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Quantum stochastic resonance in symmetric systems
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We investigate the low-temperature quantum stochastic resof@8¢ phenomenon in a two-level system
(TLS) which is coupled to an Ohmic heat bath. In contrast to common belief we find that QSR occurs also for
symmetric(i.e., unbiasedTLS'’s if the viscous friction parameter exceeds a critical value: We demonstrate
that with respect to the spectral power amplification measure QSR always occurs-fiorin contrast, the
output signal-to-noise ratio exhibits an amplification only for3/2. [S1063-651X99)12305-5

PACS numbds): 05.30—d, 05.40-—-a
I. INTRODUCTION II. MODEL

Let us consider a two-level systeffiLS), being bilinearly

The discovery of the phenomenon of stochastic resonancceoupleol to the heat bath, and which is subjected to a weak
(SR [1] in nonlinear systems, whereby an ambient nOiseperiodic driving force '

source can optimally enhance the detection of a weak infor-

mation carrying signal, has triggered a large body of research f(t)=Ao cod Qt). @
t_o this—at first glance_—paradoxmal effect. By now, StOChaS_'The total Hamiltonian of the considered driven system reads
tic resonance, which is utterly a nonlinear phenomenon, is
well understood and it seems to be even more common than
originally suspected; see R¢P] for a comprehensive review
and further references, or Ref8,4] for introductory surveys
into this exciting field. In this context, we note that most of — X005, Ky (D) +by)+ >, ﬁw}\< b, b, + 1
the research thus far, which mainly addressed physical, ) 2
chemical and biological systems, has predominantly been )
based on classical stochastic dynamics. The SR phenomenon

has only recently been taken into the quantum world with alhis driven spin-boson Hamiltonian describes the reduced
few contributiong5—10]. As such, QSR is still in its infancy, quantum tunneling dynamics in an asymmetric double-well
but attracts increasing attentip®,4]. Some prominent quan- potential with minima located ax,=*X,, and with the
tum results are the established increase of quasiclassical SRergy biase [12—14. The boson operators,” ,b, corre-

by several orders of magnitude. This boost emerges due tspond to heat bath oscillators with frequencigs, andfrz,x
finite temperature tunneling contributiof]. Another point  are the usual Pauli matrices. The tunneling dynamics can be
raised in the literature refers to the very low-temperaturecharacterized by the time-dependent position openatr
behavior of QSR2,4]. It is common!y as_sumed that QSR in =x,0(t). Furthermore A in Eq. (2) is the tunneling cou-
the deep cold can only emerge in biased syst¢fs/].  pjing energy between the two lowest energy levels. The bath
Then, the degradation of the response with increa&in@n- influence on the TLS dynamics is captured by aperator
tum) noise intensity can be qﬁset by a noise intensity in- .. 4, forced(t) =, i, (b € “r+b,e~'“\). Due to the
creasing Arrhenius factdprovided by the detailed balance o ont Gaussian statistics of the bath, its statistical proper-
factor of the bias In contrast, in a symmetric TLS this help- (iog are defined by the autocorrelation functjag—14

ing role of an exponential Arrhenius factor is missing. It has 5

thus been tacitly, but incorrectly suspected that the weak 3003 _nhf=

algebraic depen)(/dence on tempgraturg of the corresponding <§(t)§(o)>ﬁ_;Jo J(w)[coth Bh wl2)cod wt)
low-temperature quantum rate is generically not sufficient to

counterbalance the degradation of the response caused by —isin(wt)]dw. 3
increasing the temperature. Recently, it has been shown b .
use ofnugmerical p:th integral calcu?lations, however, that Plere, the bath spectral density(w) = (7/h) 2y x5 8w

QSR at moderately low temperatures does indeed occur i @») has been introduced, - ) denotes the thermal av-

unbiasedi.e., symmetric quantum double-well systef]. ~ €rage, and=1/kgT is the inverse temperature. \We assume
Our purpose with this work is to resolve such an apparenth@  J(w)  acquires the  Ohmic form J(w)

. 1 L1
A=~ 5le+2xof (V]o,+ 5hiA T,

A : = oatk - 3 olo o . s
contradiction, and to obtain decisive and cleaalyticalin- = (277/4xp) awe ™ “'“c. Here, a quantifies the dimension-
sight into the conventional QSR phenomenon at very low€SS Viscous friction strength anal, is the cutoff frequency
temperatures. of the bath spectrum. As customary udéd, the driving

force f(t) plays the role of annput signal and the thermal
noise averaged asymptotic, time-periodte—+{(cc) deviation

*On leave from Bogolyubov Institute for Theoretical Physics, (5§((t))ﬁ from the equilibrium mean position is considered
Kiev, Ukraine. as the averagedutput signal For instance, in the case of
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superconducting quantum interference devi¢8QUID’s) of forward (W,) and backward (V_) rates, respectively,
the input signal corresponds to a periodically applied magwhich satisfy the detailed balance condition in the form
netic flux modulation, and the output relates to the total ime\W, /W_=e*sT. The expressiof8) is valid in the incoher-
periodic magnetic flux15]. The used two level approxima- ent tunneling regime foix,Ay,7Q <% w.,akgT [7]. For
tion is well justified at low temperaturégT<Awy and fora  Ohmic friction, this incoherent regime occurs whenewer
small time-dependent bidg+ 2xqf(t)| <A wy, Wherefwg >1/2 for any temperaturgl2,13. Moreover, we assume the
measures the energy splitting between the lowest tunnel dowonditionW<kgT/%, which is readily obeyed in practice. In
blet and the first higher lying excited state in the bistablethis case, thguantumFDT (7) can safely be substituted by
double well. its classical analog yielding for the unperturbed spectral

density of the TLS

Ill. LINEAR RESPONSE THEORY

th - -5 _2W ©
Wlthm the framework of linear response thedityRT), X cosH(e/2kgT) W2+ w2
the input signal and the averaged output response are related
by The spectral power densit) contemplates the random
R t transitions between levels of the TLS with tisavitching
<5X(t)>ﬁ=f x(t=tHf(t")dt’, (4)  rates W. determined by relaxation of thmeanpopulations;

it thus reflects the quasiclassical Onsager regression hypoth-

wherey(t) denotes the response function. The linear susce gsis. The incoherent quantum ratécoincides within NIBA

tibility of TLS is defined as the one-sided Fourier transformWith the golden rule expression, i[d2,13,
;((w)=f§ei‘°t)((t)dt. Furthermore, the spectral power of the
fluctuations read$, ()= [ .€'“"C,(7)d7, where

1

_ T . " ~ ~
CMﬂ:yEEiL@MU&U+ﬂ+&G+ﬂ&GMﬂt

W=Azfxdtexp[—Q’(t)]coiQ”(t)]coiet/h]. (10
0

The functionsQ’(t) and Q"(t) in Eq. (10) denote the real
and imaginary parts of the bath correlation function, respec-
(5) tively, i.e.[13],

. . . . . 42 rt t, .
is the tlme—ayeraged symmetrized autocorrelation f_unct|on of Q'(H)+iQ"(t)= _Zof dtlf (E(t)E(0)) 4dt, +ikt,
TLS fluctuations. Note that the spectral pov&L(w) in the hcJo 0
considered weak driving limit can be decomposed as
~ ) (0) wherein,ﬁ)\=4x§f§dw J(w)/ 7w denotes the bath reorga-
S @) =[x(0)|*Sts(0) + S (w). (6)  nization energy{19]. For the considered case herein, the

0) functionQ(t) can be evaluated in the closed analytical form
Here, S,;/(w) stands for the spectral power of spontaneous yield (see, e.g., Ref20))

fluctuations in the absence of driving, aBd(w) is the spec-

tral power of the signal, which is defined similarly $,( ). Q'(t)=2aarctaiiwt),
Moreover,S{9(w) is related to the linear susceptibiligy w)  T2(1+k)
by the thermaFluctuation-dissipation theorerfDT) [16] Q' (t)=2aln{ y1+ wczt - >0 (11
" IT(1+ k+iwyt)|
0 _ w ~
SX(w) =1 cot Im x(w). (" InEq. (1), T'(2) denotes the complex gamma-function, and
ke

we used the abbreviationey =kgT/%, and k=wy /w..
An evaluation of eithe6{?(w), or y(w) for the spin-boson These expression; allow for a numerical evalqation of the
model (2) presents a difficult task which—apart from the guantum rat&10) with good accuracy. Moreover, in the low-
casea=1/2, [6,7}—can be solved approximately only. To temperature domainmkgT<fiw. and for small biase
this end, let us consider the driven TLS dynamics subjected<?@c one arrives at the well-known analytical approxima-
to the weak harmonic signdl). In the regime, wherinco-  tion [21]
herent transitions dominate and the tunneling coupling is A2 2mkgT|2 71
small, i.e., A<w., the TLS dynamics can be described W= o ( )

o : . : D wJ(2a)

within the so-termed noninteracting blip approximation
(NIBA) [12-14. The corresponding generalized master

2 €
equation within NIBA for the evolution ofo) s in arbitrary COSI{ m> (12
fields is well known[17—-19. An analysis of the asymptotic
solution of this equation for the case of weadtiabaticdriv- It is worth pointing out here that the regime of validity of the
ing (1) yields[6,7] two-level approximation is not restricted by the temperature
2 domainkgT<%Aw.. For example, in proton transferring mo-
Yw)= i Xo w ) lecular complexes in nonpolar media the energy gap between
KeT cosH(e/2kgT) W-iw’ the lowest tunneling doublet and the next one is ahoglt
~400 cm'l; which exceeds the cutoff frequency,
Here, W denotes the quantum rate @flaxationof the aver- ~80 cm' ! [22]. For such caseskgT/Aw. can take on
age level populations. This rate is the suwvi= W, +W_, rather arbitrary values within the validity of a well-founded

hw

XT'|| a+i

€
27TkBT
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TLS approximation, but the physics is no longer describechibits a monotonicdecrease vs increasing temperatiirex
within the low-temperature approximation used inherently in<1. Thus, no QSR phenomenon occurs for a symmetric TLS

Eqg. (12). in this parameter region, which is in full agreement with the
previous findings in this regimg5-7]. The behavior
IV. QSR: SPECTRAL POWER AMPLIFICATION VERSUS changes, however, in the strong dissipation regimrel:
SIGNAL-TO-NOISE RATIO Then—although not of exponential strong form—the alge-

) . ) o . braic increase of the incoherent r&é being proportional to
Let us next consider in detail the case of periodic forcingy(2e—1) yith increasing friction strength is, in factufficient

(1). The spectral power density of the signal is immediately;, -ounterbalance the algebraic decregmeportionalT~2)

found to read of the output response with increasing temperature. This
T, finding thus extends prior research studi&s7] to the whole
Sii(w)=F A d(w+ Q)+ dw—-Q)]. (13)  regime of viscous dissipation strengthc@<cc. In particu-

lar, we find that for the SPA measure QSR occurs foraall
Combining Egs(13) and(9) in Eq. (6) one recognizes that >1. For given(), the maximum
the spectral power density of the outgutithin LRT) con- (e 1)/ (21
sists of twos-spikes which are superimposed on a broadband ~ ~ 5[ 2(a—1)]2e7 D2« D)
Lorentzian “background.” This situation characterizes con- a7 2a—1
ventional stochastic resonance for a weak input signal. To (19
guantify it, we use two different measures, namely, the spec- ) -
tral power amplificatio{SPA) of the signal and the signal- in the signal power amplification takes place at

(WO /Q)Z/(Zafl)

to-noise ratio(SNR) at the outpu{2]. The SPA7 is related = _ _ 1\71/2(22—1) 1(2a—1)
to the integral intensity of both spikes, and is defined 28} Tma=[2(a—1)] (€2/wo) ' 20
7(Q)= 7TA§|;((Q)|2- (14) Note that the SPA maximung,,.x and its positionT ., are

related in the considered low-temperature approximation by

Note thatz has the dimensionality dfxj]. For the present @ scaling low 77max~_Tr;1e21x independently ofa. Moreover,
case it is convenient to use a dimensionless measure givémibstituting Eq(20) into Eq. (12) (at e=0) we obtain the
by 7= (h e /Agxo) 2(2%,) ~27. The signal-to-noise ratigis ~ condition
defined by the ratio between the spectral power amplification W(Tma) = V2(a—1)Q (21)
(14) and the spectral power intensity of the spontaneous fluc-
tuations at the driving frequendy [2] in absence of driving.  for approximatematching of the time scales between inco-
It has the dimension of a frequency and reads within the LRTherent tunneling dynamics and external driving at the SPA
21~ 2 maximum. This time-scale matching underpins the interpre-
wAG x(Q)| . ) D
— (15  tation of stochastic resonance as a synchronization phenom-
sO) enon[2,23. For very lowQ [such that the corresponding
o _ TmalQ)<10 hw./kg] the full numerical results for the
Upon combining Eqs(8) and(9) one obtains for the spectral synchronization scaling functiofi(a,Q)=W(T,,)/Q are

R(Q)=

power amplification consistent with its low-temperature approximationg(«)
1 A W2 =42(a—1) in Eq.(22). In particular,f (a) actually pro-
7(Q)= 5 — (16)  vides an upper bound for the true synchronization scaling
(kgT)? cosH(e/2kgT) W2+ function, i.e.,f(a,Q)<f 1(«). With increasing angular fre-
uency() a maximum forf(a,()) vs a does appeafnot
and likewise for the SNR ghowr; (. ) “ ppea
WASX?) W _ The corresponding bell-shaped QSR belh.avior is dppicted
= > . (17  in Fig. 1(a@ for the casea=1.44; this specific value is of
2(kgT)? cost(e/2kgT) relevance for the experimental SQUID dynamics as investi-

ated in Ref[11] in absence of a periodic driving. The au-
hors do look forward, of course, to having this QSR result
verified by experimental practitioners.
: . . With respect to the SNR measure the situation is more
. We focus_ how on the unbiased, symme_tnc TLS dynamlcsdelicate. We note that the signal-to-noise ra&i actually a
(i.e., €=0) in the low-temperature domain, where~ the aP~monotonic decreasing function of temperatiirfor this par-
proximation (12) is fully valid. For the scaled SPAy we ticular value of friction strengtfisee Fig. 1b)]. This finding
derive the main result portrays the principal difference between the two QSR mea-
sures in use, particularly if applied in the quantum domain.
e (18)  For SNR it follows from Eqgs(17) and(12) that RT2*~2,
waT4e=124 ()2 Thus, quantum stochastic resonance, as quantified by SNR—
5 i.e., an increase of SNR with increasing noise strengilse-
where we introduced the scaled temperature givenTby occurs in a symmetric=0), TLS, if «>3/2. We empha-
=2mkgT/hw, andwo=A%T?%(a)/2w.I'(2a). As is clearly  size that the prediction of strictly monotonic increaseRof
seen from Eq(18), the spectral power amplification ex-  versusT for «>3/2 is a flaw of the low-temperature approxi-

Note that within the considered adiabatic approximation th
SNR measur& does not depend on the angular driving fre-
qguency().

B 71_3\/\%:"—4(0[—1)
n=
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FIG. 2. Enhancement of SNR in unbiased TLS. Scaled signal-
to-noise ratio vs scaled temperature for differing dissipation
strengthsa.

- contrary to prior assertions in Ref&—7] where this strong
= friction regime has not been addressed in detail. In particular,
& due to the absence of an exponential detailed balance factor
for a symmetric TLS, is has been anticipated incorrectly that
the degradation of the output response with increasing noise
r T strength(the temperatujecannot be sufficiently offset by the
(b) algebraic temperature dependence of the incoherent, sym-
0 L L 1 L metric TLS rate.
0 0.02 Oé)gT/h%gﬁ 0.08 0.1 With regard to the SNR measure, the related quantum SR

occurs only fora>3/2 [see Figs. (b),2]. Quantum stochas-

FIG. 1. (a) Scaled spectral power amplification of the sigmal  tiC resonance can take place also in a parameter régjén
vs scaled temperature for a symmetric TLS with Ohmic coupling<fiwc, for 3/2<a<2, beyond the validity of the low tem-
strength «=1.44. Calculations were evaluated according to Eq.perature approximationrkgT<<#w. inherent in Eq.(12).
(16), using the exact NIBA relaxation rate as defined in E@§), With increasinga the position of SNR maximum for SNR is
(11), for different angular driving frequencids. The scaling cutoff ~ shifted towardkgT~7% w. (ata~5) (not shown. Moreover,
frequencyw, is typically of order 18% s™* which corresponds ap- because the SNR approximation does not involve a depen-
proximately to 7.6 K. The dotted lines i@ and (b) nearby the  dence on angular driving frequency, its maximum behavior
corresponding curves depict the result based on the low-temperatuggearly cannot properly typify the inherent stochastic syn-
approximation in Eq(12), cf. Eq.(18). The QSR enhancement of chronization mechanism between noise-assigtedneling
the signal power amplification is quite strikin@h) Signal-to-noise transport through the barrier region and external periodic sig-
ratio plotted in the scaled unit dRy=(AoXo/hwe)* (A% we) VS nal modulation which lies at the roots of the SR phenomenon
scaled temperature for the same system parameters. Here, no Q . In contrast, the SPA measure exhibits a peak behavior
occurs with respect to the SNR measure. that with increasing angular frequency driviiy shifts to-

wards higher temperatur@and thus higher total rated/).
mation used for Eq.12). By use of the full expression in. Eq. Hgtselfnlgtg#ﬁgt%t;vt?ng;ii@infg?gpozﬁgg&r%ugyﬁCT]F;ETOXI
.(10) and forkB_T still eseentlall_y{ess t_harﬁ_wc, SNR eXh't_" nization[see Eq(21)]. Finally, we note that these results for
its a true maximum. This maximum is shifted towards highelsgp iy the strong friction regime are expected to become
temperatures with increasing frictional strength (see observable for a periodically modulated magnetic flux dy-
Fig. 2. namics in rf SQUID’s that are operating in the mK tempera-
ture region[11].
V. SUMMARY
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