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Transformations of nonlinear dynamical systems to jerky motion and its application
to minimal chaotic flows
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Third-order explicit autonomous differential equations in one scalar variable or, mechanically interpreted,
jerky dynamics constitute an interesting subclass of dynamical systems that can exhibit many major features of
regular and irregular or chaotic dynamical behavior. In this paper, we investigate the circumstances under
which three dimensional autonomous dynamical systems possess at least one equivalent jerky dynamics. In
particular, we determine a wide class of three-dimensional vector fields with polynomial and non-polynomial
nonlinearities that possess this property. Taking advantage of this general result, we focus on the jerky
dynamics of Sprott’s minimal chaotic dynamical systems andsRo’s toroidal chaos model. Based on the
interrelation between the jerky dynamics of these models, we classify them according to their increasing
polynomial complexity. Finally, we also provide a simple criterion that excludes chaotic dynamics for some
classes of jerky dynamics and, therefore, also for some classes of three-dimensional dynamical systems.
[S1063-651%98)09710-4
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[. INTRODUCTION with only quadratic nonlinearities, Sprott was able to identify
nineteen distinct functional forms of dynamical systeias
Since Lorenz’s discovery of the appearance of determinbeled A to $ that show irregular dynamics and are all func-
istic nonperiodic flow in 1963 and the emergence of chaos ifionally simpler than the paradigms of nonlinear dynamics,
the middle of the 1970s, autonomous three-dimensional dythe Lorenz mode|8], and the Resler mode[9].
namical systems play an outstanding role in modern nonlin- In several recent papef$0—14, the problem of minimal
ear dynamic§1—6]. These systems are still low dimensional chaotic dynamics has been attacked from a quite different
enough that their long-time behavior, the attractor, can b®0int of view. Here, the starting point has not been dynami-
visualized in the three-dimensional phase space. They ar&2 Systems or flows, but third-order explicit scalar ordinary
however, already complicated enough to exhibit a plethora Og|fferent|a_l equations o, suggestlve_ly_ spegkmn;r,ky dy-
complex dynamical behavior such as quasiperiodic and jrhamics It is well known tha_t any explicit ordinary _d|ﬁeren—
regular or chaotic oscillations. By virtue of the Poincare tial equation can be recast in the form of a dynamical system

Bendixson theorerfi2], two-dimensional nonlinear dynami- although the contrary does not hold in general. Therefore,
' . X ynan .jerky dynamics should also have the potential to show ir-
cal systems can only possess fixed points or periodi

luti | . uti Theref h .. Tegular evolution in time.
solutions as long-time solutions. Therefore, the transition By performing a similar procedure as in RET], Sprott

from the phase space dimension two to the phase space (g 11 was able to identify minimal polynomial dissipative
mension three opens a whole new world of dynamical bexnq conservative jerky dynamics that show chaotic behavior.
havior. Surprisingly, one quadratic nonlinearity suffices to generate
During the last two decades, there has been an immensgegular evolution in time for some parameter values. Simi-
effort and success towards the identification and understandlr results have also been stated by Ljit2] on the basis of
ing of irregular or chaotic dynamics, including the routes tothe jerky dynamics for Sprott’s model [R]. In this paper, it
irregularity. In this context, thgeometric theory of dynamics has also been shown that the jerky dynamics for the Lorenz
[2-5] that analyzes dynamical vector fields in terms of their[8] and the Resler[9] model possess a functionally compli-
flow in phase space, and its numerical counterpart have beerated form. For an interesting introduction into jerky dynam-
proven to be particularly powerful. ics with reference to the above-mentioned studie®—132,
There are, however, still many open basic problems evewe refer to the popular article by von Baeyés].
for the case of three-dimensional dynamical systems. For Not taken literally, jerky dynamics can also be found in
example, how can we decide only on the basis of the funchonmechanical disciplines of physics. Probably the first
tional form of a given three-dimensional dynamical systemwork concerning third-order differential equations that can
whether it might possess irregular dynamics for some rangeshow irregular dynamics traces back to Moore and Spiegel
of its parameters? Another example deals witimimal cha-  [16] and appeared in the context of a simple oscillator model
otic flows What are the minimal functional forms of nonlin- of thermal convection. Jerky dynamics also appear, for ex-
earities in a three-dimensional dynamical system that arample, in the context of the single-mode equations for a
needed for a chaotic flow? semiconductor laser subject to large optical injection, as re-
In 1994, a seminal investigation towards an identificationported by Ernewet al. [17], in geometric models for den-
of minimal chaotic systems was reported by Spf@it Us-  drite growth subject to special boundary conditions as dis-
ing a numerical search for three-dimensional vector fieldsussed by Kruskal and Segud8], and for the non-
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relativistic motion of a radiative point charge subject to an Motivated by the mechanical interpretation of Eg) as
external force(the Abraham-Lorentz equatiph19]. evolution equation for the rate of change of the acceleration
Since jerky dynamicdi) show all major features that or the jerk, a third-order ODE of the form{2) that is (i)
three-dimensional vector fields posse@, are conception- autonomous andi) explicit is called gerky dynamicsOb-
ally simpler than dynamical systenfas we will see in this viously, jerky dynamicg2) are a restricted class of all third-
study), and (iii) are the natural generalization of oscillator order ODEs and also of all third-order dynamical systems
dynamics, they might serve as a useful tool to obtain furthefl). As a necessary, but not sufficient requirement faoa-
insight into nonchaotic and chaotic behavior including thetrivial jerky dynamics that is not just the derivative of a
routes to chaos. second-order explicit autonomous ODE, the jerk function
In this context, the following questions that are the subjecimust depend explicitly orx. Under certain constraints, in

of our study arise(i) Which three-dimensional dynamical particular, when the accelerationenters only linearly into
systems can be recast into a jerky dynami@g?Do appar-  the jerky dynamics, it can also be interpreted as the deriva-
ently functionally different dynamical systems obey similartijye of a one-dimensional Newtonian equation with a
or even identical jerky dynamics(#ii) If so, can jerky dy-  memory term that depends on the dynamical history of the
namics be used as a tool to classify dynamical syste$? motion [13,14. Throughout this paper, the jerk function is
Can we learn anything about the possible time evolution jussypposed to be an arbitrary and, in general, nonlinear func-

by looking at t.he funct.ional form of a jerky dynamics? tion of its variablesx, x, andx that is well defined for all
Our paper is organized as follows. In Sec. Il we fix the . ..

notation and discuss some general circumstances und&r X X . . . )

which a dynamical system cannot be transformed to uniquel One.mam.subject of t.h's paper {8 to find classes of
determined jerky dynamics. Section Ill contains, as a majofnree-dimensional dynamical systems

result, a wide class of nonlinear and not necessarily polyno-

mial three-dimensional dynamical systems that can be recast x=Vi(X,y,2), (33
into a jerky dynamics. Moreover, systematicmethod of ,

finding the jerky dynamics is also given. Taking advantage y=Va(x,y,2), (3b)
of the results of Sec. Ill, we derive in Sec. IV all existing

jerky dynamics for Sprott’s minimal chaotic mod¢lg and z=V;(X,y,2) (30

the toroidal Rssler mode]20]. Based on similarities of their
functional forms, we classify these jerky dynamics accordinghat can be recast into aguivalentjerky dynamics(2) and
to their polynomial complexity. We also present simple con-(ii) to determine a systematic transformation method to ob-
ditions under which chaotic behavior is excluded. These ar¢éain Eq.(2) from Eq. (3) if it exists at all. We call a jerky
based on an elementary no-chaos theorem given in Appendiynamics in the variable, Eg. (2), equivalentto the dy-
C. In Sec. V we summarize our findings. namical systengl) or (3) if, for the same initial conditions,
the signalsx(t) generated by Eq$2) and(3) are identical.
Trying to calculate the equivalent jerky dynami@s for a
dynamical systeng3), four distinct situations can appear:
Generally speaking, an autonomous dynamical system is (i) There is no jerk functiod(x,x,x) that is well defined
specified by a set ail coupled first-order, ordinary differen- in the sense that it is free of singularities for gl x, andx.

tial equations(ODES that are not explicitly dependent on o etore ‘there is no equivalent jerky dynamics although a

time t. In particular, three-dimensional dynamical systemsyansformation to an implicit third-order ODE might be pos-
are specified by sible.

) (i) The equivalent jerky dynamics must be defined differ-
X=V(x), (1) ently for distinct regions of the phase spdce As an ex-

ample for this case consider the dynamical systemx

Il. BASICS

- T int i i i .
where x=(X,Y,2) s denotes a pomt in a three.-dlmensmnal +y, y=22, z=x+xz Rewriting this system into a jerky
phase spac& CR®, V(x) the, in general, nonlinear vector ) , | - L \/—f
field of the dynamical system and the overdot the derivativéjynam'f:s(z) In X eagls _FOX_X__“L 2,X(X_X)f2)f X—xfor
with respect to time. Specifying the initial conditions the regionz=0 and x=x+2x(x—x)—2xyx—x for z<0.
x(t=0)=x,, X(t) represents the orbit or trajectory of the Such jerky dy_namlcs are ha_rd to handle and,_ therefore, will
dynamical systen{l) in the phase space. It is also a well not be taken into consideration throughout this paper.
known fact[2] that any autonomousth order ODE that is (iii) There is a well-defined and unique jerky dynamics in
given in an explicit form can be recast into emimensional X that is obtained from a dynamical systé8) by anonin-
dynamical system. In particular, third-order explicit ODEs vertibletransformation of variables. An example for this case
isx=x+y, y=z% andz=xz Deriving thex equation with
X=J(X,%,%) (2)  respect to time and using=z?, we obtainx=x+z?. Further
derivation and insertion of the equation yields the unique
can be immediately transformed into a dynamical syst®m  and well-defined jerky dynamics= X+ 2x(X—x). From the

by introducing, for examplex=v, v=a, anda=J(xv  equations fox andx, however, we observe that two differ-
=x,a=X) [2]. The contrary, however, is generally not true ent points §,y,*2z) of the phase spacE of the original
and constitutes the starting point of our investigation. dynamical system are mapped onto one single value of the
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jerk functionJ(x,x,x) =X+ 2x(x—X). Thereforejwo differ- To(X)=X- VV4(X)=V(X)- VV4(X), (60)
ent trajectories of the dynamical system correspondne
trajectory of its jerky dynamics if interpreted as a dynamicalwith V= (d,dy ,d,)T. Obviously, the transformatiof de-
system. pends on the structure of the vector fi#l¢x) of the original

(iv) There is a well-defined and unique jerky dynamics indynamical systent3). It can be calculated for any arbitrary
x that is obtained from a dynamical systé®) by aglobally  vector field. In order to find an equivalent jerky dynamics
invertible transformation. In this case, it is clear that the tO'from X:V(X), however, there must also be a unique|y de-
pological structure, e.g., periodicity or irregularity, of the termined inverse transformatiom 1= (T;*, T, T3 9"
trajectories of the systeii8) is transfered to the solutions of u—>x given by
the equivalent jerky dynamics.

As an aside we note that these considerations suggest a x=T"Y(u) (7)
distinction between two different, more detailed definitions
of equivalence of a dynamical systeB) and a jerky dynam-  such thafl ~* maps the syster#) onto(3). By virtue of Egs.
ics (2): (i) A dynamical systeng3) and a jerky dynamic&€)  (6), the condition of invertibility ofT is effectively a con-
are dynamically equivalentif both describe the same dy- straint on the general form of the vector fiel(x), and,
namical behavior of the variabbe (ii) A dynamical system therefore, defines the dynamical systems that possess an
(3) and a jerky dynamic§2) aretopologically equivalentif  equivalent jerky dynamics.
any trajectory of the dynamical system belongs exactly to In the following, it proves convenient to distinguish ex-
one trajectory of the jerky dynamics if interpreted as dynami-plicitly between the linear and nonlinear parts of the vector
cal system and vice versa. Dynamical equivalence requirefield. Therefore, we write it in the general form
the existence of a unique and well-defined jerk function
J(x,x,X). For topological equivalence there must also exist a V(x)=c+Bx+n(x), ®)
globally invertible, (at least continuous transformation be-
tween the dynamical syste(8) and the jerky dynamic&).
If, moreover, this transformation is a diffeomorphism, i.e.,
invertible and differentiable, the dynamical syst¢& and
the jerky dynamicg2) should be calleddiffeomorphically
equivalent Obviously, topological or diffeomorphic equiva
lence implies dynamical equivalence. The converse, ho
ever, is not true.

Throughout this paper, the concept efuivalent jerky

wherece R3 is a vector of constant® e R3*3 a matrix with
constant  coefficients b;; (i,j=1,2,3) and n(x)
=[ny(x),ny(x),n3(x)]" a three-dimensional vector of solely
nonlinear functions irx,y,z that are at least twice differen-
_ tiable and do not contain additive constants. Then, the fol-
WI_owing holds.

Theorem Any dynamical system of the functional form

dynamicsalways refers to jerky dynamics of the latter type X=C1+bypX+bygy+ 01524 ny(), (93
(iv), i.e., to topologically equivalent jerky dynami¢apart )
from Appendix D. Moreover, the guiding reasoning in con- Y= CatbaX+ Doy +bosz+ny(x), (9b)
structing classes of dynamical systef® that possess at _
least one equivalent jerky dynami€®) is based on the ex- Z=C3+t b3 X+ bayy+bssz+Ns(X) (90

istence of an invertible transformation between both.
with n; (i=1,2,3) being nonlinear functions of the indicated

Ill. TRANSFORMABLE DYNAMICAL SYSTEMS arguments can be reduced to a jerky dynamidé,

In this section we present a wide classrafnlinear dy- =J(x,x,x), if the conditions
namical systems that can be recast into a jerky dynamics by
invertible and, in generahonlineartransformations. As al-
ready mentioned, any jerky dynami(® can be rewritten in
the form of a dynamical system

b12N2(X) +b13n3(X) = f(X, b1y + b132) (10a

with f being an arbitrary function of the indicated arguments
and

u=W(u) ) b2 05— b2 0o+ by o15(D33— b,y #0 (10b)

by introducingu=(x,v,a)" andW(u)=[v,a,J(x,v,a)]". If |\
there is a jerky dynamic&) or, equivalently, a dynamical )
system(4) for the system(3), then there must also be a
transformationT = (T,,T,,T3) ":x—u of variables

Before we prove the statement we remark the following.
(i) From Eq.(9a we see that the variablgsandz are only

allowed to entetfinearly into thex equation.(ii) An impor-
u=T(x) (5) tant special case of the dynamical systénis obtained by
settingb,3=0. Then the conditiori10b) reduces to
that converts the original dynamical systdB) to the dy-
namical systent4). From Eqgs.(3), (4), and(5) we can read b1,#0, bys#0. (12)

off the components of, ) _ _
Moreover, it follows from Eq.(109 that in this case the

T.(X)=X, (6a) nonlinearity n,(x) is solely a function ofx andy, while
ns(x) can be an arbitrary function of. Altogether, the dy-
To(X)=V1(X), (6b) namical systen{9) therefore reads
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chl+ b11X+ b12y+ nl(X), (12@
Y= Cp+byX+bosy+bosz+Nao(X,y), (12b)
Z=Cgz+bgX+ bgy+ bsgz+nz(X). (120

The functional form of Eqs(12) can also be obtained from
Eq. (9) by using the obviously invertible transformation
=y+(by3/bys)z, since Eq.(109 is valid and, therefore, the
function f(x,b.sy+b5z) corresponds to the nonlinearity
n»(x,#n) in the new» equation.

Proof. The demonstration of the theorem requires thre
steps: the calculation of the transformatibrand its inverse
T-1 and, finally, the derivation of the jerky dynamics. The
transformationT can immediately be obtained from the dy-
namical systent9) by virtue of Egs.(6),

T1(X) =X, (139

To(x)=c;+bl-x+n;(x), (13b
Ta(x)=c-b*+bl-byx+bt-by+Dbt byz+ bt n(x)
+[ e+ bt x+ny(x)]dxn1(X). (130

For convenience, we have introduced in Exf) the notation

b'=(bi1,biz,bis)T (i=1,2,3 (14a
for the row vectors and
b;=(byj by, bg) T (j=1,2,3 (14b

for the column vectors of the matr= (b;;) introduced in
Eq. (8). The dot denotes the scalar product.

To calculate the inverse transformatidn®, we have to
solve Egs.(13) with respect tox, y, and z. Since x
=T;(x) and Eq.(133 hold and, therefore]; mapsx only
onto itself, solely the second and third component3 @ind
the variablesy andz need to be considered whilecan be
handled like a simple parameter. To solve E(3b and
(130 with respect toy and z, both variables should enter
only linearly into T, and T3. In T3, however, nonlinear
terms are present that contayjnand z. Since we want to
determiney and z as functions ofu, this does not cause a
problem if these nonlinearities can be replaced by terms of
This explains why one has to demand the conditin6a
since in this case the pait- n(x) of Eq. (130 can be written
as byini(x) +f(x,b1y+bqsz). Using Eq. (13b and v
=T,(x), the second argument bfcan be substituted by an
expression that solely dependsxanduv. Next, again using
v=T,(x) and Eq.(13b we can rewrite the second line of
Eqg. (130 asvdyn,(x). As a consequencd,; depends lin-
early ony andz. Taking into account E(5), the second and
third component of the transformation, (13b and (130,
can therefore be written as

)l
+M
z

|

with the abbreviations

v

r(x)

s(Xx,v) (15

a

LINZ, AND PETER HAGGI PRE 58

r(X)=cq+byX+ny(x),

(163

S(X,U): (o8 bl+ bl' b1X+ U&an(x) + bllnl(X)

+f(x,v—r(x)) (16b
and the matrix
b12 b13 )
M_(bl-b2 bl-bs/" (17

Therefore, the problem of calculatiny * is reduced to a

esimple matrix inversion. The condition that is necessary for

invertibility of M is given by deM=bZ,b,3—bi s,
+bysbi5(bss—byy) #0. This is exactly the conditio10b).
Since we require that Eq10b) holds, it follows that the
inverse ofM and, therefore, also the inverse transformation
T~ 1 exist. Consequently, from E¢15) one can finally cal-
culateT ! by additionally taking into account Eq7). The
result reads

T (w)=x,

(183

T, H(w)={c-b'byz—c1b® b3+ (biAg—b15Az)X
+[bt bg+byadeny(X) Jv —biza
—(byabostbighaz)ng(x)

+bqaf (X,v —r(x))}/deM, (18b)

T3 ' (u)={cib* by—c-broyp+ (b1oAzz— brsAz)X
—[b*by+bydxny(x)Jo+bya
+ (b1t bighzr)ny(x)

— b, f (X, —r(x))}/deM, (180
whereA;; denotes thedjunctor the cofactor to the element
bj; of the matrixB [21,22.

The general form of the jerky dynamics corresponding to
the dynamical systen®) can be obtained by the following
procedure. The derivative of the third component of ).
with respect to time reads

a=x=V(X)-VT3(X). (19
Sincea=x=J(u) holds, Eq.(19) yields the jerk function
J(u). The expressior19), however, still depends opand
Z, so that we must insert the inversg@Tz‘l(u) and z
=T§1(u) to obtainJ as a function olu. A straightforward,
but somewhat tedious calculation then leads to the final re-
sult for the jerky dynamics. Using the matiix=(A;;) (with
the adjunctsA;; of B) and accordingly to Eq(14) defined
row and column vectord' andA;, it reads

J(u)=g(x,v)a+h(x,v)v+k(u) (20

with

g(x,v)=trB+a,ny(x)+f'[x,0 —r(x)], (21a
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h(x,v)=—trA— (by+ b33) d,N1(X) + 9, F (X,v0 — (X)) Needless to mention, the jerk function of linear dynamical
) systems is also linear. The second special case refei@to
TNy (X) + b+ N1 (X)]f' (X,v =1 (X)), linear dynamical systems that can be converted into a jerky

(21b) dynamics bylinear transformations. Only if the conditions
n,(x)=0 andn,(x,y)=0 hold for the systenil2), the trans-
_ 11 1 1 formation T, Eq. (13), and its inverseT %, Eq. (18), are
k(u)=c-A+b* A+ AL-n(X, T, *(U), T3 (U)), linear. This agrees with results found in R¢L3] where,
(219 however, only Newtonian jerky dynamics were considered
and, therefore, also the general functional forrmgfx) has
andd,f denoting the derivative with respectxmnly of the  peen restricted.
first argument off, f’ the derivative with respect to the (vii) It is possible that a dynamical system that is con-
second argument of and tr the trace of a matrix. If the tained in the class specified §9) can be converted simul-
nonlinear functions, or n in k(u) depend ory or z, one  taneously into two or even three jerky dynamics in different
has to insert the inverse transformatiopsT,'(u) and  variables (the jerky dynamics in one certain variable is
z=T§1(u), Eqgs.(18b) and(18¢). This completes the proof. unique, if it existg. Then, however, additional restrictions
Several remarks are in order. apply. From the structure of the dynamical systems that pos-
(i) If the condition (10b) does not hold, i.e.bZ,b,;  sess a jerky dynamics i Egs.(9), we see that for a simul-
—biab32+ b1,b;3(bss—b,y) =0, the corresponding dynami- taneous existence of a jerky dynamicsyirand/orz, it is
cal system(9) describes an effectively two-dimensional dy- necessary thain,(x)=n,(y) and/or nz(x)=ns(z) hold.
namics. This can be seen as follows. If bt andb,; are ~ Moreover, there are additional conditions for each varigble
equal to zero, the first component of E@5) reduces to the and/orz that are similar to Eq(10). Details are given in
first-order ODEv =x=r(x). If, however, e.g.b;,#0 holds, Appgndlx B. For the case _Of three simultaneous Jerk_y dy-
one can solve the first of Eq$L5) with respect toy and namics, the_ set of all conditions leads to two formall_y differ-
insert the resulting equation into the second component o nt dynamical systeméapart from certain permutations of
24 2 - variables. Also here, we refer to Appendix B, in particular,
Eg. (15. Then, due tobf,bsz—bidoatbibi3(bzz—byo) Eqs. (B4) and (B6)
=0, the z term vanishes and it remains the second-order q.l.'h ) . . :
L . 1 . e above theorem constitutes an important tool in two
ODE a=x=5(x,x) +(1/b15)b*-bo[x—r(x)]. _ respects(i) Given a specific dynamical system, one can de-
(ii) For the special cade =0, i.e., no dependence @in  jge only on the basis of the functional form of its vector
Eq. (9a), Eq. (180 does not depend om and f(X,u  field \/(x) if it belongs to the class specified by E§) and,
—r(x)). Moreover, in this case the nonlinear functiog(x)  therefore, possesses an equivalent jerky dynamigs fitere,
does not appear in the transformatidn Egs.(13). There- 3150 an exchange of the variablgsndz and the indices 2
fore, also the invers@  cannot contaims(x). This can be  ang 3, respectively, has to be taken into account. The jerky
seen from Eq. (108, which reduces to f(x,b1y)  dynamics can immediately be calculated by using ER6)
=Db1,n5(x,y) for b;3=0. Consequently, Eq$21a and(21b)  angd (21). (i) It can be possible that the given dynamical
do also not depend ong(x) if b;3=0 holds. Additionally,  system possesses a jerky dynamicyiar z, but not inx.
one obtainsf’=dyn, for the derivativef’. This can also be verified with the help of the E¢8) by
(iii) The partg(x,v)a of the jerk function(20) does not  considering all permutations of variablesy,z) and indices
Contair! all terms that are |in§ar m Linea.r and. nonlinear (1,2,3), respective'y. |f, e.g., after exchangix]@ndy (and
terms ina can a|301 appear if(u) after insertion of the the indices 1 and 2), the given dynamical system is of the
inversesT, = and T ~ into the nonlinear functiona(x). In form (9), we can conclude that it possesses a jerky dynamics
the same way also linear and nonlinear terms ican be iny. Equation(20) can be used to determine it.
contained ink(u).
(iv) From Eq.(210 follows that an additive constant term IV. MINIMAL CHAOTIC FLOWS
in the jerk function(20) can only appear i€+ 0 and, there-
fore, if the original dynamical system also contains an addi- |, this section, we apply the results of Sec. Il on the

tive constant term. _ _ transformability of the dynamical systems, E§), to the

(v) Consider the functions(x) to be polynomials of a splinear dynamical systems A to S found by Spfaitand
certain degreel>1. Then, the transformation to the jerky 5 system of Resler[20] that exhibits toroidal chadslenoted
dynamics does not necessarily conserve the degree of tig TR). These models are minimal dynamical systems that
polynomials entering into the jerk function. _can show chaotic behavior for some parameter range where

(vi) Two special cases are included in the functionalyinimal is understood in an algebraic sense. They have only
forms of the dynamical systems, E¢8) and(12), the trans-  fje terms with two quadratic nonlinearitiésodels A to B
formations, Eqs(13) and (18), and the jerk function, Eq. o six terms with one quadratic nonlinearityodels F to S
(20). First, by settingn(x)=0 in Eq. (9), one directly infers 5,4 TR. Moreover, Sprott also has found dynamical systems
that anylinear dynamical system can always be convertedyiith five terms and only one quadratic nonlinearity that are
into an equivalent jerky dynamics mif it fulfills the con-  chaotic in a certain parameter range9,11]. These models
dition (10b). Then, we can read off the jerk function from g already given in form of a jerky dynamics. Zhang and
Egs.(20) and(21), Heidel [23] have shown that three-dimensional dissipative

quadratic systems with less than five terms cannot exhibit
J(u)=c-A;+bt- Alx—trAv +trBa. (22 chaotic behavior.



7156 RALF EICHHORN, STEFAN J. LINZ, AND PETER HAGGI PRE 58

The nineteen models of Sprott and the toroidaks&er form of the jerk functions is concerned. Consider, e.g., the
model are given in the second column of Table I. In Sprott'sierky dynamics of system J and the jerky dynamicsy iof
models[7] we have substituted all coefficients that are notmodel |. Both consist of the same terms; they only differ
equal to+=1 as well as numerical constants by parametersvith respect to their coefficients. Also the jerky dynamics of
that are denoted by greek letters. Using the results of Sec. liImodel L (in x) and of N are of the same functional form
we infer that the models A to C and E do not belong to theapart from an additional nonzero constant. The systems F
class of dynamical system®). On the other hand, we can and H possess evéddentical jerky dynamics. Furthermore,
analytically calculate all existing equivalent jerky dynamicsthere are three mode(f, |, and L) that possess two equiva-
for each of the systems D and F to S and TR. The resultindgent jerky dynamics that contain similar terms. These obser-
jerky dynamics as well as the corresponding transformationsations raise the question of whether there are relations be-
T and their inverse3 ~! are also given in the third, fourth, tween different(but similay jerky dynamics, or if there are
and fifth columns of Table |. The method of comprehensiveeven invertible transformations that map them onto each
Grabner bases described in appendix D has been used tiher.
verify whether there are additionally equivalent jerky dy- To discuss this point in more detail, we consider a trans-
namics that are not contained in the clé8sand, simulta-  formationT;:(x,x,X)— (£, &,£) with
neously, to check the analytical results. It turns out #it

existing jerky dynamics are of the type being described by E=T, 1(X,%,X), (239
Egs.(9). '
The entry “none” for the models A, B, C, and E means é=TJ (X X, %) (23b)

that there ar@o equivalent jerky dynamics for these systems
in the sense that the jerk function is a nonsingular and poly-
nomial expression. Therefore, only one of the models with
two quadratic nonlinearities, namely, system D, can be con- o
verted into an equivalent jerky dynamics. This is mainly duethat maps a jerky dynamios=J,(x,X,x) onto another jerky
to the fact that two of the total of five terms contained in dynamicsé =J g(g,'g,é). Such a transformation is completely
these models are nonlinear. This leads, in general, to a lacketermined by its first componeffit ; and the jerk function
of sufficiently many linear terms that are necessary for thel,. The second and third componefits, and T, ; are only
existence of the inverse transformation. On the other handjerivatives ofT; ; with respect to time and the jerk function

any system with six terms and only one nonlineat®to S 3 st be used to substituieterms that appear after each
and TR can be recast into at least one jerky dynamics. Th§jeriyation. Therefore, the transformatié2s) contains only

T for a certain model, £6(10D yields a condition on the °"° "dependent. component that can be chosent as
! L y —lel(x,>'<,5'<). This property and the condition of invertibil-

parameters, it is possible that the inverse transformation, an . . :
therefore, also the jerky dynamics, does not exist for Som% strongly restrict the class of possible transformati@®

parameter values. In fact, this occurs for the system F i etween different jerky dynamics. Ther_ef(_)re,_it s only pos-
a=—1 and for I. L. and S'ifazo In the cases I. L. and S sible for very special cases to convert similar jerky dynamics

this can also be read off from the form of the dynamicalto eHach othe:j?fy mv<ter_t|bll<e t:jansfor.mat;(r)]n?. bel o th
system since, forr=0, they do not describe an effectively amgéve:aer:;icgl esresntejnircgn er\]/?;mgsbe t?ans(faocr)rrr]wge q c;o eeach
three-dimensional dynamical behavior. Therefore, a jerkVQ’ y y y

dynamics is not well defined in these cases. This fact tran other by an invertible transformation. This follows from the

fers to the specific structure of the corresponding jerky dy- act that the jerky dynamics themselves are obtained from

namics, which reduce to one- or two-dimensional dynamiCaﬂ};r(;)t/igim:szlu?%lztfhrgt\\//:/ae 'Q;’fétflg gggﬁi‘;ﬁn;agfen;' trfgtr "(;s-
equations or are not definedd=0. As well, the dynamics ' y y P

of model F is effectively two dimensional &= —1. This sesses two equivalent jerky dynamigke the models F, |,

can be seen from the corresponding transformation that lea dyu _for its variables, sayx andy. Suppo;e that the jerky
to the jerky dynamics in. ynamics are calculated from the dynamical system by the

From Table | one can also see that most of the transforlnvertible  transformations T,:(x,y,2)—(x,x,x)  and
mations are lineatmodels D, F(the jerky dynamics irx),  Ty:(X,y,2)—(y,y,y). Then, we can immediately write
G, I,L,M, O, Q,R,S, and TR solely one contains a cubic down the transformatioii ; that maps the jerky dynamics in
term (model P and the remaining are quadratic. In contrastx to the one iny as a combination off, * and Ty, T,
to that, all derived jerky dynamics have only quadratic non-=T, .T 1. Moreover, since we havg=T,(x,x,x) and
I|nea.r|t|es. Moreqver, it s mtgrestmg that not all of. the six alsoy =T, 4(x,%,X), one can immediately read off the char-
possible quadratic combinations &f x, x appear in the  acteristic first component of , from T 1. Analoguous ar-

. s "2 . . . . _
moqgls. Terms likexx andx~ are missing. The absgncg of guments are valid for .the inverdg *. .
the x° term means that all models are even Newtonian jerky For model F, the first component of the transformation
[14]. between its jerky dynamics readsf. Table ) x=—y+ ay
. . . (or y=[1/(1+ a)](x+x+x—x?) for the invers® wherea
A. Relations between the jerky dynamics # —1 must hold. Invertibility of this transformation is based

Comparing the jerky dynamics of Table I, one observesn the property of the jerky dynamics fgrthat it can be
that some of them look rather similar as far as the functionawritten asy=(a—1)y+(a—1)y—y—(—y+ ay)?.

E=T;4(X,X,X) (230
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TABLE I. Minimal models and their jerky dynamics.

Model Equations Jerky Transformations Inverse

dynamics transformations

A - X=y none none none
y=—x+yz
z=a—y?

B xX=yz none none none

=X—-Yy
Z=a—xy

C X=yz none none none
y=x-y
z=a—x?

D X=—y X=XX—X— ax?+x2 x=-y y=—X
y=x+z X=—X—2 7=—X—X

z=xz+ ay?

E x=yz none none none
y=xt-y
zZ=a— BX

. : . 1. ,
F X=y+z X=(a—1)x+(a—1)x—Xx X=y+z y= m(x+x+x—x )
y=—x+ay — ax?+ 2xX X=—x+x2+ay—z 7= ——(— X+ ax—x+x?)
) 1+«
Z:X _Z e . . . .
y=(a—1)y+(a—1)y—y . y=ay-—x x=—y+ay
—a?y?+2ayy—y? y=(a?—1)y—ax—z 7=—y+ay—y

G X=ax+z x=(a—1)x+(a—1)x—x . x=ax+z y=X— ax+X
y=Xxz-y — ax?+ xx x=(a?—1)x+y+az 7=X—ax
z=—Xx+y

H X=—y+2? z=(a—1)z+(a—1)z-2  Z=—27+X X=2+2
y=x+ay —az’+2z2z z=z+7*—x—y y=—2z—2z+27
Z=X-2

. . 1. ) 1.

| X=—ay X=—X—aX—2aX— s X=—ay y=——X

. 1.
L y=x+z X=—ax—az 7=— =X—X
z=x+y?—z
y=-y-ay-2ay+2yy y=x+z x=3(y+y+ay—y?)
. , 1. )
y=—ay+y’+x-z z=5(-y+y—ay+y?)
J _ X=az y=—By+(1-a)y—apy+2yy Y= Bytz X=—y=pyty+y?
y=—pBytz y=(1+B)y+y —x—pz Z=—y-ytyyty
z=—x+y+y?

K X=xy—2z y=(a=1)y+(a=1)y-y L Y=y X=y+y.
y=x-y +yy+(2-a)yy—ay?+y? y=y—X—z+xy z=—y-y+yy+y?
z=x+az

L X=y+az X=—X—ax— ax+2Bxx+ay X=y+az y=—X—ax+ Bx’+ay
y=pBx2-y X=—ax+ BxC—y+ay 2= —(X+x+ax— Bx’~ay)
=YX - ) ) .

z=-z+(2By—a)z—az Z=y—X X=y-2
— BZ?— Bv? z=—az—y y=—z—az

M x=-z X=—X—Bx— Bx+X*—a x=-2 y=—X—pBx—a

y=—x*-y X=—BXx—y—a z=—X

z=a+ BX+y
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TABLE I. (Continued.

Model Equations Jerky Transformations Inverse
dynamics transformations
N X=—ay z=—yz—az—ayz+22z+ off z=—yz+y+p x=2z+yz=7*
y=x+2° 7= y?z+ 22+ x—yy— By y=z+vyz—f
z=B+y—vyz
o x=y X=xx+(1— a)x—x—x2 x=y y=X
y=x—z2 X=X—2 7= —X+X

z=X+Xz+ ay

P X=ay+z y=2yy+(1-a)y-y+2y*~y? y=y*=x x=—y+y?
y=—x+y? y=2y3—ay—2yx—z z=—y+2yy—ay
Z=X+y
Q x=-z y=(B—1)y+(B-a)y—ay-y? y=-y+x x=y+y
o YEXTY y=y—Xx-z =-y-y
z=ax+y*+pz
R X=a—y X=—X—ax+xx—f X=-y+a y=—x+a
y=p+z x=-2z—p z=—x—f
Z=Xy—2
S X=—X—ay z=-7—az—az’+ap z=x+p x=z—p
- g Lo .
y=x+z e Y= (-z-z+p)
z=B+Xx
TR x=-y-z y=—By—-y—(a+pB)y+ay? y=x x=y
) y=X y=-y-z =-y-y
z=a(y—y?)— Bz
The jerky dynamics of model | can be converted to each . @ 1
other by a transformation with)= — (1/a)x as its first com- Y= 152" 15 a ¢ (250

ponent (cf. Table ) [or x=%(y+y+ay—y?) for the in-
versd, where a#0 must hold. Here, the corresponding .
transformation is invertible, because nonlinear terms contain- y=-§&- 1+ a
ing x do not appear in the jerky dynamics fer The trans-

formation for the jerky dynamics of model L is of the same wherea# —1 must hold.
type as for model I.

As already mentioned, the dynamical systems F and H B. Classification of simple chaotic jerky dynamics
possess identical jerky dynamics apart from the labels of the
variables. Therefore, these systems must be equivalent ar(ljclif
there must be an invertible transformation between both. Re-

(12

1
77+m§, (250

To discuss the relations of jerky dynamics that belong to
ferentdynamical systems, we consider the linear transfor-

labeling the variablesx(y,z) of model H by ¢,#,(), the mation
corresponding transformatiofgy: (X,y,z)— (€, 7,{) reads Emkixic), E=kk E=kk 6
§=xtytz, p=x—(lta)y, (=X (24)  (with k,ce R, andk#0) that moves the origin and simulta-

neously rescales variables. This transformation is the only

Since all transformations we use here are invertible an@"¢ that(i) converts a jerky dynamid$or a variablex) into

model F can be recast into two equivalent jerky dynamics,another equivalent jerky dynamid$or a new dynamical

the second jerky dynamics of F must also be equivalent te{ariable ¢, (ii) is invertible and,(iii)' i|_'_1dependent of the
system H. To obtain it from system H, however, one has téspecific form of the jerk functiod,(x,x,x). In general, Eq.
transformall variables. Therefore, it is not a jerky dynamics (26) does not convert the different jerky dynamics of Table |

for H. Using the above notation, the transformationto €ach other, but transforms them to seven basic classes of

. VY .~ jerky dynamics that differ by the type and the number of
T:(6m.0)=(y.y.y) reads explicitly terms appearing in the corresponding seven jerk functions.
Transformations between these different classes have not
been found. In Table Il the basic clasgdsnoted by JPto

1
y= 1+a(§_ ), (253 JD;) are listed as well as the models that belong to each
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TABLE Il. Basic classes of dissipative jerky dynamics.

Basic classes

Model coefficients= values for which there is irregular behavior Transformation
N[} E=kié+ kot E€+Kg
| k;=—1 ko=—2a=-0.4 ks=—2a%=—-0.08 E=2y—a
J ki=—pB=-2 ky=—aB=—4 ky=aB(l—a)=—4 E=2y+(1—a)
L ki=-1 k,=—a=-3.9 ks=a(2By—a)=-8.19 E=2BXx—«a
N ki=—y=-2 ky=—ay=-4 ks=a(2B—ay)=-4 £E=22—a
R kl:_l k2=—a=—09 k3:_B2_04 §:X
N[>} E=kidtoé+ kg
2
M ki=—1 ky=—pB=-1.7 k3——a—%——24225 §=x—§
Clz o
Q ky=B—1=-0.5 k,=B—a=-2.6 Ky=— 7= —2.4025 f=-y-5
S ki=—1 ky=—a=—4 ky=—a’B=-16 E=—az
TR ky=—B=-0.2 ko=—1 ks=— 7 (a+B)?~—0.0858 é=ay— 3 (a+pB)
JD; E=kyétkot+ ke + EE+K,
1 @ 1 1
F k;=a—1=-0.5 kp=a———1=-25 ky=—75=-0.25 Ky=5-=1 £=2x+—
1 1 1
G ky=a—1=-0.6 Kp=a—5-—1=-185 ks=—a=—0.4 ky=7_=0.625 E=x+ 5~
H Kj=a—1=-0.5 Ky—a— S—1--25 Ks=— = =—0.25 K=o =1 —oz4t
1—0’_ — — U. Z—CY_;_ — T L. 3—_5—_ . 4—5— f— Z+Z
Jp, E=kyétkob+ ket €+ K,
o} ki=—3 ky=1-a=-17 ks=—1 ke=7 E=x+3
JD; E=kyétkot+kad?+ £E
D kl:_l k2:1 k3=—a=—3 §:X
JD; E=kyétkot+ ke + Ko+ EE ks
P ky=—1 ko=1—a=-17 ke=— 3 ky=1 E=2y+1
ksz%
JD, E=KyE+kof+ a2+ KyE2+ Kot &+ EE+Ks
1 11 1
K k=a—5--1~-237 ky=a—_-5~-353 ky=—a=-0.3 k,=1 E=y+5-
1
ks=2—a=1.7 -
5 Ke=7~~0.83

class. Moreover, the concrete realization of the first compoby differentiating it with respect to time and defining the new
nent of the transformatio(26) for each model is given. Also yariapley = 2, it is of the basic form Jp. Equation(28) is

the simplest dissipative chaotic jerky dynamics chaotic over the same range &fas is Eq.(27). Conse-
quently, the simple jerky dynamic&8) is also listed in
X=—AX—X+ X2, (27)  Table Il where it is denoted by SJ. Since the jerky dynamics

SJis the simplest model of the class, H3 far as the number
of terms appearing in the jerk function is concerndd (
=0), it is interesting to check if there are other;JDodels
where the parameters, B, andy can be chosen such that
they are identical to SJ, i.ek;=—A, k,=—1 andk;=0

) are valid. It turns out that this is the case only for model N
v=—Av—v+vv (28)  with a=A"1, =3, andy=A. However, by rescaling time

which Sprott has reported in Rdfl1] fit into these classes.
Its jerk function consists only of three terms with one qua-
dratic nonlinearity. Rewriting Eq27) as[11]
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of the jerky dynamics SJ, E428), by t— A1t (which does  Therefore, simplicity of the dynamical systems does, at least
not change the direction of time in the relevant parametemn general, not correspond to simplicity of the equivalent
range, since chaotic dynamics appears for posifiyeand jerky dynamics.
substitutingv by A%y (for A#0), Eq.(28) turns into

C. Conditions that exclude chaos

v=—v-A"v+vv (29) For the seven basic classes of jerky dynamicg téhJD,
listed in Table Il, we show in this section that chaotic dy-

and still belongs to the basic class;JDEquation(29) is  namics is excluded for some ranges of the paramégers
again equivalent to model Nby choosinga=A"3 B According to the Appendix C, a jerky dynamics can, in
=1/(2A%), y=1] but also to two other jerky dynamics of general, be written as an integro-differential equation
the clags Jp. These are model3 Ufor a=A"3, By .
=1/(2A°)] and model R(for a=A"" and 8=0). In par- F: ; :f / "
ticular for model R, this means that the underlying dynami- §+0&8 1(§().&'(7).£"(n)dr, (30
cal system can exhibit irregular behavior #=0. In this . o .
case, model R has only five terms with one quadratic nonWhere the prime denotes the derivative with respect. ttt
linearity. However, the range of the parameter A~3 for ~ ¢@n be provericf. Appendix Q that the jerky dynamics that
which a route to chaotic behavior appears via a Feigenbautinderlies Eq.(30) cannot exhibit irregular dynamics if the
scenario is rather narrow. It can be determined from thdntegrandf(¢,¢’,¢") of the memory term is either positive
range OfA given in Refs.[10,11. We infer that the jerky semidefinite or negative semidefinite 'for all &' and g
dynamics(29) has a period-doubling Feigenbaum route toNext, we apply this statement to the jerky dynamics of the
chaos for 0.11% «<0.121. basic models Jpto JD;.

The jerky dynamics that belong to the same basic class Since all these models do not contaixZaterm, the inte-
are not necessarily identical. Their jerk functions do consisgrand f of Eq. (30) does not depend org”, ie., f
of the same functional form, but, in general, with different =f(¢,£"). For the model JPthe functionf reads
parameters or combinations of parameters as coefficients.
Using the values of the parameters B, andy for which f(&,&") =Ko+ k3 (32)
Sprott found chaotic behavi¢], one can easily determine
values of the coefficientss; of the basic jerky dynamics JD  and is therefore also independentgof Taking into account
to JD, that lead to a chaotic dynamics. These values of théhe above statement, we can immediately infer that chaotic
coefficients are also shown in Table II. For the classes wittflynamics cannot appear fag=0. Forks no condition can
several models, i.e., J0o JD;, we accordingly find several be given; in particularks=0 is not excluded. In fact,
distinct points in the parameter space of ths where the ~ Sprott's simplest dissipative chaotic jerky dynamics(&J
corresponding jerky dynamics exhibit chaotic behavior. ToTable 1) serves as example for a Jinodel withk;=0 that
find numerically such irregular behavior, the initial condi- can exhibit chaotic dynamics.

tions £(0), '§(0), and&(0) have to be chosen appropriately In this context, it is interesting that the jerk model
for each jerky dynamics. These initial conditions can be . .
found by applying successively the transformations of Table E=KiE+kaé+ EE+Ks (32
| and Table Il to the original initial conditions
x(0)=y(0)=2(0)=0.05 (for the models D and F t0)37] cannot show .irregular behavior at all. This also follows from
and x(0)=0.4, y(0)=—0.4, z(0)=—0.7 (for the model the theorem in Appendix C. Eq32) is very similar to the
TR) [20] that has been used to generate a chaotic solution d¥asic model Jp; the term linear in¢ has only been substi-
the original models. tuted by a term linear iig.

It should be noted that the algebraic structure of the seven For the remaining basic models Jfp JD, the structure
classes is not uniquely determined. For reasons that will besf the jerky dynamics has been chosen such that the inte-

come clear below, we have chosen them such that no ltheardrand of the memory term is of the functional form
term appears in JDand no linearé term in JB, to JD,.
Moreover, the coefficient of one quadratically nonlinear term f(£¢)=Ag+BE 2+ C. (33
of each model is chosen to be equakhta. This corresponds )
to a rescaling of the variablg and is achieved by an appro- The parametera, B, andC for each model are detgrmlned
priate choice ok in the transformatiori26). by the coefficients of the nonlinear terifs &2, andéé and

It is interesting that the transformations that convert theby the additive constant of the underlying jerky dynamics. If
models of Table | to the, in general, algebraically simplerthe corresponding terms are not preséntB, and/orC are
basic classes of jerky dynamics generate more complicatezero. From the specific for83) of f(£,&') we obtain con-
dynamical systems with a larger total number of terms ifditions on the(relative signs of the coefficientd, B, andC
substituted into the original systems. Moreover, the totathat exclude chaotic behavior of the corresponding jerky dy-
number of terms on the right-hand side of the basic jerkynamics. In particular, irregular dynamics cannot appear if
dynamics of Table Il varies from four to seven and the num-either A=0, B=0, C=0 or A<0, B<0, C<0 hold si-
ber of nonlinear terms from one to four although all the multaneously. For the jerky dynamics sJDe.g., we haveA
corresponding minimal dynamical systentexcept from =1, B=0, C=kz and we can infer that fok;>0 chaotic
model D have the same number of terms and nonlinearitiesdynamics cannot appear. This condition translates into con-
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ditions for the parametera and g of each model that is fixed points fork3<<0 andno fixed point fork;>0 indepen-
contained in the class JDFor the model M, e.g., we obtain gent ofk, andk,.
—a—1B%>0. Similar considerations hold for the other ba-
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we also have been able to derive criteria for the functionag

forrsnoo:atrheoJerr_knflér:t:_n(;T_;r;a;;;gﬁfebzr;ogc bl'eer(]ja;/cl)OIZHO transformation(6) such that it isglobally invertible. In the
, our investigati y ppll Wnfollowing, we present considerations that guided us to find

vector fields that are algebraically very simple and is, therefhe classes of transformable dynamical systems stated in Eqgs.

Iic:)rr?,sfg;efzrr?]? f%?'Tgégﬂﬁ:}%ﬁg?gfj?iﬁ;ﬁ;ltgesft:leansémcg(_g). Restricting to multivariate polynomial vector field$x)
osed above can also be used f)(/)r man z)lther th?ee!'r-1 Eq. (3) for the moment, the transformatidh, Eq. (6), is
b y also polynomial. Then we can take advantage of the Jacobian

dimensional vector fields that appear in physics, Che.m'Stryconjecture[26] to find criteria for the vector fielt/ (x), such
and ecology. Also transformations of fourth and higher- . X
that an inverse ofl exists.

dimensional vector fields to fourth and higher-order scalar The Jacobian conjecturf?6] states that a polynomial

differential equations do not pose a conceptual problem. ransformationT is globally invertible if and only if its func-
In perspective, we think that a sound understanding o[. : globally y
ional determinant fulfills

jerky dynamics might also be important in the following re-

V. CONCLUSION AND DISCUSSION

The problem of finding dynamical systems that possess an
quivalent jerky dynamics consists of finding criteria for the

spects.(i) Quite natural experimental realizations of jerky aT1 0T, T3

dynamics are obviously electric circuits with internal feed- AT1,T,,T3)

back. Here, a basic understanding of jerky dynamics can help " 5(xy.z) dyT1 dyTo  dyTs| =const 0.

to systematically “manufacture” simple nonchaotic and cha- 11 9,75 9,14

otic electric circuits(ii) An interesting, albeit technical point (A1)

s that syspematic ane_llytical_ perturbatior_1 methods are eas.ielrhe Jacobian conjecture, which has not been soundly proven
to handle if a three-dimensional dynamical system is avail- J ! y

able in a jerky form. As an example, we refer to the work by.yet’ is relateq to the foIIowi.ng WeII-kr_10W_n theorem about
Erneuxet al. [17]. (iii) Since jerky dynamics exhibit many inverse function$21]. An arbitrary multivariate transforma-

major features of chaotic dynamical behavior, a comprehent-Ion is uniquely invertible in a vicinity of the point, if the

sive investigation of jerky dynamics could lead to a deeperfunCtIonaI .determlnant IS nonzero xy. This theorem, how-
understanding of chaos and the routes to chaos. ever, provides onlyocal invertibility in the neighborhood of

Particularly challenging is a thorough understanding of2 POINt. 'I_'he Jacobian conjecture constlt_utegi(mal exten-
the simplest classes of jerky dynamics that can exhibit nons'ion of this theorem but only for polynomial transformations.

chaotic and chaotic dynamics depending on the values of the Using Eqs.(6), the functional determinant reads
entering parameters. Systematic investigations of the jerky NT1, T, Ta)

dynamics JD, 3xy.2) =(0yV1)9,(V-VV1)=(9,V1)dy(V-VVy).
. ) (A2)
§=ki&tkpé+ EE+Ks, (34 _ _
Inserting Eq.(8) yields
and JB, P
(T1,T2,Ts3)
_ ———————=(by+dyny)[(bg+3d,n)-(b*+Vn,)
E= Kokt Kok + £+ k, (35 oxy,z) TR '

_ _ +(c+byx+byy+bzz+n)-(9,Vny)]
will be reported in a subsequent stu®5]. Although these
two models are comparably simple they differ in an impor- —(byz+3dng)[(ba+dyn)- (b*+Vny)
tant point. The mode(34) possessesne fixed point inde-
pendent on the specific values of the paramekersk,, and (CHbyx+bay+bszn)- (9, VNy)].
k; (except fork,=0), while the model35) possessetno (A3)
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Next, assuming that the polynomiaj(x) is only a function wheref; and f, are functions of the indicated arguments.

of X, ny(x)=n(x), one obtains from EqA3) Any dynamical system of the functional forr(®) with
n,(x) =n,(y) that fulfills the conditiongB1) and (B2) can
AT, Ty, Tg) be recast into an equivalent jerky dynamics in its varialles
WZblZ[blZ(b23+ 97N2) + b13(D3zt d,N3) ] and y. For simultaneously existing jerky dynamics in two
other variables one has to take into account permutations of
— b1 b1a(b2pt dyny) +bya(bzo+dyna)] variables and indices, respectively.

For dynamical systems that possess simultanedhsge
jerky dynamics, further constraints apply. Clearly;(x)
=n3(z) must hold. Furthermore, in addition to E¢B1) and
?BZ) there is a third condition reading explicitly

=const~ 0. (A4)

As a consequence, one has to demand further conditions
the nonlinear polynomial$,(x) and n;(x) such that the

functional determinant is a nonzero constant. This yields the b +b —fa(Z.DaX+D B3

following condition for the terms in Eq(A4) that contain 3 (%) + baa(y) =Ta(2,baix+bazy), (B33

N2(x) andns(x), b31012— 3021+ baibss(byy—b17) #0. (B3Db)
B12(b129;N2+ b13d;N3) —b13(b12dy Ny + bl3‘9yn3):C£A5) Combining the condition$B1), (B2), and(B3), one obtains

two distinct dynamical systems that simultaneously possess

with C € R being a constant. EquatigA5) might have many threeequivalent jerky dynamics, namely, first

solutions, but, taking into account the requirement of invert-

ibility of T(x), it is necessary that the surjon,(X) X=C1+ 01X+ D1y +Dygz+ny(x), (B43)
+by3n3(x) is a function only ofx and by +b,5z, as is .

stated in Eq(10a. With this constraint, Eq(A5) is fulfilled y=Ca+bax+boyy, (B4b)
and the constan€ is zero. This can easily be shown by

taking the derivative of Eq.109 once with respect tg and 'z=c3+ bgiX+ b3sz, (B4©)

once with respect ta, multiplicating the first resulting equa-

tion by —b,3, the second by, and finally summing up with the constraints

both equations. Since the constant in E&5) is zero, Eq.

(A4) reduces to the conditiofL0b). b,#0, byz#0, by#0, bg#0, (B5)
In the above considerations, we have not made explicit

use of the assumption that the nonlineariti€g) only con-  and second

sist of polynomialsapart from the fact that the Jacobian con-

jecture has been used as starting point. Therefore, we con- X=Cq+ by X+ by +ny(X), (B6a)
jecture that they might also be valid for arbitrary nonlinear
functions n,(x), ny(x), and ns(x) that are at least twice y=Cyo+ by + bosz+ ny(Y), (B6b)

differentiable and fulfill Eq.(10g. The theorem of Sec. I

and its rigorous proof show the validity of this conjecture
and also provide some evidence for the validity of the Jaco-
bian conjecture.

-Z: C3+ b31X+ b332+ n3(Z) (B6C)
with the constraints

APPENDIX B: DYNAMICAL SYSTEMS WITH TWO OR bi,#0, by3#0, bag#O0. (B7)
THREE JERKY DYNAMICS
In general, for both system®4) and (B6) one should also
consider permutations of variables and indices, respectively.
Therefore, there are dynamical systems with nonlinearities in
each component of the vector field that possess three equiva-
lent jerky dynamics. Even if a three-dimensional dynamical
system can be transformed to a jerky dynamics in each of its
variablesx, y, andz, the resulting three scalar differential
b122(Y) +baaa(X) = f1(X,015y +bya2), (B1a) equations are, at least in general, not of the same functional
form.

To obtain dynamical systems of the cla® with two
simultaneously existing jerky dynamics, e.g.xiandy, one
has to restrict the nonlinear functiam(x) such that it is
only a function ofy, ny(x)=n,(y). This follows directly
from Eqgs.(9). In addition to the condition§10),

b2 25— b30ao+ byob1a(baz—,) #0, (B1b)

. . L APPENDIX C: NO-CHAOS THEOREM
that ensure the existence of the jerky dynamics,ithere are

also corresponding constraints for the jerky dynamicy in | goking at the functional form of a jerky dynamics

that read explicitly =J(x,x,X), it is highly nontrivial to decide whether it can
have chaotic solutions for some parameter ranges or not. On
a pragmatic level, chaotic dynamics means that the long-time
) ) evolution of the underlying system i§) bounded, i.e.,
bodb31— 051013+ b2ibos(b1—b3) #0,  (B2b)  |x(t)|<eo for all t, and(ii) neither a fixed point nor a peri-

D211 (X) +bogns(X) =5y, box+byg2), (B2
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odic or quasiperiodic solution.
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is not restricted to Newtonian jerky dynamics, ikis also

For some subclasses of jerky dynamics, however, one caallowed to depend or”. (ii) Under the conditions stated in

derive a simple criterion under what circumstances aperiodi

the theorem, not only chaotic solutions are excluded, but also

or chaotic solutions cannot appear. Consider the followingjuasiperiodic and even period-doubling solutions cannot ex-

integro-differential equation
. . t
X+Q(X,X)=J f(x(7),x"(7),x"(7))d7 (Cy

with Q) andf being differentiable functions with respect to

ist in the long-time limit.

APPENDIX D: GRO BNER BASES TECHNIQUE

In this section, we present a computational method that
can be used to check the existence and to compute symboli-

their arguments and the prime denoting the derivative wittcally the jerky dynamics of a given dynamical syst€8).

respect tor. Taking the time derivative of Eq(C1), one
obtains a jerky dynamics

X+ p(X,X)X+q(X,%,X) =0 (C2

with
P(X,X) =35 Q(X,X), (C3a
(X, %, X) = X3, Q(X,X) — F(X,X,X). (C3b)

In turn, any jerky dynamicg =J(x,x,X) can be recast in the
functional form(C2). Moreover, ifp(x,x) andq(x,x,X) are

integrable functions with respect to their arguments, it can

also be rewritten in form of Eq(C1). Then the following
holds.
Theorem. Any jerky dynamics (C2) with integrable

p(x,x) and q(x,x,X) cannot show chaotic behavior if
f(x,x,X) is either a positive or a negative semidefinite func-
tion for all x, x andx.

Proof. To demonstrate the statement, we first write Eq.
(C1 as

X+Q(x,x)=h, (C4a

h=f(x,X,X). (C4b
The condition that f(x,x,X) is positive (or negative
semidefinite for alk, x, andx and, therefore, also for al|
implies thath(t)=0 [or h(t)<0] holds for allt. Conse-
quently, h(t) is a monotonically increasingpr decreasing
function oft. In the long-time limit, the modulus df(t) can
only attain zero, a finite nonzero constant or infinity.

If lim_.|h(t)]=C< holds, the time evolution of Eq.
(C4a reduces to an effectively second-order dynamics,

X+Q(x,x)==*C, (C5)

in the long-time limitt—. By virtue of the Poincare
Bendixson theoremi2], the time evolution of Eq(C5) can
only approach a fixed poirfincluding infinity) or be peri-
odic.

If lim_,..|h(t)| =2 holds, the time evolution of EqC49

This method is based on an algebraic elimination procedure
for nonlinear polynomial equations known &somprehen-
sive) Grdoner basegechnique. For details and a mathemati-
cally rigorous treatment of this technique we refer to the
literature, especially the two monograpl#’,28. Here we
only summarize some facts and results abouthBen bases
that are needed to solve our problem.

To apply thealgebraictheory of (comprehensiveGrob-
ner bases to the problem whether a dynamical syst®m
possesses an equivalent jerky dynamics, we reformulate it in
an algebraic way. From Eqg§3) we obtain the seven equa-
tions

f1=x—Vi(x,y,2)=0, (D1a)
fa=y—Va(x,y,2)=0, (D1b)
f3=2—V4(x,y,2)=0, (D10)
f4=X—(XdyV1+ydV,1+29,V1)=0,  (D1d)
f5=y—(Xa,Vo+ydVo+23,V5) =0, (Dle
f6=2—(XxVa+YdyVa+2d,V3) =0, (D1f)

f7=X— (X205V1+ Y292V 1+ 2202V 1+ X0V 1 +YayVy

+23,V1)=0. (D1g)
Consideringx,x,X,X,y,y,Y,z,z,z as ten independent vari-
ables, the problem of finding a third-order differential equa-
tion for the variablex, P(x,x,X,X)=0, requires the elimi-
nation of the six variabley,y,y,z,z,z from the seven Egs.
(D1). In general,P(x,X,x,X)=0 is not necessarily an ex-
plicit equation. Moreover, there is no genemstematic
strategy to findP(x,x,X,X) =0 for arbitrary nonlinearities in
the vector fieldV(x). For polynomial nonlinearities, how-
ever, the Grbner bases technique applies.

The basic idea behind this technique is as follows. For a
given finite set of polynomial&={f,f,, ... ,f,} in sev-
eral variablesx;,X,, ... X, find a set of polynomials
G={g1,92, ... .gn (With n#¥m in genera), the Grobner
basis that possess the same common zeroB aad are the

eventually escapes to infinity. Fixed points and bounded somultivariate generalization of the greatest common divisor of
lutions cannot be attained, since the left-hand side of Eda finite set of polynomials in one variable. The explicit form

(C4a also has to diverge. Therefore, the proof is complete.
Two remarks are in ordefi) The theorem generalizes a
previously presented theorem in REff4] in two respects(a)

It does not require the boundednesskefQ(x,x)=0. (b) It

of the Grdoner basis polynomials depends on the choice of a
term orderof the variablex ,x,, . . . X4 that one has to fix,
e.g., one can choose the lexicographical ondexx,<- - -
<Xq. Grabner bases, however, are only well defined for
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polynomials with coefficients that are real numbers. Fofnamics is given by X=J(X,x,x) with J(X,X,X)

olynomials containing real parameters, as is mostly the case S .
?orziynamical systemg i E]ormal Orer basis canypossi- € Q(x,x,X)/c. The constant can contain parameters of the

blv | it v of beina Ghmer basis f tai | original dynamical system. Sinas*0 must hold, we obtain
y '0S€ IS property of being er basis for certain values , ongition on these parameters that corresponds t(1Bb).
of the parameters. This problem can be overcome by th

construction of acomprehensiveGrobner basis forF that r q. (11). The above statement only holds for the term

remains stable under any specialization of the paramete¥der X,x,x,x<y,y,y,z,z,z of the independent variables
[29]. In Ref.[29] an algorithm for the symbolic computation X, X, X, X, ¥, ¥, ¥, Z, z, z, where the order of the
of comprehensive Ghmer bases is given. Moreover, this right-hand variables and the left-hand variables among them-
algorithm is implemented in the experimental computer al-selves is irrelevant.

gebra system MAS (Modula-2 Algebra Systeim by Using MAS, one can symbolically compute the Gner
Weispfenning and co-workers that is freely available by ftpbasis of the polynomialéD1) and, therefore, determine the
[30]. jerky dynamics inx of the dynamical system that underlies

The jerky dynamics for a given dynamical system can be=gs. (D1) if it exists. The existence of a jerky dynamics in
found with the help of theslimination theorenf27,2§ for  the other variablesy or z can be checked by taking into
(comprehensiveGrobner bases. From this theorem one cangccount theg}' orz equation instead of the polynomiéd1g)
extract the following statement: If there éxactly onepoly-  and choosing appropriate term orders. This computational
nomial P(x,x,x,X) in the (comprehensiveGrobner basisc  approach is especially of advantage for dynamical systems
for the set of polynomial$f,,f,, ... ,f;} givenin Eqs(D1)  that do not belong to the cla$8). According to our experi-

that does not depend on the variabyeg,y,z,z,z, then there  €nce, the comprehensive Grer bases method is hard to
is a (possibly impliciy third-order ODE given by USe to _derlve criteria for the existence of an _equwalent Jer_ky
P(x, XX, X)=0 that is equivalent to the dynamical system dynamics for a general dynamical system with a polynomial
T } Sl vector field that contains all linear and nonlinear combina-
(3) that determine¢D1). If, moreover,P(x,x,x,x) is of the  tions up to some degree with arbitrary real parameters as
form cx—Q(x,x,X) (whereceR is a nonzero constant coefficients. Here, the computational effort is still too high,
then there exists mniqueand polynomial jerky dynamics for because of the large number of parameter®n for polyno-
the dynamical system that leads to EB1). The jerky dy- mials of degree twp
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