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Classes of Dynamical Systems Being Equivalent to a Jerky Motion

Distinguishing between dynamical and topological equivalence, we discuss transformations of three-dimensional dy-
namical systems to jerky dynamics. We present several different classes of dynamical systems that possess an
equivalent jerky dynamics and discuss relations between dynamical and topological equivalence.

Mechanically speaking, any temporal evolution of a real scalar variable #(t) that is governed by an autonomous third-
order ordinary differential equation % = J(z,#, &) can be considered as a jerky motion or a jerky dynamics [1-5].
This is because z(t) can be interpreted as the position, ¢ as the time and % as the time-rate of change of acceleration
called the jerk. Jerky dynamics have recently attracted some attention in the context of minimal systems that can
already exhibit many major features of regular and irregular or chaotic dynamical behavior [1-5]. Although any
jerky dynamics can be rewritten as a three-dimensional dynamical system @ = W(u) with u = (2,v = &,a = )T
and W (u) = (v, a, J(2,v,a))7 [6], an arbitrary three-dimensional dynamical system % = V(x) cannot generally be
recast in form of a jerky dynamics, Here, x = (&,y, 2)7 denotes a point in a three-dimensional phase space I CIR3
and V(x) the vector field of the dynamical system. Given the initial conditions x(t = 0) = xg, the evolution of x
with respect to time ¢ represents a trajectory of the dynamical system x = V (x) in the phase space.

Obviously, jerky dynamics constitute only a subclass of all three-dimensional dynamical systems. Our contri-
bution deals with the circurnstances under which a dynamical system % = V(x) can be transformed to an equivalent
jerky dynamics % = J(z, &,4). Without loss of generality we consider mainly jerky dynamies for the variable .

Definition 1. (i) A jerky dynamics is dynamically equivalent io @ dynamical system if, for the same initial
conditions, both generate the same signal z(t). (ii) A jerky dynamics is topologically equivalent to a dynamical
system if, additionally, any trajectory of the dynamical system corresponds to exactly one trajectory of the jerky
dynamics if interpreted as « dynamical system, and vice versa.

From the Definition 1, it immediately follows that topological equivalence implies dynamical equivalence. The
contrary, however, is not true in general. To discuss wether there is a jerky dynamics ¥ = J(z, &, &) belonging to a
dynamical system x = V(x), we consider the transformation of variables given by T = (Ty, T3, T3)7 : x = u with
u = T(x). Under certain circumstances that we want to specify here, such a transformation converts the original
dynamical system % = V(x) into the system u = W (u) which is then equivalent to the jerky dynamics & = J(x, &, ).
From x = V/(x) one obtains T3 (x) = z, Ta(x) = Vi(x) and Ti(x) = V(x) - VVi(x) with V = (s, dy, 8;)". From the
third component # = a = T3(x), one can derive an equation for the jerk that reads & = V (x)-V[V(x)-VVi(x)]. This
expression, however, depends on y and z. To obtain a jerky dynamics, it must be possible to express these variables
by functions of u = (&, &, #)T. These functions can only be obtained from the transformation T'. In particulai if T
is globally invertible with an inverse T=! = (T7, Ty 1, Ty )T : u = x with x = T=!(u), the variables y and z can
be substituted by 75 *(u) and T3 1(u). According to Definition 1, the resulting jerky dynamics is then topologically
equivalent to the original dynamical system x = V (x).

Theorem 1. Consider a dynamical system x = V(x) with V(x) = c+Bx-+n(x). Here, ¢ € IR? are constants,
B = (bi;) € IR®*3 is a matriz with constant coefficients and the components of n(x) = (n1(x), n2(x), na(x))T denote
solely nonlinear functions that are at least twice differentiable. Suppose that the &-equation depends only linearly on
z. Then, ny(x) can be written as ny(x) = n(z) +m(z,y) where n(z) contains all nonlinear terms that solely depend
on ©. This system possesses a topologically equivalent jerky dynamics

(a) if m(a:,y) i 0 and the conditions b3 75 0, bag =0, biaboz =0, bygbgy + bisbas + ¢ ?é 0 and
Vi(x)0zm(z, y) + Va(x)8ym(z,y) + brana(x) 4 bisna(x) = cy + (2, biay -+ brsz +m) (1)

hold where ¢ € IR is a real constant and f an arbitrary function of the indicated arguments, or
(b) z'fm(a:, y) = 0 and the conditions b%?,bzs — b%ab:;z -+ blgblg(baa - bzz) ;é 0 and

biana(x) + bisns(x) = g(z, biay + b1az) (2)

hold where g is an arbitrary function of the indicated arguments.
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Proof. In both cases, it must be shown that the transformation T is invertible. For part (a) a sketch of the
construction of T~ follows. Since T1(x) = @ holds, 2 has not to be transformed. Using the conditions of part (a),
the second and third component T3 (x) = V4 (x) and T3(x) = V(x)-VVi(x) of the transformation T can be written as
To(x) = r(z)+bi1ay+bisz+m(z,y) and Ta(x) = s(z, v)+ (b12bag +bisbsa +¢)y+ f(2, bay+brsz-Fm). Here, we have
used the abbreviations »(2) = ¢ + b,y 4 n(2) and s(,v) = v(b1y + Oxm) + cobia -+ cabis + (brabay + b13bsy)e, where
V1(x) in s has been substituted by v = &. Taking into account v = Th(x), one can express the second argument of
fin terms of @ and v, bysy +bisz+m=v— r(z). Now, T depends solely on @ and v and linearly on y. Therefore,
using a = T3(x) we can solve it with respect to y and obta.m y = Ty (u). Inserting this equation into T3 and solving
it with respect to z ylelds z = Ts"l(u), For part (b), the construction of T~! has been discussed in Ref. [5].

As a simple application, consider the dynamical system & = 1+ z + 2y, ¥ = = — 2, # = y — yz. This system
fulfills the conditions (1) of Theorem 1(a) with ¢ = 1 and f(z,by2y + b1az +m) = 2. Therefore, the transformation
T, reading componentwise Tl( )=z, Ta(x)=1+2 + zy and Ts(x) = 2y + 22, is invertible with 77 (u) = «,
T{l(u) = %(a, - a?) and Tyl(u) = —14+&— — z(# — %), The resulting topologically equivalent jerky dynanucs
reads & = 2@+ 22 — (:L - .'1,2)" Tor this model one can also obtain a jerky dynamics in y (cf. Theorem 1(b)). Its
functional form is given by ¥ = 2y — §* — 2yij+ 24%9 + y* and is functionally different from the jerky dynamics in 2.

Under certain circumstances, a dynamical system % = V(x) can possess a jerky dynamics also if T is not
invertible. In that case, the jerky dynamics is dynamically equivalent. Then, it is possible to separate T into
two transformations S : x = (x,7,¢)" and @ : (2,1,¢)T — u such that T = ® o S is valid. The non-invertible
transformation S can be chosen such that it converts the original dynamical system % = V (x) into another dynamical
system (e.g. ol the form considered in Theorem 1) that possesses a topologically equivalent jerky dynamics. From
the latter dynamical system the jerky dynamics is obtained by the invertible transformation . This transformation
is, at least in general, not the identity transformation.

Thom em 2, Consider a cIJnmmcal SJsfem x = V(x ) with Vi(x) = ¢1 + by + bioy® + bigz! + nfa) +
m(z, y*), Va(x) = ;;J{bzv+1zv:('v )] Vg( )= ,/.[bad-{—n-;(.v y*, 2] where ¢y, biy, bya, bya, bag, bag are real constants
and n(z), m(z, y*), Bz (e, v*, 2 1y 113(1, ¥¥, 2t} denote arbitrary (at least twice dw’eventzable} functions of the indicated
arguments and k,1 € IN with k > 1 even or/and | > 1 even. The nonlinearity n(x) contuins all nonlinear terms of
V1 that solely depend on w. This system has a dynamizally equivalent jerky dynamics

(a) if m(x,¥*) # 0 and the conditions big # 0,033 =0, biabay + ¢ # 0 and
Viem(a, y"“‘) + Vadyrm(z, y’”) + b1gykﬁz(l‘, yk, zl) -+ blsz‘ﬁa(w, 1"’,31) = cyk‘ + f(e, iy + bis#t + m)(3)

hold where ¢ € IR is a real constant and f an arbitrary function of the indicated arguments, or
(b) if m(w,y*) = 0 and the condilions biabia(bag — baz) # 0 and

biatPTa(z, y¥, 2') + brsz'a(e, o, 2') = g(, b1k + bia?') (4)
hold where g is an arbitrary function of the indicaled arguments.

Proof. Sct,lmg n = y* and ¢ = 2! as the second and third component of the transformation S, one obtains the
dynamical system & = ¢1 4+ b1y + byay =+ byaC + n(z) +m(z, 1), 9 = boan + y7ia(2, 7, ¢), ( S bggC—l—Cna(m, 7,¢). This
system is of the form considered in Theorem 1. The conditions (3) and (4) correspond to (1) and (2), respectively,
Therefore, there exists the transformation ® and it is invertible.

As a simple application, consider the dynamical system = 2 + y, § = 2% and £ = zz. Choo»mg, n =y and
¢ = 22, this system converts into & = z + 7, n=C and { = 2&(. The jerky dynamics reads & = & + 22(& — &).

This work was supported by the ”Graduiertenkolleg: Nichtlineare Probleme in Analysis, Geometrie und
Physilk” (GRK 283) financed by the Deutsche Forschungsgemeinschaft and the state of Bavaria.

References

1 SproTT, J. C.: Some Simple Chaotic Jerk Functions, Am. J. Phys. 65 (1997) 537-543

2 Linz, S. J.: Nonlinear Dynamical Systems and Jerky Motion, Am. J. Phys. 65 (1997), 523-526

3 LNz, S, J.: Newtonian Jerk, Memory and Chaotic Oscillations, preprint

4 LiNz, S. J.: Newtonian Jerky Dynamics: some General Properties, submitted to Am. J. Phys,

5 ErcHHORN, R.; LiNz 8. J.; HANGa1, P.: Transformations of Dynamical Systems to Jerky Motion and its Application to
Minimal Chaotic Flows, submitted to Phys. Rev. E

6 PErKo, L.: Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991

Address: RALF EICHHORN, STEFAN J. LINz, PETER HANGGT; Theoretische Physik I, Institut fiir Physik, Universitit
Augsburg, D-86135 Augsburg, Germany.



