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Quantum features of Brownian motors and stochastic resonance
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We investigate quantum Brownian motion sustained transport in both, adiabatically rocked ratchet
systems and quantum stochastic resonance~QSR!. Above a characteristic crossover temperatureT0

tunneling events are rare; yet they can considerably enhance the quantum-noise-driven particle
current and the amplification of signal output in comparison to their classical counterparts. Below
T0 tunneling prevails, thus yielding characteristic novel quantum transport phenomena. For
example, upon approachingT50 the quantum current in Brownian motors exhibits a
tunneling-induced reversal, and tends to a finite limit, while the classical result approaches zero
without such a change of sign. As a consequence, similar current inversions generated by quantum
effects follow upon variation of the particle mass or of its friction coefficient. Likewise, in this latter
regime of very low temperatures the tunneling dynamics becomes increasingly coherent, thus
suppressing the semiclassically predicted QSR. Moreover, nonadiabatic driving may cause
driving-induced coherences and quantized resonant transitions with no classical analog. ©1998
American Institute of Physics.@S1054-1500~98!00903-3#
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Traditional heat engines are devices to extract usefu
work out of thermal fluctuations by way of transferring
heat between equilibrium baths at different tempera-
tures. More realistic setups, involving also nonthermal
forces, have been addressed in recent years under th
label of ‘‘Brownian motors.’’ Given the typically tiny
scales of such devices, it is just one more natural ste
forward to also take into account quantum mechanical
effects. Another instance, where noise plays a construc
tive role with many astonishing finer details, is ‘‘stochas-
tic resonance,’’ arising in a large class of systems when
driven out of thermal equilibrium by a coherent „e.g.,
periodic… signal. Again, the question about quantum ef-
fects poses itself in numerous systems, and often leads
highly surprising new answers compared to a purely clas-
sical approach. We shall show here that some basic in
gredients of a quantum Brownian motor are related to
those of stochastic resonance, especially the consiste
quantum mechanical modeling of the thermal heat baths.
On the other hand, the fluctuation-driven amplification
of the response that characterizes stochastic resonance
governed by a mechanism which distinctly differs from
the physics ruling current in Brownian motors.

I. INTRODUCTION

The quest of extracting usable work from unbiased fl
tuations has provoked debates ever since the early day
Brownian motion theory.1 Prima facie speaking, periodic
structures that possess an intrinsic spatial asymmetry~so
termed ratchets! seem capable of generating the desired
rected transport. Yet, as already argued by Smoluchow
and later by Feynman,1 no stationarynet transport is possible
if only equilibrium fluctuations are at work—in perfec
agreement with the second law of thermodynamics. T
finite transport with unbiased sources can emerge only un
6291054-1500/98/8(3)/629/14/$15.00
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nonequilibrium conditions. In recent years, a great variety
such classical nonequilibrium models have been dem
strated to indeed operate,2,3 entailing a lot of interesting po-
tential applications both for biological intercellular transpo
processes and for technological devices that pump Brown
particles on periodic structures with period length scales
tending from nano to mesoscopic and even to macrosc
size. Another phenomenon where the cooperative role
~thermal or nonthermal! fluctuations, acting on systems ou
of equilibrium, provides a useful tool isstochastic resonance
~SR!.4–6 This term is given to a phenomenon which is ma
fest in nonlinear metastable systems whereby—gener
feeble—input information can be amplified, and optimize
by the assistance of noise. The effect apparently requ
three basic ingredients:~i! an energy activation barrier or
more generally, a type of threshold;~ii ! a weak coherent
input ~such as a periodic signal!; and ~iii ! a source of noise
which is inherent in the system~thermal!, or which adds to
the coherent input~nonthermal!. Given these features, th
response of the system undergoes a resonancelike beh
as a function of increasing noise strength; hence the n
stochastic resonance. The underlying basic mechan
seems fairly simple and robust, so that it is observed i
large variety of physical, chemical, and biological system

The challenge here will be to pinpoint the cooperati
role of quantum fluctuations, allowing for a distinct ne
channel for transport, namely under-barrier~-threshold!
quantum tunneling. We shall restrict the discussion to th
technologically important class of~deterministic or noisy!
rocked metastable systems. In case of a ratchet this typifi
Brownian quantum rectifier. In a double well potential a pe
riodic deterministic signal force represents the archetype
quantum stochastic resonance~QSR!. Both systems have
been investigated in recent years in the classical limit
overdamped Brownian motion,3,5,6 but only recently has the
study been extended to account for quantum fluctuatio
© 1998 American Institute of Physics
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This latter objective is by no means a trivial extension; this
due to the fact that a description for adissipativequantum
dynamics in the presence of external, time-dependent for
is required: Because no consistent phenomenological q
tum description of damped systems does exist, the appro
necessitates a firm basis that is rooted in anab initio micro-
scopic description of a total system, consisting of the me
stable subsystem of relevance coupled to a ‘‘heat-reserv
containing the microscopic degrees of freedom that provid
friction mechanism and generate fluctuational effects.

In the following series of sections we shall address t
challenge of quantum-noise-driven transport in ratchets
in rocked double well systems exhibiting SR. Mostly, thou
not exclusively, we restrict the discussion to weak therm
quantum noise and sufficiently large barrier heights so th
description on a semiclassical level is possible. Then b
phenomena can be described within aquantum rate
description.7 The current in rocked quantum ratchets is
lated to thedifferenceof two corresponding quantum rate
for forward and backward tunneling assisted~incoherent! es-
cape; in contrast, QSR is ruled by the total rate of decay
population—given by thesumof these two escape rates—
and the strength ofsynchronizationwith the deterministic
time-periodic perturbation, as measured by the frequen
dependent response function for the output signal. This
shows that the two phenomena are in factnot really closely
related with each other. It is true that both the current
sponse and QSR generally exhibit a bell-shaped beha
versus increasing thermal noise level, as measured by
temperatureT. The corresponding maxima, however, gen
ally occur at completely different temperature values, due
the different enhancement mechanismsat work.

We begin our investigation of quantum Brownia
motion-driven transport in metastable, driven systems w
the outline of an appropriate microscopic model for fricti
and thermal fluctuations.

II. TRANSPORT IN ADIABATICALLY ROCKED
QUANTUM RATCHETS

A. Model

Our starting point is a one-dimensional quantum parti
with massm in an asymmetric, periodic ‘‘ratchet’’-potentia
V(x) of periodL in the presence of a time-dependent for
field f (t) that is unbiased on average. This ‘‘bare system’
furthermore coupled via coupling strengthscj to a model
‘‘heat bath’’ of infinitely many harmonic oscillators with
massesmj and frequenciesv j (v j.0 without loss of gen-
erality! yielding the compound~system-plus-environment!
Hamiltonian

H~ t !5
p2

2m
1V~x!2xf ~ t !1HB , ~1!

HB5(
j 51

` pj
2

2mj
1

1

2
mjv j

2S xj2
cjx

mjv j
2D 2

. ~2!

Here,x andp are the coordinate and momentum operators
the quantum Brownian particle of interest, whilexj and pj

are those of the bath oscillators. As initial condition at tim
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t50 we assume that the bath is at thermal equilibrium an
decoupled from the system. The infinite number of oscil
tors guarantees an infinite heat capacity and thus a rea
able model of a bath that keeps its initial temperatureT for
all later timest.0. For the rest, it turns out that the effect
the environment on the system is completely fixed by
frequenciesv j and the ratioscj

2/mj or, equivalently, by the
so-called spectral density

J~v!5
p

2(
j 51

` cj
2

mjv j
d~v2v j !. ~3!

More details about this model for quantum dissipation can
found, e.g., in Refs. 7 and 8.

The observable of central interest in our above-defin
ratchet dynamics is the particle current in the steady sta

I 5 lim
t→`

^ẋ~ t !&b ,̄ ~4!

whereb51/kBT, kB is Boltzmann’s constant, the subscriptb
indicates thermal averaging~quantum statistical mechanica
expectation value!, and the overbar indicates a time avera
over the~unbiased! driving force f (t). Note that this quantity
I is independent of the initial condition for the Brownia
particle at timet50.

Having specified the general model, let us now highlig
some of its basic properties and introduce typical examp
The model ‘‘ratchet’’-potential we will use in our numerica
studies is

V~x!5V0@sin~2px/L !2 1
4 sin~4px/L !# ~5!

~see Fig. 1!. Further, we will assume a so-called Ohmic ba
characterized by a continuous spectral sensityJ(v) with a
linear initial growth, a ‘‘cut-off’’ frequencyvc , and a single
‘‘coupling parameter’’h:

J~v!5hv exp$2v/vc%. ~6!

The cutoff vc is introduced in order to avoid unphysica
ultraviolet divergences but is always chosen much lar

FIG. 1. Solid: ratchet potentialV(x) in ~5!. Dashed and dotted: ‘‘tilted
washboard potentials’’U6(x) in ~7! with Fl 50.1V0, l 5L/2p. Note that
the extrema and the separating barriers aredifferent for U1(x) andU2(x),
while the periodL is in common.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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than any other characteristic frequency of the system
therefore typically drops out of the final results. This ha
monic oscillator model for the thermal environment~1! to-
gether with the truncated Ohmic spectral density~6! has
proven to provide reasonable approximations in a wide v
ety of real situations, even though for many complex s
tems, one actually does not have a clear understanding o
microscopic origin of the damping.8 It should also be men
tioned that, though we speak here of a particle,x(t) may as
well represent any other kind of relevant collective coor
nate.

The force fieldf (t) may be either externally imposed~in
experiments or technical applications! or mimic system-
intrinsic collective degrees of freedomfar from thermal
equilibrium ~in intracellular transport processes!. This justi-
fies that we did not include a full quantum mechanical mo
for this force and that we have neglected both a ba
coupling of the system coordinatex to f (t) as well as a
possible direct interaction between the thermal environm
and f (t). For the rest, we remark thatf (t) may still be either
of stochastic or of deterministic nature.

For reasons of numerical efficiency only, we shall foc
on a driving f (t) that can take on only the two values6F
and is furthermore compatible with our above assumpt
that it is unbiased, i.e., its time average vanishes. In o
words, at each instance of time, our quantum Brownian p
ticles are exposed to either of the two ‘‘tilted washboar
potentials

U6~x!5V~x!7Fx ~7!

~cf. Fig. 1!. As a further assumption we require thatF is
positive but not too large, such that both potentialsU6(x)
still display a local maximum and minimum within each p
riod L. To fix notations, let us denote byx0

6 one of the local
minima ofU6(x) and byxb

6 its neighboring local maximum
to the right. The potential barrier which a particle atx5x0

6 is
facing to its right is thereforeDUr

65U6(xb
6)2U6(x0

6) and
to its left DUl

65U6(xb
62L)2U6(x0

6). Taking into ac-
count ~7! and the periodicity ofV(x) it follows that

DUl
65DUr

66FL. ~8!

While indices6 will often be dropped in the following, it
should be emphasized that the location of the local max
and minima, their mutual distance, as well as the correspo
ing potential curvatures and separating barriers are in gen
different forU1(x) andU2(x). The only common feature is
the periodicityL and the average tilt~in modulus! ~see also
Fig. 1!.

For an arbitrary time scale of the flips off (t) between
6F we are still faced with an extremely difficult time
dependent quantum mechanical nonequilibrium proble
Since no way of tackling that is known to us, we hencefo
restrict ourselves to very rare flips between6F such that
transients after each flip are negligible and we can focus
the steady-state particle currentsI 6 in the two tilted wash-
board potentials~7!. Recalling thatf (t) is unbiased, i.e., on
average the particle is exposed half of the time to eithe
potentials, the resulting net particle current~4! then immedi-
ately follows fromI 6 as
Downloaded 02 Oct 2003 to 137.250.81.34. Redistribution subject to AIP
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2 @ I 11I 2#. ~9!

It is instructive to notice that by way of integrating ou
the bath degrees of freedom in~1! one obtains7,8 the follow-
ing one-dimensional Heisenberg equation~generalized
Langevin equation! for the position operatorx:

mẍ1V8~x!2 f ~ t !5j~ t !2E
0

t

ĥ~ t2t8!ẋ~ t8!dt8. ~10!

While the left-hand side can be associated to the bare sys
dynamics, the right-hand side accounts for the influence
the environment through the damping kernel,

ĥ~ t !5
2

p E
0

`

dv v21J~v! cos~vt !, ~11!

and the operator valued quantum noise,

j~ t !5(
j 51

`

cj S pj~0!

mjv j
sin~v j t !

1S xj~0!2
cjx~0!

mjv j
2 D cos~v j t !D , ~12!

containing the initial conditions of the bath and of the par
cle’s position. Exploiting the assumed thermal distribution
the bathHB at t50 one sees8 that j(t) becomes a stationar
Gaussian noise with mean value zero. Moreover, one rec
ers the usual connection@via J(v)] between the random an
the frictional effects of the bath on the right-hand side of~10!
in the form of the fluctuation–dissipation relation

^j~ t !j~ t1t!&b5
\

pE0

`

dvJ~v!

3FcothS \vb

2 D cos~vt!2 i sin~vt!G .
~13!

The special role of an Ohmic heat bath~6! becomes now
apparent by observing that the damping kernel~11! ap-
proaches

ĥ~ t !52hd~ t ! ~14!

when the cutoffvc goes to infinity. The last term in~10! thus
boils down to the memoryless Stokes frictionh ẋ(t). In other
words,h in ~6! has the meaning of a damping coefficient d
to viscous friction.

With the time between flips off (t) and the cutoffvc in
~6! becoming asymptotically large, we are essentially l
with six model parameters, namely the particle massm, the
‘‘potential parameters’’V0, L, and F in ~5! and ~7!, and
finally the couplingh in ~6! and the temperatureT, charac-
terizing the thermal environment. The necessary restricti
regarding their admitted range are most naturally discus
in the classical limit.

B. Classical limit

The classical limit means roughly speaking to let\ go to
zero. More precisely it is expressed by the condition that\b
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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becomes negligibly small in comparison with any other ch
acteristic time scale of the system. In this limit one can in
from ~13! and ~6! ~with vc→`) that

^j~ t !j~ t1t!&b52hkBTd~t!. ~15!

Furthermore, quantum fluctuations will vanish, so that
numbers go over into c-numbers in~10!. Together with~14!
this yields the familiar classical stochastic differential equ
tion for the real-valued coordinatex(t),

mẍ1V8~x!2 f ~ t !52hkBTz~ t !2h ẋ, ~16!

with a d-correlated Gaussian noisez(t).7

We now make the assumption that the remaining mo
parametersm, V0, L, F, and h are such that a classica
particle which starts at rest close to any local maximum
U6(x) will deterministicallyslide down the correspondin
slope but will not be able to subsequently surmount any
ther potential barrier and so is bound to end in the next lo
minimum. Differently speaking, a moderate-to-strong fr
tion dynamics is considered and deterministically ‘‘runni
solutions’’ are excluded. We further assume weak therm
noise, that is, any potential barrier is much larger than
thermal energy:

DUr ,l
6 @kBT. ~17!

Then, the thermally induced escape rate over each such
rier is well approximated by the classical Kramers rate in
spatial diffusion limit7

kcl5
mAU09

2pAuUb9u
exp $2bDU%, ~18!

m5
Ah214muUb9u2h

2m
, ~19!

where for the sake of better readability, indicesr , l , and6
have been dropped, and whereU09 andUb9 represent the po
tential curvatures~second derivatives! at the extremax0

6 and
xb

6 , respectively. In the fixed potentialU1(x) one thus has a
ratekcl,r

1 of the form ~18! describing thermal hopping to th
right, i.e., overDUr

1 , and a second ratekcl,l
1 5kcl,r

1 e2bFL

@where we exploited~8!# for hopping to the left overDUl
1 ,

inducing a net particle currentI cl
15L(kcl,r

1 2kcl,l
1 ). The latter

is positive in view of I cl
15Lkcl,r

1 (12e2bFL) and since we
assumed thatF.0. Analogously, in the quenched potenti
U2(x) one finds the negative currentI cl

252Lkcl,l
2 (1

2e2bFL). The resulting average classical current~9! can
thus be rewritten as

I cl5
L

2
~12e2bFL!~kcl,r

1 2kcl,l
2 !. ~20!

C. Semiclassical theory

Next we return to the dissipative quantum dynamics~10!
but restrict ourselves to the so-called semiclassical regi
Very roughly speaking, this means that in the absence of
heat bathHB there exists a large number of~quasi-! bound
states in each metastable minimum ofU6(x), i.e., \v0

6

!DUr ,l
6 , where
Downloaded 02 Oct 2003 to 137.250.81.34. Redistribution subject to AIP
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are the respective ground state frequencies. By a refined
gument, this condition can still be made weaker by a fac
2p and, after also properly taking into account the effects
the heat bath, is found to take on the final form9,10

\m6!2pDUr ,l
6 ~22!

with m6 like in ~19!. Within the so-defined semiclassica
realm, speaking of a particle with a reasonably well-defin
positionand momentum still makes sense except during
now possible tunneling processes, which are manifestly
from classical, but can occur with a small probability sem
classically. Moreover, tunneling between potential wells
either of the tilted washboard potentials~8! is incoherent and
well described in terms of rates. As a consequence, the
soning at the end of the preceding Sec. II B can be taken o
essentially unchanged apart from the classical rateskcl ap-
pearing in the current~20! which have to be replaced by the
quantum mechanical counterpartskqm to obtain

I qm5
L

2
~12e2bFL!~kqm,r

1 2kqm,l
2 !. ~23!

Qualitatively, each such ratekqm in ~23! is governed by a
competitive interplay between the very rare thermal acti
tion up to a certain ‘‘energy level’’ and the also very unlike
tunneling from there on ‘‘through’’ the remaining part of th
potential barrier. Quantitatively, a sophisticated line of re
soning has been elaborated during recent years7 which we
will only briefly sketch in the following. Starting with the
Hamiltonian system-plus-reservoir model~1! and adopting
Langer’s ‘‘imaginary free energy method’’7,10 or, equiva-
lently, Miller’s ‘‘multidimensional quantum transition stat
theory,’’7 it is possible to express the escape ratekqm in
terms of functional path integrals. After integration over t
harmonic bath modes and a steepest descent approxim
@justified by~22!# in the remaining single-variable path inte
gral, one obtains the following form for the semiclassic
approximation of the rate

kqm5A exp $2SB /\%. ~24!

Here, the exponentially dominating contributionSB is de-
fined via the nonlocal action

S@q#5E
0

\b

dtFmq̇2

2
1U~q!1

h

4pE2`

`

dt8S q2q8

t2t8
D 2G

~25!

with the abbreviationsq5q(t) and q85q(t8), and where
we exploited the assumed Ohmic spectral density~6! with
vc→` ~generalizations are immediate, see Refs. 7 and!.
Like previously in ~18! we again omitted here indicesr , l ,
and6 for the sake of better readability. This action~25! has
now to be extremized with respect toq(t) under the con-
straints thatq(t1\b)5q(t) for all t, and that there exists
at least onet with q(t)5xb . A trivial such extremizing
q(t) is alwaysq(t)[xb . Among this and the possibly ex
isting further extrema one has to select the one that m
mizes S@q#, the so-called ‘‘bounce solution’’qB(t), to fi-
nally obtain the exponentially leading contribution in~24! as
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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SB :5S@qB#2\bU~x0!. ~26!

Since this bounceqB(t) is in fact nothing else than th
dominating path in the above-mentioned steepest descen
proximation of the path integral, it is obvious that the pree
ponential factorA in ~24! accounts for the fluctuations abo
this dominating path, i.e., contributions to the path integ
from an entire small vicinity ofqB(t). The most convenien
way of rewriting this prefactorA depends on the considere
temperature, as discussed next.

Closer inspection shows7,10 that there exists a crossove
temperature

T05m\/2pkB ~27!

above whichqB(t)[xb is the only admissible extremum i
~25!, and thereforeSB /\5bDU according to~26!. In view
of ~24! and~18! tunneling thus does not affect the expone
tially leading part of the rate in this regimeT>T0. More-
over, a closed analytical expression for the prefactorA is
available,7,10,11yielding for the quantum rate the result

kqm5kcl ~l1
0/L1

b! )
n52

`

~ln
0/ln

b! . ~28!

Here, we introduced the notations

ln
0,b5mnn

21hnn1U0,b9 , ~29!

nn52pn/\b, ~30!

L1
b5AL/pbe2b[l1

b] 2/L/erfc ~l1
bAb/L!, ~31!

L5
@Ub-#2

uUb9u

4mm21uUb9u

2mm21uUb9u
1

d4U~xb!

dx4
, ~32!

where the complementary error function is given
erfc (z)52p21/2*z

`e2y2
dy and whereL.0 in ~32! has been

tacitly assumed. It is not difficult to verify that theln
b are the

eigenvalues of the action~25! when linearized about the
trivial extremizing pathqB(t)[xb and similarly for theln

0

andq(t)[x0. Close toT0 one hasl1
b.0, calling for special

care in the steepest descent evaluation ofA in ~24!. Accord-
ingly, the quantityL1

b in ~31! has been obtained by proper
including also next to leading order contributions in th
evaluation ofA. On the other hand, outside this vicinity o
T0, that is, when l1

bAb/L@1, one hasL1
b→l1

b since
erfc (z)→exp (2z2)/Apz for z→`. Now, one readily ob-
serves thatkqm>kcl for all admittedT>T0. Finally, when
T@T0, or equivalently,\→0, all the factors multiplyingkcl

on the right-hand side of~28! tend to unity, and thuskqm

smoothly approaches the classical Kramers rate~18!, as it
should be.

Note that the two rates in the current~23! bring along
two different crossover temperaturesT0

1 andT0
2 sinceuUb9u

in ~19! and thusm in ~27! are typically different forU6(x).
One can now rewrite the semiclassical condition~22! in
terms of those crossover temperatures as

kBT0
6!DUr ,l

6 . ~33!
Downloaded 02 Oct 2003 to 137.250.81.34. Redistribution subject to AIP
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It is reassuring to observe that in fact the semiclassical c
dition ~22! is nothing else than the classical weak noise c
dition for the validity of the Kramers rate~17! at crossover
T5T0.

Turning to subcritical temperaturesT,T0, analytical
progress is possible only in a few special cases.7 The sim-
plest of them is the limith→0, T→0 ~no heat bath!, result-
ing in the familiar Gamow formula for the exponential
leading action~25! for tunneling decay

SB→SG52U E
x0

x1
dqA2m@U~q!2U~x0!#U, ~34!

wherex1 denotes the first point beyond the potential barr
with the propertyU(x1)5U(x0). ~The absolute value is
needed sincex1,x0 for the escapes to the left, i.e., acro
DUl

6 .! The corresponding expression for the prefactorA is
obtained as12

A→AG5Amv0
3

p\
lim

x→x0

ux2x0u

3exp H U E
x

x1
dqA U9~x0!/2

U~q!2U~x0!UJ . ~35!

In more general cases we have to resort to a numerical ev
ation of the semiclassical rate.

D. Numerical solution below crossover

Though our numerical method to evaluate the semic
sical rate~24! in the subcrossover regimeT,T0 appears to
be quite natural and straightforward, we remark that prior
our work13 only twocomparable numerical studies have be
available,10,14 both focusing on a cubic potentialU(x), and
exploiting heavily its special properties.

Our starting point to tackle the extremization of the a
tion functional in~25! is a truncated Fourier series ansatz f
the bounceqB(t) of the form

qB~t!5 (
n50

N

cn cos~nnt!1sn sin ~nnt! ~36!

with the Matsubara frequenciesnn from ~30!. This ansatz is
suggested by the required periodicityqB(t1\b)5qB(t).
Note that withqB(t) alsoqB(t1Dt) will be an equivalent
solution of the extremization problem for anyDt. A natural
way to get rid of this numerically quite annoying ambigui
is by settinga priori sN50 in ~36!. Similarly, one can set
s050 for trivial reasons. Introducing now the trial functio
ansatz~36! into the extremization problem~25! leads—by
way of requiring stationarity with respect to the remaini
2N Fourier coefficientscn and sn—to a set of 2N coupled
nonlinear equations. Since multiple solutions are expecte
general, this set of equations requires a rather careful num
cal exploration. We also remark that the final relevant so
tion qB(t) is by construction an extremum of the actio
functional ~25! but can be shown to be a ‘‘true sadd
point,’’ i.e., neither a maximum nor a minimum, so that
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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direct numerical minimization/maximization of~25! is not
possible. As a surprising numerical by-product we also v
fied in all studied cases that

sn50 for all n. ~37!

In other words, possibly after a preceding shift of the tim
origin, the symmetryqB(2t)5qB(t) is always respected
This symmetry has sometimes been tacitly assumed in
literature,10 but to the best of our knowledge a general pro
is still missing.

OnceqB(t) is determined, the action follows with~25!
and the prefactorA can be obtained as7,10,11

A5U*0
\b@ q̇B~t!#2dt

2p\

Pl unu
0

P8ln
BU1/2

, ~38!

with n running from2` to ` in the productsP. Similarly
as in~28!, theln

B here are the eigenvalues of the action~25!
when linearized aboutqB(t). One of them is negative, re
flecting the above-mentioned saddle point nature of the
tremizing pathqB(t), and a further one is zero, related to t
fact that withqB(t) alsoqB(t1Dt) is an equally admissible
extremizing path in~25! for any Dt ~i.e., a Goldstone mode
is present!. They are usually denoted byl0

B andl1
B and are

clearly the continuations ofl0
b and l1

b from ~28! into the
deep subcritical temperature regime. The zero eigenvalue
to be omitted in~38! as indicated by the primed product;
becomes, very roughly speaking, substituted by the inte
in the numerator.

By including sufficiently many Fourier coefficients i
~36! and sufficiently many eigenvaluesln

B in ~38! the uncer-
tainty margin of our numerical rates is at most a few perc
for arbitraryT>0.1T0. In particular, we reproduced the nu
merical results for a cubic metastable potential given in R
10 to all digits. For completeness only, we may add that
T,0.1T0 reliable extrapolations could be readily obtain
by exploiting the known asymptotical analytic results7,10 that
SB(T→0) remains finite,SB(0)2SB(T);T2 for small T,
and A(T) can usually be approximated quite accurately
its finite asymptotic limitA(T50). To cover this tempera
ture regime will, however, not be of central importance
our ratchet problem under study.

It is well known10 that the simple steepest descent a
proximation underlying~38! becomes invalid for tempera
turesT very close to crossoverT0 such thatl1

bAb/L is of the
order21 or larger@cf. ~29!–~32!#. There, one rather has t
match this approximation with the more sophisticated o
~28! @cf. the discussion below~32!#. In fact it can be
shown7,10 that the validity of ~28! actually extends even
somewhat into the subcrossover regime as far as correc
of order 12T/T0 in the prefactorA and of order (1
2T/T0)3 in the actionSB in comparison to the full expres
sion ~24! are considered as negligible. However, as it tu
out, this approximation is still too inaccurate for our pu
poses in the sense that simply matching it with the nume
at the first instance belowT0 where they agree leads to ob
viously inadequate results.
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E. Results

In this section we shall discuss a few representative
amples for the behavior of the particle currentI in our quan-
tum ratchet model. We recall that the classical predict
follows immediately from~20! and~18!, while the semiclas-
sical current~23! requires a more involved numerical eval
ation of two quantum rates along the lined described in
above Sec. II D. As already mentioned, this gives rise to
two crossover temperaturesT0

1 and T0
2 , and it is useful to

introduce at this point the definitions

T0
max5max $T0

1 ,T0
2%, ~39!

T0
min5min $T0

1 ,T0
2%. ~40!

Similarly, we denote the smaller of the two potential barrie
entering through~18! and ~28! into the expressions for the
current~20! and ~23!, respectively, by

DUmin5min $DUr
1 , DUl

2%. ~41!

Note thatDUmin is, according to~8!, in fact the smallest of
all four potential barriers arising inU6(x).

We first address the behavior of the particle currentI as
a function of temperatureT @measured in units ofT0

max from
~39!#. To completely fix the model, we still have to speci
the five parametersm, h, V0, F, and

l :5L/2p. ~42!

We do this by prescribing five dimensionless numbers
follows: First, we fix the three ‘‘potential parameters’’V0, F,
and l through

Fl /V050.1, ~43!

DUmin/V0.1.819, ~44!

uU19 u l 2/V0.1.672. ~45!

The corresponding bare potentialV(x) from ~5! together
with the two tilted washboard potentials from~7! are de-
picted in Fig. 1. Next we choose

h/mv0* 51, ~46!

where

v0* 5@V0 / l 2m#1/2, ~47!

corresponding to a moderate damping as compared to in
effects. To see this, we note thatv0* approximates rathe
well the true ground state frequencies~21! in both potentials
U6(x). Namely,v0

1.1.239v0* , andv0
2.1.294v0* . In par-

ticular, ~46! rules out the occurrence of ‘‘deterministicall
running classical solutions’’ both inU1(x) andU2(x) ~cf.
Sec. II B!. Our last dimensionless number is

DUmin

kBT0
max

510. ~48!

In this way, the weak noise condition~17! is safely fulfilled
at least up toT52T0

max and at the same time the semiclas
cal condition~22! rewritten in the form~33! is also satisfied.

The classical prediction for the current from~20! and
~18! approaches a straight line for smallT in the Arrhenius
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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plot Fig. 2. Its sign is governed by that ofDUl
22DUr

1 and
is thus always positive for our example potential~‘‘forward
ratchet,’’ cf. Fig. 1!. Furthermore, Fig. 2 depicts the quantu
current above crossover (T0

max<T<2T0
max) according to~23!

and ~28!. In a close vicinity of either of the crossover tem
peraturesT0

6 , an increased uncertainty of the semiclassi
rate theory arises, as discussed at the end of Sec. II C.
gap in our data between roughlyT0

max andT0
min is bridged by

the dashes in Fig. 2. For even smallerT,T0
min the results

shown in Fig. 2 have been obtained by the numerical pro
dure from Sec. II D. The slight roughness in the curve
very low T is due to numerical inaccuracies@they are not
visible in the individual rates but only in the much mo
sensitivedifferenceof rates entering into~23!#.

Our first observation is that even aboveT0
max, quantum

effects mayenhancethe classical directed transport by mo
than adecade. They become negligible only beyond seve
T0

max. In other words, significant quantum corrections of t
classically predicted particle current set in already w
above the crossover temperatureT0, where tunneling pro-
cesses are still rare.~They can be associated to quantu
effects other than genuine tunneling ‘‘through’’ a potent
barrier.8! With decreasing temperature,T,T0

min , quantum
transport is even much more enhanced in comparison
the classical results. A further remarkable feature caused
the intriguing interplay between thermal noise and quant
tunneling is theinversionof the quantum current direction a
very low temperatures. In a classical description, such a
versal for adiabatically slow driving is ruled out~see Ref.
15!. Finally, I qm approaches a finite~negative! limit when
T→0, implying a finite~positive! stopping force3 also atT
50. In contrast, the classical predictionI cl remains positive
but becomes arbitrarily small with decreasingT. A curious
detail in Fig. 2 is the nonmonotonicity ofI qm around
T0

max/T.2.5. It is caused by a similar resonancelikeT de-

FIG. 2. The classical steady state currentI cl and its quantum mechanica
counterpartI qm for the ratchet potential from Fig. 1 in dimensionless un
I /Lv0* . Note that in the present Arrhenius plot~logarithmic ordinate! the
observed behavior of the quantum current nearT0

max/T52.8 is not the sig-
nature of a divergence but rather of a change of sign. Further worth m
tioning features are the nonmonotonicity ofI qm and that apparentlyI qm tends
towards a finite limit whenT→0. The exact parameters values are giv
through~43!–~46!, and~48!. For more details see main text.
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pendence in one of the underlying quantum rates that is
ther enhanced due to the fact that adifferenceof such rates
governs the current~23!. A better understanding of this issu
is the subject of ongoing work.

We also studied other parameter values than those u
in Fig. 2 as well as somewhat modified potentials~5!. As an
example we refer to the results presented in Ref. 13. B
cally, always the same qualitative behavior is observed,
cept that the nonmonotonic temperature dependence d
pears for sufficiently largeDUmin/kBT0

max values. Thus all
the above-described novel features appear to be typical f
large class of quantum ratchet systems.

To explain qualitatively the current reversal, we rec
that in the limit T→0 andh→0 the exponentially leading
contributionSB in the semiclassical rate~24! is given by the
Gamow factorSG from ~34!. Strictly speaking, by lettingh
→0 we of course violate the assumption that determini
cally running solutions should be ruled out. However, it
plausible that small but finiteh will exist for which the fol-
lowing qualitative arguments can be adapted se
consistently. In that spirit, we now proceed to conclude fro
~23! that the sign of the quantum current will be governed
that of the differenceSG, l

2 2SG,r
1 between the Gamow factor

~34! belonging to the two rates in~23!. The fact that this
difference is negative cannot definitely be read off by e
directly from Fig. 1 since it is rather small, but is readi
verified numerically. In other words, for very smallT indeed
a negative current is predicted. On the other hand, for largT
we are approaching the classical limit,I qm→I cl , and the
positive sign ofI cl ~as discussed above! carries over toI qm.
A change of sign inI qm at some intermediate temperature
thus a necessary consequence. For more generalh and T,
quantum tunneling and thermal effects are well known
conspire in a very complicated and often counter-intuit
way so that simple explanations usually cannot be given

The occurrence of current reversals in ratchet mod
when certain control parameters are varied has been a m
issue of several investigations. It has, however, not alw
been sufficiently appreciated that typically such a change
sign is immediately carried over to the dependence of
current on many other model parameters.16 We exemplify
this observation by choosing in Fig. 2 a temperatureT
5T0

max/2.8 very close to the current-inversion point, but no
keepT fixed and vary some other parameter instead. Res
with the massm and the friction coefficienth as such control
parameters are given in Figs. 3 and 4, respectively. Si
reversals with respect toT are apparently rather typical, th
same may be expected with respect tom andh as well. Such
a sensitive dependence of the current direction on basic p
erties of the Brownian particles is of considerable inter
both with respect to possible new particle-separation me
ods as well as for modeling of biological transpo
processes.2,3

III. QUANTUM STOCHASTIC RESONANCE

A. General framework

We now turn to the constructive role of quantum flu
tuations for the phenomenon ofquantum stochastic reso

n-
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nance~QSR!. Quantum effects enter the dynamics of a no
linear bistable system whenever its size is no longer
macroscopic extent and/or when characteristic classical
ergy scales, for example the thermal energykBT, become
comparable with typical quantum mechanical energies.
thermal de Broglie wavelength then is no longer mu
smaller than all other characteristic length scales of the
tem. This regime characterizes what we shall term the ‘‘d
quantum regime.’’ With the smallest characteristic ene
scale given in a bistable quantum system by the level s
ting D of the lowest doublet, the corresponding temperatu
are generally very low. For macroscopic quantum syste
such as Josephson junctions or superconducting quantum
terference devices~SQUIDs! they are in the milli-Kelvin re-
gion, but can reach values around room temperatures
systems of molecular or atomic size. Quantum effects, h

FIG. 3. The steady-state quantum current in dimensionless unitsI qm/Lv0*
versus particle mass. This plot was obtained by first taking in Fig. 2T
5T0

max/2.8 and withm0 defined as the corresponding value of the parti
mass@m05h/v0* according to~46!#. This temperature was then kept fixe
while the massm was varied.

FIG. 4. The same as in Fig. 3 but with the friction coefficienth used as a
control parameter@h05mv0* according to~46!#.
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ever, manifest themselves, as demonstrated in the prev
section, already at much higher temperatures, namely aro
and even well above the cross-over temperatureT0. Even up
to severalT0, the classical thermally activated transition ov
a barrier is already notably affected by finite quantumreflec-
tion and quantumtransmissionprobabilities.

Let us first investigate this semiclassical regime of SR17

near and above the crossover temperature where qua
effects start to appreciably modify the classical SR dyna
ics. Like in ~1! and~2!, we consider again a quantum partic
of massm moving in a generally asymmetric bistable pote
tial V(x) ~see Fig. 5!, which is bilinearly coupled to a heat
bath of harmonic degrees of freedom, generating the qu
tum friction mechanism according to an Ohmic spectral d
sity ~6!. Simultaneously, the system is subject to a tim
dependent periodic force

f ~ t !52A cosVt. ~49!

The bistable potentialV(x) is characterized by an asymmet
parametere>0 with the dimension of an energy such th
for e50 the potential is symmetric,V(2x)5V(x). For an
arbitrary but fixede, the two metastable minima are locate
at 6x0, the maximum in between is denoted byx5xb ,
yielding a maximal tunneling length 2x0, and the respective
barrier heights to be surmounted by a particle located at6x0

can be written without loss of generality in the form

E65Vb7e/2. ~50!

The potential curvatures at the barrier and the wells are a
conveniently characterized by the respective ‘‘barrier-’’ a
‘‘well-frequencies:’’

vb :5@ uV9~xb!u/m#1/2, v0 :5@V9~6x0!/m#1/2. ~51!

Note that for not too largee, the implicitly assumed symme
try with respect to the potential curvatures at the two we
@V9(2x0)5V9(x0)# is not a serious loss of generality, give
the exact symmetryV(2x)5V(x) for e50. We also remark
that the parametersx0,b , v0,b , andVb may still vary upon
changinge and that further details ofV(x) will usually not

FIG. 5. Interplay of thermal activation and quantum fluctuations for qu
tum stochastic resonance in an asymmetric bistable potential with asym
try parametere.
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637Chaos, Vol. 8, No. 3, 1998 P. Reimann and P. Hänggi
play any role later on. Next, we recall that the exact, dis
pative quantum dynamics is again governed by the quan
Langevin equation in~10! with the corresponding Ohmic
friction kernel ~14! and with operator-valued quantum flu
tuationsj(t), satisfying~13!. Finally, much like in Sec. II B,
the concept of metastability holds true only when the bar
is large enough so that the forward rate of escapek1 as well
as the backward ratek2 are small compared with all the
other characteristic inverse time scales of the system dyn
ics. In particular, because the angular frequencyv0 describes
the time scale for relaxation within a metastable well, t
activation energiesE6 must be sufficiently large compare
to the thermal energykBT to ensure that the conditionv0

@k6 is fulfilled.7 In other words, we require that

Vb2e/2@kBT. ~52!

The basic quantity of interest for SR is the tim
dependent quantum statistical mechanical expectation v
of the particle’s position, averaged over the reduced den
operatorr red(t), becoming periodic at asymptotic timest
~see below!, i.e.,

P~ t !:5^x~ t !&. ~53!

It constitutes the output of the system when the exter
time-periodic forcef (t) ~49! is acting. BesidesP(t), the
averaged power spectrumS̄(v),

S̄~v!:5E
2`

1`

dt eivtC̄~t!5SN~v!1S~as!~v! , ~54!

defined as the Fourier transform of the time-averaged qu
tum correlation functionC̄(t)

C̄~t!:5
V

2pE0

2p/V

dt
1

2
^x~ t1t!x~ t !1x~ t !x~ t1t!&,

~55!

is a further fundamental quantity to investigate SR.5,6 It
should be noted that, due to the explicit time dependenc
the perturbation~49!, the correlation function̂x(t1t)x(t)
1x(t)x(t1t)& depends separately on the time argument
and t. This explicit dependence ont, however, has been
omitted since it will indeed drop out in the long time lim
t→` considered below,18 thanks to the integration over
driving period in~55!. As anticipated on the right-hand sid
of ~54!, for a time-periodic perturbation, the power spectru
results in the sum of two contributions, whereSN(v) repre-
sents, in theabsenceof signal, the broadband ‘‘noise back
ground,’’ possessing a Lorentzian hump atv50. We shall
denote this contribution bySN

(0)(v). In the presence of the
signal, SN(v) is obtained as a product of the Lorentzia
hump SN

(0)(v) and a correction factor~of order unity for
weak signals! describing the modification of the signal on th
broadband ‘‘background.’’18,19 The ‘‘asymptotic’’ contribu-
tion S(as)(v) is given by the sum ofd-spikes at integer mul-
tiplesv5nV of the signal frequency, reflecting the fact tha
for times t large compared to the time scale of the transi
dynamics, the motion acquires the periodicity of the exter
perturbation. Similarly,P(t) and C̄(t) approach for large
times t an asymptotically periodic behavior of the form18,20
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P~ t ! ——→
t→`

P~as!~ t !5 (
m52`

`

Pm~V,A!e2 imVt, ~56!

C̄~t! ——→
t,t→`

C~as!~t !5 (
m52`

`

uPm~V,A!u2e2 imVt.

~57!

Thus, the amplitudesuPmu of the harmonics ofP(t) deter-
mine the weights of thed-spikes of the averaged spectr
power density in the asymptotic stateS(as)(v) via the rela-
tion

S~as!~v!52p (
m52`

`

uPm~V,A!u2d~v2mV!. ~58!

In other words, in the most interesting regime of asympto
cally large times t, the behavior of the observable
S(as)(v) and C̄(t) follows from that of P(t) ~Wiener–
Khinchine theorem!. The two main quantities that have bee
examined in the literature on SR are the spectral amplifi
tion ~or power amplitude! h1 in the first frequency compo
nent of S(as)(v),5,6,18 and the ratioR of h1 to the power
spectrumSN

(0)(v) in the absence of a signal, evaluated at t
external driving frequencyv5V, the so-called signal-to-
noise ratio (SNR),5,6,19 i.e.,

h1~V,A!:54puP1~V,A!u2,
~59!

R:54puP1~V,A!u2/SN
~0!~V!.

By definition, h1 has the dimension of a length square
while R has the dimension of a frequency. Thus, to inves
gate the interplay between noise and the coherent driv
input which yields the phenomenon of QSR, we shall co
sider two dimensionless quantities, namely the scaled po
amplificationh̃1 and the scaled signal-to-noise ratioR̃. They
read

h̃1~V,A!:5
h1~V,A!

~Ax0
2/Vb!2

, R̃:5
~R/vb!

~Ax0 /Vb!2
. ~60!

Thus far, all our definitions are completely general and
relations are still exact; they describe the fullnonlinearQSR
in the whole temperature regime extending from absol
zero up to room temperatures and beyond, and they appr
the limit of classical nonlinear SR smoothly. The main ch
lenge consists in the evaluation of the~exact! asymptotic
quantum expectation valueP(t) in ~56!, from which every-
thing else follows. Since we are not able to do this in an
lytical closed form, we next address this challenge within
quantum linear response theory.

B. Linear response theory for quantum stochastic
resonance

Because the main focus of SR centers around the no
driven enhancement of the response to aweakcoherent in-
put, we shall develop in this section the theory for QS
based on Kubo’s linear response theory, which in our cas
thermal equilibrium when driving is absent—can be bas
on the quantum fluctuation-dissipation theorem~QFDT!.
This theorem relates the unperturbed (A50) power spec-
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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trum of fluctuations in thermal equilibriumSN
(0)(v) to the

linear susceptibilityx̃(v) at the driving frequencyv5V
according to the celebrated relationship

SN
~0!~V!5\ coth ~b\V/2! Im x̃~V!. ~61!

In the limit \bV!1 the QFDT becomesSN
(0)(V)52 Im

x̃(V)/bV, thus correctly reproducing the classic
fluctuation–dissipation theorem~see also Sec. II B!.

In the linear response approximation, only the harmon
0,61 of P(as)(t) in Eq. ~56! are different from zero,P0

being just the thermal equilibrium valuePeq in the absence
of driving, andP615(A/2)x̃(6V) being related by Kubo’s
famous formula to the linear susceptibilityx̃(V) according
to

x̃~V!5
i

\E2`

1`

dt eiVtu~t!^@q~t!,q~0!#&A50 , ~62!

where^ . . . &A50 indicates the quantum statistical mechani
evaluation of correlation functions inthermal equilibrium,
that is, in the absence of driving. Furthe
i ^@q(t),q(0)#&A50 /\ becomes in the classical case the c
relation function2b^q(0)q̇(t)&A50. Finally, because the
linear susceptibility is related to the power spectrum in th
mal equilibrium by the fluctuation–dissipation theorem~61!,
the quantities from~59! can be recast into the form

h1~V,A!5pA2ux̃~V!u2, ~63!

R5pA2
1

\ coth ~b\V/2!

ux̃~V!u2

Im x̃~V!
. ~64!

Thus, for weak external signals, the computation of the sp
tral amplificationh1 or of the signal-to-noise ratioR is re-
duced to the evaluation of a dissipative, thermal quant
equilibrium correlation function in~62!. This is still a very
difficult task for a full nonlinear bistable potential as d
picted in Fig. 5.

C. Tunneling corrections to stochastic resonance

We shall simplify the analysis further by restricting ou
selves to the regime around the crossover temperatureT0

where tunneling events and classical noise-induced hop
events are of comparable importance. At such still rat
high temperatures, the dissipative equilibrium quantum
namics is solely incoherent. In addition we shall neglect
influence of small, relaxational intrawell quantum fluctu
tions. In principle their role could be accounted for by a
proximating the fast relaxational intrawell quantum motio
by the weighted quantum dissipative harmonic oscillator
namics in the left and right wells, respectively. These la
quantum dynamics can be evaluated in principle in ex
closed form for all temperaturesT. However, such effects
would play an essential role only for the signal-to-noise ra
at small ratios ofT/T0 .6,18 Because we restrict the discussio
here to temperatures near and aboveT0, we can safely ne-
glect their influence. As a consequence, we can derive
results within atwo-statedescription of the system dynam
ics, by introducing the probabilitiesnL,R for the system to be
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in the left (nL) or right (nR) well of the bistable potential.
For a state-continuous system,nL,R are defined in terms o
the probability densityp(x,t) for the particle’s position as

nL~ t !512nR~ t !5E
2`

xb
dx p~x,t !. ~65!

One then finds that the relaxation of an initial nonequilibriu
value in Eq.~53!, i.e., P(t)5x0@nR(t)2nL(t)#, is governed
by a rate equation

Ṗ~ t !52Ḡ@P~ t !2Peq#, ~66!

with

Ḡ5kqm
1 1kqm

2 ~67!

being thesumof the forward and backward quantum ho
ping rates kqm

1 and kqm
2 , respectively, and wherePeq:

5x0(kqm
1 2kqm

2 )/Ḡ as a consequence of the detailed balan
condition at equilibrium.7 Information about the detailed
form of the potential isstill contained in the averaged rateḠ.
In the deep quantum regimeT<T0 the same set of equation
holds whenever incoherent tunneling dominates the dyn
ics ~and intrawell relaxation effects are still negligible!. The
validity of such an approach implies either strong enou
damping, or sufficiently high temperatures.7,8,21 The equilib-
rium dynamics of corresponding fluctuations of this tw
state dynamics is then also governed by the same expone
decay rateḠ, yielding for the unperturbed (A50) equilib-
rium power spectrumSN

(0)(v) at the driving frequencyv
5V the approximation

SN
~0!~V!54x0

2~k1k2/Ḡ2!
2Ḡ

Ḡ21V2
. ~68!

Correspondingly, in the limit\bV!1, the~classical or
quantum! linear susceptibilityx̃(V) exhibits a quasi-elastic
Lorentzian peak of amplitudeb(T)54(x0

2/kBT)k1k2/Ḡ2

and widthḠ. It thus reads

x̃~V!5b~T!
1

12 iVḠ21
1O~\bV!2. ~69!

In conclusion, whenever the backward and forward quant
escape rates are related by the detailed balance cond
k25k1 exp(2e/kBT) @cf. ~50! and Ref. 7#, we obtain for the
scaled power amplitudeh̃1 the result

h̃1~V!5pS Vb

kBTD 2 1

cosh4~e/2kBT!

Ḡ2

V21Ḡ2
. ~70!

Likewise, consistent with the condition\bV!1, the cotan-
gent hyperbolicus in~64! can be approximated as the inver
of its argument, and the scaled signal-to-noise-ratioR̃ be-
comes effectively independent of the external frequencyV:

R̃5
p

2 S Vb

kBTD 2 Ḡ/vb

cosh2~e/2kBT!
. ~71!

These two relations in~70! and~71! are the main results
of our semiclassical QSR analysis. The basic assumpt
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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under which they are valid are weak noise~52!, small am-
plitude A, \bV!1, andT/T0 not too small. Several result
now follow immediately:

~i! Within a two-state descriptionof the incoherent~un-
driven! dynamics, the linear response theory developed
this section effectively reduces the study of QSR to the co
putation of two corresponding~semiclassical! quantum es-
cape rateskqm

6 at thermal equilibrium@cf. ~67!#. For tempera-
tures sufficiently beyondT0 we can use Eq.~28! with the
approximationL1

b5l1
b , as discussed below~32!, to obtain

Ḡ5 f qm

mb
1v0

2pvb
exp $2bVb%2 cosh~be/2!, ~72!

f qm5 )
n51

`
1v0

21n2n21nng

2vb
21n2n21nng

5
G~12mb

1/n!G~12mb
2/n!

G~12m0
1/n!G~12m0

2/n!
. ~73!

Here, we have exploited~18!, ~50!, and ~51! and we have
introduced the notations

n52p/\b, ~74!

g5h/m, ~75!

a5g/2vb , ~76!

mb
65vb@a6~a211!1/2#, ~77!

m0
65vb@a6„a22~v0 /vb!2

…

1/2#. ~78!

Further,G( . . . ) in ~73! denotes the gamma function. Ide
tifying mb

1 with m from ~19!, the crossover temperature~27!
takes the form

T05mb
1\/2pkB . ~79!

Explicit results for the scaled signal-to-noise ratioR̃ are de-
picted in Fig. 6, and the scaled amplification for QSR
shown with Fig. 7. We note that quantum tunneling can
hance the classical result by almost two orders of magnitu

~ii ! By construction, a linear response approximati
does hold independent of whether the coherent applied si
~49! involves adiabatic or nonadiabatic frequenciesV.
Hence, Eqs.~63! and~64! hold for anydriving frequencyV.
On the other hand, while the expression~69! for the linear
susceptibilityx̃(V) becomesexactin the classical limit, the
condition \bV!1 requires some care in the semiclassi
and deep quantum regimes, and may lead to restriction
the values of the applied driving frequencyV: Whenever the
condition \bV!1 is not fulfilled, the linear susceptibility
x̃(V) ~and henceh̃1 and R̃) exhibits a more complicated
dependence on the frequencyV, as determined by the ful
quantum fluctuation dissipation theorem~61! and by the
Kramers–Kronig relationships between its real and ima
nary parts~see also the next section for a discussion of Q
in the deep quantum regime!.

~iii ! Because Eqs.~70! and ~71! hold independent of
whether the escape mechanism is classical or quantum, s
general features of QSR can be stated. For the case of w
Downloaded 02 Oct 2003 to 137.250.81.34. Redistribution subject to AIP
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external signals considered in Eqs.~70! and ~71!, both the
scaled spectral amplificationh̃1 and the scaled signal-to
noise ratioR̃ are independent of the external strengthA, but
only h̃1 is still a function of the external frequencyV.
Hence, the positionTR* of the temperature maximum of th

FIG. 6. Quantum stochastic resonance according to~71!–~79! at zero asym-
metry (e50) versus dimensionless temperatureT/T0 , with T0 the cross-
over temperature to tunneling dominated escape, as characterized b

semiclassical scaled signal-to-noise ratioR̃sc ~solid line!. For comparison
theclassicalsignal-to-noise ratio is also depicted~dashed line!, obtained by
setting f qm51 in ~72!. The inset makes clear that the enhancement of

semiclassicalR̃sc, over the corresponding classical signal-to-noise ratioR̃cl,
can reach almost two orders of magnitude.

FIG. 7. Scaled spectral amplificationh 1̃ @see ~70!# versus dimensionless
temperature for different driving frequenciesV ~solid lines!. For compari-
son, the dashed lines give the results for the classical stochastic reso
spectral amplification~see also Fig. 6!. The inset depicts the ratio betwee

the total~forward plus backward! quantum rateḠ andV at the temperature

Th* whereh 1̃ assumes its maximum. The QSR maximum is thus~at low
driving frequencies! only roughly determined by the condition that twice th

escape time, i.e., 4@Ḡ(Th* )#21, should approximately be equal to the exte
nal driving period 2p/V ~see Ref. 6!.
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scaled SNR effectively depends only onintrinsic parameters
of the bistable system, such as the barrier heightVb , the
asymmetrye, the relaxational angular frequenciesvb and
v0, and the friction coefficienth5mg. On the other hand
QSR for h̃1 can beexternally controlledby varying the ap-
plied driving frequencyV.

~iv! On the same basis as in~iii !, the generality of Eqs
~70! and ~71! implies that the differences between classic
semiclassical or quantum SR are determinedsolely by the
explicit temperature dependence of the escape ratesk6. In
particular, the classical@cf. ~18!# and the semiclassical es
cape rates@cf. ~73!# decay exponentially as the temperatu
decreases. This, together with the~classical and semiclass
cal! condition ~52!, necessary for a clear-cut separation
time scales, implies that the QSR maxima are determined
the competition between this exponential decay and the
gebraic divergence (kBT)22 in h̃1 or in R̃ as the temperature
is decreased. Hence, the detailed balance fa
cosh22 (e/2kBT)<1 only plays a minor role; it always sup
presses the SR phenomenon: With exp (2e/kBT)!1, i.e., Ḡ
.kqm

1 , the power amplificationh̃1 is exponentially reduced
proportional to@exp (2e/kBT)#2; likewise, the SNR is expo-
nentially ~but weaker! reduced proportional to
exp (2e/kBT). This finding is in accordance with prior stud
ies of classical SR in nonequilibrium systems.6

D. Quantum stochastic resonance at very low
temperatures

Let us comment here in some detail on the situation
the deep cold at extreme low temperatures. As we have
above, the main challenge in QSR consists in the evalua
of corresponding quantum expectation and correlation fu
tions in a driven, dissipative metastable quantum syst
This task, as we have witnessed with the quantum ratc
problem, up to these days has not been possible to solv
analytical means in the whole temperature regime. This
jective has never been solved either for the much sim
situation of its classical limit. A useful analytical scheme
possible, however, in the deep quantum regime. In this la
regime the physics is mainly ruled by the dissipative, driv
dynamics of thetwo lowest tunneling split levels. This typi-
fies the so-termed dissipative spin-boson problem which
been studied in theabsenceof external driving thoroughly
over the last two decades or so, with four authoritative
views being available.8 Only in recent years, however, ha
this problem been addressed in the presence of driving
few relevant works are listed in Ref. 22. Most important
the quantum rates no longer exhibit an exponen
Arrhenius-type behavior. Instead, the exponential quan
rate assumes a much smoother~non-Arrhenius-like! tempera-
ture dependence and remain finite even at z
temperature.7,8 Further, within a two-level description of th
incoherent tunneling dynamics, the energy splitting of
two discrete energy levels is of the order of the asymme
energye. Hence, the detailed balance factor represents
relative occupation of the energy levels and it is this fac
that starts to play a crucial role for QSR in the deep co
Now, when e!kBT, the energy levels become almo
Downloaded 02 Oct 2003 to 137.250.81.34. Redistribution subject to AIP
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equally occupied, so that the limite50 yields ~with a,1)
no QSR phenomenon.20,23 As a result, in the limit of zero
asymmetrye50 generallyno QSR does occur.

Moreover, at such low temperatures the driven quant
dynamics is generally no longer incoherent; i.e., rate desc
tions of the type in~66! are not valid. In this regimeinco-
herentand coherenttunneling events, with the latter occu
ring predominantly at weak dissipation, low temperatu
and/or at nonadiabatic driving frequenciesV. In the last
three years, much progress has been made in investiga
QSR in this regime. We refer the readers to a recent rev
of the behavior of nonlinear QSR in the driven spin bos
model. See Sec. VI A in Ref. 6, or go directly to the releva
original literature:~i! Within linear response and adiabat
driving, incoherent QSR has been studied by Lo¨fstedt and
Coppersmith in Ref. 23,~ii ! analytical ‘‘linear’’ and nonlin-
ear QSR, both within coherent and incoherent tunneling
gimes at adiabatic and nonadiabatic drivingV, has been in-
vestigated by Grifoni and Ha¨nggi.20 New features, such a
driving-induced resonances and quantum coherences, o
in the nonadiabatic driving regime. Moreover, nonline
QSR also exhibits for its amplification of higher harmoni
novel phenomena such as multiple quantum noise-indu
suppressions of superharmonic power amplitudes toge
with typical phase-shift discontinuities.

Insightful exact numerical path integral studies for
driven, dissipative spin-boson model have recently been
ried out by Makri.24 The extension of this numerical ap
proach into the regime mediating between such dissipa
two-level models and the semiclassical limit has be
worked out in Ref. 25, revealing a multitude of new intere
ing aspects of QSR.

As a general feature of nonlinear QSR one finds tha
principal maximum in the response versus temperature
pears when the static asymmetry exceeds the driving
quencyand driving strength. Moreover, nonlinear QSR e
hibits a quantum fluctuation-inducedsuppressionof higher
harmonics, together with a characteristic phase shift.20

IV. CONCLUSIONS

In summary, we have investigated the constructive r
of quantum fluctuations for noise-driven transport in rock
quantum ratchets and for the phenomenon of stochastic r
nance in periodically driven bistable quantum systems. T
underlying quantum dynamics in both cases is dissipat
but not necessarily overdamped. As such we have accou
for fluctuation-driven transport in the presence of finite in
tia effects~finite massm).26 We have found that quantum
noise can substantiallyenhance, but sometimes alsosup-
press, the nonlinear response due to the external perio
driving.

While several ingredients, such as the coupling to a th
mal heat bath and the driving out of equilibrium by an e
ternal force, as well as the general technical framework,
the same for both our model of a quantum Brownian mo
and QSR, the basic mechanisms and the typical observa
are different. In the first case, the salient point is the sim
taneous breaking of the spatial symmetry and of the deta
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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balance symmetry~thermal equilibrium!, while in the second
case it is the presence of some kind of threshold.

The phenomena of QSR and quantum ratchets in
presence of quantum tunneling carries a great potentia
applications. The new effects may be detected experim
tally by measuring the ac-quantum transport in mesosco
metals, in ac-driven atomic force microscopy or via quant
noise-induced currents in periodically forced periodic qu
tum structures such as semiconductor superlattices or in
tical lattices formed by interfering light waves.27 Yet another
class is provided by noise-driven macroscopic quantum
tems, such as a properly designed superconducting inte
ence device composed of Josephson junctions. For the l
class, a characteristic rectification effect due to the ratc
effect has been realized and studied in the classical l
already in Ref. 28. Hence, like in the case of classical no
pure quantum noise does not represent a nuisance but r
can be a useful tool when it interacts with external perio
perturbations.

We remark that in all our explicit examples~Figs.2–4, 6,
and 7! we worked with dimensionless quantities, thus cov
ing microscopic, mesoscopic, and even macroscopic po
tial applications as mentioned above. The~dimensionless!
corrections of purely classical predictions due to quant
effects may be summarized as follows: Even above
tunneling-dominated temperature regime the particle cur
may be enhanced up to a factor of 10 in a quantum ratc
and as the temperature is further decreased, this corre
factor increases up to infinity! Even more, when correc
including quantum effects, the sign of the current may
come opposite to that of the classical prediction. Fina
lowering the temperature to zero does not bring the ratc
current to a standstill—as would be expected classicall
but rather it saturates at a finite value. Similarly, in the c
of QSR, we have demonstrated enhancement of classica
up to two orders of magnitude due to quantum tunnel
corrections.

We conclude with a few words about the issue of e
ciencies in a quantum ratchet device. While classically t
subject has already been addressed from different point
view,29 for quantum systems matters are apparently m
subtle and so far largely unsettled. One may speculate
the quantum efficiency should exceed the classical one
cause the current is typically increased, and the total c
sumption of energy should be generally hindered by qu
tum effects. A more detailed quantitative study of the
questions remains as an interesting topic for future inve
gations.
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