VOLUME 81, NUMBER 26 PHYSICAL REVIEW LETTERS 28 BCEMBER 1998

Decoherent Dynamics of a Two-Level System Coupled to a Sea of Spins
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The dynamics of a two-level system which is coupled to an environmental sea of infinitely many
spin-1/2 particles is investigated by use of the resolvent operator approach. Only at zero temperature
does this spin-spin-bath model exhibit identical behavior as the more familiar spin-boson model. 1t is
found that increasing temperature favors coherent dynamics. At high temperatures, the spin-spin-bath
model for an Ohmic spectral density sustains a coherent dynamics if the dissipation coe#figent
sufficiently small, i.e.,« < 1/2; while the decoherence exhibits pure exponential decay if 1/2.
[S0031-9007(98)08029-6]
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In order to explore macroscopic quantum phenomenteracting spins or qubits. The model Hamiltonidn=
the influence of dissipation on quantum coherence ha#, + H, + Hj, reads [18]
been extensively investigated over the past eighteen years. 1
These efforts culminated in the systematic study of the? = ) hihgo* — = Z hopoy + > ot ® Z hCyoy
spin-boson model [1-3]. The spin-boson system has wit- k k (1)
nessed many applications in physics and chemistry [1-7].
To take into account the effect of dissipation in a micro-whereH; is the Hamiltonian of the central two-level sys-
scopic model a central task comprises the formulatioriem (written in the basis dfbcalized states),H;, consti-
of the environment. For weak couplings, Caldeira andutes the spin bath, whil#;,, denotes the couplings. The
Leggett [8] suggested that a bosonic heat bath consistingero-temperature thermostatics of this Hamiltonian for the
of an infinite number of harmonic oscillators constitutes aidealized case that the spectral density is Einstein-like,
universal realization for any environment that occursi.e.,w; = w/N andCy = A/N forallk (k = 1,2,...,N),
generically in the real physical world. In fact, when was studied by Mermin [18]. Within this mean-field ver-
the couplings between the system and the heat bath asgon he was able to explain the physics of a phase tran-
sufficiently weak, interactions between the excitations ofition (at7 = 0) in quantum mechanics. Here, we shall
the heat bath are negligibly small. Consequently, everyeveal the characteristic features of ttignamicsof the
excitation can be regarded as a quantum transition takingeneric spin-spin-bath model. In order to compare the
place in an individual two-level (sub)system. Based orfinding with the known results for the spin-boson model,
such a reasoning, one may put forward the hypothesis thate assume an Ohmic dissipation mechanism, (@) =
a spin bath composed of an infinite number of two-levelr Y, Ci8(w — w;) = 2mawe™“/*:, wherea is the dis-
systems may equally well provide a physically realisticsipation coefficient andv. denotes the cutoff frequency
environment [9]. Of course, such a spin-bath modelingw./Aq > 1.
is not merely of academic interest. Realistic physical Use of a transformatior—Suppose that the system
situations are (i) a spin that interacts with the surroundingevolves from a localized initial state while the spin
effectively independent spin modes [10]; (ii) the magneticbath is initially at thermal equilibrium. This uncou-
relaxation of molecular crystals of Mp and Fg [11] pled initial density matrix ispy = ps ® p,, Where
or coupled nanomagnets [12]. Moreover, this modelp, = (1 + ¢%)/2 and p;, = [, ® {exp—Bhwioi/2)/
is relevant for decoherence studies of stylized quanturir,[exp(—Bhw,oi/2)]}. A diagnostic quantity related to
measurement setups [13,14], and predominantly also fayuantum coherence is the probability difference between
physical quantum computers [15] for which the ubiquitousthe two localized states, i.e?(r) = Tr[p(r)o*]. We ap-
phenomenon of spin decoherence within quantum inforply to the Hamiltonian (1) a transformatidtd = [ [, U,
mation processors operating in terms of coupled two-levelvhere
units (qubits) is limiting the performance [16,17]. 1 1 o2

A prominent question is whether (or to what extent) Uy = Ny 1® 1"'<1 _0.z> ®l---e1.
the two types of reservoirs exert identical effects on k
quantum coherence. In this Letter we shall answer thifNote that each individual transformation acts on the com-
challenge by studying the dynamics of a two-level systemposite Hilbert space of the central two-level system and the
a spin or a qubit, immersed in a thermal sea of two-kth spin of the bath. The transformed Hamiltonian, which
level systems composed pfdependent modesf weakly is feasibly diagonalized in the central spin manifold [19],
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. 1
reads (mvMS ()| ') = > izA0(8p — 8u1)

H=UHU '= I:Ih + I:Iim
X L[Tr|:l_[ a;gp,,(z)“,
k

where|m) e_md €, are themth eigenvectors and eigenen-
ergies of H, and the tilde represents the interaction
representation, i.ea, (1) = e/ 5, et/ Defining

. o g(z) = izAo L{A(1)}/2, where A(r) = TH[[1; o%ps(1)],
This transformation is similar to the polaron transforma—We readily obtainVz¢ (z) = —g(z)1 — o) ® o*. Next

tion frequently used in the spin-boson model [20]; itallows\ye inyoke the second-order perturbation approximation
us to diagonalizé{ if Ao = 0. Upon comparing Egs. (1) yith respect to the coupling constar®/w;. This has
and (2) we find—as the two-level system becomeg,een verified for a reasonable scaling rdg/w; ~

dressed by the spin bat_h—t_hat the_ coupli_ng_s betwee@/\/ﬁ, whereN is the number of bath spins (cf. [23]).
them are nowconvertedinto interactions within each We find for the Ohmic dissipatiom(r) = ¢(8) (1 +

two-level system of the bath. Moreover, the initial ©2?)~«, where ¢(8) = [, tanhBliw;/2) is a time-
. . _ -1 _ _ c 1
density matrix changes po = UpoU " = ps ® pr.  independent coefficient. With the Laplace transform of
with Py = l_[k ® {[1 - tanf(,Bﬁwk/2)ak]/2}; thus, the A1), the functiong(z) reads
transformed spin bath remains formally no longer at initial

1 L )
= g<—§ﬁwk0'k + EﬁCkO']})

1 . .
- 5 oo ®l:[®0'k. )

o A ¢ _
equilibrium. o _ gr) =+ =0 %q(ﬁ)z<w—>l/2 Tl — a)
Given the Hamiltoniand, it is convenient to use the 2 w2 Z
resolvent operator approach to elucidate the behavior of the z z
probability differenceP (). Solving formally the Liouville X | Hip—a w.) Nij2-a w. )] (5)

equation, we obtainP(r) = Tr[a*Q(t)p(0)], where the
superoperatof) (1) = exp(iLt) is the propagator related to
the Liouvillian L, being defined by.A = [H, A]// for any
operatord. Let us denote the Laplace transformaf) by

where H is the Struve function andN is the Bessel
function of the second kind [24]. Similarly, we find the
correlation part of the second-order self-energy matrix

0(z),i.e.,0(z) = L{0(r)}. The thermodynamic average contrlbutlozn Micz) = =fz)A = o°) ®1, where
of Q(z) with respect to theonequilibriumbath p, reads f(z) = ZAQL {/o ?5” Ddu} +cc.  with  O(u,1) =
Q@Y = [z — (1)), ]!, where (Me(2)), is termed  1'LLL ® 0% [l ® 0i(~u)py(r = w)]. For the Ohmic
the relaxation (self-energy) matrix [21,22]. Resorting todisSipation - we —obtain ®(u,1) = A;(u) expli[B(u) —

the perturbation expansion method, we obtain B(1) + 2B(2t —wl}, where the amplitude A,(u) =
(1 + w;u”)"* and the “phase” ternB(s) reads

M@ =2z ) (—1)’"“<Z (iLimG)”> . (B B(s)=2a i (_l)n{tan_1< @S >
m=1 n=1 b 0 1

+ nw.Bh
whereG = 1/(z — iL,) andL;, Liy, are the Liouvillians ~tan! WS
corresponding td{, andH;,, respectively. Note that Li- 14+ (n+ Dw.Br)
ouvillians act on the linear operators (of the Hilbert space) (6)

which themselves form the fgur-dimensigr:al Liouville \ote that the amplituded, (u) is independent of tem-

space. Thus, the superoperat(@s;z))b and(M*(z)), can perature. The influence of temperature is manifested

the two localized tates of the two-evel aystern. The foulTUIN the three phase terms. AL zero temperature,
Yy : i.e., B8 — o, we find B(t) = 2atan Y(w.t). In ad-

independent operatofg) (v| = |u») (k,» =1 orl) are dressing the dynamics in a meaningful domain, i.e.,
used as the basis of the Liouville space. One can show 3 . _ _
. , > w ' or tan (w.r) = 7/2, one getsP(u,r) =

that P(z) = L{P(¢)} is only related to two elements of ;7 . N .
. e Plr) = A - A e'™/ A, (u) expli[B(u) + B(t — u)]} + c.c. By virtue
<Qéz)>b’ |(.je., d(Z) N (IT |k<)Qt('Z)>b|tm) (Iu |<Q(T).>b| TT,[)H of the convolution theorem, we obtainf(z) =
ecgn ;jor o ?erbu:'al(irr: eol? rlhapp )llfmg ©  2AJe P L{A () exliB(DLL {exdiB(D} + cc. At
secto'n t;or er perturbation theory M, the sell-energy very high temperature, i.e83 — 0, B(s) vanishes.
matrix becomes Thus one getg(z) = L{A(¢)}. In the following we will
(M(2))p = z[i{LinG)p — (LinG)*)p + (LineG)3]. focus on the dynamics at zero and infinite temperatures.
@) Recognizing thaMs,(z) = —[M{(z)]*/z, we know all
A A A three contributions to the self-energy matkix/s(z)),.
We useMj(z), M5 .(z), andM; ,(z) to denote the three The behavior ofP(¢) for times much larger Iham;l
terms on the right-hand side (rhs) in Eq. (4), respectivelyis determined by the leading order term #fz) for
For instance, the first-order term can be cast as lzew, ' < 1 and it suffices to examine the asymptotic
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properties ofM5(z)), or functionsg(z) and f(z) asz —

and P;,.(¢), for « < 1/2. The coherent contribution

0. By virtue of the known features of the Struve and P, () emerges from the conjugate pair of simple poles

Bessel functions, one can show that, for- 0, g(z) ~
2% if @ < 1/2, andg(z) ~ z for @ > 1/2 [cf. Eq. (5)].
At zero temperature, one finds that, far< 1, f(z) =

A2 V22971 4 O[z(Ag/w.)?], where

Aeir = [coSam)T(1 — 2a)]2 =9 (Ao/w ) " Ay

coincides precisely with the effective tunneling frequency

defined in the spin-boson model [1]. & > 1, f(z) is
linear inz. In the opposite limit ohigh temperatures we
find that f(z) = —2iAopg(z)/zg(B). Thus, fora < 1/2

we obtainf(z) = Aﬁf»tlfa)zza‘l + 0(A}/w.), Where
[m - a)l(1/2 — a)}l/z(l_“)

NZ

X (Ag/20.)* %A

is the effective (high temperature) tunneling fre-

guency. In contrast, for@ > 1/2, one finds f(z)

y + 0(z>* 1A/ w2*), where y = /7 AT (3 + a)/

[w.2a — 1)['(«)] is the corresponding decay rate. We

Aetr =

should stress that these formulas are valid for the diss

pation coefficienta being not close td /2. Of course,

a more accurate asymptotic analysis is possible for a

values ofa.

Results for the quantum coherence dynamieket us
focus on thezero-temperaturdehavior of the quantum
coherence functio®(z). Comparing the three contribu-
tions to the self-energy [recall thﬁtﬁ,u(z) ~ g%(z2)/z] we
find that M5 .(z) dominantly rules the expression for the
self-energy ifa < 1. Upon replacing{M¢(z)), simply
by M5.(z) in the averaged Liouvillian propagator
yields (Q(z)), = [z — M5.(2)),]"", we obtain P(z) =
[z + f(z)]”'. This is exactly the result of the spin-boson
model within the noninteracting blip approximation

(NIBA), being a valid approximation in the case consid-

ered herein [1-3]. The prominent feature Bfr) is a

z0 and z5 in the principal sheet, and thacoherent
contribution Pj,.(r) results from the cut. Performing
the required manipulations gives ug = 'y + iQy,
where T’y = Aqrcod(l — 2a)7/(2 — 2a)] and Qg =
A sif(1 — 2a)7/(2 — 2a)]. After some algebra we
arrive atP.., (1) = cogQot) exp(—I'pr)/(1 — «) and

sin2a ) ]m
—_— dx
T 0

x!172@ exp(—xy)
x272e[] + 2coam) + 1]’

wherey = Ager.  Peon(r) exhibits damped oscillations
while P;,.(¢) obeys a power law. Therefore,df < 1/2,
P(t) manifests similar characteristics, both at zero and in-
finite temperatures. The only difference is a change of the
effective tunneling frequency. By direct comparison we
know that the ratio of the two effective tunneling frequen-
ciesR(a) = Acr/Actr [R(0) = 1] is an increasing func-
tion of a: For instanceR(0.1) = 1.05. If o becomes
larger thanl /2, however, a qualitativelgifferentbehav-
for, is expected. In fact, we find th&t(z) = exp(—vyr),
jherey = JAAILG + a)/[w.2a — DI (a)], ie., an
exponential decay. The decay ratedecreases ag in-
creases. ltis interesting to note thatpat= 1, the decay
ratey = wA}/2w, is identical to that of the spin-boson
model fora = 1/2 at zero temperature. The dynamics of
P(t) is subtle in acritical regime at aboutt = 1/2 and
defies (in clear contrast to the spin-boson case) an exact
solution. The main feature is, of course, that a crossover
from coherent relaxation to exponential decay occurs [25].
At finite temperatures, we fin®(z) = [z + f(z)]",
where

f(z) =zA(2)£[fOtdu

Here the phass(¢) is proportional to the dissipation coef-

Pinc(t) = —

ei[B(u)*B(l)+B(l*u)]

(1 + w2u?)e

+ C.C.

crossover from coherent (i.e., oscillatory) exponentiallyficient and to some degree its value reflects quantum dis-

damped decay to pure incoherent decaycat 1/2;
see Refs. [1,2] for details). When > 1, all of the

sipation. SinceB(r) is a monotonic increasing function of
B, decoherence is partialuppressetby increasing tem-

leading terms of the three self-energy contributionsperature. Therefore, temperature plays, though weakly,

are linear inz, as z — 0. In this case, we obtain
P(z) =z7'[1 + 0((Ap/w.)?)]. Put differently, for
a > 1, P(t) = 1, i.e., localization takes place [5]. Thus,

a positive role in maintaining coherent dynamics. This
means thathe spin-spin-bath model prefers coherent dy-
namics in the whole range of temperatures if the dissi-

these findings confirm that the spin-boson model and theation coefficienta is sufficiently smalli.e., « < 1/2.

spin-spin-bath model exhibit the same physicszato
temperature.

At high temperaturesg — 0, the correlation term
M5 .(z) always dominates the self-energy for small
which leads ta?(z) = [z + f(z)]~'. From the foregoing
discussion about the property ¢fz), one thus expects
similar behavior fromP(z). Note thatP(z) has a branch
point atz = 0. The complexz plane is cut along the
negative real axis.
transform it is clear thaP(r) contains two partsP.on(t)
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To get an idea of the temperature dependence, we turn
to the expression of the phasér) [Eq. (6)]. Taking the
first term(n = 0) in the series on the rhs leadsRgs) =
2aftan Y(w.s) — tan [w.s/(1 + w.Bh)]}. When the
temperature is sufficiently low, say, > /#, to first or-

der in1/B, f(z) does not depend off for w.t > 1. A
similar behavior is also observed for very high tempera-
tures. Therefore, temperature only weakly affects the dy-

By calculating the inverse Laplacenamics at low and high temperatures. We suspect that this

is also true at any finite temperatures.
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