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Quantum stochastic resonance in symmetric systems
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Institute of Physics, University of Augsburg, Universita¨tsstrasse 1, 86135 Augsburg, Germany

~Received 27 October 1998!

We investigate the low-temperature quantum stochastic resonance~QSR! phenomenon in a two-level system
~TLS! which is coupled to an Ohmic heat bath. In contrast to common belief we find that QSR occurs also for
symmetric~i.e., unbiased! TLS’s if the viscous friction parametera exceeds a critical value: We demonstrate
that with respect to the spectral power amplification measure QSR always occurs fora.1; in contrast, the
output signal-to-noise ratio exhibits an amplification only fora.3/2. @S1063-651X~99!12305-5#

PACS number~s!: 05.30.2d, 05.40.2a
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I. INTRODUCTION

The discovery of the phenomenon of stochastic resona
~SR! @1# in nonlinear systems, whereby an ambient no
source can optimally enhance the detection of a weak in
mation carrying signal, has triggered a large body of resea
to this—at first glance—paradoxical effect. By now, stoch
tic resonance, which is utterly a nonlinear phenomenon
well understood and it seems to be even more common
originally suspected; see Ref.@2# for a comprehensive review
and further references, or Refs.@3,4# for introductory surveys
into this exciting field. In this context, we note that most
the research thus far, which mainly addressed phys
chemical and biological systems, has predominantly b
based on classical stochastic dynamics. The SR phenom
has only recently been taken into the quantum world wit
few contributions@5–10#. As such, QSR is still in its infancy
but attracts increasing attention@2,4#. Some prominent quan
tum results are the established increase of quasiclassica
by several orders of magnitude. This boost emerges du
finite temperature tunneling contributions@8#. Another point
raised in the literature refers to the very low-temperat
behavior of QSR@2,4#. It is commonly assumed that QSR
the deep cold can only emerge in biased systems@5–7#.
Then, the degradation of the response with increasing~quan-
tum! noise intensity can be offset by a noise intensity
creasing Arrhenius factor~provided by the detailed balanc
factor of the bias!. In contrast, in a symmetric TLS this help
ing role of an exponential Arrhenius factor is missing. It h
thus been tacitly, but incorrectly suspected that the w
algebraic dependence on temperature of the correspon
low-temperature quantum rate is generically not sufficien
counterbalance the degradation of the response cause
increasing the temperature. Recently, it has been show
use of numerical path integral calculations, however, th
QSR at moderately low temperatures does indeed occu
unbiased, i.e., symmetric quantum double-well systems@10#.
Our purpose with this work is to resolve such an appar
contradiction, and to obtain decisive and clearanalytical in-
sight into the conventional QSR phenomenon at very l
temperatures.

*On leave from Bogolyubov Institute for Theoretical Physic
Kiev, Ukraine.
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II. MODEL

Let us consider a two-level system~TLS!, being bilinearly
coupled to the heat bath, and which is subjected to a w
periodic driving force

f ~ t !5A0 cos~Vt !. ~1!

The total Hamiltonian of the considered driven system re

Ĥ~ t !52
1

2
@e12x0f ~ t !#ŝz1

1

2
\Dŝx

2x0ŝz(
l

kl~bl
11bl!1(

l
\vlS bl

1bl1
1

2D .

~2!

This driven spin-boson Hamiltonian describes the redu
quantum tunneling dynamics in an asymmetric double-w
potential with minima located atxmin56x0, and with the
energy biase @12–14#. The boson operatorsbl

1 ,bl corre-

spond to heat bath oscillators with frequenciesvl , andŝz,x
are the usual Pauli matrices. The tunneling dynamics can
characterized by the time-dependent position operatorx̂(t)
5x0ŝz(t). Furthermore,\D in Eq. ~2! is the tunneling cou-
pling energy between the two lowest energy levels. The b
influence on the TLS dynamics is captured by anoperator

random forceĵ(t)5(lkl(bl
1eivlt1ble2 ivlt). Due to the

inherent Gaussian statistics of the bath, its statistical pro
ties are defined by the autocorrelation function@12–14#

^ĵ~ t !ĵ~0!&b5
\

pE0

`

J~v!@coth~b\v/2!cos~vt !

2 i sin~vt !#dv. ~3!

Here, the bath spectral densityJ(v)5(p/\)(lkl
2d(v

2vl) has been introduced,^•••&b denotes the thermal av
erage, andb51/kBT is the inverse temperature. We assum
that J(v) acquires the Ohmic form J(v)
5(2p\/4x0

2)ave2v/vc. Here, a quantifies the dimension
less viscous friction strength andvc is the cutoff frequency
of the bath spectrum. As customary used@2#, the driving
force f (t) plays the role of aninput signal, and the thermal
noise averaged asymptotic, time-periodic (t→`) deviation

^d x̂(t)&b from the equilibrium mean position is considere
as the averagedoutput signal. For instance, in the case o

,
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5138 PRE 59IGOR GOYCHUK AND PETER HÄNGGI
superconducting quantum interference devices~SQUID’s!
the input signal corresponds to a periodically applied m
netic flux modulation, and the output relates to the total tim
periodic magnetic flux@15#. The used two level approxima
tion is well justified at low temperatureskBT!\v0 and for a
small time-dependent biasue12x0f (t)u!\v0, where\v0
measures the energy splitting between the lowest tunnel
blet and the first higher lying excited state in the bista
double well.

III. LINEAR RESPONSE THEORY

Within the framework of linear response theory~LRT!,
the input signal and the averaged output response are re
by

^d x̂~ t !&b5E
2`

t

x~ t2t8! f ~ t8!dt8, ~4!

wherex(t) denotes the response function. The linear susc
tibility of TLS is defined as the one-sided Fourier transfo
x̃(v)5*0

`eivtx(t)dt. Furthermore, the spectral power of th

fluctuations readsSxx(v)5*2`
` eivtC̄xx(t)dt, where

C̄xx~t!5 lim
T→`

1

2T E0

T
^d x̂~ t !d x̂~ t1t!1d x̂~ t1t!d x̂~ t !&bdt

~5!

is the time-averaged symmetrized autocorrelation function
TLS fluctuations. Note that the spectral powerSxx(v) in the
considered weak driving limit can be decomposed as

Sxx~v!5ux̃~v!u2Sf f~v!1Sxx
(0)~v!. ~6!

Here,Sxx
(0)(v) stands for the spectral power of spontaneo

fluctuations in the absence of driving, andSf f(v) is the spec-
tral power of the signal, which is defined similarly toSxx(v).
Moreover,Sxx

(0)(v) is related to the linear susceptibilityx̃(v)
by the thermalfluctuation-dissipation theorem~FDT! @16#

Sxx
(0)~v!5\ cothS \v

2kBTD Im x̃~v!. ~7!

An evaluation of eitherSxx
(0)(v), or x̃(v) for the spin-boson

model ~2! presents a difficult task which—apart from th
casea51/2, @6,7#—can be solved approximately only. T
this end, let us consider the driven TLS dynamics subjec
to the weak harmonic signal~1!. In the regime, whereinco-
herent transitions dominate and the tunneling coupling
small, i.e., D!vc , the TLS dynamics can be describe
within the so-termed noninteracting blip approximati
~NIBA ! @12–14#. The corresponding generalized mas
equation within NIBA for the evolution of̂ŝz&b in arbitrary
fields is well known@17–19#. An analysis of the asymptotic
solution of this equation for the case of weakadiabaticdriv-
ing ~1! yields @6,7#

x̃~v!5
1

kBT

x0
2

cosh2~e/2kBT!

W

W2 iv
. ~8!

Here,W denotes the quantum rate ofrelaxationof the aver-
age level populations. This rate is the sum,W5W11W2 ,
-
-

u-
e

ted

p-

f

s

d

r

of forward (W1) and backward (W2) rates, respectively
which satisfy the detailed balance condition in the fo
W1 /W25ee/kBT. The expression~8! is valid in the incoher-
ent tunneling regime forx0A0 ,\V!\vc ,akBT @7#. For
Ohmic friction, this incoherent regime occurs whenevera
.1/2 for any temperature@12,13#. Moreover, we assume th
conditionW!kBT/\, which is readily obeyed in practice. I
this case, thequantumFDT ~7! can safely be substituted b
its classical analog, yielding for the unperturbed spectra
density of the TLS

Sxx
(0)~v!5

x0
2

cosh2~e/2kBT!

2W

W21v2
. ~9!

The spectral power density~9! contemplates the random
transitions between levels of the TLS with theswitching
rates W6 determined by relaxation of themeanpopulations;
it thus reflects the quasiclassical Onsager regression hyp
esis. The incoherent quantum rateW coincides within NIBA
with the golden rule expression, i.e.@12,13#,

W5D2E
0

`

dt exp@2Q8~ t !#cos@Q9~ t !#cos@et/\#. ~10!

The functionsQ8(t) and Q9(t) in Eq. ~10! denote the real
and imaginary parts of the bath correlation function, resp
tively, i.e. @13#,

Q8~ t !1 iQ9~ t !5
4x0

2

\2 E0

t

dt1E
0

t1
^ĵ~ t2!ĵ~0!&bdt21 ilt,

wherein,\l54x0
2*0

`dv J(v)/pv denotes the bath reorga
nization energy@19#. For the considered case herein, t
functionQ(t) can be evaluated in the closed analytical fo
to yield ~see, e.g., Ref.@20#!

Q9~ t !52a arctan~vct !,

Q8~ t !52a lnHA11vc
2t2

G2~11k!

uG~11k1 ivMt !u2J . ~11!

In Eq. ~11!, G(z) denotes the complex gamma-function, a
we used the abbreviationsvM5kBT/\, and k5vM /vc .
These expressions allow for a numerical evaluation of
quantum rate~10! with good accuracy. Moreover, in the low
temperature domainpkBT!\vc and for small biase
!\vc one arrives at the well-known analytical approxim
tion @21#

W5
D2

2vcG~2a! S 2pkBT

\vc
D 2a21

3GUS a1 i
e

2pkBTD U2

coshS e

2kBTD . ~12!

It is worth pointing out here that the regime of validity of th
two-level approximation is not restricted by the temperat
domainkBT!\vc. For example, in proton transferring mo
lecular complexes in nonpolar media the energy gap betw
the lowest tunneling doublet and the next one is aboutv0
;400 cm21; which exceeds the cutoff frequencyvc
;80 cm21 @22#. For such cases,kBT/\vc can take on
rather arbitrary values within the validity of a well-founde
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TLS approximation, but the physics is no longer describ
within the low-temperature approximation used inherently
Eq. ~12!.

IV. QSR: SPECTRAL POWER AMPLIFICATION VERSUS
SIGNAL-TO-NOISE RATIO

Let us next consider in detail the case of periodic forc
~1!. The spectral power density of the signal is immediat
found to read

Sf f~v!5
p

2
A0

2@d~v1V!1d~v2V!#. ~13!

Combining Eqs.~13! and ~9! in Eq. ~6! one recognizes tha
the spectral power density of the output~within LRT! con-
sists of twod-spikes which are superimposed on a broadb
Lorentzian ‘‘background.’’ This situation characterizes co
ventional stochastic resonance for a weak input signal.
quantify it, we use two different measures, namely, the sp
tral power amplification~SPA! of the signal and the signal
to-noise ratio~SNR! at the output@2#. The SPAh is related
to the integral intensity of both spikes, and is defined by@23#

h~V!5pA0
2ux̃~V!u2. ~14!

Note thath has the dimensionality of@x0
2#. For the present

case it is convenient to use a dimensionless measure g
by h̃5(\vc /A0x0)2(2x0)22h. The signal-to-noise ratioR is
defined by the ratio between the spectral power amplifica
~14! and the spectral power intensity of the spontaneous fl
tuations at the driving frequencyV @2# in absence of driving.
It has the dimension of a frequency and reads within the L

R~V!5
pA0

2ux̃~V!u2

Sxx
(0)~V!

. ~15!

Upon combining Eqs.~8! and~9! one obtains for the spectra
power amplification

h~V!5
1

~kBT!2

pA0
2x0

4

cosh4~e/2kBT!

W2

W21V2
, ~16!

and likewise for the SNR

R5
pA0

2x0
2

2~kBT!2

W

cosh2~e/2kBT!
. ~17!

Note that within the considered adiabatic approximation
SNR measureR does not depend on the angular driving fr
quencyV.

We focus now on the unbiased, symmetric TLS dynam
~i.e., e50) in the low-temperature domain, where the a
proximation ~12! is fully valid. For the scaled SPAh̃ we
derive the main result

h̃5
p3w0

2T̃4(a21)

w0
2T̃4(a21/2)1V2

, ~18!

where we introduced the scaled temperature given bT̃
52pkBT/\vc and w0[D2G2(a)/2vcG(2a). As is clearly
seen from Eq.~18!, the spectral power amplificationh ex-
d

y

d
-
o
c-

en

n
c-

T

e

s
-

hibits a monotonicdecrease vs increasing temperatureif a
<1. Thus, no QSR phenomenon occurs for a symmetric T
in this parameter region, which is in full agreement with t
previous findings in this regime@5–7#. The behavior
changes, however, in the strong dissipation regimea.1:
Then—although not of exponential strong form—the alg
braic increase of the incoherent rateW, being proportional to
T(2a21) with increasing friction strength is, in fact,sufficient
to counterbalance the algebraic decrease~proportionalT22)
of the output response with increasing temperature. T
finding thus extends prior research studies@5–7# to the whole
regime of viscous dissipation strength 0,a,`. In particu-
lar, we find that for the SPA measure QSR occurs for ala
.1. For givenV, the maximum

h̃max5p3
@2~a21!#2(a21)/(2a21)

2a21
~w0 /V!2/(2a21)

~19!

in the signal power amplification takes place at

T̃max5@2~a21!#1/2(2a21)~V/w0!1/(2a21). ~20!

Note that the SPA maximumhmax and its positionTmax are
related in the considered low-temperature approximation
a scaling lowhmax;Tmax

22 independently ofa. Moreover,
substituting Eq.~20! into Eq. ~12! ~at e50) we obtain the
condition

W~Tmax!5A2~a21!V ~21!

for approximatematching of the time scales between inc
herent tunneling dynamics and external driving at the S
maximum. This time-scale matching underpins the interp
tation of stochastic resonance as a synchronization phen
enon @2,23#. For very low V @such that the correspondin
Tmax(V),1022\vc /kB# the full numerical results for the
synchronization scaling functionf (a,V)5W(Tmax)/V are
consistent with its low-temperature approximationf LT(a)
5A2(a21) in Eq. ~21!. In particular,f LT(a) actually pro-
vides an upper bound for the true synchronization sca
function, i.e.,f (a,V)< f LT(a). With increasing angular fre-
quencyV a maximum for f (a,V) vs a does appear~not
shown!.

The corresponding bell-shaped QSR behavior is depic
in Fig. 1~a! for the casea51.44; this specific value is o
relevance for the experimental SQUID dynamics as inve
gated in Ref.@11# in absence of a periodic driving. The au
thors do look forward, of course, to having this QSR res
verified by experimental practitioners.

With respect to the SNR measure the situation is m
delicate. We note that the signal-to-noise ratioR is actually a
monotonic decreasing function of temperatureT for this par-
ticular value of friction strength@see Fig. 1~b!#. This finding
portrays the principal difference between the two QSR m
sures in use, particularly if applied in the quantum doma
For SNR it follows from Eqs.~17! and ~12! that R}T2a23.
Thus, quantum stochastic resonance, as quantified by SN
i.e., an increase of SNR with increasing noise strength—also
occurs in a symmetric (e50), TLS, if a.3/2. We empha-
size that the prediction of strictly monotonic increase ofR
versusT for a.3/2 is a flaw of the low-temperature approx
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5140 PRE 59IGOR GOYCHUK AND PETER HÄNGGI
mation used for Eq.~12!. By use of the full expression in Eq
~10! and forkBT still essentiallyless than\vc , SNR exhib-
its a true maximum. This maximum is shifted towards high
temperatures with increasing frictional strengtha ~see
Fig. 2!.

V. SUMMARY

In summary, we revisited quantum stochastic resonanc
the deep cold within the linear response theory approa
Our detailed analysis revealed@see Eq.~18!# that QSR, as
quantified by the SPA measure, occurs also for symme
unbiaseddissipative TLS systems whenever the friction
strengtha exceeds the critical valuea51. This finding is

FIG. 1. ~a! Scaled spectral power amplification of the signalh̃
vs scaled temperature for a symmetric TLS with Ohmic coupl
strengtha51.44. Calculations were evaluated according to E
~16!, using the exact NIBA relaxation rate as defined in Eqs.~10!,
~11!, for different angular driving frequenciesV. The scaling cutoff
frequencyvc is typically of order 1012 s21 which corresponds ap
proximately to 7.6 K. The dotted lines in~a! and ~b! nearby the
corresponding curves depict the result based on the low-temper
approximation in Eq.~12!, cf. Eq. ~18!. The QSR enhancement o
the signal power amplification is quite striking.~b! Signal-to-noise
ratio plotted in the scaled unit ofR05(A0x0 /\vc)

2(D2/vc) vs
scaled temperature for the same system parameters. Here, no
occurs with respect to the SNR measure.
r

in
h.

c,
l

contrary to prior assertions in Refs.@5–7# where this strong
friction regime has not been addressed in detail. In particu
due to the absence of an exponential detailed balance fa
for a symmetric TLS, is has been anticipated incorrectly t
the degradation of the output response with increasing n
strength~the temperature! cannot be sufficiently offset by the
algebraic temperature dependence of the incoherent, s
metric TLS rate.

With regard to the SNR measure, the related quantum
occurs only fora.3/2 @see Figs. 1~b!,2#. Quantum stochas
tic resonance can take place also in a parameter regionkBT
,\vc , for 3/2,a,2, beyond the validity of the low tem
perature approximationpkBT!\vc inherent in Eq.~12!.
With increasinga the position of SNR maximum for SNR i
shifted towardskBT;\vc ~ata;5) ~not shown!. Moreover,
because the SNR approximation does not involve a dep
dence on angular driving frequency, its maximum behav
clearly cannot properly typify the inherent stochastic sy
chronization mechanism between noise-assisted~tunneling!
transport through the barrier region and external periodic
nal modulation which lies at the roots of the SR phenomen
@2#. In contrast, the SPA measure exhibits a peak beha
that with increasing angular frequency drivingV shifts to-
wards higher temperature~and thus higher total ratesW!.
This is in qualitative agreement with such a rough, appro
mate matching of time scales for stochastic~QSR! synchro-
nization@see Eq.~21!#. Finally, we note that these results fo
QSR in the strong friction regime are expected to beco
observable for a periodically modulated magnetic flux d
namics in rf SQUID’s that are operating in the mK tempe
ture region@11#.
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FIG. 2. Enhancement of SNR in unbiased TLS. Scaled sign
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