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What can be stated by the Glansdorff—Prigogine criterion concerning
the stability of mass-action kinetic systems?
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We investigate which general results concerning the local stability of steady states of arbitrary
chemical reaction networks can be deduced with the Glansdorff—Prigogine stability criterion.
Especially, it is proven that the presence of an autocatalytic reaction is not a necessary condition for
a violation of the thermodynamic stability condition. It turns out that every reaction with at least one
variable reactant at each side of the reaction equation can potentially destabilize the steady states.
An explicit example of a simple reaction system without autocatalytic reactions where the stability
of the steady state changes via a supercritical Hopf bifurcation is discussed. Furthermore, in
expanding the original concept for proving local stability to global stability analyses, a general way
for constructing different Lyapunov functions is given. I®99 American Institute of Physics.
[S0021-960609)51412-9

I. INTRODUCTION Ref. 3 with its cross-catalytic property in the absence of a
direct autocatalytic reaction always has a locally stable
The theory of thermodynamics allows one to derive ingteady state. Thus, the question arises whether an autocata-
the classical deductive manner according to the ideal protqytjc reaction is really necessary for an unstable steady state
type of Euklid's “Elements” from few general axioms a (g g., for a Hopf bifurcationof the whole network. It should
multitude of prominent results. However, up to now thepe noted that in all known chemical and biochemical reaction
theory is valid only at equilibrium and near equilibrium. In systems which show sustained oscillations the stable limit
the general nonequilibrium case the multifarious dynamica[:yde always arises via a supercritical Hopf bifurcation.
phenomena are not covered in such a general way by the |n this work we investigate in a general manner the ther-
thermodynamic theory. _ _ modynamic stability of arbitrary mass-action kinetic reaction
Near equilibrium, where linear relations between thepetworks. In particular, we show that former analyses of
thermodynamic flows and forces are valid, the celebratedingle reactions with the result that autocatalytic reactions
Onsager—Casimir theory is fully satisfactory to understandjestabilize the steady state and nonautocatalytic ones do not,
and describe the observed phenomena. The Brussels groygs not been carried out in the necessary generality. It is
developed their theory with the aim to derive in the thermo-gemonstrated thatwithout knowledge of the steady state
dynamic framework interesting results also for systems fagoncentrationswith the studied criterion the stability of the
from equilibrium (cf. Ref. 1). An important field of applica-  steady states can be proven only for a very restricted class of
tions has been, from the very beginning, chemical reactioheaction networks. Furthermore, we present a simple ex-
networks.~® Chemical systems have also been used to deMymple of a reaction system with a supercritical Hopf bifur-
onstrate that the Glansdorff—Prigogine stability criterion iscation, which does not contain an autocatalytic reaction.
not necessary, but only sufficient for the local stability of In the analysis we confine ourselves to the important

steady state$” Nevertheless, it could be that for modeling of ¢ase of reaction networks with mass-action kinetics where
chemical systems interesting and relevant results follow fronmyne reaction can be written as

this criterion. For example, one could find a subclass of re- K,
action networks with only thermodynamically stable steady S+2 foi:erE vi Xi (v ,v ke, ko=0). (1)
states which directly implies kinetic stabilityaccording to [ k_ [
the usual mathematical local stability thepry _ The reaction velocity is assumed to be proportional to the

In this context it is especially interesting to note that it concentrations of the involved reactafits consideration of
has often been stated that reaction networks with unstablg,qi, molecularity. Here S and P denote the sum of the con-
steady states contain autocatalytic reactions. The Brussel$;nt substances and products &ndandk_ the rate coef-
group showed that special autocatalytic reactions yield a d&icients of the forward and backward unidirectional reaction,
stabilizing contribution in the framework of the Glansdorff— respectively. Xis theith variable reactant ang” andv;” its

. . o _ . . A I

Prigogine stability theory-* Indeed, all known oscillating  sygichiometric coefficients. In this case a simple unambigu-

reaction systems(e.g., model systems such as _the g gefinition for an autocatalytic reaction can be given. The
BrusselatoF, the Lotka—Volterra systefhthe Oregonatof, considered reaction is autocatalytic, if

or the smallest chemical reaction system with Hopf _ _

; ; ; ; ; v #0, v #0, v #v; 2
bifurcatiorf) contain at least one autocatalytic reaction. On i v g i
the other hand, e.g., the homogeneous Turing sysiem for at least one reactant; X
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Il. THERMODYNAMIC STABILITY ANALYSIS OF exclusively of reactions where one side of the reaction equa-
ARBITRARY MASS-ACTION KINETIC REACTION tion contains only constarftouter” ) reactants always have
NETWORKS locally stable steady states.

According to the general theory developed by the Brus-
sels group(cf. Ref. 1), the thermodynamic equilibrium state
is locally stable if the excess entro@§S, taken at equilib- A. The excess entropy density is a negative definite
rium, is negative for arbitrary small deviations, i.e., function in the whole phase space

(8°S)¢q<0. 3) For systems under constant temperature and pressure

. . . condition Eq.(5) reduces to
If the system is thermally and mechanically stable, this con-

dition reduces to the condition for stability with respect to
diffusion, i.e., L=% (9 19C,) $5C; 5> 0, ®)

z Su;6n;>0, (4) wherel is proportional to the negative excess entropy den-
i sity. This quadratic form is positive definite if its form matrix

where 4;,n; denote the chemical potential and the moleF =(dui/dC)ss/(RT) is positive definite(R and T denote
number of reactant X respectively. the gas constant and temperature, respeciivédith the

The thermodynamic theory for local stability of nonequi- chemical potential of theth variable reactant given by
librium steady state&s is based on the assumption of stable — 94 RTING ©)
local equilibrium(cf. Ref. ). In purely mathematical terms, Ki= i nei,
thi; can be expressed in terms of a negative definite functiorg equces to
which for physical reasons may be termercess entropy

density (1 1
F=diag —,...,—=|. (10
(6%s)<0. (5) c,’'c

In the domain of phase space where this is a negative definif@ecause for positive-valued steady stdig$ all eigenvalues

function it serves as an appropriate Lyapunov function whichof F are positive, the functioh is positive definiteland thus

can prove the stability of the steady states. the excess entropy density negative defindad therefore
The analyzed steady state is globally stable in a domaiwell suited to serve as a Lyapunov function.

D of the phase space if the time derivative of the excess

entropy density, i.e., thexcess entropy production densiy

positive for all deviations contained iD:

d(678)ss (6) The tendency of an autocatalytic reaction to destabilize
dt ' the steady state of the whole system has been explained with
the help of the Glansdorff—Prigogine stability criteri@ng.,
Refs. 1-3. In order to analyze a special reaction for its
is clear that this criterion is only sufficient for the usual ability to destabilize the stationary state one must take into

mathematical local stability, because the latter does not redccount the variation of all involved variable substances. In
quire any Lyapunov function. For homogeneous chemicaijomg S0, one reckognizes that already the simplest monomo-

B. The simplest example

To prove the local stability it is sufficient to analyze the
linearized form at the steady stdtd. Appendix B, Ref. 4. It

. . ape +
reaction systeme5) simplifies to lecular reaction X=Y with variable substrate and product
k_
> v 6A;>0, (7)  always yields a negative term in the excess entropy produc-
i tion density.

whereu; ,A; denote the reaction velocity and the affinity of From the affinityA=RTIn(qx'y), whereqis the equilib-

the jth reaction, respectively. This expression has the interlUM constant, and the corresponding reaction veloeity
esting property that it consists of a sum of different terms, k+x—_k_y, where lower case char_acters den(_)te the_ con-
each belonging exactly to one reaction. Of course the thefcentration of the reactants, one obtains for the first variation
modynamic stability conditiori7) can only be violated if at 5x Sy
least one term is negative. SA= RT(:— :) , ov=Kk, ox—Kk_¥dy. (11

We now successively prove the followin@) For sys- Xy
tems under_ copstant tem_peraturg _and pressure the excess &fon combining one finds the quadratic form
tropy density is a negative definite function in the whole
phase spacps’s=f(c;), wherec; denotes the concentration + k_
of reactaniX;]. (2) Already the simple reaction=XY (this is ov 6A= RT(7(5X)2+ 7(53/)2_
the simplest nonautocatalytic reaction with variable substrate
and product always yields a negative term in the excessNote that the excess entropy production density contains the
entropy production density3) Reaction networks consisting negative §xdy term. The whole expression is positive

k-
x

ks
+7 5xéy). (12)
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semidefinite if and only if R k_/(Xy)=(k_/X)2 excess entropy production density, i.e., in the sifn one

+ (k4 /y)?, which for (x,y)# (X,y) never holds. The equal- generally has to analyze arx n form matrix F. The consid-

ity sign is obtained in the equilibrium case. ered reaction always stabilizes the steady stddsfpositive
Generally one studies the definiteness of quadratic formsemidefinite, i.e., iF has only non-negative main minors. It

with n variables via its form matricels. A quadratic form is  will be shown that for all drawn conclusions it is sufficient to

positive definite if all main minors of it§ are positive defi- analyze a general reaction with two variable substances of

nite. For the studied reactiof, reads the form
K. 1 ( k. k_> "
— — =+ = +
. X 21y X 13 aX+bY=cX+dY, (15)
- 1 ( k+ k_ k_ . ( ) k_
21y X y where possible constant reactants are incorporated into the

Both 1X 1 main minors are always positive, because the unirate constantg$which are therefore sometimes termed “ap-
directional reaction rates as well as the steady state conceparent” rate constantsThe velocity(mass-action kinetigs
trations are positive, but the determinant 8¢tis negative and affinity (ideal solute systemsof this reaction can be
semidefinite: written as
1k, k_\2 o
de(F)=—Z< ) . (14 v=k,x3yP—k_x%9 ~A=RTIn(gqx® y*" %), (16

y X

Note that in the equilibrium case the determinant is zero angielding
the whole quadratic form positive semidefinite

(YI(RTk.) 6v 5A= (q6x— 8Y)?). Sv=(k,ax yP—k_cx iy ox
Herewith, we have shown that for this simplest case the . .
excess entropy production denditf. Egs.(6) and(7)] is not +(k bxyP ™ —k_dXxy" ) oy, a7

positive semidefinite. Therefore, already the simplest nonau-

tocatalytic reaction can destabilize the steady state. a—-c b—d
C. The general case

In order to decide whether an arbitrary reaction of theTherefore,év SA/(RT)=F 6xdy, with the form-matrix ex-
form (1) yields a positive or a negative contribution in the plicitly reading

a—-c l/a—c b—d
Tmll > Tmzﬁ' v myq
=1 1/a-c b—d b—d ’ (19
> Tmzz+ v My Tmzz
|
where my=k,ax® fyP—k_cx* 1y?,  my=k, bxyP ! (a=0 or ¢c=0) and (b=0 or d=0). (21
—k_dxey" L,

2. Two-dimensional case

1. One-dimensional case The 2x2 main minor ofF (19) is its determinant

For example, fob=d, a#c the problem is reduced to 1/a-c b—d 2
the one-dimensional case: dei{F)=— 2| 5 M2 Tmn <0. (22
sgn(F,p)=sgn(a—c)(ag—cx*"?)). 20
9r(F1p) =sgr( (ag ) 20 We analyze under what conditions this expression vanishes.

If one side of the corresponding reaction equation in(Eg) In the two-variable caséa#c andb+#d) detfF)=0 can be
is constant, i.e., foa=0 orc=0, one recognizeB,p>0.In  rewritten as

all other cases sgR{(p) generally depends on the steady L

state concentratior. In the special case where the steady ~ (P¢—ad)(ax* y°-1)=0. (23
state equals the thermodynamic equilibrimm ®=q, Fipis  This expression vanishes at equilibriumex®~2y9®, or if
positive. At sufficient distance from equilibrium, however,

one cannot estimate the sign®fp without knowledge ok. ad=bc. (24
Both 1X1 main minors ofF in Eq. (19) are positive if and In the nonequilibrium case it follows from EqR1) and(24)
only if that the only possibility for positive semidefinikereads
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(a=0, b=0) T=—(kyko+5k_1+k%)/k_q,
or K= — (kik? ; +5k?ky+ k?kok _,— 2k2 )/ (kik_1), (30)
(c=0, d=0). (25) D=—kiK,.

As can be seen already from E@$7) and(18) arbitrary ~ For the choice thak; =1, k_;=1 one obtains
reactions withn variables and only constant reactants at one 1= —(6+k,),
side of the reaction equation always stabilize the steady state,
thus completing our analysis. Therefore, we have shown that K=1-6k,,
only reactions with constant reactants at one side of the re- p=—k,, (32)
action equation tend to stabilize the steady $tatef the 5
reaction network. TK+D=ka+17/3;—1,
i.e., the Hopf bifurcation occurs &t :=k,=(1/325-17)/6
~0.1713 (from 6k§>1 it follows that K<0). Numerical

III. A SIMPLE MASS-ACTION KINETIC SYSTEM WITH integration shows that it is supercritical bifurcation, i.e., a
HOPF BIFURCATION CONSISTING ONLY OF stable limit cycle arises, which becomes unstabléifis

NONAUTOCATALYTIC REACTIONS lowered tok; ~0.1576.
IV. DISCUSSION

We demonstrate that the sample system: ) _ ) _
In this work we systematically have studied the capabil-

AEX ity of the Glansdorff—Prigogine stability citerion for general
' statements about the stability of steady states of mass-action
ZYEZ kinetic systems. Let us summarize the most important re-
il . ' sults.
Generally, i.e., without the restriction to mass-action ki-
Ky (26) . ) X
X7 Y47 netic systgms, three points need to be emphasaed
' (1) Originally the concept of local stability proof by use
ks of the excess entropy densibas been based on the assump-
Y—B, tion of local equilibrium. This very concept can be used in a

(A and B denote constant reactanthich does not contain strict mathematical formulation without reference to local
an autocatalytic reaction according to definitidn and (2), ~ €quilibrium. An arbitrary function may be used as a

nevertheless possesses for special parameter values an if@Punov function to prove the global stability of the steady
stable steady state. In particular, it exhibits a supercriticapt@t€ contained in a domal of the phase space if only this
Hopf bifurcation yielding stable limit cycles near the bifur- function is(positive or ne.g{:ltIV)edeflnlte in this dor_nam. One .
cation point. should note that the definiteness of the underlying quadratic

Assuming simple mass-action kinetics and upon intro-form at theequilibrium point does not mean in general the

ducing the dimensionless quantitiesx,¥,z)/(koa)ks definiteness of the corresponding quadratic form atribwe-

—(x,Y,2), kst—t the corresponding differential equation equ_|I|br|um steady state_pomf[. Without giving here an ex-
system is written in the form: plicit example, one can imagine systems where the equilib-

_ rium quadratic form is negative definite, but the
X=1-kyxz, corresponding nonequilibrium fornmot By contrast, the
functionexcess entropy densit@an be ideally suited to serve

y=—y-2ky 2k 1zt koxz, @7 as a Lyapunov function for steady states, because(jtasi-
7=ky?—k_,z. tive or negative definite in a surrounding of this point with-
. out fulfilling this condition at the equilibrium pointAn ex-
This system has one steady state ample for nondefinite excess entropy density at the

- ko, Kk equilibrium point is the regular solutions as in the special
(X,y,2)= (W’l’k_ : (28 sense, the simplest generalization of ideal solutighs e.g.,
172 -1
Ref. 1).
Carrying out a linear stability analysis, the characteristic  (2) The Glansdorff—Prigogine stability citerion in the
polynomial of the Jacobian may be written in the form formulation of Eqs(5) and(6) is, although based on the idea

of Lyapunov functions, a local criterion. It is therefore inter-
esting to extend this concept for a global stability analysis.
whereT, D indicate the trace and determinant, respectivelyThis has been discussed in Appendix B, where we have out-
It follows from the Hurwitz criterion that the steady state islined a general scheme for the construction of Lyapunov
locally stable if the coefficients at this point fulfill the con- functions.

dition T,K,D,—(TK+D)<0. A Hopf bifurcation occurs (3) The Glansdorff—Prigogine stability citerion is only a
[with the special property that the real eigenvalue is negativaufficient, but not a necessary condition for local stability of
(cf. Ref. 8] if T,K,D<0 andTK+D=0. The calculation the corresponding steady state. Nevertheless, two decades
shows that the coefficients at the steady s(a8 read: ago there was an intensive discussion about this point in the

A—TA2—KA—D=0, (29
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literature (cf. Ref. 5, and citations thereinFor example, viously not the cas¢. The decomposition of the trimolecular
Eigen obviously overestimated the validity of this criterion, reaction according to syste(@6) is only bimolecular in the
when, in his famous artic®, he stated: “A steady state is forward and backward direction of all reactions. However,
unstable whenever a negative fluctuatidyaor occurs.” This  the stability analysis, especially the determination of the
is equivalent to the statement that conditigf is violated  Hopf bifurcation hyperplane, has not been done in our gen-

(cf. Ref. 10. eral way.
In Ref. 4 we have discussed the last two points in detail ~ Simple systems such as EQ7) are well suited for the
using the simple example system of Ref. 8. application of local bifurcation theoricf., e.g., Ref. 21to

At this point it is worth to refer to other efforts to extend analytically prove that the occurring Hopf bifurcation is in-
the thermodynamic nonequilibrium stability theory to the deed supercritical.
whole nonequilibrium range. A remarkable approach has One further point is especially interesting with regard to
been given by Keizer in a series of papé&s Ref. 11, and actual studies. The stable limit cycle of the original trimo-
citations thereipy summarized in his monographHe pro- lecular two-variable model becomes unstatded the sys-
posed the ‘& function,” a kind of generalized entropy, tem diverges if the velocity constant of the autocatalytic
whose second variation is proportional to the inverse of théeaction is sufficiently small. If one simply adds a further
covariance matrix. This function serves as a Lyapunov funcintermediate variable as a storage substance, the stable limit
tion and is indeed for certain situations of the Gauss—Markogycle exhibits a period doubling cascade into chaos when
limit a necessanand sufficient condition for stability of the lowering the autocatalytic reaction r&f¥”?? If the rate is
considered steady state. Keizer and Chang were also able i@vered even further, the stable chaotic attractor becomes
give an experimental verification for this thedriiNote also ~ unstable and the system diverges again. In contrast, in sys-
related work for the so termed “stochastic potentiglsr ~ tem(27) we observed the sanfévo-dimensional behavior
generalized thermodynamic potenfjabriginally introduced ~ than in the original two-variable mod&.Of course the pe-
by Graham® for Fokker—Planck processes, generalized byiod doubling and the chaotic region in the parameter space

Hangg|l5 for Markovian master equations and recently StUd-COUId be so narrow that we did not find it numerically, but it
ied in related form e.d., by Ross and Co-Work@m arecent seems that the trajeCtorieS of the whole three-dimensional

publication see Ref. 16 model are in fact confined to a two-dimensional surface in
Discussing the possibility of a violation of conditigd), ~ the long time limit. Thus, systei27) is a good candidate for
in Ref. 10 Eigen also argued that “autocatalytic reaction@PPlying “no-chaos theorems” in similar form as recently
systems... are the candidates for such instabilities.” In thigresented in Ref. 23,
work we show that autocatalytic reactions are not a neces-
sary condition for this violation.
The general result that reaction networks consisting exackKNOWLEDGMENTS
clusively of reactions where one side containes only constant
substances are always locally stable is already known with ~ This work has been supported by tBeaduiertenkolleg
the work of Clarke(cf. Ref. 17. He instead used for his “Nichtlineare Probleme in Analysis, Geometrie und Physik”
analyses a graph theoretic approach. However, because tfeRK 283 financed by the DFG and the state of Bavaria.
analyses in this work are based on Lyapunov functions, we
in addition can study global stability.
In Sec. Il A We have shown that for maSS'aCtion k|net|CAPPEND|X A: PROOF OF THE POSITIVE
systems the functioexcess entropy density) always ful-  pErFINITENESS OF A FUNCTION CONSTRUCTED
fills the necessary condition for a Lyapunov function to beysiING MOLE NUMBERS INSTEAD OF
(positive or negative definite. In Appendix A we have CONCENTRATIONS
proved the same result for the more general functigp. ) )
From a mathematical point of view, this result is closely ~ !f one uses the chemical potential of reactantas a
related to a corresponding result given in Ref. 18, whereiffunction of the mole fraction; (note that in this appendix
exclusively equilibrium situations were addressed. is used for the mole fraction of reactant &nd not for its

The sample system studied in Sec. Ill has been knowoncentration instead of the concentratiogy [like in Eq.
explicitly at least since the paper of Coekal®® It is con- (9)], one obtains another function for the excess entropy den-

structed as an extension of the well-known trimolecularSity- This can be used as a Lyapunov function if it fuffills the
model?® which has been criticized. like the “Brusselator.” condition of definiteness. We here prove that this condition

because of the assumption of its trimolecular reaction. Sys'S &ways fulfilled, because the form matrix of the according

tem (27) is one of three different schemes which have beerfluadratic form is positive definite. With
demonstrated in Ref. 19 to yield as asymptotic limit cases the
original trimolecular model, whereby one of these systems
still contains an autocatalytic reactiofThe authors stated (with the mole fractionx;=c;/(Z;c;+c.)) one obtains the
that “These three-variable schemes are of great interest ifunction

themselves as the simplest oscillatory ‘real chemical

scheme_s invo_lving only first- and second-order stgp_s.” A me==2 (0 19C,) < 5C; 56, 0. (A2)
comparison with the system of Ref. 8 shows that this is ob- ik

wi=pl+RTINX . (A1)
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Here, ¢, denotes the concentration of the constant sub- 1 -
stances. It is very large L + becomes identical th of Eq. F= Eotellc F (A3)
(8). The form matrixF of this quadratic form can be written e
as with
I 5Ci(S{oCi+Co) —ITic; —Iic;
— —IIic; cilli_gci(ca+Eiigci+ee) - —IIic
F= ) ) _ . (A4)
—1ILic —Ijc; o eSS e+ o)

This real symmetric matrix is positive definite if—after the triangle decomposkisrCB, where without loss of generality
we can set;;=1 for all i—all diagonal elementb;; are larger than zer¢cf. Ref. 24. One immediately recognizds > 0.

Applying the Gaussian algorithm  to generate the upper triangular matBxafter elimination of the first row and the first
column the new matri, reads

~ (Eici+cc)cl~
F=— < E A
1 S 1 (A5)
with
0 0 cos 0
£ - 0 H?:3Ci(2?:3ci+cc) _H?:zci (A6)
0 — I ¢ o IZ56(S]55c+¢)

One now recognizes thht,>0 and that this likewise works density as a Lyapunov function, it is natural to study with

for all remainingn—2 steps. In each step, omeis elimi-  this function global stability as well. As we have shown in
nated and the new appearithg is larger than zero which Sec. Il A (and in Appendix A for the more general function
finishes the proof. Lmp), the function

It follows that the functiorl , is, like the functiorL (8), —\2

. S (ci—C)

for the ideal solute systems under consideration always a |_eeo==2 - (B1)
suited Lyapunov function, because it fulfills the necessary [ Ci
condition of definiteness. is positive definite, and therefore well suited to serve as a

In Ref. 4 we have shown that in the considered samplg yapunov functionL eeyis the functionL (8) with finite de-
system the region of the parameter space for which(ite viations Ac; instead of infinitesimal deviation&c; .
cal) stability of the steady state can be proven with the help Starting from
of the Lyapunov functiorL s is generally smaller than the
region for which thelocal) stability can be proven with.
9 elocal) stability P (8%8)557 3] (Bpi6C)ss, (B2)

APPENDIX B: CONSTRUCTION OF DIFFERENT we show that related Lyapunov functions can be obtained.
LYAPUNOV FUNCTIONS ON THE BASIS OF THE The functionL .4 follows directly from Eq.(B2) if one uses
GLANSDORFF-PRIGOGINE CRITERION for the variation of the concentrations the finite deviation
We demonstrate a simple procedure for the constructioffom the steady statéc;. If, in addition, one uses for the
of Lyapunov functions for proving the global stability of chemical potentials the finite deviatidnw;, one obtains
steady states in a domain of the parameter space containing c
the equilibrium point. For the sake of simplicity we confine L=, (¢;—¢;)In=. (B3)
ourselves to the simple case of thermal and mechanical ‘ Ci

stable homogeneous systems. This function is positive definitéfor c;#¢;) and therefore
According to the Glansdorff—Prigogine theory the equi-suited to serve as a Lyapunov function.

librium of these systems is locally stable if conditioh is A third related function can be obtained from the rela-
fulfilled. With the assumption of stable local equilibrium tjgn

these authors derived the inequali@ being a condition for

local stability of the considered steady state. Because this Eiﬁzsz —E 5(&)25(}20 (B4)
derivation is based on the idea of using the excess entropy 2 dt i T)ot 7
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