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The dynamics of a two-level system which is coupled to an environmental sea of infinitely ma
spin-1y2 particles is investigated by use of the resolvent operator approach. Only at zero tempera
does this spin-spin-bath model exhibit identical behavior as the more familiar spin-boson model. I
found that increasing temperature favors coherent dynamics. At high temperatures, the spin-spin-
model for an Ohmic spectral density sustains a coherent dynamics if the dissipation coefficienta is
sufficiently small, i.e.,a , 1y2; while the decoherence exhibits pure exponential decay ifa . 1y2.
[S0031-9007(98)08029-6]
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In order to explore macroscopic quantum phenome
the influence of dissipation on quantum coherence h
been extensively investigated over the past eighteen ye
These efforts culminated in the systematic study of th
spin-boson model [1–3]. The spin-boson system has w
nessed many applications in physics and chemistry [1–
To take into account the effect of dissipation in a micro
scopic model a central task comprises the formulatio
of the environment. For weak couplings, Caldeira an
Leggett [8] suggested that a bosonic heat bath consist
of an infinite number of harmonic oscillators constitutes
universal realization for any environment that occurs
generically in the real physical world. In fact, when
the couplings between the system and the heat bath
sufficiently weak, interactions between the excitations
the heat bath are negligibly small. Consequently, eve
excitation can be regarded as a quantum transition tak
place in an individual two-level (sub)system. Based o
such a reasoning, one may put forward the hypothesis t
a spin bath composed of an infinite number of two-lev
systems may equally well provide a physically realisti
environment [9]. Of course, such a spin-bath modelin
is not merely of academic interest. Realistic physic
situations are (i) a spin that interacts with the surroundin
effectively independent spin modes [10]; (ii) the magnet
relaxation of molecular crystals of Mn12 and Fe8 [11]
or coupled nanomagnets [12]. Moreover, this mod
is relevant for decoherence studies of stylized quantu
measurement setups [13,14], and predominantly also
physical quantum computers [15] for which the ubiquitou
phenomenon of spin decoherence within quantum info
mation processors operating in terms of coupled two-lev
units (qubits) is limiting the performance [16,17].

A prominent question is whether (or to what exten
the two types of reservoirs exert identical effects o
quantum coherence. In this Letter we shall answer th
challenge by studying the dynamics of a two-level system
a spin or a qubit, immersed in a thermal sea of two
level systems composed ofindependent modesof weakly
0031-9007y98y81(26)y5710(4)$15.00
na
as

ars.
e
it-
7].
-
n
d

ing
a

are
of
ry
ing
n

hat
el
c
g

al
g,
ic

el
m
for
s
r-
el

t)
n
is
,

-

interacting spins or qubits. The model HamiltonianH ;
Hs 1 Hb 1 Hint reads [18]

H ­ 2
1
2

h̄D0sx 2
1
2

X
k

h̄vksz
k 1

1
2

sz ≠
X

k

h̄Cks
x
k ,

(1)

whereHs is the Hamiltonian of the central two-level sys-
tem (written in the basis oflocalizedstates),Hb consti-
tutes the spin bath, whileHint denotes the couplings. The
zero-temperature thermostatics of this Hamiltonian for th
idealized case that the spectral density is Einstein-lik
i.e.,vk ­ vyN andCk ­ lyN for all k sk ­ 1, 2, ..., Nd,
was studied by Mermin [18]. Within this mean-field ver-
sion he was able to explain the physics of a phase tra
sition (atT ­ 0) in quantum mechanics. Here, we sha
reveal the characteristic features of thedynamicsof the
generic spin-spin-bath model. In order to compare th
finding with the known results for the spin-boson mode
we assume an Ohmic dissipation mechanism, i.e.,Jsvd ;
p

P
k C2

kdsv 2 vkd ­ 2pave2vyvc , wherea is the dis-
sipation coefficient andvc denotes the cutoff frequency
vcyD0 ¿ 1.

Use of a transformation.—Suppose that the system
evolves from a localized initial state while the spin
bath is initially at thermal equilibrium. This uncou-
pled initial density matrix is r0 ­ rs ≠ rb, where
rs ­ s1 1 szdy2 and rb ­

Q
k ≠ hexps2bh̄vks

z
ky2dy

Trkfexps2bh̄vks
z
ky2dgj. A diagnostic quantity related to

quantum coherence is the probability difference betwe
the two localized states, i.e.,Pstd ­ Trfrstdszg. We ap-
ply to the Hamiltonian (1) a transformationU ­

Q
k Uk ,

where

Uk ­
1

p
2

1 ≠ 1 · · ·

µ
1 sz

1 2sz

∂
k

≠ 1 · · · ≠ 1 .

Note that each individual transformation acts on the com
posite Hilbert space of the central two-level system and t
kth spin of the bath. The transformed Hamiltonian, whic
is feasibly diagonalized in the central spin manifold [19]
© 1998 The American Physical Society
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H̄ ­ UHU21 ­ H̄b 1 H̄int

­
X

k

µ
2

1
2

h̄vks
x
k 1

1
2

h̄Cksz
k

∂

2
1
2

h̄D0sx ≠
Y

k

≠ s
x
k . (2)

This transformation is similar to the polaron transforma
tion frequently used in the spin-boson model [20]; it allow
us to diagonalizēH if D0 ­ 0. Upon comparing Eqs. (1)
and (2) we find–—as the two-level system become
dressed by the spin bath—that the couplings betwe
them are nowconverted into interactions within each
two-level system of the bath. Moreover, the initia
density matrix changes tōr0 ; Ur0U

21 ­ rs ≠ r̄b ,
with r̄b ­

Q
k ≠ hf1 2 tanhsbh̄vky2dsx

k gy2j; thus, the
transformed spin bath remains formally no longer at initia
equilibrium.

Given the HamiltonianH̄, it is convenient to use the
resolvent operator approach to elucidate the behavior of t
probability differencePstd. Solving formally the Liouville
equation, we obtainPstd ­ TrfszQstdr̄s0dg, where the
superoperatorQstd ; expsiLtd is the propagator related to
the LiouvillianL, being defined byLA ­ fH̄, Agyh̄ for any
operatorA. Let us denote the Laplace transform ofQstd by
Q̂szd, i.e.,Q̂szd ­ L hQstdj. The thermodynamic average
of Q̂szd with respect to thenonequilibriumbath r̄b reads
kQ̂szdlb ­ fz 2 kM̂cszdlbg21, where kMcszdlb is termed
the relaxation (self-energy) matrix [21,22]. Resorting t
the perturbation expansion method, we obtain

kM̂cszdlb ­ z
X̀

m­1

s21dm11

*X̀
n­1

siLintGdn

+m

b

, (3)

whereG ­ 1ysz 2 iLbd andLb , Lint are the Liouvillians
corresponding tōHb andH̄int, respectively. Note that Li-
ouvillians act on the linear operators (of the Hilbert spac
which themselves form the four-dimensional Liouville
space. Thus, the superoperatorskQ̂szdlb andkM̂cszdlb can
be represented by4 3 4 matrices. Letj "l andj #l denote
the two localized states of the two-level system. The fou
independent operatorsjml knj ; jmnd (m, n ­ " or #) are
used as the basis of the Liouville space. One can sho
that P̂szd ­ L hPstdj is only related to two elements of
kQ̂szdlb , i.e., P̂szd ­ s"" jkQ̂szdlbj ""d 2 s## jkQ̂szdlbj ""d.

Second-order perturbation theory.—In applying the
second-order perturbation theory inLint the self-energy
matrix becomes

kM̂cszdlb ­ zfikLintGlb 2 ksLintGd2lb 1 kLintGl2
bg .

(4)

We useM̂c
1 szd, M̂c

2,cszd, and M̂c
2,uszd to denote the three

terms on the right-hand side (rhs) in Eq. (4), respectivel
For instance, the first-order term can be cast as
-
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smnjM̂c
1 szdjm0n0d ­

1
2

izD0

°
dmm0 2 dnn0

¢
3 L

(
Tr

"Y
k

s
x
k r̃bstd

#)
,

wherejml andem are themth eigenvectors and eigenen
ergies of H̄b and the tilde represents the interactio
representation, i.e.,̃rbstd ­ eiH̄bty h̄r̄be2iH̄bty h̄. Defining
gszd ­ izD0L hAstdjy2, where Astd ­ Trf

Q
k s

x
k r̃bstdg,

we readily obtainM̂c
1 szd ­ 2gszd s1 2 sxd ≠ sx. Next

we invoke the second-order perturbation approximat
with respect to the coupling constantsCkyvk. This has
been verified for a reasonable scaling ruleCkyvk ,
1y

p
N, whereN is the number of bath spins (cf. [23])

We find for the Ohmic dissipationAstd ­ qsbd s1 1

v2
c t2d2a , where qsbd ­

Q
k tanhsbh̄vky2d is a time-

independent coefficient. With the Laplace transform
Astd, the functiongszd reads

gszd ­
i
2

D0

vc

p
p

21y21a
qsbdz

µ
vc

z

∂
1y22aGs1 2 ad

3

∑
H1y22a

µ
z

vc

∂
2 N1y22a

µ
z

vc

∂∏
, (5)

where H is the Struve function andN is the Bessel
function of the second kind [24]. Similarly, we find th
correlation part of the second-order self-energy mat
contribution M̂c

2,cszd ­ 2fszd s1 2 szd ≠ 1, where
fszd ­ zD

2
0L h

Rt
0 Fsu, tdduj 1 c.c. with Fsu, td ­

Trf
Q

k ≠ s
x
k

Q
k ≠ s̃

x
k s2udr̃bst 2 udg. For the Ohmic

dissipation we obtain Fsu, td ; A1sud exphifBsud 2

Bstd 1 Bst 2 udgj, where the amplitude A1sud ­
s1 1 v2

cu2d2a and the “phase” termBssd reads

Bssd ­ 2a
X̀
n­0

s21dn

Ω
tan21

µ
vcs

1 1 nvcbh̄

∂
2 tan21

µ
vcs

1 1 sn 1 1dvcbh̄

∂æ
.

(6)

Note that the amplitudeA1sud is independent of tem-
perature. The influence of temperature is manifes
through the three phase terms. At zero temperatu
i.e., b ! `, we find Bstd ­ 2a tan21svctd. In ad-
dressing the dynamics in a meaningful domain, i.
t ¿ v21

c or tan21svctd ­ py2, one gets Fsu, td ­
eipy2A1sud exphifBsud 1 Bst 2 udgj 1 c.c. By virtue
of the convolution theorem, we obtainfszd ­
zD

2
0eipy2L hA1std expfiBstdgjL hexpfiBstdgj 1 c.c. At

a very high temperature, i.e.,b ! 0, Bssd vanishes.
Thus one getsfszd ­ L hA1stdj. In the following we will
focus on the dynamics at zero and infinite temperature

Recognizing thatMc
2,uszd ­ 2fMc

1 szdg2yz, we know all
three contributions to the self-energy matrixkMc

2 szdlb .
The behavior ofPstd for times much larger thanv21

c
is determined by the leading order term ofP̂szd for
jzv21

c j ø 1 and it suffices to examine the asymptot
5711
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properties ofkMc
2 szdlb or functionsgszd andfszd asz !

0. By virtue of the known features of the Struve an
Bessel functions, one can show that, forz ! 0, gszd ,
z2a if a , 1y2, andgszd , z for a . 1y2 [cf. Eq. (5)].
At zero temperature, one finds that, fora , 1, fszd ­
D

2s12ad
eff z2a21 1 OfzsD0yvcd2g, where

Deff ­ fcossapdGs1 2 2adg1y2s12adsD0yvcday12aD0

coincides precisely with the effective tunneling frequenc
defined in the spin-boson model [1]. Ifa . 1, fszd is
linear in z. In the opposite limit ofhigh temperatures we
find that fszd ­ 22iD0gszdyzqsbd. Thus, fora , 1y2
we obtainfszd ­ D̄

2s12ad
eff z2a21 1 OsD2

0yvcd, where

D̄eff ­

∑
Gs1 2 adGs1y2 2 ad

p
p

∏1y2s12ad

3 sD0y2vcday12aD0

is the effective (high temperature) tunneling fre
quency. In contrast, fora . 1y2, one finds fszd ­
g 1 Osz2a21D

2
0yv2a

c d, where g ­
p

p D
2
0Gs 1

2 1 ady
fvcs2a 2 1dGsadg is the corresponding decay rate. W
should stress that these formulas are valid for the dis
pation coefficienta being not close to1y2. Of course,
a more accurate asymptotic analysis is possible for
values ofa.

Results for the quantum coherence dynamics.—Let us
focus on thezero-temperaturebehavior of the quantum
coherence functionPstd. Comparing the three contribu-
tions to the self-energy [recall that̂Mc

2,uszd , g2szdyz] we
find that M̂c

2,cszd dominantly rules the expression for the
self-energy ifa , 1. Upon replacingkMcszdlb simply
by M̂c

2,cszd in the averaged Liouvillian propagator
yields kQ̂szdlb ­ fz 2 M̂c

2,cszdlbg21, we obtain P̂szd ­
fz 1 fszdg21. This is exactly the result of the spin-boso
model within the noninteracting blip approximation
(NIBA), being a valid approximation in the case consid
ered herein [1–3]. The prominent feature ofPstd is a
crossover from coherent (i.e., oscillatory) exponential
damped decay to pure incoherent decay ata ­ 1y2;
see Refs. [1,2] for details). Whena . 1, all of the
leading terms of the three self-energy contribution
are linear in z, as z ! 0. In this case, we obtain
P̂szd ­ z21f1 1 OssssD0yvcd2dddg. Put differently, for
a . 1, Pstd ­ 1, i.e., localization takes place [5]. Thus
these findings confirm that the spin-boson model and t
spin-spin-bath model exhibit the same physics atzero
temperature.

At high temperaturesb ! 0, the correlation term
M̂c

2,cszd always dominates the self-energy for smallz,
which leads toP̂szd ­ fz 1 fszdg21. From the foregoing
discussion about the property offszd, one thus expects
similar behavior fromPstd. Note thatP̂szd has a branch
point at z ­ 0. The complexz plane is cut along the
negative real axis. By calculating the inverse Lapla
transform it is clear thatPstd contains two parts,Pcohstd
5712
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and Pincstd, for a , 1y2. The coherent contribution
Pcohstd emerges from the conjugate pair of simple pol
z0 and zp

0 in the principal sheet, and theincoherent
contribution Pincstd results from the cut. Performing
the required manipulations gives usz0 ­ G0 1 iV0,
where G0 ­ D̄eff cosfs1 2 2adpys2 2 2adg and V0 ­
D̄eff sinfs1 2 2adpys2 2 2adg. After some algebra we
arrive atPcohstd ­ cossV0td exps2G0tdys1 2 ad and

Pincstd ­ 2
sins2apd

p

Z `

0
dx

3
x122a exps2xyd

x222af1 1 2 coss2apd 1 1g
,

where y ­ D̄efft. Pcohstd exhibits damped oscillations
while Pincstd obeys a power law. Therefore, ifa , 1y2,
Pstd manifests similar characteristics, both at zero and
finite temperatures. The only difference is a change of t
effective tunneling frequency. By direct comparison w
know that the ratio of the two effective tunneling frequen
ciesRsad ­ D̄effyDeff fRs0d ­ 1g is an increasing func-
tion of a: For instance,Rs0.1d ­ 1.05. If a becomes
larger than1y2, however, a qualitativelydifferentbehav-
ior, is expected. In fact, we find thatPstd ­ exps2gtd,
whereg ­

p
p D

2
0Gs 1

2 1 adyfvcs2a 2 1dGsadg, i.e., an
exponential decay. The decay rateg decreases asa in-
creases. It is interesting to note that, ata ­ 1, the decay
rateg ­ pD

2
0y2vc is identical to that of the spin-boson

model fora ­ 1y2 at zero temperature. The dynamics o
Pstd is subtle in acritical regime at abouta ­ 1y2 and
defies (in clear contrast to the spin-boson case) an ex
solution. The main feature is, of course, that a crosso
from coherent relaxation to exponential decay occurs [2

At finite temperatures, we find̂Pszd ­ fz 1 fszdg21,
where

fszd ­ zD2
0L

(Z t

0
du

eifBsud2Bstd1Bst2udg

s1 1 v2
cu2da

)
1 c.c.

Here the phaseBstd is proportional to the dissipation coef
ficient and to some degree its value reflects quantum d
sipation. SinceBstd is a monotonic increasing function o
b, decoherence is partiallysuppressedby increasing tem-
perature. Therefore, temperature plays, though weak
a positive role in maintaining coherent dynamics. Th
means thatthe spin-spin-bath model prefers coherent d
namics in the whole range of temperatures if the dis
pation coefficienta is sufficiently small, i.e., a , 1y2.
To get an idea of the temperature dependence, we t
to the expression of the phaseBstd [Eq. (6)]. Taking the
first termsn ­ 0d in the series on the rhs leads toBssd ­
2ahtan21svcsd 2 tan21fvcsys1 1 vcbh̄dgj. When the
temperature is sufficiently low, say,b ¿ tyh̄, to first or-
der in 1yb, fszd does not depend onb for vct ¿ 1. A
similar behavior is also observed for very high temper
tures. Therefore, temperature only weakly affects the d
namics at low and high temperatures. We suspect that
is also true at any finite temperatures.
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In summary, we have investigated the properties of th
quantum coherence dynamics in a two-level system th
are coupled to a sea of thermally prepared spin-1y2 parti-
cles. Using the resolvent operator method we have sho
that the spin-spin-bath model exhibits atnonzerotempera-
tures a distinctly different physics as compared to
spin-boson model. At zero temperature, however, th
dissipative dynamics of the two models is identical. I
particular, we could assess that for the spin-spin-ba
the decoherence measurePstd is effectively temperature
independent at low and high temperatures. For weak co
plings sa , 1y2d, quantum coherence, i.e., the oscillator
decay of coherence, sustains up to infinite temperatu
For strong couplingssa . 1y2d, however, the system
obeys an exponential decay law at high temperatures, a
its decay rate becomes smaller as the coupling parame
a becomes larger. The most interesting effect is th
temperature helps the system suppress decoherence.
difference between the finite temperature behavior
this spin-spin-bath model and the spin-boson model (o
equivalently, also the spin-Fermion-bath model with it
infinitely many excitation energies [3,26]) can be trace
back to the severe restriction of the thermal induce
excitation possibilities of the bath degrees of freedo
(only a single level in each individual two-level system
composing the spin bath); i.e., the mechanism of therm
excitation of many levels of a single bath degree o
freedom that characterizes the crossover behavior fro
quantum coherent to quantum incoherent tunneling
weak coupling a , 1y2 in the spin-boson model is
simply not at work in this spin-spin-bath case. Clearly
our findings may have an impact on studies involving th
decoherence properties in nanomagnets and, as well,
(spin) decoherence-limited efficiency of interacting qubit
in realistic quantum computing schemes. In particula
the result that temperature favors the coherent dynam
is good newsfor the quantum computing efforts.
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