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The possibility to control the quantum dynamics of a dissipative double-doublet-
system by external time-dependent driving fields is investigated. The system con-
sists of two tunneling doublets separated by an energy gap, as it is for example
the case of a double-well potential in which the tunneling dynamics can no longer
be restricted to the lowest tunneling doublet. A real-time path-integral approach
is used to investigate, both analytically and numerically, the vibrational as well as
the tunneling dynamics in an unified way. It is shown that the process of thermal-
ization is selectively controlled by a time-dependant field.

1 Introduction

Dissipative tunneling in effective bistable systems finds widespread applica-
tions in many physical and chemical situations (for a review see e.g. Ref. [1]).
Moreover, the development of strong laser and maser sources has opened a
doorway to control the time evolution of nonlinear quantum systems. With
the exception of only a few works?:34, all previous treatments of driven bistable
tunneling systems have restricted the dynamics to the lowest tunneling-doub-
let 5. This so-termed two-level system (TLS) approximation describes well the
dynamics at very low temperatures; but it becomes increasingly invalid at
higher temperatures and for resonant driving fields that couple different, well
separated tunneling doublets.

With the two-level approximation abandoned, the dynamics involves both tun-
neling between the metastable quantum wells, as well as vibrational intrawell
transitions among different tunneling doublets. The prime focus of this work is
the development of a consistent treatment wherein tunneling (T), driving and
vibrational relaxation (VR) are treated on a common footing. This becomes
possible if one uses the representation in which the system-bath coupling oper-
ator is diagonal, i.e. the so termed discrete variable representation (DVR). A
real-time path integral approach is used to derive a set of coupled generalized
master equations (GME) within a noninteracting cluster approximation for the
combined VR and T dynamics (VRT-NICA).

2 The model

For the sake of clarity only, but without loss of generality, we shall restrict the
following discussion to the case that only two tunneling doublets contribute

403



404

significantly to the driven dynamics. We consider the Hamiltonian H(t) =
Hpps + Hext(t) + Hp. The first term Hpps denotes the Hamiltonian of the
isolated double-doublet system. This can be derived from the energy spectrum
E, (energy eigenstates |n)) of a double-well potential which is restricted to the
two lowest lying doublets AA; = E;— E; and hA; = E4— E3. In analogy with
the TLS case, we define a new basis {|R1), |L1), |R2),|L2)} of appropriate linear
superpositions of the energy eigenstates, with the new states being localized
in the left or right well, respectively. Then, the isolated Hamiltonian takes the
form

Higs =~ Y0 22 (IL(Ril + [RLi) + o 1)

i=1,2

where Iy = |L3){L2| + |R2){R2| and @y is the energy gap separating the two
doublets. The external field-control is characterized by Hext(t) = —(&0 +
ssinQt) ¢. In this localized representation the discrete position operator of
the system reads ¢ = >, ._; o ai;(|Ri)(Rj| — |Li)(L; I) With a;; = (1]q]2),
azz = (3|q|4) and a12 = ag; = ((1|g]4) + (2|¢|3))/2 it is — in clear contrast to
the TLS - case — nondiagonal. Finally, we model quantum dissipation by an
ensemble of harmonic oscillators that are bilinearly coupled to the system !, i.e.,

m;

on the system is fully characterlzed by the bath spectral density J(w). In
this work we consider the explicit Ohmic form with exponential cut-off we,
namely J(w) = yw e~w/we with ~ being the friction coefficient. We wish to
evaluate the probability Pp(t) := 3_,(Li|p(t)|Li) to find at time t > 2o the
system in the left well, for a factorized initial state W (tq) = p(to) Wa of the
global density matrix. Here p(t) = Trpacs W (t) denotes the reduced density
matrix (RDM) of the system, while W(t) is the density matrix of the system-
plus-reservoir. At time ¢y, we assume the bath to be in thermal equilibrium at
temperature T. For an evaluation of the double path integral representation
of the RDM, we need to express the isolated Hamiltonian in the eigenbasis of
that operator which couples the system to the bath, i.e. the position operator g.
With gjuk) = uk|uk) (k=1,..,4) the DDS Hamiltonian in this so called discrete
variable representation reads

Hp = ; Z°31 2L + myw? (2' - == q) } Then, the environmental influence

HESS = > lur){uk|Higslu)(u] . (2)
ki=1,..,4

Within this new representation the double path integral expression for the
RDM can be evaluated analytically and numerically.
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3 The method: Real-time path-integral evaluation of the RDM

By introducing the notation p;;: := (u;|p(t)|ui) the formally exact path inte-
gral expression for the RDM in the DVR basis reads

pin(t)= D / Dq / Dq'Alq)A™[¢'1 (g, 4 pj (o) | (3)

3.g'=1

with the paths subject to the constraint ¢(t) = u;, ¢'(t) = u;r, and ¢(to) = uj,
¢’ (to) = u;.. The quantity .A[g] is the probability amplitude to follow the path
q(s) for zero bath coupling. The bath influence is captured by the Feynman-
Vernon influence functional Flq,¢']* which couples each path to every other
one.

By introducing the symmetric and antisymmetric paths £+ (s) = q(s) £ ¢’(s)
the double path-integral is expressed as a single path-integral over the sixteen
states of the RDM in the (q,q’)-plane. Any path can then be viewed a sequence
of ‘sojourns’ (S) and ‘clusters’ (C), with S/C being the time-intervals spent in
a diagonal/off-diagonal state of the RDM. In general, the influence functional
induces interactions among different C, among C and S, as well as inside a
same C. Neglecting the intercluster interactions (for details see Ref. [6]), a
generalized master equation (GME) can be derived. It reads

pii(t) = Ii(‘t,to) + Z/t dt’H;j(t,t’)pjj(t’) . (4)
j e

4 Results

The predictions of the GME (4) for sequential VR-T dynamics are shown in
in Fig. la where the population Pr(t) of the left well is depicted. Pr(t) is
compared against precise numerical results obtained from an iterative evalu-
ation of the real-time path integral (3) within the quasi-adiabatic propagator
path integral (QUAPI) method*7. In the chosen parameter regime, the agree-
ment is excellent. At lower temperatures deviations occur when higher order
coherent paths contribute to the VR-T dynamics. An example of control of
tunneling is shown in Fig. 1b. The system is prepared at initial time ¢ = 0 in
the left-down state |L;). In presence of a heat bath, the undriven DDS ther-
malizes to equilibrium (lower curve). However, the process of thermalization
can be considerably slowed down in the presence of a suitably tuned external
ac-field (middle curve). ‘The field parameters are chosen such that the two
quasienergy levels belonging to the upper doublet A; of the isolated driven
DDS do cross (upper curve). In this latter case tunneling is suppressed, i.e.,
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Figure 1: Fig. la.: The population Py (t) of the left well is shown vs. time ¢. The agreement
between analytical (GME) and numerical (QUAPI) results is striking. The parameters are
A = 0.0037,A, = 0.12,T = 0.81,& = 0.2,s = 05,2 = 1.0,T = 5.0,y = 0.1,wc = 10.0.
The parameters are measured with respect to the classical oscillation frequency wg in the full
DW-potential. Fig. 1b.: Same as Fig. 1a. {only QUAPI results) for the symmetric system
Ey =0.

a coherent destruction of tunneling (CDT) occurs (see the review in Ref. []).
Thus, the CDT phenomenon is suppressed by dissipation. The thermalization
process, however, is considerably slower than in the undriven case.
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