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Transformations of nonlinear dynamical systems to jerky motion and its application
to minimal chaotic flows

Ralf Eichhorn, Stefan J. Linz, and Peter Ha¨nggi
Theoretische Physik I, Institut fu¨r Physik, Universita¨t Augsburg, D-86135 Augsburg, Germany

~Received 3 March 1998!

Third-order explicit autonomous differential equations in one scalar variable or, mechanically interpreted,
jerky dynamics constitute an interesting subclass of dynamical systems that can exhibit many major features of
regular and irregular or chaotic dynamical behavior. In this paper, we investigate the circumstances under
which three dimensional autonomous dynamical systems possess at least one equivalent jerky dynamics. In
particular, we determine a wide class of three-dimensional vector fields with polynomial and non-polynomial
nonlinearities that possess this property. Taking advantage of this general result, we focus on the jerky
dynamics of Sprott’s minimal chaotic dynamical systems and Ro¨ssler’s toroidal chaos model. Based on the
interrelation between the jerky dynamics of these models, we classify them according to their increasing
polynomial complexity. Finally, we also provide a simple criterion that excludes chaotic dynamics for some
classes of jerky dynamics and, therefore, also for some classes of three-dimensional dynamical systems.
@S1063-651X~98!09710-4#

PACS number~s!: 05.45.1b, 47.52.1j, 02.30.Hq
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I. INTRODUCTION

Since Lorenz’s discovery of the appearance of determ
istic nonperiodic flow in 1963 and the emergence of chao
the middle of the 1970s, autonomous three-dimensional
namical systems play an outstanding role in modern non
ear dynamics@1–6#. These systems are still low dimension
enough that their long-time behavior, the attractor, can
visualized in the three-dimensional phase space. They
however, already complicated enough to exhibit a plethor
complex dynamical behavior such as quasiperiodic and
regular or chaotic oscillations. By virtue of the Poincar´-
Bendixson theorem@2#, two-dimensional nonlinear dynam
cal systems can only possess fixed points or perio
solutions as long-time solutions. Therefore, the transit
from the phase space dimension two to the phase spac
mension three opens a whole new world of dynamical
havior.

During the last two decades, there has been an imme
effort and success towards the identification and underst
ing of irregular or chaotic dynamics, including the routes
irregularity. In this context, thegeometric theory of dynamic
@2–5# that analyzes dynamical vector fields in terms of th
flow in phase space, and its numerical counterpart have b
proven to be particularly powerful.

There are, however, still many open basic problems e
for the case of three-dimensional dynamical systems.
example, how can we decide only on the basis of the fu
tional form of a given three-dimensional dynamical syst
whether it might possess irregular dynamics for some ran
of its parameters? Another example deals withminimal cha-
otic flows: What are the minimal functional forms of nonlin
earities in a three-dimensional dynamical system that
needed for a chaotic flow?

In 1994, a seminal investigation towards an identificat
of minimal chaotic systems was reported by Sprott@7#. Us-
ing a numerical search for three-dimensional vector fie
PRE 581063-651X/98/58~6!/7151~14!/$15.00
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with only quadratic nonlinearities, Sprott was able to ident
nineteen distinct functional forms of dynamical systems~la-
beled A to S! that show irregular dynamics and are all fun
tionally simpler than the paradigms of nonlinear dynami
the Lorenz model@8#, and the Ro¨ssler model@9#.

In several recent papers@10–14#, the problem of minimal
chaotic dynamics has been attacked from a quite differ
point of view. Here, the starting point has not been dyna
cal systems or flows, but third-order explicit scalar ordina
differential equations or, suggestively speaking,jerky dy-
namics. It is well known that any explicit ordinary differen
tial equation can be recast in the form of a dynamical sys
although the contrary does not hold in general. Therefo
jerky dynamics should also have the potential to show
regular evolution in time.

By performing a similar procedure as in Ref.@7#, Sprott
@10,11# was able to identify minimal polynomial dissipativ
and conservative jerky dynamics that show chaotic behav
Surprisingly, one quadratic nonlinearity suffices to gener
irregular evolution in time for some parameter values. Sim
lar results have also been stated by Linz@12# on the basis of
the jerky dynamics for Sprott’s model R@7#. In this paper, it
has also been shown that the jerky dynamics for the Lor
@8# and the Ro¨ssler@9# model possess a functionally compl
cated form. For an interesting introduction into jerky dyna
ics with reference to the above-mentioned studies@10–12#,
we refer to the popular article by von Baeyer@15#.

Not taken literally, jerky dynamics can also be found
nonmechanical disciplines of physics. Probably the fi
work concerning third-order differential equations that c
show irregular dynamics traces back to Moore and Spie
@16# and appeared in the context of a simple oscillator mo
of thermal convection. Jerky dynamics also appear, for
ample, in the context of the single-mode equations fo
semiconductor laser subject to large optical injection, as
ported by Erneuxet al. @17#, in geometric models for den
drite growth subject to special boundary conditions as d
cussed by Kruskal and Segur@18#, and for the non-
7151 © 1998 The American Physical Society
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relativistic motion of a radiative point charge subject to
external force~the Abraham-Lorentz equation! @19#.

Since jerky dynamics~i! show all major features tha
three-dimensional vector fields possess,~ii ! are conception-
ally simpler than dynamical systems~as we will see in this
study!, and ~iii ! are the natural generalization of oscillat
dynamics, they might serve as a useful tool to obtain furt
insight into nonchaotic and chaotic behavior including t
routes to chaos.

In this context, the following questions that are the subj
of our study arise.~i! Which three-dimensional dynamica
systems can be recast into a jerky dynamics?~ii ! Do appar-
ently functionally different dynamical systems obey simi
or even identical jerky dynamics?~iii ! If so, can jerky dy-
namics be used as a tool to classify dynamical systems?~iv!
Can we learn anything about the possible time evolution
by looking at the functional form of a jerky dynamics?

Our paper is organized as follows. In Sec. II we fix t
notation and discuss some general circumstances u
which a dynamical system cannot be transformed to uniqu
determined jerky dynamics. Section III contains, as a ma
result, a wide class of nonlinear and not necessarily poly
mial three-dimensional dynamical systems that can be re
into a jerky dynamics. Moreover, asystematicmethod of
finding the jerky dynamics is also given. Taking advanta
of the results of Sec. III, we derive in Sec. IV all existin
jerky dynamics for Sprott’s minimal chaotic models@7# and
the toroidal Ro¨ssler model@20#. Based on similarities of thei
functional forms, we classify these jerky dynamics accord
to their polynomial complexity. We also present simple co
ditions under which chaotic behavior is excluded. These
based on an elementary no-chaos theorem given in Appe
C. In Sec. V we summarize our findings.

II. BASICS

Generally speaking, an autonomous dynamical system
specified by a set ofn coupled first-order, ordinary differen
tial equations~ODEs! that are not explicitly dependent o
time t. In particular, three-dimensional dynamical syste
are specified by

ẋ5V~x!, ~1!

where x5(x,y,z)T denotes a point in a three-dimension
phase spaceG#R3, V(x) the, in general, nonlinear vecto
field of the dynamical system and the overdot the deriva
with respect to time. Specifying the initial condition
x(t50)5x0 , x(t) represents the orbit or trajectory of th
dynamical system~1! in the phase space. It is also a we
known fact@2# that any autonomousnth order ODE that is
given in an explicit form can be recast into ann-dimensional
dynamical system. In particular, third-order explicit ODEs

x̂5J~x,ẋ,ẍ! ~2!

can be immediately transformed into a dynamical system~1!

by introducing, for example,ẋ5v, v̇5a, and ȧ5J(x,v
5 ẋ,a5 ẍ) @2#. The contrary, however, is generally not tru
and constitutes the starting point of our investigation.
r

t

st

er
ly
r

o-
st

e

g
-
re
ix

is

s

l

e

Motivated by the mechanical interpretation of Eq.~2! as
evolution equation for the rate of change of the accelera
or the jerk, a third-order ODE of the form~2! that is ~i!
autonomous and~ii ! explicit is called ajerky dynamics. Ob-
viously, jerky dynamics~2! are a restricted class of all third
order ODEs and also of all third-order dynamical syste
~1!. As a necessary, but not sufficient requirement for anon-
trivial jerky dynamics that is not just the derivative of
second-order explicit autonomous ODE, the jerk functi
must depend explicitly onx. Under certain constraints, in
particular, when the accelerationẍ enters only linearly into
the jerky dynamics, it can also be interpreted as the der
tive of a one-dimensional Newtonian equation with
memory term that depends on the dynamical history of
motion @13,14#. Throughout this paper, the jerk function
supposed to be an arbitrary and, in general, nonlinear fu
tion of its variablesx, ẋ, and ẍ that is well defined for all
x, ẋ, ẍ.

One main subject of this paper is~i! to find classes of
three-dimensional dynamical systems

ẋ5V1~x,y,z!, ~3a!

ẏ5V2~x,y,z!, ~3b!

ż5V3~x,y,z! ~3c!

that can be recast into anequivalentjerky dynamics~2! and
~ii ! to determine a systematic transformation method to
tain Eq. ~2! from Eq. ~3! if it exists at all. We call a jerky
dynamics in the variablex, Eq. ~2!, equivalentto the dy-
namical system~1! or ~3! if, for the same initial conditions,
the signalsx(t) generated by Eqs.~2! and ~3! are identical.

Trying to calculate the equivalent jerky dynamics~2! for a
dynamical system~3!, four distinct situations can appear:

~i! There is no jerk functionJ(x,ẋ,ẍ) that is well defined
in the sense that it is free of singularities for allx, ẋ, andẍ.
Therefore, there is no equivalent jerky dynamics althoug
transformation to an implicit third-order ODE might be po
sible.

~ii ! The equivalent jerky dynamics must be defined diffe
ently for distinct regions of the phase spaceG. As an ex-
ample for this case consider the dynamical systemẋ5x

1y, ẏ5z2, ż5x1xz. Rewriting this system into a jerky

dynamics~2! in x leads tox̂5 ẍ12x( ẍ2 ẋ)12xAẍ2 ẋ for

the regionz>0 and x̂5 ẍ12x( ẍ2 ẋ)22xAẍ2 ẋ for z,0.
Such jerky dynamics are hard to handle and, therefore,
not be taken into consideration throughout this paper.

~iii ! There is a well-defined and unique jerky dynamics
x that is obtained from a dynamical system~3! by a nonin-
vertible transformation of variables. An example for this ca
is ẋ5x1y, ẏ5z2, andż5xz. Deriving theẋ equation with
respect to time and usingẏ5z2, we obtainẍ5 ẋ1z2. Further
derivation and insertion of theż equation yields the unique

and well-defined jerky dynamicsx̂5 ẍ12x( ẍ2 ẋ). From the
equations forẋ and ẍ, however, we observe that two differ
ent points (x,y,6z) of the phase spaceG of the original
dynamical system are mapped onto one single value of
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jerk functionJ(x,ẋ,ẍ)5 ẍ12x( ẍ2 ẋ). Therefore,two differ-
ent trajectories of the dynamical system correspond toone
trajectory of its jerky dynamics if interpreted as a dynami
system.

~iv! There is a well-defined and unique jerky dynamics
x that is obtained from a dynamical system~3! by aglobally
invertible transformation. In this case, it is clear that the
pological structure, e.g., periodicity or irregularity, of th
trajectories of the system~3! is transfered to the solutions o
the equivalent jerky dynamics.

As an aside we note that these considerations sugge
distinction between two different, more detailed definitio
of equivalence of a dynamical system~3! and a jerky dynam-
ics ~2!: ~i! A dynamical system~3! and a jerky dynamics~2!
are dynamically equivalent, if both describe the same dy
namical behavior of the variablex. ~ii ! A dynamical system
~3! and a jerky dynamics~2! are topologically equivalent, if
any trajectory of the dynamical system belongs exactly
one trajectory of the jerky dynamics if interpreted as dyna
cal system and vice versa. Dynamical equivalence requ
the existence of a unique and well-defined jerk funct
J(x,ẋ,ẍ). For topological equivalence there must also exis
globally invertible, ~at least! continuous transformation be
tween the dynamical system~3! and the jerky dynamics~2!.
If, moreover, this transformation is a diffeomorphism, i.
invertible and differentiable, the dynamical system~3! and
the jerky dynamics~2! should be calleddiffeomorphically
equivalent. Obviously, topological or diffeomorphic equiva
lence implies dynamical equivalence. The converse, h
ever, is not true.

Throughout this paper, the concept ofequivalent jerky
dynamicsalways refers to jerky dynamics of the latter typ
~iv!, i.e., to topologically equivalent jerky dynamics~apart
from Appendix D!. Moreover, the guiding reasoning in con
structing classes of dynamical systems~3! that possess a
least one equivalent jerky dynamics~2! is based on the ex
istence of an invertible transformation between both.

III. TRANSFORMABLE DYNAMICAL SYSTEMS

In this section we present a wide class ofnonlinear dy-
namical systems that can be recast into a jerky dynamic
invertible and, in general,nonlinear transformations. As al-
ready mentioned, any jerky dynamics~2! can be rewritten in
the form of a dynamical system

u̇5W~u! ~4!

by introducingu5(x,v,a)T andW(u)5@v,a,J(x,v,a)#T. If
there is a jerky dynamics~2! or, equivalently, a dynamica
system ~4! for the system~3!, then there must also be
transformationT5(T1 ,T2 ,T3)T:x°u of variables

u5T~x! ~5!

that converts the original dynamical system~3! to the dy-
namical system~4!. From Eqs.~3!, ~4!, and~5! we can read
off the components ofT,

T1~x!5x, ~6a!

T2~x!5V1~x!, ~6b!
l
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T3~x!5 ẋ•¹V1~x!5V~x!•¹V1~x!, ~6c!

with ¹5(]x ,]y ,]z)
T. Obviously, the transformationT de-

pends on the structure of the vector fieldV(x) of the original
dynamical system~3!. It can be calculated for any arbitrar
vector field. In order to find an equivalent jerky dynami
from ẋ5V(x), however, there must also be a uniquely d
termined inverse transformationT215(T1

21 ,T2
21 ,T3

21)T:
u°x given by

x5T21~u! ~7!

such thatT21 maps the system~4! onto~3!. By virtue of Eqs.
~6!, the condition of invertibility ofT is effectively a con-
straint on the general form of the vector fieldV(x), and,
therefore, defines the dynamical systems that posses
equivalent jerky dynamics.

In the following, it proves convenient to distinguish e
plicitly between the linear and nonlinear parts of the vec
field. Therefore, we write it in the general form

V~x!5c1Bx1n~x!, ~8!

wherecPR3 is a vector of constants,BPR333 a matrix with
constant coefficients bi j ( i , j 51,2,3) and n(x)
5@n1(x),n2(x),n3(x)#T a three-dimensional vector of solel
nonlinear functions inx,y,z that are at least twice differen
tiable and do not contain additive constants. Then, the
lowing holds.

Theorem.Any dynamical system of the functional form

ẋ5c11b11x1b12y1b13z1n1~x!, ~9a!

ẏ5c21b21x1b22y1b23z1n2~x!, ~9b!

ż5c31b31x1b32y1b33z1n3~x! ~9c!

with ni ( i 51,2,3) being nonlinear functions of the indicate

arguments can be reduced to a jerky dynamics,x̂

5J(x,ẋ,ẍ), if the conditions

b12n2~x!1b13n3~x!5 f ~x,b12y1b13z! ~10a!

with f being an arbitrary function of the indicated argumen
and

b12
2 b232b13

2 b321b12b13~b332b22!Þ0 ~10b!

hold.
Before we prove the statement we remark the followin

~i! From Eq.~9a! we see that the variablesy andz are only
allowed to enterlinearly into the ẋ equation.~ii ! An impor-
tant special case of the dynamical system~9! is obtained by
settingb1350. Then the condition~10b! reduces to

b12Þ0, b23Þ0. ~11!

Moreover, it follows from Eq.~10a! that in this case the
nonlinearity n2(x) is solely a function ofx and y, while
n3(x) can be an arbitrary function ofx. Altogether, the dy-
namical system~9! therefore reads
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ẋ5c11b11x1b12y1n1~x!, ~12a!

ẏ5c21b21x1b22y1b23z1n2~x,y!, ~12b!

ż5c31b31x1b32y1b33z1n3~x!. ~12c!

The functional form of Eqs.~12! can also be obtained from
Eq. ~9! by using the obviously invertible transformationh
5y1(b13/b12)z, since Eq.~10a! is valid and, therefore, the
function f (x,b12y1b13z) corresponds to the nonlinearit
n2(x,h) in the newḣ equation.

Proof. The demonstration of the theorem requires th
steps: the calculation of the transformationT and its inverse
T21 and, finally, the derivation of the jerky dynamics. Th
transformationT can immediately be obtained from the d
namical system~9! by virtue of Eqs.~6!,

T1~x!5x, ~13a!

T2~x!5c11b1
•x1n1~x!, ~13b!

T3~x!5c•b11b1
•b1x1b1

•b2y1b1
•b3z1b1

•n~x!

1@c11b1
•x1n1~x!#]xn1~x!. ~13c!

For convenience, we have introduced in Eq.~13! the notation

bi5~bi1 ,bi2 ,bi3!T ~ i 51,2,3! ~14a!

for the row vectors and

bj5~b1 j ,b2 j ,b3 j !
T ~ j 51,2,3! ~14b!

for the column vectors of the matrixB5(bi j ) introduced in
Eq. ~8!. The dot denotes the scalar product.

To calculate the inverse transformationT21, we have to
solve Eqs. ~13! with respect tox, y, and z. Since x
5T1(x) and Eq.~13a! hold and, therefore,T1 mapsx only
onto itself, solely the second and third components ofT and
the variablesy and z need to be considered whilex can be
handled like a simple parameter. To solve Eqs.~13b! and
~13c! with respect toy and z, both variables should ente
only linearly into T2 and T3 . In T3 , however, nonlinear
terms are present that containy and z. Since we want to
determiney and z as functions ofu, this does not cause
problem if these nonlinearities can be replaced by terms ou.
This explains why one has to demand the condition~10a!
since in this case the partb1

•n(x) of Eq. ~13c! can be written
as b11n1(x)1 f (x,b12y1b13z). Using Eq. ~13b! and v
5T2(x), the second argument off can be substituted by a
expression that solely depends onx andv. Next, again using
v5T2(x) and Eq.~13b! we can rewrite the second line o
Eq. ~13c! as v]xn1(x). As a consequence,T3 depends lin-
early ony andz. Taking into account Eq.~5!, the second and
third component of the transformationT, ~13b! and ~13c!,
can therefore be written as

S v

aD 5S r ~x!

s~x,v !
D 1MS y

zD ~15!

with the abbreviations
e

r ~x!5c11b11x1n1~x!, ~16a!

s~x,v !5c•b11b1
•b1x1v]xn1~x!1b11n1~x!

1 f „x,v2r ~x!… ~16b!

and the matrix

M5S b12 b13

b1
•b2 b1

•b3
D . ~17!

Therefore, the problem of calculatingT21 is reduced to a
simple matrix inversion. The condition that is necessary
invertibility of M is given by detM5b12

2 b232b13
2 b32

1b12b13(b332b22)Þ0. This is exactly the condition~10b!.
Since we require that Eq.~10b! holds, it follows that the
inverse ofM and, therefore, also the inverse transformat
T21 exist. Consequently, from Eq.~15! one can finally cal-
culateT21 by additionally taking into account Eq.~7!. The
result reads

T1
21~u!5x, ~18a!

T2
21~u!5$c•b1b132c1b1

•b31~b12A322b13A22!x

1@b1
•b31b13]xn1~x!#v2b13a

2~b12b231b13b33!n1~x!

1b13f „x,v2r ~x!…%/detM, ~18b!

T3
21~u!5$c1b1

•b22c•b1b121~b12A332b13A23!x

2@b1
•b21b12]xn1~x!#v1b12a

1~b12b221b13b32!n1~x!

2b12f „x,v2r ~x!…%/detM, ~18c!

whereAi j denotes theadjunctor the cofactor to the elemen
bi j of the matrixB @21,22#.

The general form of the jerky dynamics corresponding
the dynamical system~9! can be obtained by the following
procedure. The derivative of the third component of Eq.~5!
with respect to time reads

ȧ5 x̂5V~x!•¹T3~x!. ~19!

Since ȧ5 x̂5J(u) holds, Eq.~19! yields the jerk function
J(u). The expression~19!, however, still depends ony and
z, so that we must insert the inversesy5T2

21(u) and z
5T3

21(u) to obtainJ as a function ofu. A straightforward,
but somewhat tedious calculation then leads to the final
sult for the jerky dynamics. Using the matrixA5(Ai j ) ~with
the adjunctsAi j of B) and accordingly to Eq.~14! defined
row and column vectorsA i andA j , it reads

J~u!5g~x,v !a1h~x,v !v1k~u! ~20!

with

g~x,v !5trB1]xn1~x!1 f 8†x,v2r ~x!‡, ~21a!
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h~x,v !52trA2~b221b33!]xn1~x!1]xf „x,v2r ~x!…

1v]x
2n1~x!1@b111]xn1~x!# f 8„x,v2r ~x!…,

~21b!

k~u!5c•A11b1
•A1x1A1•n„x,T2

21~u!,T3
21~u!…,

~21c!

and]xf denoting the derivative with respect tox only of the
first argument off , f 8 the derivative with respect to th
second argument off and tr the trace of a matrix. If the
nonlinear functionsn2 or n3 in k(u) depend ony or z, one
has to insert the inverse transformationsy5T2

21(u) and
z5T3

21(u), Eqs.~18b! and ~18c!. This completes the proof
Several remarks are in order.
~i! If the condition ~10b! does not hold, i.e.,b12

2 b23

2b13
2 b321b12b13(b332b22)[0, the corresponding dynam

cal system~9! describes an effectively two-dimensional d
namics. This can be seen as follows. If bothb12 andb13 are
equal to zero, the first component of Eq.~15! reduces to the
first-order ODEv5 ẋ5r (x). If, however, e.g.,b12Þ0 holds,
one can solve the first of Eqs.~15! with respect toy and
insert the resulting equation into the second componen
Eq. ~15!. Then, due tob12

2 b232b13
2 b321b12b13(b332b22)

50, the z term vanishes and it remains the second-or
ODE a5 ẍ5s(x,ẋ)1(1/b12)b

1
•b2@ ẋ2r (x)#.

~ii ! For the special caseb1350, i.e., no dependence onz in
Eq. ~9a!, Eq. ~18b! does not depend ona and f „x,v
2r (x)…. Moreover, in this case the nonlinear functionn3(x)
does not appear in the transformationT, Eqs. ~13!. There-
fore, also the inverseT21 cannot containn3(x). This can be
seen from Eq. ~10a!, which reduces to f (x,b12y)
5b12n2(x,y) for b1350. Consequently, Eqs.~21a! and~21b!
do also not depend onn3(x) if b1350 holds. Additionally,
one obtainsf 85]yn2 for the derivativef 8.

~iii ! The partg(x,v)a of the jerk function~20! does not
contain all terms that are linear ina. Linear and nonlinear
terms in a can also appear ink(u) after insertion of the
inversesT2

21 andT3
21 into the nonlinear functionsn(x). In

the same way also linear and nonlinear terms inv can be
contained ink(u).

~iv! From Eq.~21c! follows that an additive constant term
in the jerk function~20! can only appear ifcÞ0 and, there-
fore, if the original dynamical system also contains an ad
tive constant term.

~v! Consider the functionsn(x) to be polynomials of a
certain degreed.1. Then, the transformation to the jerk
dynamics does not necessarily conserve the degree o
polynomials entering into the jerk function.

~vi! Two special cases are included in the function
forms of the dynamical systems, Eqs.~9! and~12!, the trans-
formations, Eqs.~13! and ~18!, and the jerk function, Eq
~20!. First, by settingn(x)[0 in Eq. ~9!, one directly infers
that any linear dynamical system can always be convert
into an equivalent jerky dynamics inx if it fulfills the con-
dition ~10b!. Then, we can read off the jerk function from
Eqs.~20! and ~21!,

J~u!5c•A11b1
•A1x2trAv1trBa. ~22!
of

r

i-

he

l

Needless to mention, the jerk function of linear dynamic
systems is also linear. The second special case refers tonon-
linear dynamical systems that can be converted into a je
dynamics bylinear transformations. Only if the condition
n1(x)[0 andn2(x,y)[0 hold for the system~12!, the trans-
formation T, Eq. ~13!, and its inverseT21, Eq. ~18!, are
linear. This agrees with results found in Ref.@13# where,
however, only Newtonian jerky dynamics were consider
and, therefore, also the general functional form ofn3(x) has
been restricted.

~vii ! It is possible that a dynamical system that is co
tained in the class specified by~9! can be converted simul
taneously into two or even three jerky dynamics in differe
variables ~the jerky dynamics in one certain variable
unique, if it exists!. Then, however, additional restriction
apply. From the structure of the dynamical systems that p
sess a jerky dynamics inx, Eqs.~9!, we see that for a simul-
taneous existence of a jerky dynamics iny and/or z, it is
necessary thatn2(x)5n2(y) and/or n3(x)5n3(z) hold.
Moreover, there are additional conditions for each variably
and/or z that are similar to Eq.~10!. Details are given in
Appendix B. For the case of three simultaneous jerky d
namics, the set of all conditions leads to two formally diffe
ent dynamical systems~apart from certain permutations o
variables!. Also here, we refer to Appendix B, in particula
Eqs.~B4! and ~B6!.

The above theorem constitutes an important tool in t
respects.~i! Given a specific dynamical system, one can d
cide only on the basis of the functional form of its vect
field V(x) if it belongs to the class specified by Eq.~9! and,
therefore, possesses an equivalent jerky dynamics inx. Here,
also an exchange of the variablesy andz and the indices 2
and 3, respectively, has to be taken into account. The je
dynamics can immediately be calculated by using Eqs.~20!
and ~21!. ~ii ! It can be possible that the given dynamic
system possesses a jerky dynamics iny or z, but not inx.
This can also be verified with the help of the Eqs.~9! by
considering all permutations of variables (x,y,z) and indices
(1,2,3), respectively. If, e.g., after exchangingx andy ~and
the indices 1 and 2), the given dynamical system is of
form ~9!, we can conclude that it possesses a jerky dynam
in y. Equation~20! can be used to determine it.

IV. MINIMAL CHAOTIC FLOWS

In this section, we apply the results of Sec. III on t
transformability of the dynamical systems, Eq.~9!, to the
nonlinear dynamical systems A to S found by Sprott@7# and
a system of Ro¨ssler@20# that exhibits toroidal chaos~denoted
by TR!. These models are minimal dynamical systems t
can show chaotic behavior for some parameter range w
minimal is understood in an algebraic sense. They have o
five terms with two quadratic nonlinearities~models A to E!
or six terms with one quadratic nonlinearity~models F to S
and TR!. Moreover, Sprott also has found dynamical syste
with five terms and only one quadratic nonlinearity that a
chaotic in a certain parameter range@10,11#. These models
are already given in form of a jerky dynamics. Zhang a
Heidel @23# have shown that three-dimensional dissipat
quadratic systems with less than five terms cannot exh
chaotic behavior.
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The nineteen models of Sprott and the toroidal Ro¨ssler
model are given in the second column of Table I. In Spro
models@7# we have substituted all coefficients that are n
equal to61 as well as numerical constants by paramet
that are denoted by greek letters. Using the results of Sec
we infer that the models A to C and E do not belong to
class of dynamical systems~9!. On the other hand, we ca
analytically calculate all existing equivalent jerky dynami
for each of the systems D and F to S and TR. The resul
jerky dynamics as well as the corresponding transformati
T and their inversesT21 are also given in the third, fourth
and fifth columns of Table I. The method of comprehens
Gröbner bases described in appendix D has been use
verify whether there are additionally equivalent jerky d
namics that are not contained in the class~9! and, simulta-
neously, to check the analytical results. It turns out thatall
existing jerky dynamics are of the type being described
Eqs.~9!.

The entry ‘‘none’’ for the models A, B, C, and E mean
that there areno equivalent jerky dynamics for these system
in the sense that the jerk function is a nonsingular and p
nomial expression. Therefore, only one of the models w
two quadratic nonlinearities, namely, system D, can be c
verted into an equivalent jerky dynamics. This is mainly d
to the fact that two of the total of five terms contained
these models are nonlinear. This leads, in general, to a
of sufficiently many linear terms that are necessary for
existence of the inverse transformation. On the other ha
any system with six terms and only one nonlinearity~F to S
and TR! can be recast into at least one jerky dynamics. T
models F, I, and L possess even two.

If, for a certain model, Eq.~10b! yields a condition on the
parameters, it is possible that the inverse transformation,
therefore, also the jerky dynamics, does not exist for so
parameter values. In fact, this occurs for the system F
a521 and for I, L, and S ifa50. In the cases I, L, and S
this can also be read off from the form of the dynamic
system since, fora50, they do not describe an effective
three-dimensional dynamical behavior. Therefore, a je
dynamics is not well defined in these cases. This fact tra
fers to the specific structure of the corresponding jerky
namics, which reduce to one- or two-dimensional dynam
equations or are not defined ifa50. As well, the dynamics
of model F is effectively two dimensional ifa521. This
can be seen from the corresponding transformation that le
to the jerky dynamics inx.

From Table I one can also see that most of the trans
mations are linear~models D, F~the jerky dynamics inx),
G, I, L, M, O, Q, R, S, and TR!, solely one contains a cubi
term ~model P! and the remaining are quadratic. In contra
to that, all derived jerky dynamics have only quadratic no
linearities. Moreover, it is interesting that not all of the s
possible quadratic combinations ofx, ẋ, ẍ appear in the
models. Terms likeẋẍ and ẍ2 are missing. The absence o
the ẍ2 term means that all models are even Newtonian je
@14#.

A. Relations between the jerky dynamics

Comparing the jerky dynamics of Table I, one observ
that some of them look rather similar as far as the functio
s
t
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form of the jerk functions is concerned. Consider, e.g.,
jerky dynamics of system J and the jerky dynamics iny of
model I. Both consist of the same terms; they only diff
with respect to their coefficients. Also the jerky dynamics
model L ~in x) and of N are of the same functional form
apart from an additional nonzero constant. The system
and H possess evenidentical jerky dynamics. Furthermore
there are three models~F, I, and L! that possess two equiva
lent jerky dynamics that contain similar terms. These obs
vations raise the question of whether there are relations
tween different~but similar! jerky dynamics, or if there are
even invertible transformations that map them onto e
other.

To discuss this point in more detail, we consider a tra
formationTJ :(x,ẋ,ẍ)°(j,j̇,j̈) with

j5TJ,1~x,ẋ,ẍ!, ~23a!

j̇5TJ,2~x,ẋ,ẍ!, ~23b!

j̈5TJ,3~x,ẋ,ẍ! ~23c!

that maps a jerky dynamicsx̂5Jx(x,ẋ,ẍ) onto another jerky

dynamicsĵ 5Jj(j,j̇,j̈). Such a transformation is complete
determined by its first componentTJ,1 and the jerk function
Jx . The second and third componentsTJ,2 andTJ,3 are only
derivatives ofTJ,1 with respect to time and the jerk functio

Jx must be used to substitutex̂ terms that appear after eac
derivation. Therefore, the transformation~23! contains only
one independent component that can be chosen aj

5TJ,1(x,ẋ,ẍ). This property and the condition of invertibil
ity strongly restrict the class of possible transformations~23!
between different jerky dynamics. Therefore, it is only po
sible for very special cases to convert similar jerky dynam
to each other by invertible transformations.

However, different jerky dynamics that belong to th
samedynamical system can always be transformed to e
other by an invertible transformation. This follows from th
fact that the jerky dynamics themselves are obtained fr
the dynamical system via invertible transformations. For
lustration, assume that we have a dynamical system that
sesses two equivalent jerky dynamics~like the models F, I,
and L! for its variables, say,x andy. Suppose that the jerky
dynamics are calculated from the dynamical system by
invertible transformations Tx :(x,y,z)°(x,ẋ,ẍ) and
Ty :(x,y,z)°(y,ẏ,ÿ). Then, we can immediately write
down the transformationTJ that maps the jerky dynamics i
x to the one iny as a combination ofTx

21 and Ty , TJ

5Ty+Tx
21 . Moreover, since we havey5TJ,1(x,ẋ,ẍ) and

alsoy5Tx,2
21(x,ẋ,ẍ), one can immediately read off the cha

acteristic first component ofTJ from Tx
21 . Analoguous ar-

guments are valid for the inverseTJ
21 .

For model F, the first component of the transformati
between its jerky dynamics reads~cf. Table I! x52 ẏ1ay

„or y5@1/(11a)#( ẍ1 ẋ1x2x2) for the inverse…, wherea
Þ21 must hold. Invertibility of this transformation is base
on the property of the jerky dynamics fory that it can be

written asŷ5(a21)ÿ1(a21)ẏ2y2(2 ẏ1ay)2.
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TABLE I. Minimal models and their jerky dynamics.

Model Equations Jerky Transformations Inverse
dynamics transformations

A ẋ5y none none none
ẏ52x1yz
ż5a2y2

B ẋ5yz none none none
ẏ5x2y

ż5a2xy

C ẋ5yz none none none
ẏ5x2y
ż5a2x2

D ẋ52y x̂5xẍ2 ẋ2a ẋ21x2 ẋ52y y52 ẋ
ẏ5x1z ẍ52x2z z52x2 ẍ

ż5xz1ay2

E ẋ5yz none none none
ẏ5x22y
ż5a2bx

F ẋ5y1z x̂5(a21)ẍ1(a21)ẋ2x ẋ5y1z y5
1

11a
( ẍ1 ẋ1x2x2)

ẏ52x1ay 2ax212xẋ ẍ52x1x21ay2z z5
1

11a
(2 ẍ1a ẋ2x1x2)

ż5x22z
ŷ5(a21)ÿ1(a21)ẏ2y ẏ5ay2x x52 ẏ1ay

2a2y212ayẏ2 ẏ2 ÿ5(a221)y2ax2z z52 ÿ1a ẏ2y

G ẋ5ax1z x̂5(a21)ẍ1(a21)ẋ2x ẋ5ax1z y5 ẍ2a ẋ1x
ẏ5xz2y 2ax21xẋ ẍ5(a221)x1y1az z5 ẋ2ax
ż52x1y

H ẋ52y1z2 ẑ5(a21)z̈1(a21)ż2z ż52z1x x5 ż1z
ẏ5x1ay 2az212zż z̈5z1z22x2y y52 z̈2 ż1z2

ż5x2z

I ẋ52ay x̂52 ẍ2a ẋ22ax2
1
a

ẋ2 ẋ52ay y52
1
a

ẋ

ẏ5x1z ẍ52ax2az z52
1
a

ẍ2x
ż5x1y22z

ŷ52 ÿ2a ẏ22ay12yẏ ẏ5x1z x5
1
2

( ÿ1 ẏ1ay2y2)

ÿ52ay1y21x2z z5
1
2

(2 ÿ1 ẏ2ay1y2)

J ẋ5az ŷ52b ÿ1(12a) ẏ2aby12yẏ ẏ52by1z x52 ÿ2b ẏ1y1y2

ẏ52by1z ÿ5(11b2)y1y22x2bz z52 ÿ2 ẏ1yẏ1y2

ż52x1y1y2

K ẋ5xy2z ŷ5(a21)ÿ1(a21)ẏ2y ẏ52y1x x5 ẏ1y
ẏ5x2y 1yÿ1(22a)yẏ2ay21 ẏ2 ÿ5y2x2z1xy z52 ÿ2 ẏ1yẏ1y2

ż5x1az

L ẋ5y1az x̂52 ẍ2a ẋ2ax12bxẋ1ag ẋ5y1az y52 ẍ2ax1bx21ag

ẏ5bx22y ẍ52ax1bx22y1ag z5
1
a

( ẍ1 ẋ1ax2bx22ag)
ż5g2x

ẑ52 z̈1(2bg2a) ż2az ż5g2x x5g2 ż
2b ż22bg2 z̈52az2y y52 z̈2az

M ẋ52z x̂52 ẍ2b ẋ2bx1x22a ẋ52z y52 ẍ2bx2a
ẏ52x22y ẍ52bx2y2a z52 ẋ

ż5a1bx1y
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TABLE I. ~Continued!.

Model Equations Jerky Transformations Inverse
dynamics transformations

N ẋ52ay ẑ52g z̈2a ż2agz12zż1ab ż52gz1y1b x5 z̈1g ż2z2

ẏ5x1z2 z̈5g2z1z21x2gy2bg y5 ż1gz2b
ż5b1y2gz

O ẋ5y x̂5xẍ1(12a) ẋ2x2x2 ẋ5y y5 ẋ
ẏ5x2z ẍ5x2z z52 ẍ1x

ż5x1xz1ay

P ẋ5ay1z ŷ52yÿ1(12a) ẏ2y12ẏ22y2 ẏ5y22x x52 ẏ1y2

ẏ52x1y2 ÿ52y32ay22yx2z z52 ÿ12yẏ2ay
ż5x1y

Q ẋ52z ŷ5(b21)ÿ1(b2a) ẏ2ay2y2 ẏ52y1x x5 ẏ1y
ẏ5x2y ÿ5y2x2z z52 ÿ2 ẏ

ż5ax1y21bz

R ẋ5a2y x̂52 ẍ2ax1xẋ2b ẋ52y1a y52 ẋ1a
ẏ5b1z ẍ52z2b z52 ẍ2b
ż5xy2z

S ẋ52x2ay ẑ52 z̈2a ż2az21ab ż5x1b x5 ż2b
ẏ5x1z2 z̈52x2ay

y5
1
a

(2 z̈2 ż1b)
ż5b1x

TR ẋ52y2z ŷ52b ÿ2 ẏ2(a1b)y1ay2 ẏ5x x5 ẏ
ẏ5x ÿ52y2z z52 ÿ2y

ż5a(y2y2)2bz
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The jerky dynamics of model I can be converted to ea
other by a transformation withy52(1/a) ẋ as its first com-
ponent ~cf. Table I! @or x5 1

2 ( ÿ1 ẏ1ay2y2) for the in-
verse#, where aÞ0 must hold. Here, the correspondin
transformation is invertible, because nonlinear terms cont
ing x do not appear in the jerky dynamics forx. The trans-
formation for the jerky dynamics of model L is of the sam
type as for model I.

As already mentioned, the dynamical systems F and
possess identical jerky dynamics apart from the labels of
variables. Therefore, these systems must be equivalent
there must be an invertible transformation between both.
labeling the variables (x,y,z) of model H by (j,h,z), the
corresponding transformationTFH:(x,y,z)°(j,h,z) reads

j5x1y1z, h5x2~11a!y, z5x. ~24!

Since all transformations we use here are invertible
model F can be recast into two equivalent jerky dynam
the second jerky dynamics of F must also be equivalen
system H. To obtain it from system H, however, one has
transformall variables. Therefore, it is not a jerky dynami
for H. Using the above notation, the transformati
T:(j,h,z)°(y,ẏ,ÿ) reads explicitly

y5
1

11a
~z2h!, ~25a!
h

n-

H
e
nd
e-

d
,

to
o

ẏ52
a

11a
h2

1

11a
z, ~25b!

ÿ52j2
a2

11a
h1

1

11a
z, ~25c!

whereaÞ21 must hold.

B. Classification of simple chaotic jerky dynamics

To discuss the relations of jerky dynamics that belong
differentdynamical systems, we consider the linear transf
mation

j5k~x1c!, j̇5kẋ, j̈5kẍ ~26!

~with k,cPR, andkÞ0) that moves the origin and simulta
neously rescales variables. This transformation is the o
one that~i! converts a jerky dynamics~for a variablex) into
another equivalent jerky dynamics~for a new dynamical
variable j), ~ii ! is invertible and,~iii ! independent of the
specific form of the jerk functionJx(x,ẋ,ẍ). In general, Eq.
~26! does not convert the different jerky dynamics of Tabl
to each other, but transforms them to seven basic classe
jerky dynamics that differ by the type and the number
terms appearing in the corresponding seven jerk functio
Transformations between these different classes have
been found. In Table II the basic classes~denoted by JD1 to
JD7) are listed as well as the models that belong to e
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TABLE II. Basic classes of dissipative jerky dynamics.

Basic classes

Model coefficients5 values for which there is irregular behavior Transformation

JD1 ĵ 5k1j̈1k2j1jj̇1k3

I k1521 k2522a520.4 k3522a2520.08 j52y2a

J k152b522 k252ab524 k35ab(12a)524 j52y1(12a)

L k1521 k252a523.9 k35a(2bg2a)528.19 j52bx2a

N k152g522 k252ag524 k35a(2b2ag)524 j52z2a

R k1521 k252a520.9 k352b520.4 j5x

SJ k152A522.017 k2521 k350 j5v

JD2 ĵ 5k1j̈1k2j̇1j21k3

M k1521 k252b521.7 k352a2
b2

4
522.4225 j5x2

b

2

Q k15b21520.5 k25b2a522.6 k352
a2

4
522.4025 j52y2

a

2
S k1521 k252a524 k352a2b5216 j52az

TR k152b520.2 k2521 k352
1
4 (a1b)2'20.0858 j5ay2

1
2 (a1b)

JD3 ĵ 5k1j̈1k2j̇1k3j21jj̇1k4

F k15a21520.5 k25a2
1
a

21522.5 k352
a

2
520.25 k45

1
2a

51 j52x1
1
a

G k15a21520.6 k25a2
1

2a
21521.85 k352a520.4 k45

1
4a

50.625 j5x1
1

2a

H k15a21520.5 k25a2
1
a

21522.5 k352
a

2
520.25 k45

1
2a

51 j52z1
1
a

JD4 ĵ 5k1j̈1k2j̇1k3j21jj̈1k4

O k152
1
2 k2512a521.7 k3521 k45

1
4 j5x1

1
2

JD5 ĵ 5k1j̇1k2j21k3j̇21jj̈

D k1521 k251 k352a523 j5x

JD6 ĵ 5k1j̈1k2j̇1k3j21k4j̇21jj̈1k5

P k1521 k2512a521.7 k352
1
2 k451 j52y11

k55
1
2

JD7 ĵ 5k1j̈1k2j̇1k3j21k4j̇21k5jj̇1jj̈1k6

K k15a2
1

2a
21'22.37 k25a2

1
a

2
1
2

'23.53 k352a520.3 k451 j5y1
1

2a
k5522a51.7 k65

1
4a

'0.83
po

.
a

w

ics
r

t

N

class. Moreover, the concrete realization of the first com
nent of the transformation~26! for each model is given. Also
the simplest dissipative chaotic jerky dynamics

x̂52Aẍ2x1 ẋ2, ~27!

which Sprott has reported in Ref.@11# fit into these classes
Its jerk function consists only of three terms with one qu
dratic nonlinearity. Rewriting Eq.~27! as @11#

v̂52Av̈2v1vv̇ ~28!
-

-

by differentiating it with respect to time and defining the ne

variablev52ẋ, it is of the basic form JD1. Equation~28! is
chaotic over the same range ofA as is Eq.~27!. Conse-
quently, the simple jerky dynamics~28! is also listed in
Table II where it is denoted by SJ. Since the jerky dynam
SJ is the simplest model of the class JD1 as far as the numbe
of terms appearing in the jerk function is concerned (k3

50), it is interesting to check if there are other JD1 models
where the parametersa, b, andg can be chosen such tha
they are identical to SJ, i.e.,k152A, k2521 andk350
are valid. It turns out that this is the case only for model
with a5A21, b5 1

2 , andg5A. However, by rescaling time
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of the jerky dynamics SJ, Eq.~28!, by t→A21t ~which does
not change the direction of time in the relevant parame
range, since chaotic dynamics appears for positiveA) and
substitutingv by A2v ~for AÞ0), Eq. ~28! turns into

v̂52 v̈2A23v1vv̇ ~29!

and still belongs to the basic class JD1 . Equation ~29! is
again equivalent to model N@by choosing a5A23, b
51/(2A3), g51] but also to two other jerky dynamics o
the class JD1 . These are model L@for a5A23, bg
51/(2A3)] and model R~for a5A23 and b50). In par-
ticular for model R, this means that the underlying dynam
cal system can exhibit irregular behavior ifb50. In this
case, model R has only five terms with one quadratic n
linearity. However, the range of the parametera5A23 for
which a route to chaotic behavior appears via a Feigenb
scenario is rather narrow. It can be determined from
range ofA given in Refs.@10,11#. We infer that the jerky
dynamics~29! has a period-doubling Feigenbaum route
chaos for 0.111&a&0.121.

The jerky dynamics that belong to the same basic c
are not necessarily identical. Their jerk functions do con
of the same functional form, but, in general, with differe
parameters or combinations of parameters as coefficie
Using the values of the parametersa, b, andg for which
Sprott found chaotic behavior@7#, one can easily determin
values of the coefficientski of the basic jerky dynamics JD1
to JD7 that lead to a chaotic dynamics. These values of
coefficients are also shown in Table II. For the classes w
several models, i.e., JD1 to JD3 , we accordingly find severa
distinct points in the parameter space of theki ’s where the
corresponding jerky dynamics exhibit chaotic behavior.
find numerically such irregular behavior, the initial cond
tions j(0), j̇(0), andj̈(0) have to be chosen appropriate
for each jerky dynamics. These initial conditions can
found by applying successively the transformations of Ta
I and Table II to the original initial conditions
x(0)5y(0)5z(0)50.05 ~for the models D and F to S! @7#
and x(0)50.4, y(0)520.4, z(0)520.7 ~for the model
TR! @20# that has been used to generate a chaotic solutio
the original models.

It should be noted that the algebraic structure of the se
classes is not uniquely determined. For reasons that will
come clear below, we have chosen them such that no linej̇
term appears in JD1 and no linearj term in JD2 to JD7 .
Moreover, the coefficient of one quadratically nonlinear te
of each model is chosen to be equal to11. This corresponds
to a rescaling of the variablej and is achieved by an appro
priate choice ofk in the transformation~26!.

It is interesting that the transformations that convert
models of Table I to the, in general, algebraically simp
basic classes of jerky dynamics generate more complic
dynamical systems with a larger total number of terms
substituted into the original systems. Moreover, the to
number of terms on the right-hand side of the basic je
dynamics of Table II varies from four to seven and the nu
ber of nonlinear terms from one to four although all t
corresponding minimal dynamical systems~except from
model D! have the same number of terms and nonlinearit
r
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Therefore, simplicity of the dynamical systems does, at le
in general, not correspond to simplicity of the equivale
jerky dynamics.

C. Conditions that exclude chaos

For the seven basic classes of jerky dynamics JD1 to JD7
listed in Table II, we show in this section that chaotic d
namics is excluded for some ranges of the parameterski .

According to the Appendix C, a jerky dynamics can,
general, be written as an integro-differential equation

j̈1V~j,j̇ !5E t

f „j~t!,j8~t!,j9~t!…dt, ~30!

where the prime denotes the derivative with respect tot. It
can be proven~cf. Appendix C! that the jerky dynamics tha
underlies Eq.~30! cannot exhibit irregular dynamics if th
integrandf (j,j8,j9) of the memory term is either positiv
semidefinite or negative semidefinite for allj, j8 and j9.
Next, we apply this statement to the jerky dynamics of t
basic models JD1 to JD7 .

Since all these models do not contain aẍ2 term, the inte-
grand f of Eq. ~30! does not depend onj9, i.e., f
5 f (j,j8). For the model JD1 the functionf reads

f ~j,j8!5k2j1k3 ~31!

and is therefore also independent ofj8. Taking into account
the above statement, we can immediately infer that cha
dynamics cannot appear fork250. For k3 no condition can
be given; in particular,k350 is not excluded. In fact,
Sprott’s simplest dissipative chaotic jerky dynamics SJ~cf.
Table II! serves as example for a JD1 model withk350 that
can exhibit chaotic dynamics.

In this context, it is interesting that the jerk model

ĵ 5k1j̈1k2j̇1jj̇1k3 ~32!

cannot show irregular behavior at all. This also follows fro
the theorem in Appendix C. Eq.~32! is very similar to the
basic model JD1 ; the term linear inj has only been substi
tuted by a term linear inj̇.

For the remaining basic models JD2 to JD7 the structure
of the jerky dynamics has been chosen such that the i
grand of the memory term is of the functional form

f ~j,j8!5Aj21Bj821C. ~33!

The parametersA, B, andC for each model are determine
by the coefficients of the nonlinear termsj2, j̇2, andjj̈ and
by the additive constant of the underlying jerky dynamics
the corresponding terms are not presentA, B, and/orC are
zero. From the specific form~33! of f (j,j8) we obtain con-
ditions on the~relative! signs of the coefficientsA, B, andC
that exclude chaotic behavior of the corresponding jerky
namics. In particular, irregular dynamics cannot appea
either A>0, B>0, C>0 or A<0, B<0, C<0 hold si-
multaneously. For the jerky dynamics JD2 , e.g., we haveA
51, B50, C5k3 and we can infer that fork3.0 chaotic
dynamics cannot appear. This condition translates into c
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ditions for the parametersa and b of each model that is
contained in the class JD2 . For the model M, e.g., we obtai
2a2 1

4 b2.0. Similar considerations hold for the other b
sic classes.

V. CONCLUSION AND DISCUSSION

In summary, our investigations consist of two major pa
~i! In Sec. III, we have provided a broad class of thre
dimensional dynamical systems with polynomial and ev
nonpolynomial nonlinearities that possess at least
uniquely determined jerky dynamics@24#. ~ii ! In Sec. IV, we
have shown that fifteen of Sprott’s minimal chaotic dynam
cal systems@7# are in fact jerky. Moreover, we have show
that these models, the toroidal Ro¨ssler model@20#, and
Sprott’s minimal dissipative jerk model@10,11# can be clas-
sified in seven classes of jerky dynamics with increas
polynomial complexity. Based on the description of nonl
ear three-dimensional dynamical systems as jerky dynam
we also have been able to derive criteria for the functio
form of the jerk function that exclude chaotic behavior.

So far, our investigation has only been applied to kno
vector fields that are algebraically very simple and is, the
fore, far from being complete. We expect that the classifi
tion scheme for three-dimensional dynamical systems p
posed above can also be used for many other th
dimensional vector fields that appear in physics, chemis
and ecology. Also transformations of fourth and high
dimensional vector fields to fourth and higher-order sca
differential equations do not pose a conceptual problem.

In perspective, we think that a sound understanding
jerky dynamics might also be important in the following r
spects.~i! Quite natural experimental realizations of jerk
dynamics are obviously electric circuits with internal fee
back. Here, a basic understanding of jerky dynamics can
to systematically ‘‘manufacture’’ simple nonchaotic and ch
otic electric circuits.~ii ! An interesting, albeit technical poin
is that systematic analytical perturbation methods are ea
to handle if a three-dimensional dynamical system is av
able in a jerky form. As an example, we refer to the work
Erneuxet al. @17#. ~iii ! Since jerky dynamics exhibit man
major features of chaotic dynamical behavior, a compreh
sive investigation of jerky dynamics could lead to a dee
understanding of chaos and the routes to chaos.

Particularly challenging is a thorough understanding
the simplest classes of jerky dynamics that can exhibit n
chaotic and chaotic dynamics depending on the values o
entering parameters. Systematic investigations of the je
dynamics JD1 ,

ĵ 5k1j̈1k2j1jj̇1k3 , ~34!

and JD2,

ĵ 5k1j̈1k2j̇1j21k3 , ~35!

will be reported in a subsequent study@25#. Although these
two models are comparably simple they differ in an imp
tant point. The model~34! possessesone fixed point inde-
pendent on the specific values of the parametersk1 , k2 , and
k3 ~except fork250), while the model~35! possessestwo
.
-
n
e

-

g
-
s,
l

n
-
-

o-
e-
y,
-
r

f

-
lp
-

ier
l-

n-
r

f
-

he
y

-

fixed points fork3,0 andno fixed point fork3.0 indepen-
dent ofk1 andk2 .
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APPENDIX A: CONSTRUCTION OF THE SYSTEM „9…

The problem of finding dynamical systems that possess
equivalent jerky dynamics consists of finding criteria for t
transformation~6! such that it isglobally invertible. In the
following, we present considerations that guided us to fi
the classes of transformable dynamical systems stated in
~9!. Restricting to multivariate polynomial vector fieldsV(x)
in Eq. ~3! for the moment, the transformationT, Eq. ~6!, is
also polynomial. Then we can take advantage of the Jaco
conjecture@26# to find criteria for the vector fieldV(x), such
that an inverse ofT exists.

The Jacobian conjecture@26# states that a polynomia
transformationT is globally invertible if and only if its func-
tional determinant fulfills

]~T1 ,T2 ,T3!

]~x,y,z!
5U]xT1 ]xT2 ]xT3

]yT1 ]yT2 ]yT3

]zT1 ]zT2 ]zT3

U5constÞ0.

~A1!

The Jacobian conjecture, which has not been soundly pro
yet, is related to the following well-known theorem abo
inverse functions@21#. An arbitrary multivariate transforma
tion is uniquely invertible in a vicinity of the pointx0 if the
functional determinant is nonzero atx0 . This theorem, how-
ever, provides onlylocal invertibility in the neighborhood of
a point. The Jacobian conjecture constitutes aglobal exten-
sion of this theorem but only for polynomial transformation

Using Eqs.~6!, the functional determinant reads

]~T1 ,T2 ,T3!

]~x,y,z!
5~]yV1!]z~V•¹V1!2~]zV1!]y~V•¹V1!.

~A2!

Inserting Eq.~8! yields

]~T1 ,T2 ,T3!

]~x,y,z!
5~b121]yn1!@~b31]zn!•~b11¹n1!

1~c1b1x1b2y1b3z1n!•~]z¹n1!#

2~b131]zn1!@~b21]yn!•~b11¹n1!

1~c1b1x1b2y1b3z1n!•~]y¹n1!#.

~A3!
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Next, assuming that the polynomialn1(x) is only a function
of x, n1(x)5n1(x), one obtains from Eq.~A3!

]~T1 ,T2 ,T3!

]~x,y,z!
5b12@b12~b231]zn2!1b13~b331]zn3!#

2b13@b12~b221]yn2!1b13~b321]yn3!#

5constÞ0. ~A4!

As a consequence, one has to demand further condition
the nonlinear polynomialsn2(x) and n3(x) such that the
functional determinant is a nonzero constant. This yields
following condition for the terms in Eq.~A4! that contain
n2(x) andn3(x),

b12~b12]zn21b13]zn3!2b13~b12]yn21b13]yn3!5C,
~A5!

with CPR being a constant. Equation~A5! might have many
solutions, but, taking into account the requirement of inve
ibility of T(x), it is necessary that the sumb12n2(x)
1b13n3(x) is a function only ofx and b12y1b13z, as is
stated in Eq.~10a!. With this constraint, Eq.~A5! is fulfilled
and the constantC is zero. This can easily be shown b
taking the derivative of Eq.~10a! once with respect toy and
once with respect toz, multiplicating the first resulting equa
tion by 2b13, the second byb12 and finally summing up
both equations. Since the constant in Eq.~A5! is zero, Eq.
~A4! reduces to the condition~10b!.

In the above considerations, we have not made exp
use of the assumption that the nonlinearitiesn(x) only con-
sist ofpolynomialsapart from the fact that the Jacobian co
jecture has been used as starting point. Therefore, we
jecture that they might also be valid for arbitrary nonline
functions n1(x), n2(x), and n3(x) that are at least twice
differentiable and fulfill Eq.~10a!. The theorem of Sec. III
and its rigorous proof show the validity of this conjectu
and also provide some evidence for the validity of the Ja
bian conjecture.

APPENDIX B: DYNAMICAL SYSTEMS WITH TWO OR
THREE JERKY DYNAMICS

To obtain dynamical systems of the class~9! with two
simultaneously existing jerky dynamics, e.g., inx andy, one
has to restrict the nonlinear functionn2(x) such that it is
only a function ofy, n2(x)5n2(y). This follows directly
from Eqs.~9!. In addition to the conditions~10!,

b12n2~y!1b13n3~x!5 f 1~x,b12y1b13z!, ~B1a!

b12
2 b232b13

2 b321b12b13~b332b22!Þ0, ~B1b!

that ensure the existence of the jerky dynamics inx, there are
also corresponding constraints for the jerky dynamics iy
that read explicitly

b21n1~x!1b23n3~x!5 f 2~y,b21x1b23z!, ~B2a!

b23
2 b312b21

2 b131b21b23~b112b33!Þ0, ~B2b!
on

e

-

it

n-
r

-

where f 1 and f 2 are functions of the indicated argument
Any dynamical system of the functional form~9! with
n2(x)5n2(y) that fulfills the conditions~B1! and ~B2! can
be recast into an equivalent jerky dynamics in its variablex
and y. For simultaneously existing jerky dynamics in tw
other variables one has to take into account permutation
variables and indices, respectively.

For dynamical systems that possess simultaneouslythree
jerky dynamics, further constraints apply. Clearly,n3(x)
5n3(z) must hold. Furthermore, in addition to Eqs.~B1! and
~B2! there is a third condition reading explicitly

b31n1~x!1b32n2~y!5 f 3~z,b31x1b32y!, ~B3a!

b31
2 b122b32

2 b211b31b32~b222b11!Þ0. ~B3b!

Combining the conditions~B1!, ~B2!, and~B3!, one obtains
two distinct dynamical systems that simultaneously poss
threeequivalent jerky dynamics, namely, first

ẋ5c11b11x1b12y1b13z1n1~x!, ~B4a!

ẏ5c21b21x1b22y, ~B4b!

ż5c31b31x1b33z, ~B4c!

with the constraints

b12Þ0, b13Þ0, b21Þ0, b31Þ0, ~B5!

and second

ẋ5c11b11x1b12y1n1~x!, ~B6a!

ẏ5c21b22y1b23z1n2~y!, ~B6b!

ż5c31b31x1b33z1n3~z! ~B6c!

with the constraints

b12Þ0, b23Þ0, b31Þ0. ~B7!

In general, for both systems~B4! and ~B6! one should also
consider permutations of variables and indices, respectiv
Therefore, there are dynamical systems with nonlinearitie
each component of the vector field that possess three equ
lent jerky dynamics. Even if a three-dimensional dynami
system can be transformed to a jerky dynamics in each o
variablesx, y, andz, the resulting three scalar differentia
equations are, at least in general, not of the same functi
form.

APPENDIX C: NO-CHAOS THEOREM

Looking at the functional form of a jerky dynamicsx̂
5J(x,ẋ,ẍ), it is highly nontrivial to decide whether it can
have chaotic solutions for some parameter ranges or not
a pragmatic level, chaotic dynamics means that the long-t
evolution of the underlying system is~i! bounded, i.e.,
ux(t)u,` for all t, and~ii ! neither a fixed point nor a peri
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odic or quasiperiodic solution.
For some subclasses of jerky dynamics, however, one

derive a simple criterion under what circumstances aperio
or chaotic solutions cannot appear. Consider the follow
integro-differential equation

ẍ1V~x,ẋ!5E t

f „x~t!,x8~t!,x9~t!…dt ~C1!

with V and f being differentiable functions with respect
their arguments and the prime denoting the derivative w
respect tot. Taking the time derivative of Eq.~C1!, one
obtains a jerky dynamics

x̂1p~x,ẋ!ẍ1q~x,ẋ,ẍ!50 ~C2!

with

p~x,ẋ!5] ẋV~x,ẋ!, ~C3a!

q~x,ẋ,ẍ!5 ẋ]xV~x,ẋ!2 f ~x,ẋ,ẍ!. ~C3b!

In turn, any jerky dynamicsx̂5J(x,ẋ,ẍ) can be recast in the
functional form~C2!. Moreover, ifp(x,ẋ) andq(x,ẋ,ẍ) are
integrable functions with respect to their arguments, it c
also be rewritten in form of Eq.~C1!. Then the following
holds.

Theorem. Any jerky dynamics ~C2! with integrable
p(x,ẋ) and q(x,ẋ,ẍ) cannot show chaotic behavior
f (x,ẋ,ẍ) is either a positive or a negative semidefinite fun
tion for all x, ẋ and ẍ.

Proof. To demonstrate the statement, we first write E
~C1! as

ẍ1V~x,ẋ!5h, ~C4a!

ḣ5 f ~x,ẋ,ẍ!. ~C4b!

The condition that f (x,ẋ,ẍ) is positive ~or negative!
semidefinite for allx, ẋ, andẍ and, therefore, also for allt,
implies that ḣ(t)>0 @or ḣ(t)<0] holds for all t. Conse-
quently, h(t) is a monotonically increasing~or decreasing!
function of t. In the long-time limit, the modulus ofh(t) can
only attain zero, a finite nonzero constant or infinity.

If lim t→`uh(t)u5C,` holds, the time evolution of Eq
~C4a! reduces to an effectively second-order dynamics,

ẍ1V~x,ẋ!56C, ~C5!

in the long-time limit t→`. By virtue of the Poincare´-
Bendixson theorem@2#, the time evolution of Eq.~C5! can
only approach a fixed point~including infinity! or be peri-
odic.

If lim t→`uh(t)u5` holds, the time evolution of Eq.~C4a!
eventually escapes to infinity. Fixed points and bounded
lutions cannot be attained, since the left-hand side of
~C4a! also has to diverge. Therefore, the proof is comple

Two remarks are in order.~i! The theorem generalizes
previously presented theorem in Ref.@14# in two respects.~a!

It does not require the boundedness ofẍ1V(x,ẋ)50. ~b! It
an
ic
g

h

n

-

.

o-
q.
.

is not restricted to Newtonian jerky dynamics, i.e.,f is also
allowed to depend onx9. ~ii ! Under the conditions stated i
the theorem, not only chaotic solutions are excluded, but a
quasiperiodic and even period-doubling solutions cannot
ist in the long-time limit.

APPENDIX D: GRÖ BNER BASES TECHNIQUE

In this section, we present a computational method t
can be used to check the existence and to compute sym
cally the jerky dynamics of a given dynamical system~3!.
This method is based on an algebraic elimination proced
for nonlinear polynomial equations known as(comprehen-
sive) Gröbner basestechnique. For details and a mathema
cally rigorous treatment of this technique we refer to t
literature, especially the two monographs@27,28#. Here we
only summarize some facts and results about Gro¨bner bases
that are needed to solve our problem.

To apply thealgebraic theory of ~comprehensive! Gröb-
ner bases to the problem whether a dynamical system~3!
possesses an equivalent jerky dynamics, we reformulate
an algebraic way. From Eqs.~3! we obtain the seven equa
tions

f 15 ẋ2V1~x,y,z!50, ~D1a!

f 25 ẏ2V2~x,y,z!50, ~D1b!

f 35 ż2V3~x,y,z!50, ~D1c!

f 45 ẍ2~ ẋ]xV11 ẏ]yV11 ż]zV1!50, ~D1d!

f 55 ÿ2~ ẋ]xV21 ẏ]yV21 ż]zV2!50, ~D1e!

f 65 z̈2~ ẋ]xV31 ẏ]yV31 ż]zV3!50, ~D1f!

f 75 x̂2~ ẋ2]x
2V11 ẏ2]y

2V11 ż2]z
2V11 ẍ]xV11 ÿ]yV1

1 z̈]zV1!50. ~D1g!

Consideringx,ẋ,ẍ, x̂,y,ẏ,ÿ,z,ż,z̈ as ten independent vari
ables, the problem of finding a third-order differential equ

tion for the variablex, P(x,ẋ,ẍ, x̂)50, requires the elimi-
nation of the six variablesy,ẏ,ÿ,z,ż,z̈ from the seven Eqs

~D1!. In general,P(x,ẋ,ẍ, x̂)50 is not necessarily an ex
plicit equation. Moreover, there is no generalsystematic

strategy to findP(x,ẋ,ẍ, x̂)50 for arbitrary nonlinearities in
the vector fieldV(x). For polynomial nonlinearities, how-
ever, the Gro¨bner bases technique applies.

The basic idea behind this technique is as follows. Fo
given finite set of polynomialsF5$ f 1 , f 2 , . . . ,f m% in sev-
eral variablesx1 ,x2 , . . . ,xq find a set of polynomials
G5$g1 ,g2 , . . . ,gn% ~with nÞm in general!, the Gröbner
basis, that possess the same common zeros asF and are the
multivariate generalization of the greatest common divisor
a finite set of polynomials in one variable. The explicit for
of the Gröbner basis polynomials depends on the choice o
term orderof the variablesx1 ,x2 , . . . ,xq that one has to fix,
e.g., one can choose the lexicographical orderx1ax2a•••

axq . Gröbner bases, however, are only well defined
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polynomials with coefficients that are real numbers. F
polynomials containing real parameters, as is mostly the c
for dynamical systems, the normal Gro¨bner basis can poss
bly lose its property of being Gro¨bner basis for certain value
of the parameters. This problem can be overcome by
construction of acomprehensiveGröbner basis forF that
remains stable under any specialization of the parame
@29#. In Ref. @29# an algorithm for the symbolic computatio
of comprehensive Gro¨bner bases is given. Moreover, th
algorithm is implemented in the experimental computer
gebra system MAS ~Modula-2 Algebra System! by
Weispfenning and co-workers that is freely available by
@30#.

The jerky dynamics for a given dynamical system can
found with the help of theelimination theorem@27,28# for
~comprehensive! Gröbner bases. From this theorem one c
extract the following statement: If there isexactly onepoly-

nomial P(x,ẋ,ẍ, x̂) in the ~comprehensive! Gröbner basisG
for the set of polynomials$ f 1 , f 2 , . . . ,f 7% given in Eqs.~D1!

that does not depend on the variablesy,ẏ,ÿ,z,ż,z̈, then there
is a ~possibly implicit! third-order ODE given by

P(x,ẋ,ẍ, x̂)50 that is equivalent to the dynamical syste

~3! that determines~D1!. If, moreover,P(x,ẋ,ẍ, x̂) is of the

form c x̂2Q(x,ẋ,ẍ) ~where cPR is a nonzero constant!,
then there exists auniqueand polynomial jerky dynamics fo
the dynamical system that leads to Eq.~D1!. The jerky dy-
s

,

-

,

r
se

e
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e

n

namics is given by x̂5J(x,ẋ,ẍ) with J(x,ẋ,ẍ)
5Q(x,ẋ,ẍ)/c. The constantc can contain parameters of th
original dynamical system. SincecÞ0 must hold, we obtain
a condition on these parameters that corresponds to Eq.~10b!
or Eq. ~11!. The above statement only holds for the ter

order x,ẋ,ẍ, x̂ay,ẏ,ÿ,z,ż,z̈ of the independent variable

x, ẋ, ẍ, x̂, y, ẏ, ÿ, z, ż, z̈, where the order of the
right-hand variables and the left-hand variables among th
selves is irrelevant.

Using MAS, one can symbolically compute the Gro¨bner
basis of the polynomials~D1! and, therefore, determine th
jerky dynamics inx of the dynamical system that underlie
Eqs. ~D1! if it exists. The existence of a jerky dynamics
the other variablesy or z can be checked by taking int

account theŷ or ẑ equation instead of the polynomial~D1g!
and choosing appropriate term orders. This computatio
approach is especially of advantage for dynamical syste
that do not belong to the class~9!. According to our experi-
ence, the comprehensive Gro¨bner bases method is hard
use to derive criteria for the existence of an equivalent je
dynamics for a general dynamical system with a polynom
vector field that contains all linear and nonlinear combin
tions up to some degree with arbitrary real parameters
coefficients. Here, the computational effort is still too hig
because of the large number of parameters~even for polyno-
mials of degree two!.
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