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What can be stated by the Glansdorff–Prigogine criterion concerning
the stability of mass-action kinetic systems?

Thomas Wilhelm and Peter Hänggi
Departement of Physics, University of Augsburg, Memminger Strasse 6, D-86135 Augsburg, Germany

~Received 17 August 1998; accepted 22 December 1998!

We investigate which general results concerning the local stability of steady states of arbitrary
chemical reaction networks can be deduced with the Glansdorff–Prigogine stability criterion.
Especially, it is proven that the presence of an autocatalytic reaction is not a necessary condition for
a violation of the thermodynamic stability condition. It turns out that every reaction with at least one
variable reactant at each side of the reaction equation can potentially destabilize the steady states.
An explicit example of a simple reaction system without autocatalytic reactions where the stability
of the steady state changes via a supercritical Hopf bifurcation is discussed. Furthermore, in
expanding the original concept for proving local stability to global stability analyses, a general way
for constructing different Lyapunov functions is given. ©1999 American Institute of Physics.
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I. INTRODUCTION

The theory of thermodynamics allows one to derive
the classical deductive manner according to the ideal pr
type of Euklid’s ‘‘Elements’’ from few general axioms
multitude of prominent results. However, up to now t
theory is valid only at equilibrium and near equilibrium.
the general nonequilibrium case the multifarious dynam
phenomena are not covered in such a general way by
thermodynamic theory.

Near equilibrium, where linear relations between t
thermodynamic flows and forces are valid, the celebra
Onsager–Casimir theory is fully satisfactory to understa
and describe the observed phenomena. The Brussels g
developed their theory with the aim to derive in the therm
dynamic framework interesting results also for systems
from equilibrium~cf. Ref. 1!. An important field of applica-
tions has been, from the very beginning, chemical reac
networks.1–3 Chemical systems have also been used to d
onstrate that the Glansdorff–Prigogine stability criterion
not necessary, but only sufficient for the local stability
steady states.4,5 Nevertheless, it could be that for modeling
chemical systems interesting and relevant results follow fr
this criterion. For example, one could find a subclass of
action networks with only thermodynamically stable stea
states which directly implies kinetic stability~according to
the usual mathematical local stability theory!.

In this context it is especially interesting to note that
has often been stated that reaction networks with unst
steady states contain autocatalytic reactions. The Brus
group showed that special autocatalytic reactions yield a
stabilizing contribution in the framework of the Glansdorff
Prigogine stability theory.1–3 Indeed, all known oscillating
reaction systems ~e.g., model systems such as t
Brusselator,3 the Lotka–Volterra system,6 the Oregonator,7

or the smallest chemical reaction system with Ho
bifurcation8! contain at least one autocatalytic reaction. O
the other hand, e.g., the homogeneous Turing system~cf.
6120021-9606/99/110(13)/6128/7/$15.00
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Ref. 3! with its cross-catalytic property in the absence o
direct autocatalytic reaction always has a locally sta
steady state. Thus, the question arises whether an auto
lytic reaction is really necessary for an unstable steady s
~e.g., for a Hopf bifurcation! of the whole network. It should
be noted that in all known chemical and biochemical react
systems which show sustained oscillations the stable l
cycle always arises via a supercritical Hopf bifurcation.9

In this work we investigate in a general manner the th
modynamic stability of arbitrary mass-action kinetic reacti
networks. In particular, we show that former analyses
single reactions with the result that autocatalytic reactio
destabilize the steady state and nonautocatalytic ones do
has not been carried out in the necessary generality.
demonstrated that~without knowledge of the steady sta
concentrations! with the studied criterion the stability of th
steady states can be proven only for a very restricted clas
reaction networks. Furthermore, we present a simple
ample of a reaction system with a supercritical Hopf bifu
cation, which does not contain an autocatalytic reaction.

In the analysis we confine ourselves to the import
case of reaction networks with mass-action kinetics wh
one reaction can be written as

S1(
i

n i
1X i


k2

k1

P1(
i

n i
2Xi ~n i

1 ,n i
2 ,k1,k2>0!. ~1!

The reaction velocity is assumed to be proportional to
concentrations of the involved reactants~in consideration of
their molecularity!. Here S and P denote the sum of the co
stant substances and products andk1 andk2 the rate coef-
ficients of the forward and backward unidirectional reactio
respectively. Xi is thei th variable reactant andn i

1 andn i
2 its

stoichiometric coefficients. In this case a simple unambi
ous definition for an autocatalytic reaction can be given. T
considered reaction is autocatalytic, if

n i
1Þ0, n i

2Þ0, n i
1Þn i

2 ~2!

for at least one reactant Xi .
8 © 1999 American Institute of Physics
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II. THERMODYNAMIC STABILITY ANALYSIS OF
ARBITRARY MASS-ACTION KINETIC REACTION
NETWORKS

According to the general theory developed by the Br
sels group~cf. Ref. 1!, the thermodynamic equilibrium stat
is locally stable if the excess entropyd2S, taken at equilib-
rium, is negative for arbitrary small deviations, i.e.,

~d2S!eq,0. ~3!

If the system is thermally and mechanically stable, this c
dition reduces to the condition for stability with respect
diffusion, i.e.,

(
i

dm idni.0, ~4!

where m i ,ni denote the chemical potential and the mo
number of reactant Xi , respectively.

The thermodynamic theory for local stability of nonequ
librium steady states~ss! is based on the assumption of stab
local equilibrium~cf. Ref. 1!. In purely mathematical terms
this can be expressed in terms of a negative definite funct
which for physical reasons may be termedexcess entropy
density:

~d2s!ss,0. ~5!

In the domain of phase space where this is a negative defi
function it serves as an appropriate Lyapunov function wh
can prove the stability of the steady states.

The analyzed steady state is globally stable in a dom
D of the phase space if the time derivative of the exc
entropy density, i.e., theexcess entropy production densityis
positive for all deviations contained inD:

d~d2s!ss

dt
.0. ~6!

To prove the local stability it is sufficient to analyze th
linearized form at the steady state~cf. Appendix B, Ref. 4!. It
is clear that this criterion is only sufficient for the usu
mathematical local stability, because the latter does not
quire any Lyapunov function. For homogeneous chem
reaction systems~6! simplifies to

(
j

dv jdAj.0, ~7!

wherev j ,Aj denote the reaction velocity and the affinity
the j th reaction, respectively. This expression has the in
esting property that it consists of a sum of different term
each belonging exactly to one reaction. Of course the th
modynamic stability condition~7! can only be violated if at
least one term is negative.

We now successively prove the following~1! For sys-
tems under constant temperature and pressure the exces
tropy density is a negative definite function in the who
phase space@d2s5 f (ci), whereci denotes the concentratio
of reactantXi#. ~2! Already the simple reaction X
Y ~this is
the simplest nonautocatalytic reaction with variable subst
and product! always yields a negative term in the exce
entropy production density.~3! Reaction networks consistin
-

-

n,
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exclusively of reactions where one side of the reaction eq
tion contains only constant~‘‘outer’’ ! reactants always hav
locally stable steady states.

A. The excess entropy density is a negative definite
function in the whole phase space

For systems under constant temperature and pres
condition Eq.~5! reduces to

L5(
i ,k

~]m i /]ck!ssdcidck.0, ~8!

whereL is proportional to the negative excess entropy d
sity. This quadratic form is positive definite if its form matri
F5(]m i /]ck)ss/(RT) is positive definite~R and T denote
the gas constant and temperature, respectively!. With the
chemical potential of thei th variable reactant given by

m i5m i
01RT ln ci , ~9!

F reduces to

F5diagS 1

c̄1
,...,

1

c̄n
D . ~10!

Because for positive-valued steady states$c̄i% all eigenvalues
of F are positive, the functionL is positive definite~and thus
the excess entropy density negative definite! and therefore
well suited to serve as a Lyapunov function.

B. The simplest example

The tendency of an autocatalytic reaction to destabi
the steady state of the whole system has been explained
the help of the Glansdorff–Prigogine stability criterion~e.g.,
Refs. 1–3!. In order to analyze a special reaction for i
ability to destabilize the stationary state one must take i
account the variation of all involved variable substances
doing so, one recognizes that already the simplest mono

lecular reaction X

k2

k1

Y with variable substrate and produc

always yields a negative term in the excess entropy prod
tion density.

From the affinityA5RT ln(qx/y), whereq is the equilib-
rium constant, and the corresponding reaction velocityv
5k1x2k2y, where lower case characters denote the c
centration of the reactants, one obtains for the first variat

dA5RTS dx

x̄
2

dy

ȳ D , dv5k1dx2k2dy. ~11!

Upon combining one finds the quadratic form

dvdA5RTS k1

x̄
~dx!21

k2

y
~dy!22S k2

x̄
1

k1

ȳ D dxdyD . ~12!

Note that the excess entropy production density contains
negative dxdy term. The whole expression is positiv



-

rm

n
ce

an
te

th

a

he
e

It
to
s of

the
p-

6130 J. Chem. Phys., Vol. 110, No. 13, 1 April 1999 T. Wilhelm and P. Hänggi
semidefinite if and only if 2k1k2 /( x̄ȳ)>(k2 / x̄)2

1(k1 / ȳ)2, which for (x,y)Þ( x̄,ȳ) never holds. The equal
ity sign is obtained in the equilibrium case.

Generally one studies the definiteness of quadratic fo
with n variables via its form matricesF. A quadratic form is
positive definite if all main minors of itsF are positive defi-
nite. For the studied reaction,F reads

F5S k1

x̄
2

1

2 S k1

ȳ
1

k2

x̄ D
2

1

2 S k1

ȳ
1

k2

x̄ D k2

ȳ

D . ~13!

Both 131 main minors are always positive, because the u
directional reaction rates as well as the steady state con
trations are positive, but the determinant det(F) is negative
semidefinite:

det~F !52
1

4 S k1

ȳ
2

k2

x̄ D 2

. ~14!

Note that in the equilibrium case the determinant is zero
the whole quadratic form positive semidefini
( ȳ/(RTk2)dvdA5(qdx2dy)2).

Herewith, we have shown that for this simplest case
excess entropy production density@cf. Eqs.~6! and~7!# is not
positive semidefinite. Therefore, already the simplest non
tocatalytic reaction can destabilize the steady state.

C. The general case

In order to decide whether an arbitrary reaction of t
form ~1! yields a positive or a negative contribution in th
dy
dy

r,
s

i-
n-

d

e

u-

excess entropy production density, i.e., in the sum~7!, one
generally has to analyze ann3n form matrixF. The consid-
ered reaction always stabilizes the steady state ifF is positive
semidefinite, i.e., ifF has only non-negative main minors.
will be shown that for all drawn conclusions it is sufficient
analyze a general reaction with two variable substance
the form

aX1bY

k2

k1

cX1dY, ~15!

where possible constant reactants are incorporated into
rate constants~which are therefore sometimes termed ‘‘a
parent’’ rate constants!. The velocity~mass-action kinetics!
and affinity ~ideal solute systems! of this reaction can be
written as

v5k1xayb2k2xcyd, A5RT ln~qxa2cyb2d!, ~16!

yielding

dv5~k1ax̄a21ȳb2k2cx̄c21ȳd!dx

1~k1bx̄aȳb212k2dx̄cȳd21!dy, ~17!

dA5RTS a2c

x̄
dx1

b2d

ȳ
dyD . ~18!

Therefore,dvdA/(RT)5Fdxdy, with the form-matrix ex-
plicitly reading
F5S a2c

x̄
m11

1

2S a2c

x̄
m221

b2d

ȳ
m11D

1

2S a2c

x̄
m221

b2d

ȳ
m11D b2d

ȳ
m22

D , ~19!
hes.
where m115k1ax̄a21ȳb2k2cx̄c21ȳd, m225k1bx̄aȳb21

2k2dx̄cȳd21.

1. One-dimensional case

For example, forb5d, aÞc the problem is reduced to
the one-dimensional case:

sgn~F1D!5sgn~~a2c!~aq2cx̄c2a!!. ~20!

If one side of the corresponding reaction equation in Eq.~15!
is constant, i.e., fora50 or c50, one recognizesF1D.0. In
all other cases sgn(F1D) generally depends on the stea
state concentrationx̄. In the special case where the stea
state equals the thermodynamic equilibriumx̄c2a5q, F1D is
positive. At sufficient distance from equilibrium, howeve
one cannot estimate the sign ofF1D without knowledge ofx̄.
Both 131 main minors ofF in Eq. ~19! are positive if and
only if
~a50 or c50! and ~b50 or d50!. ~21!

2. Two-dimensional case

The 232 main minor ofF ~19! is its determinant

det~F !52
1

4 S a2c

x̄
m222

b2d

ȳ
m11D 2

<0. ~22!

We analyze under what conditions this expression vanis
In the two-variable case~aÞc and bÞd! det(F)50 can be
rewritten as

~bc2ad!~qx̄a2cȳb2d21!50. ~23!

This expression vanishes at equilibriumq5 x̄c2aȳd2b, or if

ad5bc. ~24!

In the nonequilibrium case it follows from Eqs.~21! and~24!
that the only possibility for positive semidefiniteF reads
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~a50, b50!

or

~c50, d50!. ~25!

As can be seen already from Eqs.~17! and~18! arbitrary
reactions withn variables and only constant reactants at o
side of the reaction equation always stabilize the steady s
thus completing our analysis. Therefore, we have shown
only reactions with constant reactants at one side of the
action equation tend to stabilize the steady state~s! of the
reaction network.

III. A SIMPLE MASS-ACTION KINETIC SYSTEM WITH
HOPF BIFURCATION CONSISTING ONLY OF
NONAUTOCATALYTIC REACTIONS

We demonstrate that the sample system:

A→
k0

X,

2Y

k21

k1
Z,

~26!

X1Z→
k2

Y1Z,

Y→
k3

B,

~A and B denote constant reactants! which does not contain
an autocatalytic reaction according to definition~1! and ~2!,
nevertheless possesses for special parameter values a
stable steady state. In particular, it exhibits a supercrit
Hopf bifurcation yielding stable limit cycles near the bifu
cation point.

Assuming simple mass-action kinetics and upon int
ducing the dimensionless quantities (x,y,z)/(k0a)k3

→(x,y,z), k3t→t the corresponding differential equatio
system is written in the form:

ẋ512k2xz,

ẏ52y22k1y212k21z1k2xz, ~27!

ż5k1y22k21z.

This system has one steady state

~ x̄,ȳ,z̄!5S k21

k1k2
,1,

k1

k21
D . ~28!

Carrying out a linear stability analysis, the characteris
polynomial of the Jacobian may be written in the form

l32Tl22Kl2D50, ~29!

whereT, D indicate the trace and determinant, respective
It follows from the Hurwitz criterion that the steady state
locally stable if the coefficients at this point fulfill the con
dition T,K,D,2(TK1D),0. A Hopf bifurcation occurs
@with the special property that the real eigenvalue is nega
~cf. Ref. 8!# if T,K,D,0 andTK1D50. The calculation
shows that the coefficients at the steady state~28! read:
e
te,
at
e-

un-
l

-

c

.

e

T52~k1k215k211k21
2 !/k21 ,

K52~k1k21
2 15k1

2k21k1
2k2k2122k21

2 !/~k1k21!, ~30!

D52k1k2 .

For the choice thatk151, k2151 one obtains

T52~61k2!,

K5126k2 ,
~31!D52k2 ,

TK1D5k2
2117/3k221,

i.e., the Hopf bifurcation occurs atk2
H
ªk25(A325217)/6

'0.1713 ~from 6k2
H.1 it follows that K,0!. Numerical

integration shows that it is supercritical bifurcation, i.e.,
stable limit cycle arises, which becomes unstable ifk2 is
lowered tok2* '0.1576.

IV. DISCUSSION

In this work we systematically have studied the capab
ity of the Glansdorff–Prigogine stability citerion for gener
statements about the stability of steady states of mass-a
kinetic systems. Let us summarize the most important
sults.

Generally, i.e., without the restriction to mass-action
netic systems, three points need to be emphasized

~1! Originally the concept of local stability proof by us
of theexcess entropy densityhas been based on the assum
tion of local equilibrium. This very concept can be used in
strict mathematical formulation without reference to loc
equilibrium. An arbitrary function may be used as
Lyapunov function to prove the global stability of the stea
state contained in a domainD of the phase space if only thi
function is~positive or negative! definite in this domain. One
should note that the definiteness of the underlying quadr
form at theequilibrium point does not mean in general th
definiteness of the corresponding quadratic form at thenon-
equilibrium steady state point. Without giving here an e
plicit example, one can imagine systems where the equ
rium quadratic form is negative definite, but th
corresponding nonequilibrium formnot. By contrast, the
functionexcess entropy densitycan be ideally suited to serv
as a Lyapunov function for steady states, because it is~posi-
tive or negative! definite in a surrounding of this point with
out fulfilling this condition at the equilibrium point.~An ex-
ample for nondefinite excess entropy density at
equilibrium point is the regular solutions as in the spec
sense, the simplest generalization of ideal solutions~cf., e.g.,
Ref. 1!.

~2! The Glansdorff–Prigogine stability citerion in th
formulation of Eqs.~5! and~6! is, although based on the ide
of Lyapunov functions, a local criterion. It is therefore inte
esting to extend this concept for a global stability analys
This has been discussed in Appendix B, where we have
lined a general scheme for the construction of Lyapun
functions.

~3! The Glansdorff–Prigogine stability citerion is only
sufficient, but not a necessary condition for local stability
the corresponding steady state. Nevertheless, two dec
ago there was an intensive discussion about this point in
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literature ~cf. Ref. 5, and citations therein!. For example,
Eigen obviously overestimated the validity of this criterio
when, in his famous article,10 he stated: ‘‘A steady state i
unstable whenever a negative fluctuationdxs occurs.’’ This
is equivalent to the statement that condition~7! is violated
~cf. Ref. 10!.

In Ref. 4 we have discussed the last two points in de
using the simple example system of Ref. 8.

At this point it is worth to refer to other efforts to exten
the thermodynamic nonequilibrium stability theory to t
whole nonequilibrium range. A remarkable approach h
been given by Keizer in a series of papers~cf. Ref. 11, and
citations therein!, summarized in his monograph.12 He pro-
posed the ‘‘s function,’’ a kind of generalized entropy
whose second variation is proportional to the inverse of
covariance matrix. This function serves as a Lyapunov fu
tion and is indeed for certain situations of the Gauss–Mar
limit a necessaryand sufficient condition for stability of the
considered steady state. Keizer and Chang were also ab
give an experimental verification for this theory.13 Note also
related work for the so termed ‘‘stochastic potential’’~or
generalized thermodynamic potential!, originally introduced
by Graham14 for Fokker–Planck processes, generalized
Hänggi15 for Markovian master equations and recently stu
ied in related form e.g., by Ross and co-workers~for a recent
publication see Ref. 16!.

Discussing the possibility of a violation of condition~7!,
in Ref. 10 Eigen also argued that ‘‘autocatalytic reacti
systems... are the candidates for such instabilities.’’ In
work we show that autocatalytic reactions are not a nec
sary condition for this violation.

The general result that reaction networks consisting
clusively of reactions where one side containes only cons
substances are always locally stable is already known w
the work of Clarke~cf. Ref. 17!. He instead used for his
analyses a graph theoretic approach. However, becaus
analyses in this work are based on Lyapunov functions,
in addition can study global stability.

In Sec. II A we have shown that for mass-action kine
systems the functionexcess entropy density~L! always ful-
fills the necessary condition for a Lyapunov function to
~positive or negative! definite. In Appendix A we have
proved the same result for the more general functionLmf .
From a mathematical point of view, this result is close
related to a corresponding result given in Ref. 18, wher
exclusively equilibrium situations were addressed.

The sample system studied in Sec. III has been kno
explicitly at least since the paper of Cooket al.19 It is con-
structed as an extension of the well-known trimolecu
model,20 which has been criticized, like the ‘‘Brusselator,
because of the assumption of its trimolecular reaction. S
tem ~27! is one of three different schemes which have be
demonstrated in Ref. 19 to yield as asymptotic limit cases
original trimolecular model, whereby one of these syste
still contains an autocatalytic reaction.~The authors stated
that ‘‘These three-variable schemes are of great interes
themselves as the simplest oscillatory ‘real chemic
schemes involving only first- and second-order steps.’’
comparison with the system of Ref. 8 shows that this is
,
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viously not the case.! The decomposition of the trimolecula
reaction according to system~26! is only bimolecular in the
forward and backward direction of all reactions. Howev
the stability analysis, especially the determination of t
Hopf bifurcation hyperplane, has not been done in our g
eral way.

Simple systems such as Eq.~27! are well suited for the
application of local bifurcation theory~cf., e.g., Ref. 21! to
analytically prove that the occurring Hopf bifurcation is in
deed supercritical.

One further point is especially interesting with regard
actual studies. The stable limit cycle of the original trim
lecular two-variable model becomes unstable~and the sys-
tem diverges! if the velocity constant of the autocatalyti
reaction is sufficiently small. If one simply adds a furth
intermediate variable as a storage substance, the stable
cycle exhibits a period doubling cascade into chaos w
lowering the autocatalytic reaction rate.20~c!,22 If the rate is
lowered even further, the stable chaotic attractor becom
unstable and the system diverges again. In contrast, in
tem ~27! we observed the same~two-dimensional! behavior
than in the original two-variable model.20 Of course the pe-
riod doubling and the chaotic region in the parameter sp
could be so narrow that we did not find it numerically, but
seems that the trajectories of the whole three-dimensio
model are in fact confined to a two-dimensional surface
the long time limit. Thus, system~27! is a good candidate fo
applying ‘‘no-chaos theorems’’ in similar form as recent
presented in Ref. 23.
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APPENDIX A: PROOF OF THE POSITIVE
DEFINITENESS OF A FUNCTION CONSTRUCTED
USING MOLE NUMBERS INSTEAD OF
CONCENTRATIONS

If one uses the chemical potential of reactant Xi as a
function of the mole fractionxi ~note that in this appendixxi

is used for the mole fraction of reactant Xi and not for its
concentration! instead of the concentrationci @like in Eq.
~9!#, one obtains another function for the excess entropy d
sity. This can be used as a Lyapunov function if it fulfills th
condition of definiteness. We here prove that this condit
is always fulfilled, because the form matrix of the accordi
quadratic form is positive definite. With

m i5m i
01RT ln xi . ~A1!

~with the mole fractionxi5ci /(( ici1cc)! one obtains the
function

Lmfª(
i ,k

~]m i /]ck!ssdcidck.0. ~A2!
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Here, cc denotes the concentration of the constant s
stances. Ifcc is very large,Lmf becomes identical toL of Eq.
~8!. The form matrixF of this quadratic form can be writte
as
s
ar

p

el
e

tio
f
in
e
ic

ui

th
ro
-
F5

1

~( ici1cc!P ici
F̃ ~A3!

with
t

F̄5S P i 52
n ci~( i 52

n ci1cc! 2P ici ¯ 2P ici

2P ici c1P i 53
n ci~c11( i 53

n ci1cc! ¯ 2P ici

] ] � ]

2P ici 2P ici ¯ P i 51
n21ci~( i 51

n21ci1cc!

D . ~A4!

This real symmetric matrix is positive definite if—after the triangle decompositionF̃5CB, where without loss of generality
we can setcii 51 for all i—all diagonal elementsbii are larger than zero~cf. Ref. 24!. One immediately recognizesb11.0.
Applying the Gaussian algorithm toF̃ to generate the upper triangular matrixB, after elimination of the first row and the firs
column the new matrixF̃1 reads

F̃15
~( ici1cc!c1

( i 52
n ci

F̃1 ~A5!

with

F5 15S 0 0 ¯ 0

0 P i 53
n ci~( i 53

n ci1cc! ¯ 2P i 52
n ci

] ] � ]

0 2P i 52
n ci ¯ P i 52

n21ci~( i 52
n21ci1cc!

D . ~A6!
ith
in
n

s a

ed.

on

la-
One now recognizes thatb22.0 and that this likewise works
for all remainingn22 steps. In each step, oneci is elimi-
nated and the new appearingbii is larger than zero which
finishes the proof.

It follows that the functionLmf is, like the functionL ~8!,
for the ideal solute systems under consideration alway
suited Lyapunov function, because it fulfills the necess
condition of definiteness.

In Ref. 4 we have shown that in the considered sam
system the region of the parameter space for which the~lo-
cal! stability of the steady state can be proven with the h
of the Lyapunov functionLmf is generally smaller than th
region for which the~local! stability can be proven withL.

APPENDIX B: CONSTRUCTION OF DIFFERENT
LYAPUNOV FUNCTIONS ON THE BASIS OF THE
GLANSDORFF–PRIGOGINE CRITERION

We demonstrate a simple procedure for the construc
of Lyapunov functions for proving the global stability o
steady states in a domain of the parameter space conta
the equilibrium point. For the sake of simplicity we confin
ourselves to the simple case of thermal and mechan
stable homogeneous systems.

According to the Glansdorff–Prigogine theory the eq
librium of these systems is locally stable if condition~4! is
fulfilled. With the assumption of stable local equilibrium
these authors derived the inequality~7! being a condition for
local stability of the considered steady state. Because
derivation is based on the idea of using the excess ent
a
y

le

p

n

ing

al

-

is
py

density as a Lyapunov function, it is natural to study w
this function global stability as well. As we have shown
Sec. II A ~and in Appendix A for the more general functio
Lmf!, the function

Leedª(
i

~ci2 c̄i !
2

c̄i
~B1!

is positive definite, and therefore well suited to serve a
Lyapunov function.Leed is the functionL ~8! with finite de-
viationsDci instead of infinitesimal deviationsdci .

Starting from

~d2s!ss}(
i

~dm idci !ss, ~B2!

we show that related Lyapunov functions can be obtain
The functionLeed follows directly from Eq.~B2! if one uses
for the variation of the concentrations the finite deviati
from the steady stateDci . If, in addition, one uses for the
chemical potentials the finite deviationDm i , one obtains

L fd5(
i

~ci2 c̄i !ln
ci

c̄i
. ~B3!

This function is positive definite~for ciÞ c̄i! and therefore
suited to serve as a Lyapunov function.

A third related function can be obtained from the re
tion

1

2

]

]t
d2s52(

i
dS m i

T D ]

]t
dci>0, ~B4!
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which one obtains in deriving Eq.~7! ~cf. Ref. 1!. If one uses
instead of the first variation for both, the chemical poten
and the concentration, the finite deviationD, the time deriva-
tive of this third function reads:dLShear/dt5( i ln(ci /c̄i)ċi ,
yielding

LShear5(
i

ci ln
ci

c̄i
2ci1 c̄i , ~B5!

which is positive definite. This is the well-known Lyapuno
function for chemical reaction systems used first by She
who deduced the expression from the Boltzma
H-Theorem.

Both functionsL fd andLShearprove the local stability of
the considered steady state exactly for the same region in
parameter space as the functionLeed, which follows by ex-
pansion of the logarithm of these functions. However, in R
4 we have shown thatLShearis better suited for proving the
global stability. Indeed, in Ref. 25 it has been shown t
with the help ofLShear the global stability of the thermody
namical equilibrium point can be proven in the whole pha
space for arbitrary generalized mass-action kinetic syste

Further related Lyapunov functions follow fromL fd and
LShearif one again takes the chemical potential as a funct
of the mole fraction as outlined forLmf in Appendix A.

This idea for the construction of different Lyapuno
functions is interesting also with respect to more general s
tems than only thermal and mechanical stable homogen
ones, for which more general expressions of the excess
tropy density, e.g., 1/2d2s5d(1/T)du1d(p/T)dv
2d(m i /T)dci , exist.
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