
havea forteriori that

(22

It also follows from(19) and (20) that g(x) must not have
zeros on the intervalx( ,x,), and we can assume without
loss of generality that

P(X,a)=0 for x&[X_ ,Xoud-

g(x)>0 for xe(x_,x,). (23

Schmid, Reimann, and Hanggi

a
;g(X) Q(x)=f(x) P(x)—J(X). (30)

If g(x)=0, this equation fixes the quantity of main interest
P(x). If g(x)#0, a second equation similar t@6) is ob-
tained from the weighted difference like {@8) of (15) and

its counterpart forP(x,a’). Elimination of Q(x) with the
help of (30) then yields

d | Derl) f(x)
=1-

9% g0 P
@ g0

P(x)] +

g(x)
d f(x)I(x) JI(x)

ax) +7[aS(x,a’)+a’S(x,a)].

(31)

In view of (23), this equation is valid wherevd?(x) is not
yet given by(22). The solution of the first-order equation
(31) is straightforward. In particular, the arising free integra-
tion constant is fixed through the conditidt(x)=0 for x

€ (Xout-X+) following from (22). We remark that while the
point sources),, andg, [cf. Eq. (18)] can be chosen freely,
the sinks are fixed by the conditiorfs that in the steady
state the total source strengtf=q, +q, must equal the
total of the sinkss,, +s,, and(ii) that due to(20), particles
obeying(14) cannot reach the sirk,,, when the noise is in
the negativea-state. In other words, we have that

Sar:qar+qa, Sa=0 (32)

A typical example that incorporates the above-mentionedrhe natural choice for,, andq, is the one according to the

symmetry and that we will study in detail below is

f(x)=x—x3, g(x)=1, (24)

with x;, andx,, located at the two wells of the static poten-

tial U(x)

Xin=—1, Xou=1. (25

D. Analytic solution

In the steady state, it follows by addind@5) and the
corresponding equation fd?(x,a’)=P(t—x,x,a’) that

d a
0=—d—x[f(X)P(X)—;g(X)Q(X)—J(X) : (26)

where we have introduced
P(x)=P(x,a")+P(x,a), (27)
Q(X)=u'" P(x,a")—u P(x,a), (28)
300- [ Isva)+siy.aay. 29

By tracing out the noise states {@7), we are left with the
reduced steady-state densRyx) for the particle coordinate

steady-state probabilitig®) of the dichotomous process

Qar=p/(p'+p),  Qa=p'l(p"+p). (33

Here, a free proportionality constaptq, which can be
identified with the constant net flux of particles betwegn
andx,, [see also Eq(29)] has been tacitly chosen so as to
achieve a unit flu§ =q=1. In this case, the solution ¢22)
and(31) takes the final form

d f(y)
1 _

P(x)= fxom +Tg(y)dy g(y)d

masx) DoY) Poly) Y

F(x) + (3’ +2)g(xp)
T Dyt Poly 0 in ™)

f(Xou) +a9(Xou)
_ TDeff(XOUt) Po(Xow) 0O (Xou— X) Po(x), (34)
where
9(x) x (y)
Po0= Defi(X) exp{ innDeﬁ(y) dy) O(Der(x)) (35

x alone. While this density is clearly of central importance,can pe identified as th@ot normalizedi steady-state density
the auxiliary function(28) has no such immediate physical i, the absence of any sources and sinks.

meaning. Finally,J(x) from (29) can be readily identified

Note thatP(x) in general has discontinuities =&, and

with the net particle current throughin the steady state. In y_ due to thes-shaped source and sink {#8). On condi-
Eq. (26) the curly brackets must be equal to a constant, angion that

by choosingx— — o it follows with (22) and (29) that this
constant is zero, i.e.,

f(X_)/Dgg(x)<1, (36
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100 ——71— Ta6 —= 1 Xout
g0 | ol 1] Txom(xin):Jx P(x) dx. (40)
/;,?60 ol 1o 099 |
= L1 lll. APPLICATIONS
F 05 \ 11 !
22 TN T In this section, a detailed discussion is presented for the
215 -1.0 05 00 05 1.0 1.5 special case of the symmetric set(@4#) with 5-sources and
* sinks positioned at the two minim{@5) of the corresponding
T bistable static potentidl (x). We will consider both “for-
2 o D O T ward” transitions fromx;, to X, as well as “backward”
8r 55 \ 025 ’\| 13 transitions fromx,, to X;,, and we are especially interested
=6k % 1o wese o0 105 in the effect of the asymmetry of the unbiased dichotomous
a4k E noise&(t) on these transitions. For the Kramers rates of the
) : : forward and backward transitions we use the shorthand no-
3 E tation k, andk_, respectively. While the forward rate,
0 1 1 1 1 1 1 1 1 L2 ]

follows immediately from(34) and(37), we remark that due
to the symmetry of our present exampg®) and (25), the

FIG. 2. Steady-state distributio”(x) from (34) (not normalizedl for the backward prObIem Ir(14) can be mapped onto a forward

example(24) and(25). Noise parameters a@=0.1,7=0.01,A=0.5(top,  Problem if we replace the noisgt) by — &(t); thatis, if we
for which (36) is not verified, and>=0.5, 7=0.05, A=0.5 (bottom), for interchange primed and unprimed quantities. In terms of the

which (36) is verified. Insets: details of the discontinuitiesxat x;,= —1 asymmetry parametéB), this implies that
andx=Xqy,= 1.

-1.5 -1.0 -0.5X0.O 05 1.0

k_(A)=k,(—A). (41)

the distributionP(x) furthermore exhibits a singularity at. e also recall that the three noise-determining parameters
which is inherited fromPy(x) in (35). It reflects a “jam” of 7 @ndA [cf. Egs.(9)~(12)] have to respect the condition
particles at the left border_ of the accessible-region that (20 and_(2_1); otherwise, transitions in at least one direction
may arise in the negative stafét) =a of the noise when the &€ Prohibited.
correlation time becomes large. For two representative exa. Constant variance scaling
amples, see Fig. 2.

Finally, the Kramers rate of escap&6) out of the do-
main (—,X,,) follows from (34) as

Of particular interest, e.g., with respect to the so-called
resonant activation phenomenth#244-515453s the depen-
dence of the escape time upon the correlation timad the
asymmetric dichotomous noisgt) under the assumption
that the variancer®(£2(0)) and the asymmetrA are kept

constant(constant variance scalingwith (5) and (6), this
By use of the method of steepest descent, we can evaluatgaans ar-dependent intensit® of the form

the rate for small correlation times2*with the result

k=1/ f:"“‘P(x) dx. (37)

_.2 2 A fi
—f' (X)) ' (X 1 D=o°r, oA fixed. (42)
eV ( |n)’ ( U)exp[——Aq)], a9
2m(1+ 7' (xy)) T This choice is particularly natural in the context of dichoto-

where the characteristic “activation energy” to the o, mous noise since it leaves the two staaésanda as well as

of the static potential (x) is given by the flip ratesu’ andu of the noise unchanged upon variation
of 7, cf. Eqs.(9)—(12). Especially, the validity of the condi-
f Xiop f(x) q (39 tion (20) is not affected by changing.
s (F()+ag(x)(F(x)+a’g(x)) Since the mean escape time is exactly equal to the in

verse Kramers rate, we can focus on the discussion of the
In the above calculations, we have assumed strictlyatter. A representative example of forward rates for a
delta-shaped sinks and sources of particles. For more genefgled variances? and various asymmetries is depicted in
source- and sink-distributions, the solution follows by an ap+ig. 3. It clearly reproduces the typical features of resonant
propriately weighted superposition of solutiof@) and may  activation®~4244-51.5459n0st notably, an “optimal” time
no longer exhibit discontinuities at those places, whereas thecale of the potential fluctuations at which the circumstances
discontinuity atx_ remains under the conditio(36). for a transition are most favorable. The intuitive physical
We finally remark that the derivation of the so-called explanation of this effect goes along the by now well-known
adjoint equation that governs the mean escape timgne of reasoning as reviewed in Ref. 47 and is not repro-
Ty, (Xin), especially its correct boundary conditions, as wellduced here. We emphasize again that the Kramers rate is
as the solution of this equation is quite involvEd!*Thanks  well defined and exactly given b§4) and(37) not only for
to our identity(17), all these difficulties can be circumvented arbitrary noise strengths but also for arbitrary correlation
and the mean escape time immediately follows as times 7. In contrast, a rate definition based on the smallest
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FIG. 3. Forward escape ratks according to(34) and(37) versus correla-  FIG. 5. Same as in Fig. 3 but for constant intensity scaling Wita0.04.
tion time = for the model(24) and(25) with constant variance scaling2.  The ratiok, /k_ is depicted in the insetOther choices oD lead to quali-
The asymmetry parameters ate=0.8 (dash—dotte] A=0.4 (dotted, A tatively similar results.

=0 (solid), A= — 0.4 (short—long-dashgdand A= — 0.8 (dashegl and the
variance has the fixed valug?=10. The corresponding backward escape
ratesk_ follow with (41). For other choices of the varianeé [compatible

with (20) and(21)] qualitatively similar results are obtained. means ofunbiased, asymmetric, almost Wh(’[ﬁ—)O) noise

be it via an externally applied signal or system-intrinsic far
from equilibrium fluctuations of the relevant reaction poten-
nonvanishing eigenvalue of the time-evolution operator andial. In fact, this effect is already contained in the results
the Closely related exponential decay of the metastable staffom Ref. 12, without pointing out however its possib|e spec-
may lose their physical relevance. In fact, in many cases gacular practical implications. For a particular example of
breakdown of such a description has been idenfifies a  this effect, see also Refs. 31,61.
precondition for the occurrence of the resonant activation

peak in the mean escape time. . ) )
C. Constant intensity scaling

B. Control of chemical reaction rates Constant intensity scaling is defined by the prescription
Figure 4 illustrates the effect of the noise asymmetry onfnat the intensih and the asymmetri are kept fixed upon

the ratio k. /k_ between forward and backward Kramers variation of the correlation time of the noise. Such a scal-
rates. One remarkable feature is that khe/k _-curves cross ing is qf particular interest in Fhat it Igads toa sensible white
the value 1 at some intermediate correlation timéndicat- N0 limit when7—0. Especially, this scaling enables one
ing a change in the relative predominance of forward versul® Study what happens if one goes slightly away from the
backward reactions. In order to decide whether this effect i$aUSsian white noise case into the realm of weakly colored
possibly just an artifact of our specific choi¢g3d) of the  MNO'SE: Sincea a_n_da a'SP change W'th according to(9) and
particle sources, we repeated the same calculatidn ¢k (10), tr_le condltlpn(ZO) is always fulf|_lled for very smallr

with equally distributed sources, = q,=1/2 with the result but ultimately will be violated if one increases Examples
(not shown that this effect can still be observed. An even of how the rates behave for constant intensity scaling are

more striking feature of Fig. 4 is the divergencekaf/k _ depicted in Fig. 5. In the white noise limit—0, the well-

for 7—0. One can readily infer fron38) that for smallz ~ KNOWn escaép;g rate for an overdamped Fokker—
both ratesk. themselves become arbitrarily small and prac-F1anck-processis recovered from38), irrespective of the

tically independent of the specific choice of the particle-2SYMMetryA. For sufficiently larger, tran_szitipns_frorrxm to
source distribution in(18). That opens a quite unexpected Xout iN (14) aré no longer possibler&10" in Fig. 5. For

new possibility to manipulate yields in chemical reactions bymoderater-values, the escape_ratgs either decre_ase monoto-
nously or show a resonant activation type behavior, depend-

ing on the asymmetnA. A detailed smallr analysis of the
10! g analytical result(34) and (38) confirms the numerical evi-
F dence from Fig. 5, namely that a resonant activation peak
will occur if and only if A>0 (i.e., a’>]al). It has been

et b . demonstrated in Refs. 44, 48-51, and 55 thatsfonmetric

~ B noise with constant intensity scaling, resonant activation is

QF 10! 3 3 ruled out except for very specially tailored models. The oc-
1o ,,,,,,,,, currence of the effect for the very simple examgh) is

- therefore clearly due to the asymmetry of the noise.
10t S 1(')2 1(')1 130 161 '“"1"02 We finally remark that in contrast to Fig.(4ee also Sec.

T I1IB), in the present case of constant intensity scaling, the

ratiok . /k_ of forward and backward rates approaches 1 for

FIG. 4. Ratiok . /k_ of forward and backward Kramers rates obtained from +— 0 and may diverge for sufficiently large (see Fig. 5.
the results shown in Fig. 3 by means (@l). Since negative asymmetry Tpq |atter effect is simply due to the fact that for some asym-
parameterdA follow readily from their positive counterparts according to . .
(41), only the non-negativé-values 0.8(dotted, 0.4 (dash—dotted and 0~ Metry parameterg, the b_aCk_WE‘rd r"f‘t‘kf vanishes earlier
(solid) are depicted. than the forward raté& , with increasingr.

f—
<,
)
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0.5 lytical solution for the steady-state, flux-carrying density
04 3 (34) and hence following Kramers rat87) and mean escape
B ST time (40) are valid for arbitrary noise strengths and correla-
03 F ] tion times fulfilling the positivity condition of the effective

A B / ] diffusion in (19) and(20). On this basis, we have identified
02 ¢ » ] several new aspects of the so-called resonant activation ef-

fect and we have indicated interesting implications regarding
far from equilibrium or externally controlled chemical reac-
5 tion processes. Along this line, we have unraveled a new,
purely asymmetry-induced resonant activation effect within
the so-called constant intensity scaling scheme. Another im-
2;3) G-dS(jT)e asd in _lt:ri]g- Btonsta?t variance S;a_lig@éutdforghz exam/ri'e portant aspect of asymmetric noise is a new possibility to
- 0.3a(r:a|otte 3 o 0"‘;'50"3)5’3’;“;“5gﬁzﬁlﬂfﬁng_ désh(e)ZZn p Aoite}j(). s control and manipulate reaction rates and yields as well as
(dashed the balance between reactants and products in chemical re-
action processes.
The existing literature on resonant activafibn® seems
D. Cubic potential to suggest that the simultaneous presence of thermal noise
nd potential fluctuations is an indispensable precondition
or the appearance of this effect. In contrast, with our study

01

0.0

Lo0a e sl PRI
107 10 10° 10

T

So far we have restricted ourselves to bistable potential
like in (24) and (25) since one of our main points was the Sec. | iy th D .
comparison of forward and backward rates in the presence pee sec. llwe exemplify” that resonant activation may in
asymmetric noise. Besides, we have also observed seve t be ‘."ewe‘?' as a featgre of the escape problem W'th. col-
interesting characteristic features of the forward rates alonegred noise d_rlven poten.tlal fluctuations alone t_hat SUVIves,
so it seems worthwhile to ask about their robustness. Wé‘nd actually is reducet},in the presence of additional ther-

therefore extended our analysis to potentials with a singlgnal white noise.

metastable well, specifically the paradigmatic cubic poten- Conceptionally, our appioac_h qliffers from the original
tial. The corresponding force fields dief. Eq. (24)] one by Kramers and Fark&$§."While in our case the steady-

, state solution for a given distribution of sources and sinks is
f(x)=3x(x+1), g(x)=1. (43 determined, their original strategy was to start with an ansatz

Here, the factor 3/2 is chosen so as to obtain the same heigfft” the solution and then to determine the corresponding
of the underlying potentiall(x) as in the model24). The sinks and sources posterioriby inserting that solution back

2 . . . . .
source and sink of particles are again assumed to be given B0 (15).© While, in principle, any such ansatz will solve
s-peaks at the potential well and at a point sufficiently well (19 [or, equivalently Eq(26)] with a properly adapted dis-
beyond the barrier, respectively tribution of sinks and sources, only those with negligible

sinks and sources in the barrier region are admissible as a
Xin="1, Xou=Xs . (44) meaningful rate in the weak noise limit. For the present case

solutions (34) depicted for both constant variance scaling’ateé calculations from Refs. 11 and 12.
and constant intensity scaling in Figs. 6 and 7, respectively. ~1he second aspect in which our investigation goes be-

Comparison with Figs. 3 and 5 shows that the main characyond the usual Kramgrs.sc_r;(;.\me and also that of previous
teristic features of those rates are indeed quite robust. ~ WOrKS on resonant gct|vat|6 is that we admit herasym-
metricnoise which is, however, still unbiased on average. As

detailed in Sec. I, such an asymmetry can be identified as a
new sufficient ingredient to generate resonant activation. On

We have studied the far from equilibrium escape prob-top of that, asymmetry provides us with a powerful new tool
lem across a fluctuating potential barrier that is driven byto manipulate and control yields of chemical reaction pro-
asymmetric, unbiased dichotomous noise. Our closed angesses.

IV. CONCLUSIONS

T ACKNOWLEDGMENTS

This work was supported by the German National Sci-
ence Foundation under DFG-Sachbeihilfe No. HA1517/13-2
and by the State of Bavaria within the postgraduate scheme
Graduiertenkolleg GRK283 “Nonlinear Problems in Analy-
sis, Geometry, and Physics.”

1Quantum effects like tunneling and spontaneous decay are disregarded in
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