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Control of reaction rate by asymmetric two-state noise
G. J. Schmid,a) P. Reimann, and P. Hänggi
Institut für Physik, Universita¨t Augsburg, 86135 Augsburg, Germany

~Received 17 March 1999; accepted 1 June 1999!

We revisit the far from equilibrium escape problem across a fluctuating potential barrier that is
driven by asymmetric, unbiased dichotomous noise. Our closed analytical solution for arbitrary
noise strengths reveals new aspects of the so-called ‘‘resonant-activation’’ effect and leads to
interesting implications regarding far from equilibrium or externally controlled chemical reaction
processes. Specifically, a genuine asymmetry-induced variant of resonant activation within the
constant intensity scaling scheme is discovered, and a new possibility to manipulate reaction rates
and yields, as well as the balance between reactants and products, is put forward. ©1999
American Institute of Physics.@S0021-9606~99!51332-9#
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I. INTRODUCTION

Most objects around us look reasonably steady, yet t
will clearly not keep their present appearance for etern
that is, they are in a metastable state. The cause for the
mate decay of such a metastable state is always some pe
bation by the ‘‘environment,’’ either in the form of random
thermal fluctuations or any other kind of external ‘‘noise
which is then termed ‘‘nonequilibrium.’’1 To determine the
typical decay time of a metastable state is a problem enco
tered in many different fields of natural sciences.2–4 Ex-
amples range from the emergence, evolution, and extinc
of whole species5 down to short-living ‘‘resonances’’ in
nuclear and high-energy physics. A detailed quantitative
derstanding of how metastable states decay is obviousl
foremost practical importance in the context of chemical
actions and complex molecular-biological processes.

The basic theoretical tools to properly describe and s
cessfully tackle such problems have been put forward by
A. Kramers in his groundbreaking paper.6 Besides a deriva-
tion of the relevant Fokker–Planck equation practically fro
scratch and a wealth of ingenious technical inventions,
other cornerstone in his paper is the flux-over-population
mulation of the decay rate, based on a previous line of r
soning by Farkas.7 The underlying physical picture is that o
a Brownian particle8 in a metastable or bistable potential th
is subjected to fluctuations due to its environment and di
pates energy back into this environment, typically via a v
cous friction mechanism. Even in the often-considered c
that the random noise is weak, a large fluctuation may oc
sionally arise that is able to push the particle across so
‘‘barrier’’ out of the metastable potential well.

While Kramers’ original derivation6 involves an ap-
proximation that becomes asymptotically exact for we
thermal noise, we will consider in this paper a model tha
technically much easier to handle and one of the few
amples which can be solved exactly for arbitrary no
strengths. In this model, an overdamped Brownian part
moves in a one-dimensional metastable or bistable pote

a!Electronic mail: schmidg@physik.uni-augsburg.de
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under the influence of asymmetric but unbiased dichotom
noise;9–16 in addition, it is assumed that inertia effects
well as thermal equilibrium fluctuations can be neglect
However simple this model may be from the technical vie
point, conceptionally it goes beyond Kramers’ framewo
our situation refers to a steady-state nonequilibrium sit
tion. Moreover, the potential experienced by the Brown
particle cannot realistically be regarded as static, but as s
jected to random fluctuations with a characteristic time sc
that is comparable with one of the time scales governing
escape problem itself. An example is the escape of an O2 or
CO ligand molecule out of a myoglobin ‘‘pocket’’ afte
photodissociation.17 Further, a model for the ion channel k
netics in the lipid cell membrane based on fluctuations in
activation energy barriers has been proposed in Ref. 18.
new paradigm for the intracellular motion of a molecul
motor along a microtubule put forward in Ref. 19, the bin
ing of ATP ~adenosine triphosphate! and the release of ADP
~adenosine diphosphate! serve to randomly modulate the po
tential experienced by the motor protein as it travels alo
the biopolymer backbone. Also, in other strongly coupl
chemical systems,20–23 the dynamics of dye lasers,24 and
even for some aspects of protein folding and relaxation
glasses, fluctuating potentials are likely to be
relevance.17,25,26In all those examples, one has in mind th
picture that the potential fluctuations experienced by
Brownian particle are controlled by some collective moti
of the environment with a much larger real or effective ma
such that back-coupling effects can be neglected. On to
that, this collective environmental fluctuations must befar
from thermal equilibriumsince they would be negligibly
small otherwise due to their corresponding large~effective!
mass. In the above-mentioned example of a ligand esca
from the ~‘‘heavy’’ ! myoglobin, the far from equilibrium
situation is created by the sudden photodissociation, whil
the ion channel kinetics and the molecular motors it is ma
tained by permanent chemical reactions which are the
selves far from thermal equilibrium. Specifically, nontherm
noise of the asymmetric dichotomous type arises, e.g.
point contact devices with a defect tunneling incoheren
between two states, see Ref. 27 and further referen
9 © 1999 American Institute of Physics
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3350 J. Chem. Phys., Vol. 111, No. 8, 22 August 1999 Schmid, Reimann, and Hänggi
therein. In particular, the noise-strength and correlation-t
properties can be controlled externally at will.27,28 Finally,
besides those examples of complex nonequilibrium syste
potential fluctuations without back-coupling, as we w
study here, may be realized also by means of external n
imposed on a suitably designed experiment.15,29–32 For ex-
ample, a random-telegraph fluctuating electric field stim
lates the Rb1-pumping mode of the Na,K-ATPase. It wa
observed that electric or electromagnetic fields have an e
on a cell,33 mostly apparent on plasma membrane, where
external field is greatly amplified. Yet another example p
vides the nonthermal driven chemical reaction of the ioda
arsenous acid system IO3

213H3AsO3
I213H3AsO4. An
additive dichotomous noise process could be applied to
system by randomly switching the composition of the iod
and iodate input feeds to the reactor@ I2# and@ IO3

2# between
two values. The exchange must be synchronized in suc
way that the total input concentration@ I2#1@ IO3

2# stays
constant.15

The quantity of foremost interest in this context is t
mean escape time from the metastable state across the
tuating barrier as a function of the characteristic time scale
these fluctuations. The possibility that this dependence m
be nonmonotonous has been exemplified first in Ref. 34
has been termed ‘‘resonant activation’’ therein. This ph
nomenon has been further investigated in Refs. 35–55, an
by now qualitatively well understood, see 47 for a rece
review. As already emphasized in Refs. 38, 39, 44, 45,
55, the occurrence~or not! of resonant activation may cru
cially depend on how the distribution of the potential flu
tuations changes upon variation of their characteristic t
scale. This point will be reconsidered here with particu
emphasis on the two most natural options that~i! the distri-
bution of the potential fluctuations is kept constant~‘‘con-
stant variance scaling’’!, or ~ii ! the intensity of those fluctua
tions ~i.e., their integrated time correlation! is kept fixed
~‘‘constant intensity scaling’’!.

II. MODEL

A. Asymmetric dichotomous noise

Our starting point is a dichotomous stochastic proc
~also called telegraphic noise! j(t) that can take on the two
values

a8.0, a,0. ~1!

The probability to switch during an infinitesimal time inte
val @ t,t1dt# into the opposite state isdt m8 when the
present state isj(t)5a8 and dt m when j(t)5a, indepen-
dent of what happened in the past~Markov property!. In the
steady state, the probabilities thatj(t) is in the statea8 and
a are given, respectively, by

P~a8!5m/~m81m!, P~a!5m8/~m81m!. ~2!

While we will not require symmetrya52a8 and/or m8
5m, we will always assume that the noise is unbiased,

^j~ t !&5
a8m1am8

m81m
50, ~3!
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see Fig. 1 for an example. The intensityD and the correlation
time t of an arbitrary noise in the stationary state are defin
as16

D5
1

2E2`

`

u^j~ t !j~0!&u dt, ~4!

t5D/^j2~0!&, ~5!

when, the correlation of the asymmetric dichotomous no
in the steady state follows as

^j~ t !j~ t8!&5
D

t
e2ut2t8u/t , ~6!

with

t5@m81m#21, D5t a8uau. ~7!

For any t.0, we are thus dealing with so-called colore
noise. Special cases are:11,12,56 ~i! symmetric dichotomous
noise whena52a8 and m85m, ~ii ! white ~non-Gaussian!
shot noise whent˜0 anda, D5a2/m fixed, and~iii ! white
Gaussian noise whenm8, m˜`, t˜0, a8, uau˜`, andD
fixed.

A suitable measure for the asymmetry of the noise is
following asymmetry parameter:

A5
a82uau

a81uau
. ~8!

With ~3! and ~7!, one then finds that

a85A11A

12A

D

t
, ~9!

a52A12A

11A

D

t
, ~10!

m85
11A

2 t
, ~11!

m5
12A

2 t
. ~12!

Thus, in the steady state, the dichotomous noisej(t) is com-
pletely specified by its intensityD, correlation timet, and
asymmetryA.

B. Fluctuating potential

We consider a one-dimensional Brownian particle in
potential that consists of a static partU(x) and a fluctuating
part V(x) j(t), with j(t) an unbiased stationary dichoto

FIG. 1. Cartoon of one realizationj(t) of the asymmetric dichotomous
process as defined in Sec. II A.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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3351J. Chem. Phys., Vol. 111, No. 8, 22 August 1999 Control of reaction rate
mous noise as specified in the preceding subsection~see also
Fig. 1!. The particle is furthermore subjected to viscous fr
tion and we assume that inertia effects as well as ther
fluctuations are negligible. The equation of motion for t
particlex(t) thus reads

h
d

dt
x~ t !52

d

dx
$U~x~ t !!1V~x~ t !! j~ t !%. ~13!

It is convenient to absorb the friction coefficienth into the
definition of the time unit and to make both the time and
coordinate dimensionless by further appropriate sca
transformations. For simplicity, we will continue to use t
same symbols for the rescaled quantities. Finally, we in
duce the force fieldsf (x)52U8(x) andg(x)5V8(x) to ob-
tain

d

dt
x~ t !5 f ~x~ t !!1g~x~ t !! j~ t !. ~14!

Equivalent to this stochastic differential equation is the f
lowing master equation for the joint probability densi
P(x,a,t) that at timet the particle resides at the positionx
and the dichotomous processj(t) is in the state a
P$a8,a%:

]

]t
P~x,a,t !52

]

]x
$@ f ~x!1a g~x!#P~x,a,t !%

2m P~x,a,t !1m8 P~x,a8,t !1S~x,a,t !.

~15!

The first term on the right-hand side accounts for
Liouville-type evolution of the probability densityP(x,a,t)
under the action of the force fieldf (x)1a g(x) that prevails
while the noise is in the statej(t)5a. The second term is a
loss term due to transitions froma into a8 and similarly the
third term accounts for the gain of probability due to tran
tions froma8 to a. The last term represents the sources a
sinks of particles. A completely analogous equation is
tained forP(x,a8,t) by interchanging primed and unprime
quantities in~15!.

C. Kramers rate and mean escape time

We imagine an ensemble of particles@independent real-
izations of the stochastic dynamics~14!# with a constant
sourceq at an arbitrary pointxin , that is, in any time interva
@ t,t1dt# a numberdt q of new particles are joining the en
semble with seedxin . Similarly, we imagine a sink atxout

such that particles are removed instantaneously~immediate
absorption! as soon as they reach this pointxout for the first
time. If, in the long-time limit a steady state is reached,
average number of particles absorbed per time unit by
sink is thus equal to those injected by the sourceq. The rate
k according to Kramers and Farkas2,6,7 is thendefinedas this
resulting constant net flux of particle through the system n
malized by the population of particles

k5q/E P~x! dx, ~16!
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whereP(x) denotes the steady state~long time limit! of the
particle distribution. Since doubling the source-strengthq
will also double the population*P(x) dx, this definition is
clearly independent of the actualq-value. The usual choice
for xin is at or near the~metastable! potential well, while in
the context of the Kramers rate,xout is typically assumed to
be sufficiently far away from the basin boundary of this w
such that it is very unlikely that a particlex(t), had it not
been taken out of the game by the sink, would return into t
basin ofxin in the near future.

Besides the flux-over-population rateà la Kramers and
Farkas, various other quantities are available on the ma
in order to characterize the lifetime of a metastable sta2

Most notably these are~i! themean escape time,57–59defined
as the average timeTxout

(xin) that a particle~14! with seedxin

needs to reachxout for the first time, and~ii ! the smallest
nonvanishing eigenvalue of the relevant time-evolution o
erator in~15!. While they all are known to become equiva
lent for asymptotically weak noise, they may notably diff
when the timescales of the escape itself is no longer w
separated from all other characteristic relaxation times of
problem. As we will demonstrate in detail in a compani
paper,60 two of them, namely the Kramers ratek as defined
in ~16! and the associated mean escape timeTxout

(xin) satisfy
the exact relation

k51/Txout
~xin! ~17!

for arbitrary strengthsD, correlationst, and asymmetriesA
of the dichotomous noise. Since our choice of the sinkxout is
not at the potential barrier but rather beyond it~see above!,
we avoid here the more common termmean first passage
time57–59 for the quantityTxout

(xin).
Our goal is to calculate the Kramers flux-ove

population rate in the case of constant~i.e., time-
independent! point-sources and -sinks of particles at som
prescribed positionsxin andxout, respectively

S~x,a,t !5qa d~x2xin!2sa d~x2xout!, ~18!

aP$a8,a%. So, qa and qa8 can be viewed as streams o
particles that are injected atxin in the statesa anda8 of the
noise, respectively, and similarly for the outflowing stream
xout. Since the master Eq.~15! is linear, the case of more
complicated source- and sink-distributions than in~18! im-
mediately follows by way of superposition.

According to the definition of the Kramers rate~16!, it is
the solution in thesteady state, or equivalently, the long-time
limit t˜`, which matters and on which we will focus fur
ther. For the sake of convenience, we will indicate the ste
state simply by omitting time arguments, i.e.,P(x,a)
5P(x,a,t˜`), and similarly forS(x,a,t). Furthermore, in
order to avoid a flurry of cases that have to be treated se
rately but do not lead to much new physical insight, we w
now make some additional assumptions to single out
most interesting setup. First, we assume that the static fo
field f (x) derives from a bistable potentialU(x). The source
of particles atxin is assumed to be located in the ‘‘left’
potential well ofU(x) and the sink in the ‘‘right’’ one. We
will be interested in transition rates fromxin to xout, but also
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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in the transition rates just in the opposite direction, fromxout

to xin . This allows us to examine the effects of theasymmet-
ric noisej(t) on those rates, especially insymmetric poten-
tials. To guarantee that the dynamics~14! admits such tran-
sitions betweenxin and xout in both directions, we have to
require that the quantity

Deff~x!52t @ f ~x!1a g~x!# @ f ~x!1a8 g~x!# ~19!

is strictly positive in an entire open interval (x2 ,x1) that
comprises@xin ,xout#, i.e.,

Deff~x!.0 for xP~x2 ,x1!, ~20!

x2,xin,xout,x1 . ~21!

For simplicity, we further assume that both facto
f (x)1a8g(x) and f (x)1ag(x) in ~19! are negative for all
x,x2 and positive forx.x1 , which, in particular, guaran
tees that particles~14! cannot leave the interval@x2 ,x1#.
Therefore, we can infer thatP(x,a)50 for x¹@x2 ,x1#,
and since particles are completely absorbed atxout,x1 , we
havea forteriori that

P~x,a!50 for x¹@x2 ,xout#. ~22!

It also follows from~19! and ~20! that g(x) must not have
zeros on the interval (x2 ,x1), and we can assume withou
loss of generality that

g~x!.0 for xP~x2 ,x1!. ~23!

A typical example that incorporates the above-mention
symmetry and that we will study in detail below is

f ~x!5x2x3, g~x!51 , ~24!

with xin andxout located at the two wells of the static pote
tial U(x)

xin521, xout51. ~25!

D. Analytic solution

In the steady state, it follows by adding~15! and the
corresponding equation forP(x,a8)5P(t˜`,x,a8) that

052
d

dx H f ~x!P~x!2
a

m
g~x!Q~x!2J~x!J , ~26!

where we have introduced

P~x!5P~x,a8!1P~x,a!, ~27!

Q~x!5m8 P~x,a8!2m P~x,a!, ~28!

J~x!5E
2`

x

@S~y,a8!1S~y,a!# dy. ~29!

By tracing out the noise states in~27!, we are left with the
reduced steady-state densityP(x) for the particle coordinate
x alone. While this density is clearly of central importanc
the auxiliary function~28! has no such immediate physic
meaning. Finally,J(x) from ~29! can be readily identified
with the net particle current throughx in the steady state. In
Eq. ~26! the curly brackets must be equal to a constant,
by choosingx˜2` it follows with ~22! and ~29! that this
constant is zero, i.e.,
Downloaded 14 Oct 2003 to 137.250.81.34. Redistribution subject to A
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g~x! Q~x!5 f ~x! P~x!2J~x!. ~30!

If g(x)50, this equation fixes the quantity of main intere
P(x). If g(x)5” 0, a second equation similar to~26! is ob-
tained from the weighted difference like in~28! of ~15! and
its counterpart forP(x,a8). Elimination of Q(x) with the
help of ~30! then yields

d

dx H 2
Deff~x!

g~x!
P~x!J 1

f ~x!

g~x!
P~x!

5t
d

dx

f ~x!J~x!

g~x!
1

J~x!

g~x!
1t @aS~x,a8!1a8S~x,a!#.

~31!

In view of ~23!, this equation is valid whereverP(x) is not
yet given by ~22!. The solution of the first-order equatio
~31! is straightforward. In particular, the arising free integr
tion constant is fixed through the conditionP(x)50 for x
P(xout,x1) following from ~22!. We remark that while the
point sourcesqa8 andqa @cf. Eq. ~18!# can be chosen freely
the sinks are fixed by the conditions~i! that in the steady
state the total source strengthq5qa81qa must equal the
total of the sinkssa81sa , and~ii ! that due to~20!, particles
obeying~14! cannot reach the sinkxout when the noise is in
the negativea-state. In other words, we have that

sa85qa81qa , sa50. ~32!

The natural choice forqa8 andqa is the one according to the
steady-state probabilities~2! of the dichotomous process

qa85m/~m81m!, qa5m8/~m81m!. ~33!

Here, a free proportionality constantj 5q, which can be
identified with the constant net flux of particles betweenxin

andxout @see also Eq.~29!# has been tacitly chosen so as
achieve a unit fluxj 5q51. In this case, the solution of~22!
and ~31! takes the final form

P~x!5H E
max$x,xin%

xout
11tg~y!

d

dy

f ~y!

g~y!

Deff~y! P0~y!
dy

1t
f ~xin!1~a81a!g~xin!

Deff~xin! P0~xin!
Q~xin2x!

2t
f ~xout!1ag~xout!

Deff~xout! P0~xout!
J Q~xout2x! P0~x!, ~34!

where

P0~x!5
g~x!

Deff~x!
expH E

xin

x f ~y!

Deff~y!
dyJ Q~Deff~x!! ~35!

can be identified as the~not normalized! steady-state density
in the absence of any sources and sinks.

Note thatP(x) in general has discontinuities atxin and
xout due to thed-shaped source and sink in~18!. On condi-
tion that

f ~x2!/Deff8 ~x2!<1 , ~36!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the distributionP(x) furthermore exhibits a singularity atx2

which is inherited fromP0(x) in ~35!. It reflects a ‘‘jam’’ of
particles at the left borderx2 of the accessiblex-region that
may arise in the negative statej(t)5a of the noise when the
correlation time becomes large. For two representative
amples, see Fig. 2.

Finally, the Kramers rate of escape~16! out of the do-
main (2`,xout) follows from ~34! as

k51/E
x2

xout
P~x! dx. ~37!

By use of the method of steepest descent, we can eva
the rate for small correlation timest12,14 with the result

k5
A2 f 8~xin! f 8~xu!

2p~11t f 8~xu!!
expH 2

1

t
DFJ , ~38!

where the characteristic ‘‘activation energy’’ to the topxtop

of the static potentialU(x) is given by

DF5E
xin

xtop f ~x!

~ f ~x!1ag~x!!~ f ~x!1a8g~x!!
dx. ~39!

In the above calculations, we have assumed stri
delta-shaped sinks and sources of particles. For more ge
source- and sink-distributions, the solution follows by an a
propriately weighted superposition of solutions~34! and may
no longer exhibit discontinuities at those places, whereas
discontinuity atx2 remains under the condition~36!.

We finally remark that the derivation of the so-calle
adjoint equation that governs the mean escape t
Txout

(xin), especially its correct boundary conditions, as w
as the solution of this equation is quite involved.12–14Thanks
to our identity~17!, all these difficulties can be circumvente
and the mean escape time immediately follows as

FIG. 2. Steady-state distributionP(x) from ~34! ~not normalized! for the
example~24! and~25!. Noise parameters areD50.1,t50.01,A50.5 ~top!,
for which ~36! is not verified, andD50.5, t50.05, A50.5 ~bottom!, for
which ~36! is verified. Insets: details of the discontinuities atx5xin521
andx5xout51.
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~xin!5E

x2

xout
P~x! dx. ~40!

III. APPLICATIONS

In this section, a detailed discussion is presented for
special case of the symmetric setup~24! with d-sources and
sinks positioned at the two minima~25! of the corresponding
bistable static potentialU(x). We will consider both ‘‘for-
ward’’ transitions fromxin to xout as well as ‘‘backward’’
transitions fromxout to xin , and we are especially intereste
in the effect of the asymmetry of the unbiased dichotomo
noisej(t) on these transitions. For the Kramers rates of
forward and backward transitions we use the shorthand
tation k1 and k2 , respectively. While the forward ratek1

follows immediately from~34! and~37!, we remark that due
to the symmetry of our present example~24! and ~25!, the
backward problem in~14! can be mapped onto a forwar
problem if we replace the noisej(t) by 2j(t); that is, if we
interchange primed and unprimed quantities. In terms of
asymmetry parameter~8!, this implies that

k2~A!5k1~2A!. ~41!

We also recall that the three noise-determining parameterD,
t, and A @cf. Eqs. ~9!–~12!# have to respect the conditio
~20! and~21!; otherwise, transitions in at least one directio
are prohibited.

A. Constant variance scaling

Of particular interest, e.g., with respect to the so-cal
resonant activation phenomenon,34–42,44–51,54,55is the depen-
dence of the escape time upon the correlation timet of the
asymmetric dichotomous noisej(t) under the assumption
that the variances2^j2(0)& and the asymmetryA are kept
constant~constant variance scaling!. With ~5! and ~6!, this
means at-dependent intensityD of the form

D5s2t, s2,A fixed. ~42!

This choice is particularly natural in the context of dichot
mous noise since it leaves the two statesa8 anda as well as
the flip ratesm8 andm of the noise unchanged upon variatio
of t, cf. Eqs.~9!–~12!. Especially, the validity of the condi
tion ~20! is not affected by changingt.

Since the mean escape time is exactly equal to the
verse Kramers rate, we can focus on the discussion of
latter. A representative example of forward ratesk1 for a
fixed variances2 and various asymmetriesA is depicted in
Fig. 3. It clearly reproduces the typical features of reson
activation,34–42,44–51,54,55most notably, an ‘‘optimal’’ time
scale of the potential fluctuations at which the circumstan
for a transition are most favorable. The intuitive physic
explanation of this effect goes along the by now well-know
line of reasoning as reviewed in Ref. 47 and is not rep
duced here. We emphasize again that the Kramers ra
well defined and exactly given by~34! and~37! not only for
arbitrary noise strengths but also for arbitrary correlat
times t. In contrast, a rate definition based on the small
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nonvanishing eigenvalue of the time-evolution operator a
the closely related exponential decay of the metastable s
may lose their physical relevance. In fact, in many case
breakdown of such a description has been identified41 as a
precondition for the occurrence of the resonant activat
peak in the mean escape time.

B. Control of chemical reaction rates

Figure 4 illustrates the effect of the noise asymmetry
the ratio k1 /k2 between forward and backward Krame
rates. One remarkable feature is that thek1 /k2-curves cross
the value 1 at some intermediate correlation timet, indicat-
ing a change in the relative predominance of forward ver
backward reactions. In order to decide whether this effec
possibly just an artifact of our specific choice~33! of the
particle sources, we repeated the same calculation ofk1 /k2

with equally distributed sourcesqa85qa51/2 with the result
~not shown! that this effect can still be observed. An eve
more striking feature of Fig. 4 is the divergence ofk1 /k2

for t˜0. One can readily infer from~38! that for smallt
both ratesk6 themselves become arbitrarily small and pra
tically independent of the specific choice of the partic
source distribution in~18!. That opens a quite unexpecte
new possibility to manipulate yields in chemical reactions

FIG. 3. Forward escape ratesk1 according to~34! and~37! versus correla-
tion time t for the model~24! and~25! with constant variance scaling~42!.
The asymmetry parameters areA50.8 ~dash–dotted!, A50.4 ~dotted!, A
50 ~solid!, A520.4 ~short–long-dashed!, andA520.8 ~dashed!, and the
variance has the fixed values2510. The corresponding backward esca
ratesk2 follow with ~41!. For other choices of the variances2 @compatible
with ~20! and ~21!# qualitatively similar results are obtained.

FIG. 4. Ratiok1 /k2 of forward and backward Kramers rates obtained fro
the results shown in Fig. 3 by means of~41!. Since negative asymmetr
parametersA follow readily from their positive counterparts according
~41!, only the non-negativeA-values 0.8~dotted!, 0.4 ~dash–dotted!, and 0
~solid! are depicted.
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means ofunbiased, asymmetric, almost white(t˜0) noise,
be it via an externally applied signal or system-intrinsic
from equilibrium fluctuations of the relevant reaction pote
tial. In fact, this effect is already contained in the resu
from Ref. 12, without pointing out however its possible spe
tacular practical implications. For a particular example
this effect, see also Refs. 31,61.

C. Constant intensity scaling

Constant intensity scaling is defined by the prescript
that the intensityD and the asymmetryA are kept fixed upon
variation of the correlation timet of the noise. Such a scal
ing is of particular interest in that it leads to a sensible wh
noise limit whent˜0. Especially, this scaling enables on
to study what happens if one goes slightly away from
Gaussian white noise case into the realm of weakly colo
noise. Sincea anda8 also change witht according to~9! and
~10!, the condition~20! is always fulfilled for very smallt
but ultimately will be violated if one increasest. Examples
of how the rates behave for constant intensity scaling
depicted in Fig. 5. In the white noise limitt˜0, the well-
known escape rate for an overdamped Fokke
Planck-process2 is recovered from~38!, irrespective of the
asymmetryA. For sufficiently larget, transitions fromxin to
xout in ~14! are no longer possible (t>1022 in Fig. 5!. For
moderatet-values, the escape rates either decrease mon
nously or show a resonant activation type behavior, depe
ing on the asymmetryA. A detailed small-t analysis of the
analytical result~34! and ~38! confirms the numerical evi-
dence from Fig. 5, namely that a resonant activation p
will occur if and only if A.0 ~i.e., a8.uau). It has been
demonstrated in Refs. 44, 48–51, and 55 that forsymmetric
noise with constant intensity scaling, resonant activation
ruled out except for very specially tailored models. The o
currence of the effect for the very simple example~24! is
therefore clearly due to the asymmetry of the noise.

We finally remark that in contrast to Fig. 4~see also Sec
III B !, in the present case of constant intensity scaling,
ratio k1 /k2 of forward and backward rates approaches 1
t˜0 and may diverge for sufficiently larget ~see Fig. 5!.
The latter effect is simply due to the fact that for some asy
metry parametersA, the backward ratek2 vanishes earlier
than the forward ratek1 with increasingt.

FIG. 5. Same as in Fig. 3 but for constant intensity scaling withD50.04.
The ratiok1 /k2 is depicted in the inset.~Other choices ofD lead to quali-
tatively similar results.!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D. Cubic potential

So far we have restricted ourselves to bistable poten
like in ~24! and ~25! since one of our main points was th
comparison of forward and backward rates in the presenc
asymmetric noise. Besides, we have also observed se
interesting characteristic features of the forward rates alo
so it seems worthwhile to ask about their robustness.
therefore extended our analysis to potentials with a sin
metastable well, specifically the paradigmatic cubic pot
tial. The corresponding force fields are@cf. Eq. ~24!#

f ~x!5 3
2x~x11!, g~x!51. ~43!

Here, the factor 3/2 is chosen so as to obtain the same he
of the underlying potentialU(x) as in the model~24!. The
source and sink of particles are again assumed to be give
d-peaks at the potential well and at a point sufficiently w
beyond the barrier, respectively

xin521, xout5x1 . ~44!

The Kramers rate~37! following from the steady-state
solutions ~34! depicted for both constant variance scali
and constant intensity scaling in Figs. 6 and 7, respectiv
Comparison with Figs. 3 and 5 shows that the main cha
teristic features of those rates are indeed quite robust.

IV. CONCLUSIONS

We have studied the far from equilibrium escape pro
lem across a fluctuating potential barrier that is driven
asymmetric, unbiased dichotomous noise. Our closed

FIG. 6. Same as in Fig. 3~constant variance scaling! but for the example
~43! and ~44! and with asymmetry parametersA50.6 ~dash–dotted!, A
50.3 ~dotted!, A50 ~solid!, A520.3 ~short–long-dashed!, andA520.6
~dashed!.

FIG. 7. Same as in Fig. 6 but for constant intensity scaling withD50.04.
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lytical solution for the steady-state, flux-carrying dens
~34! and hence following Kramers rate~37! and mean escap
time ~40! are valid for arbitrary noise strengths and corre
tion times fulfilling the positivity condition of the effective
diffusion in ~19! and ~20!. On this basis, we have identifie
several new aspects of the so-called resonant activation
fect and we have indicated interesting implications regard
far from equilibrium or externally controlled chemical rea
tion processes. Along this line, we have unraveled a n
purely asymmetry-induced resonant activation effect wit
the so-called constant intensity scaling scheme. Another
portant aspect of asymmetric noise is a new possibility
control and manipulate reaction rates and yields as wel
the balance between reactants and products in chemica
action processes.

The existing literature on resonant activation34–55 seems
to suggest that the simultaneous presence of thermal n
and potential fluctuations is an indispensable precondi
for the appearance of this effect. In contrast, with our stu
~see Sec. III! we exemplify42 that resonant activation may i
fact be viewed as a feature of the escape problem with
ored noise driven potential fluctuations alone that surviv
and actually is reduced,38 in the presence of additional the
mal white noise.

Conceptionally, our approach differs from the origin
one by Kramers and Farkas.2,6,7While in our case the steady
state solution for a given distribution of sources and sinks
determined, their original strategy was to start with an ans
for the solution and then to determine the correspond
sinks and sourcesa posterioriby inserting that solution back
into ~15!.2 While, in principle, any such ansatz will solv
~15! @or, equivalently Eq.~26!# with a properly adapted dis
tribution of sinks and sources, only those with negligib
sinks and sources in the barrier region are admissible a
meaningful rate in the weak noise limit. For the present c
of dichotomous noise, this is the point of view adopted in t
rate calculations from Refs. 11 and 12.

The second aspect in which our investigation goes
yond the usual Kramers scheme and also that of prev
works on resonant activation34–55is that we admit hereasym-
metricnoise which is, however, still unbiased on average.
detailed in Sec. II, such an asymmetry can be identified a
new sufficient ingredient to generate resonant activation.
top of that, asymmetry provides us with a powerful new to
to manipulate and control yields of chemical reaction p
cesses.
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