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Quantum features of Brownian motors and stochastic resonance
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We investigate quantum Brownian motion sustained transport in both, adiabatically rocked ratchet
systems and quantum stochastic resondQ&R. Above a characteristic crossover temperafiye
tunneling events are rare; yet they can considerably enhance the quantum-noise-driven particle
current and the amplification of signal output in comparison to their classical counterparts. Below
To tunneling prevails, thus yielding characteristic novel quantum transport phenomena. For
example, upon approaching=0 the quantum current in Brownian motors exhibits a
tunneling-induced reversal, and tends to a finite limit, while the classical result approaches zero
without such a change of sign. As a consequence, similar current inversions generated by quantum
effects follow upon variation of the particle mass or of its friction coefficient. Likewise, in this latter
regime of very low temperatures the tunneling dynamics becomes increasingly coherent, thus
suppressing the semiclassically predicted QSR. Moreover, nonadiabatic driving may cause
driving-induced coherences and quantized resonant transitions with no classical anal®§98©
American Institute of Physic§S1054-150(08)00903-3

Traditional heat engines are devices to extract useful nonequilibrium conditions. In recent years, a great variety of
work out of thermal fluctuations by way of transferring such classical nonequilibrium models have been demon-
heat between equilibrium baths at different tempera-  strated to indeed operaté entailing a lot of interesting po-
tures. More realistic setups, involving also nonthermal tential applications both for biological intercellular transport
forces, have been addressed in recent years under the processes and for technological devices that pump Brownian
label of “Brownian motors.” Given the typically tiny particles on periodic structures with period length scales ex-
scales of such devices, it is just one more natural step tending from nano to mesoscopic and even to macroscopic
forward to also take into account quantum mechanical size. Another phenomenon where the cooperative role of
effects. Another instance, where noise plays a construc- (thermal or nonthermalfluctuations, acting on systems out
tive role with many astonishing finer details, is “stochas-  of equilibrium, provides a useful tool Etochastic resonance
tic resonance,” arising in a large class of systems when (SR).%-6 This term is given to a phenomenon which is mani-
driven out of thermal equilibrium by a coherent (e.g., fest in nonlinear metastable systems whereby—generally
periodic) signal. Again, the gquestion about quantum ef-  feeble—input information can be amplified, and optimized,
fects poses itself in numerous systems, and often leads to py the assistance of noise. The effect apparently requires
highly surprising new answers compared to a purely clas-  three basic ingredientsi) an energy activation barrier or,
sical approach. We shall show here that some basic in- pore generally, a type of thresholdj) a weak coherent
gredients of a quantum Brownian motor are related to input (such as a periodic signaland (i) a source of noise
those of stochastic resonance, especially the consistent yhich is inherent in the systeftherma), or which adds to
quantum mechanical modeling of the thermal heat baths.  he coherent inputnonthermal. Given these features, the
On the other hand, the fluctuation-driven amplification  response of the system undergoes a resonancelike behavior
of the response that characterizes stochastic resonance is 55 5 function of increasing noise strength; hence the name
governed by a mechanism which distinctly differs from  giochastic resonance. The underlying basic mechanism
the physics ruling current in Brownian motors. seems fairly simple and robust, so that it is observed in a
large variety of physical, chemical, and biological systems.
The challenge here will be to pinpoint the cooperative
role of quantum fluctuations, allowing for a distinct new
The quest of extracting usable work from unbiased flucchannel for transport, namely under-barriéthreshold
tuations has provoked debates ever since the early days gfiantum tunnelingWe shall restrict the discussion to the
Brownian motion theory. Prima facie speaking, periodic technologically important class dileterministic or noisy
structures that possess an intrinsic spatial asymm@oy rocked metastable systems. In case of a ratchet this typifies a
termed ratchejsseem capable of generating the desired di-Brownian quantum rectifiedn a double well potential a pe-
rected transport. Yet, as already argued by Smoluchowskiodic deterministic signal force represents the archetype for
and later by Feynmahno stationarynet transport is possible quantum stochastic resonan(®SR). Both systems have
if only equilibrium fluctuations are at work—in perfect been investigated in recent years in the classical limit of
agreement with the second law of thermodynamics. Thusverdamped Brownian moticit® but only recently has the
finite transport with unbiased sources can emerge only undestudy been extended to account for quantum fluctuations.

I. INTRODUCTION
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This latter objective is by no means a trivial extension; this is 8
due to the fact that a description fordéssipativequantum N
dynamics in the presence of external, time-dependent forcing 2f U ( X)

is required: Because no consistent phenomenological quan-

tum description of damped systems does exist, the approach

necessitates a firm basis that is rooted irahrinitio micro-

scopic description of a total system, consisting of the meta-

stable subsystem of relevance coupled to a “heat-reservoir”

containing the microscopic degrees of freedom that provide a

friction mechanism and generate fluctuational effects. L » L |
In the following series of sections we shall address this )

challenge of quantum-noise-driven transport in ratchets and 2 ‘

in rocked double well systems exhibiting SR. Mostly, though U'(x) .

not exclusively, we restrict the discussion to weak thermal %5 o o ; 2 p

guantum noise and sufficiently large barrier heights so that a x/L

description on a semiclassical level is possible. Then both; ;1 ggjig. ratchet potentiav(x) in (5). Dashed and dotted: “tilted

phenomena can be described within cquantum rate washboard potentialstU™(x) in (7) with FI=0.1V,, | =L/2m. Note that

description? The current in rocked quantum ratchets is re-the extrema and the separating barriersdifierentfor U™ (x) andU~(x),

lated to thedifferenceof two corresponding quantum rates While the periodL is in common.

for forward and backward tunneling assist@ttoherent es-

cape; in contrast, QSR is ruled by the total rate of decay of

population—given by thesum of these two escape rates— t=0 we assume that the bath is at thermal equilibrium and is

and the strength o$ynchronizationwith the deterministic decoupled from the system. The infinite number of oscilla-

time-periodic perturbation, as measured by the frequencytors guarantees an infinite heat capacity and thus a reason-

dependent response function for the output signal. This alsable model of a bath that keeps its initial temperaflirfor

shows that the two phenomena are in faot really closely  all later timest>0. For the rest, it turns out that the effect of

related with each other. It is true that both the current rethe environment on the system is completely fixed by the

sponse and QSR generally exhibit a bell-shaped behavidrequenciesw; and the ratios:jz/mj or, equivalently, by the

versus increasing thermal noise level, as measured by thep-called spectral density

temperaturel. The corresponding maxima, however, gener- w B

ally occur at completely different te_mperature values, due to Hw)= ZE Cj Sw—w). &)

the different enhancement mechanisatsvork. 2i{=1 mjo; )

We pegm our |nvgst|gat|on of qugntum Brownlap More details about this model for quantum dissipation can be
motion-driven transport in metastable, driven systems Wlﬂ}ound e.g. in Refs. 7 and 8

the outline of an appropriate microscopic model for friction The observable of central interest in our above-defined

and thermal fluctuations. ratchet dynamics is the particle current in the steady state,

1]

V(x)/V

II. TRANSPORT IN ADIABATICALLY ROCKED I=Ilim ().((t))ﬁ, 4
QUANTUM RATCHETS t—o0
A. Model whereB=1/kgT, kg is Boltzmann’s constant, the subscript

Our starting point is a one-dimensional quantum particle|nd|cates thermal averaginguantum statistical mechanical

. . . NN . . expectation value and the overbar indicates a time average
with massm in an asymmetric, periodic “ratchet-potential over the(unbiasedg driving forcef(t). Note that this quantit
V(x) of periodL in the presence of a time-dependent force 9 i 9 y

field f(t) that is unbiased on average. This “bare system” iSI is independent of the initial condition for the Brownian

furthermore coupled via coupling strengtbs to a model particle _at t|met=__0. -
“heat bath” of infinitely many harmonic oscillators with Having specified the general model, let us now highlight

. . some of its basic properties and introduce typical examples.
massesn; and frequencies; (w;>0 without loss of gen- o " . . . .
. ;e . The model “ratchet”-potential we will use in our numerical
erality) yielding the compoundsystem-plus-environment

A studies is
Hamiltonian
02 V(x)=V[sin(27x/L)— % sin(4mx/L)] (5)
H(t) =5+ V() —xf(t) +Hs, (1) (see Fig. 1 Further, we will assume a so-called Ohmic bath,

characterized by a continuous spectral send{iy) with a
linear initial growth, a “cut-off” frequencyw., and a single
2 “coupling parameter” %:

2

© 2
1o, CiX
HB_E W%—Emjw]— Xi_w

Here,x andp are the coordinate and momentum operators of Jw)= 7w exp{— ol )

the quantum Brownian particle of interest, white and p; The cutoff w; is introduced in order to avoid unphysical
are those of the bath oscillators. As initial condition at timeultraviolet divergences but is always chosen much larger
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than any other characteristic frequency of the system and |=3[1"+|"]. 9

therefore typically drops out of the final results. This har-

monic oscillator model for the thermal environmeij to-

gether with the truncated Ohmic spectral dengisy has

proven to provide reasonable approximations in a wide vari

ety of real situations, even though for many complex sys

tems, one actually does not have a clear understanding of the . t. .

microscopic origin of the dampinylt should also be men- mx+ V' (x) — ()= &) - fo p(t—t)x(t)Hdt’.  (10)

tioned that, though we speak here of a partiglg) may as

well represent any other kind of relevant collective coordi-While the left-hand side can be associated to the bare system

nate. dynamics, the right-hand side accounts for the influence of
The force fieldf (t) may be either externally impos¢uh  the environment through the damping kernel,

experiments or technical applicationer mimic system- R 2 [o

intrinsic collective degrees of freedorfar from thermal n(t)=—f dw o YJ(w) cos(wt), (11

equilibrium (in intracellular transport processed his justi- ™ Jo

fies that we did not include a full quantum mechanical modelnd the operator valued quantum noise,

for this force and that we have neglected both a back-

It is instructive to notice that by way of integrating out
the bath degrees of freedom (i) one obtain&® the follow-
ing one-dimensional Heisenberg equaticigeneralized
Langevin equationfor the position operatox:

coup_ling qf the_ systen_"n coordinate to f(t) as well as a §(t):E Cj (@ sin(w;t)
possible direct interaction between the thermal environment i= m; ;
andf(t). For the rest, we remark th&ft) may still be either
of stochastic or of deterministic nature. C;x(0)
For reasons of numerical efficiency only, we shall focus +| %(0) = mjwjz )COS(wjt)) ' (12)

on a drivingf(t) that can take on only the two valuesF o o - _
and is furthermore compatible with our above assumptiorfontaining the initial conditions of the bath and of the parti-
that it is unbiased, i.e., its time average vanishes. In othefle’s position. Exploiting the assumed thermal distribution of

words, at each instance of time, our quantum Brownian parthe bathHg att=0 one sedbthat £(t) becomes a stationary
ticles are exposed to either of the two “ilted washboard” Gaussian noise with mean value zero. Moreover, one recov-

potentials ers the usual connectigria J(w)] between the random and
. _ the frictional effects of the bath on the right-hand sidé1d)
U=(x)=V(X) FFx (7) " in the form of the fluctuation—dissipation relation
(cf. Fig. 1). As a further assumption we require thatis B (o
positive but not too large, such that both potentidi$(x) (&) &(t+ T)>,e=;fo dod(v)

still display a local maximum and minimum within each pe-
riod L. To fix notations, let us denote by, one of the local

hop o
cotI-(T)cos(wr)—| sin(w7) |.

minima of U= (x) and byx, its neighboring local maximum X
to the right. The potential barrier which a particlexatx, is
facing to its right is thereforaU,"=U>(x; ) —U~(x,) and (13
to its left AU =U"(x, —L)—U*(xy). Taking into ac- The special role of an Ohmic heat baf) becomes now
count(7) and the periodicity oW(x) it follows that apparent by observing that the damping kerfigl) ap-
AU =AU +FL. (g  Proaches
n(t)=2ns(t) (14

While indices* will often be dropped in the following, it
should be emphasized that the location of the local maximavhen the cutofiw. goes to infinity. The last term if10) thus

and minima, their mutual distance, as well as the correspondoils down to the memoryless Stokes frictigr(t). In other

ing potential curvatures and separating barriers are in gener@lords, » in (6) has the meaning of a damping coefficient due

different forU " (x) andU ~(x). The only common feature is to viscous friction.

the periodicityL and the average tilin modulug (see also With the time between flips off(t) and the cutoffw, in

Fig. 1). (6) becoming asymptotically large, we are essentially left
For an arbitrary time scale of the flips 6{t) between with six model parameters, namely the particle masshe

=F we are still faced with an extremely difficult time- “potential parameters”V,, L, andF in (5) and (7), and

dependent quantum mechanical nonequilibrium problemginally the couplings in (6) and the temperatur€, charac-

Since no way of tackling that is known to us, we henceforthterizing the thermal environment. The necessary restrictions

restrict ourselves to very rare flips betweerF such that regarding their admitted range are most naturally discussed

transients after each flip are negligible and we can focus ofh the classical limit.

the steady-state particle currenfs in the two tilted wash-

board potential$7). Recalling thatf(t) is unbiased, i.e., on

average the particle is exposed half of the time to either o

potentials, the resulting net particle currét then immedi- The classical limit means roughly speaking toAlego to

ately follows froml = as zero. More precisely it is expressed by the condition that

P. Classical limit
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becomes negligibly small in comparison with any other char- wy = [Ugi/m]llz (21
acteristic time scale of the system. In this limit one can infer ) ) ]
from (13) and(6) (with w.—) that are the res_pectlve_ground sta_lte frequencies. By a refined ar-
gument, this condition can still be made weaker by a factor
() &t+ 7)) p=27kgT (7). (19 24 and, after also properly taking into account the effects of
Furthermore, quantum fluctuations will vanish, so that g-the heat bath, is found to take on the final férth
ngmb.ers go over in.to c-numbers (ihO). quether with(14) hut<2mAUZ, (22)
this yields the familiar classical stochastic differential equa- ’
tion for the real-valued coordinatet), with u= like in (19). Within the so-defined semiclassical
. . realm, speaking of a particle with a reasonably well-defined
mx+ V' (x) = f(t) =27kgT{(t) — nX, (16 positionand momentum still makes sense except during the
with a s-correlated Gaussian noigét).” now possible tunneling processes, which are manifestly far

We now make the assumption that the remaining modefrom plassical, but can occur with a small probapility sem_i—
parametersm, Vo, L, F, and 5 are such that a classical c!assmally. Moreover, tunneling bet'vvee.n .potent|al wells in
particle which starts at rest close to any local maximum of€ither of the tilted washboard potentia® is incoherent and
U=(x) will deterministicallyslide down the corresponding WeII' described in terms of rate§. As a consequence, the rea-
slope but will not be able to subsequently surmount any furSOning at the end of the preceding Sec. |1 B can be taken over
ther potential barrier and so is bound to end in the next locagssentially unchanged apart from the classical regesp-
minimum. Differently speaking, a moderate-to-strong fric- P€aring in the curren@0) which have to be replaced by their
tion dynamics is considered and deterministically “running 9uantum mechanical counterpakig, to obtain
solutions™ are excluded. We further assume weak thermal

noise, that is, any potential barrier is much larger than the Iqmzi(l_e_BFL)(ka—m,r—k;m’|)- (23)
thermal energy:
. ualitatively, each such rate,, in (23) is governed by a
AUZ>KsT. 17) Q Y i (23 s g y

competitive interplay between the very rare thermal activa-
Then, the thermally induced escape rate over each such bdien up to a certain “energy level” and the also very unlikely
rier is well approximated by the classical Kramers rate in thgunneling from there on “through” the remaining part of the
spatial diffusion limif potential barrier. Quantitatively, a sophisticated line of rea-
- soning has been elaborated during recent yeatsch we
K= VU exp{— BAU} (18) will only briefly sketch in the following. Starting with the
c 2#@ P ' Hamiltonian system-plus-reservoir moddl) and adopting
Langer's “imaginary free energy method®® or, equiva-
v 772+4m|Ug|— n lently, Miller’s “multidimensional quantum transition state
2m ' (19 theory,” it is possible to express the escape regg in
terms of functional path integrals. After integration over the
harmonic bath modes and a steepest descent approximation
[justified by(22)] in the remaining single-variable path inte-
gral, one obtains the following form for the semiclassical
approximation of the rate

w=

where for the sake of better readability, indiaded, and =
have been dropped, and wheg and Uy, represent the po-
tential curvaturegsecond derivativgsat the extrema, and
Xy , respectively. In the fixed potentibl ™ (x) one thus has a
rate k;yr of the form (18) describing thermal hopping to the
right, i.e., overAU;, and a second ratk],,=kg e #™* kqm=A exp{—Sg/i}. (24)

[where we exploited8)] for hopping to the left oveAU,", Here, the exponentially dominating contributi® is de-

inducing a net particle curretf; =L(kg,—Kg,). The latter  fined via the nonlocal action

is positive in view ofl =Lk (1—e ™) and since we

assumed thaF>0. Analogously, in the quenched potential [P mc? 7 (= ,[d-q ?
U~ (x) one finds the negative currenty=—Lkg (1 al= dTTJ“U(QHE _de —
—e AFLy. The resulting average classical curré@j can (25)

thus be rewritten as . -
with the abbreviationgj=q(7) andq’=q(7’), and where

we exploited the assumed Ohmic spectral den&@jywith
w.— (generalizations are immediate, see Refs. 7 and 10
Like previously in(18) we again omitted here indices I,
and = for the sake of better readability. This acti@b) has
now to be extremized with respect tf v) under the con-
Next we return to the dissipative quantum dynangid straints thag(7+#8)=q(7) for all 7, and that there exists
but restrict ourselves to the so-called semiclassical regimet least oner with q(7)=x,. A trivial such extremizing
Very roughly speaking, this means that in the absence of thg(7) is alwaysq(7)=x,. Among this and the possibly ex-
heat bathHg there exists a large number @fuasi) bound isting further extrema one has to select the one that mini-
states in each metastable minimum Wf (x), i.e., Awg mizes § q], the so-called “bounce solutiongg(7), to fi-

*

<AU[ |, where nally obtain the exponentially leading contribution(2¥) as

L
la=5(1-e P (kg —Kqy)- (20)

C. Semiclassical theory
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Sg:=9qg]—%BU(Xe). (26) It is reassuring to observe that in fact the semiclassical con-
_ _ o _ dition (22) is nothing else than the classical weak noise con-
Since this bounceyg(7) is in fact nothing else than the dition for the validity of the Kramers ratél7) at crossover
dominating path in the above-mentioned steepest descent ap=T,,.
proximation of the path integral, it is obvious that the preex- Turning to subcritical temperatures<Ty, ana]ytica|
ponential factoA in (24) accounts for the fluctuations about progress is possib|e 0n|y in a few Specia| Ca73§$|_e sim-
this dominating path, i.e., contributions to the path integralplest of them is the limity—0, T—0 (no heat bath result-

from an entire small vicinity ofjg(7). The most convenient ing in the familiar Gamow formula for the exponentially
way of rewriting this prefactoA depends on the considered |eading action25) for tunneling decay
temperature, as discussed next.

Closer inspection shoW&° that there exists a crossover B f X1 — ‘
temperature Sg—Se=2 " dgy2m[U(q) —U(xo)]], (34)
To=uhil2mky (270 wherex, denotes the first point beyond the potential barrier

) ) . . with the propertyU(x;)=U(Xg). (The absolute value is
above whichgg(7)=Xx, is the only admissible extremum in o0 4eq sinca, <x, for the escapes to the left, i.e., across

(25), and thereforeSg /4 =AU according to(26). In view 5 = ) The corresponding expression for the prefadiois
of (24) and(18) tunneling thus does not affect the eXponen- i oined a2

tially leading part of the rate in this regimie=T,. More-

over, a closed analytical expression for the prefadtois mwy
available’'%!yielding for the quantum rate the result A—Ag="\ = lim |X—Xol

X~>XO
Kom=Kg NAD) TT (AUND) . (28) Jxl [ U"(X0)/2
gm cl 1 1 - n'Mn X ex d I SO
n=2 P11 Y9N U@ - U(x)

Here, we introduced the notations

(39

N —

In more general cases we have to resort to a numerical evalu-
Ag,b:mVﬁJr 7at UGy, (29) ation of the semiclassical rate.

v,=2mNn/h B, (30

b BND12ic b\/_ D. Numerical solution below crossover
A7=Ll7Be PM "~erfc (N 1L), 31 . .
! p (MVAIL) S Though our numerical method to evaluate the semiclas-

sical rate(24) in the subcrossover regime<T, appears to
= , (32)  be quite natural and straightforward, we remark that prior to
|Upl 2mu?+|Uy dx* our work® only twocomparable numerical studies have been
o available!®!* both focusing on a cubic potentitl(x), and
where the comopc)lemzentary error funct_|on is given byexploiting heavily its special properties.
erfc (2)=27""?/7e™¥"dy and whereC>0 in (32) has been Our starting point to tackle the extremization of the ac-

tacitly assumed. It is not difficult to verify that the} are the  tion functional in(25) is a truncated Fourier series ansatz for
eigenvalues of the actio25 when linearized about the he pouncegg(7) of the form

trivial extremizing pathqg(7) =X, and similarly for the)\ﬂ

andq(7)=x,. Close toT, one haQ\'{zO, calling for special .

care in the steepest descent evaluatiod afi (24). Accord- as( T):nZO Cp COS(¥p7) +S; Sin (vy7) (36)

ingly, the quantityA® in (31) has been obtained by properly

including also next to leading order contributions in thatwith the Matsubara frequencies, from (30). This ansatz is

evaluation ofA. On the other hand, outside this vicinity of suggested by the required periodicity(7+7%8)=0qg(7).

To, that is, when\?B/L>1, one hasA?—\" since Note that withqg(7) alsoqgg(7+ A7) will be an equivalent

erfc (z)—exp (—2)/\mz for z—. Now, one readily ob- solution of the extremization problem for adyr. A natural

serves thak,=k for all admittedT=T,. Finally, when way to get rid of this numerically quite annoying ambiguity

T>T,, or equivalentlys—0, all the factors multiplyind, is by settinga priori sy=0 in (36). Similarly, one can set

on the right-hand side of28) tend to unity, and thu&,, sp=0 for trivial reasons. Introducing now the trial function

smoothly approaches the classical Kramers (a&, as it ansatz(36) into the extremization problen25) leads—by

should be. way of requiring stationarity with respect to the remaining
Note that the two rates in the curref®3) bring along 2N Fourier coefficientx, ands,—to a set of N coupled

two different crossover temperatur@§ and T, since|U}, nonlinear equations. Since multiple solutions are expected in

in (19) and thusu in (27) are typically different ford=(x). general, this set of equations requires a rather careful numeri-

One can now rewrite the semiclassical conditi®@®) in cal exploration. We also remark that the final relevant solu-

_LUPT? 4mpe+ VY dUxe)

N

terms of those crossover temperatures as tion gg(7) is by construction an extremum of the action
. . functional (25) but can be shown to be a “true saddle
kgTo <AU . (33 point,” i.e., neither a maximum nor a minimum, so that a

Downloaded 02 Oct 2003 to 137.250.81.34. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



634 Chaos, Vol. 8, No. 3, 1998 P. Reimann and P. Hanggi

direct numerical minimization/maximization @25) is not E. Results
possible. As a surprising numerical by-product we also veri-

o : In this section we shall discuss a few representative ex-
fied in all studied cases that

amples for the behavior of the particle currénb our quan-
tum ratchet model. We recall that the classical prediction
sp=0 for all n. (37 follows immediately from(20) and (18), while the semiclas-
sical current(23) requires a more involved numerical evalu-
In other words, possibly after a preceding shift of the timeation of two quantum rates along the lined described in the
origin, the symmetrygg(—7)=qg(7) is always respected. above Sec. Il D. As already mentioned, this gives rise to the

This symmetry has sometimes been tacitly assumed in thgvo crossover temperaturdg and T, , and it is useful to
literaturel® but to the best of our knowledge a general proofintroduce at this point the definitions
is still missing.

_ + o
Onceqg(7) is determined, the action follows witf25) To~=max{To Ty}, (39
and the prefactoA can be obtained 43%!! T min (T2 T5 ). (40)

M8 1o (7)]2d 7 TIND ‘1/2 Similarly, we denote the smaller of the two potential barriers

= entering throug an into the expressions for the
A=|20 1B L1 (39) ing through(18) and (28) into th ions for th
2wt H’)\E‘ current(20) and (23), respectively, by

AUMM=min {AU;", AU }. (41)

with n running from—« to « in the productdI. Similarly _
as in(28), the A here are the eigenvalues of the acti@h) Note thatAU™" is, according ta8), in fact the smallest of
when linearized aboutg(7). One of them is negative, re- all four potential barriers arising it *(x).

flecting the above-mentioned saddle point nature of the ex- We first address the behavior of the particle curieas
tremizing pathgg(7), and a further one is zero, related to the a function of temperatur& [measured in units of§'® from
fact that withgg(7) alsoqg(7+ A7) is an equally admissible (39)]. To completely fix the model, we still have to specify
extremizing path in(25) for any A7 (i.e., a Goldstone mode the five parametersy, », V,, F, and

is present They are usually denoted byg and )\? and are = L/2 42)
clearly the continuations ok5 and \? from (28) into the e
deep subcritical temperature regime. The zero eigenvalue ha¥e do this by prescribing five dimensionless numbers as
to be omitted in(38) as indicated by the primed product; it follows: First, we fix the three “potential parameter¥y, F,
becomes, very roughly speaking, substituted by the integraind| through

in the numerator.

By including sufficiently many Fourier coefficients in FIVo=0.1, 43
(36) and sufficiently many eigenvaluag in (38) the uncer- AU™YV,=1.819, (44)
tainty margin of our numerical rates is at most a few percent -
for arbitrary T=0.1T,,. In particular, we reproduced the nu- [UL|I%/Vo=1.672. (45)

10 to all digits. For completeness only, we may add that foRyith the two tilted washboard potentials frof) are de-
T<0.1T, reliable extrapolations could be readily obtainedpjcted in Fig. 1. Next we choose

by exploiting the known asymptotical analytic restifsthat

Sg(T—0) remains finite,Sg(0)— Sg(T)~T? for small T, n/Mog =1, (46)
and A(T) can usually be approximated quite accurately by here

its finite asymptotic limitA(T=0). To cover this tempera-

ture regime will, however, not be of central importance for ~ wg =[Vo/I?m]*?, (47)
our ratchet problem under study.

It is well known'® that the simple steepest descent ap-
proximation underlying(38) becomes invalid for tempera-
turesT very close to crossovér, such thav\? Bl L is of the
order —1 or larger[cf. (29—(32)]. There, one rather has to
match this approximation with the more sophisticated on
(28) [cf. the discussion below(32)]. In fact it can be
showr'1? that the validity of (28) actually extends even
somewhat into the subcrossover regime as far as corrections AU™"
of order 1-T/T, in the prefactorA and of order (1 " Tmaleo- (48)
—T/Ty)? in the actionSg in comparison to the full expres- BTO
sion (24) are considered as negligible. However, as it turndn this way, the weak noise conditiqi7) is safely fulfilled
out, this approximation is still too inaccurate for our pur- at least up tol = 2T and at the same time the semiclassi-
poses in the sense that simply matching it with the numericsal condition(22) rewritten in the form(33) is also satisfied.
at the first instance beloW, where they agree leads to ob- The classical prediction for the current frof80) and
viously inadequate results. (18) approaches a straight line for smallin the Arrhenius

corresponding to a moderate damping as compared to inertia
effects. To see this, we note thafy approximates rather
well the true ground state frequenci@d) in both potentials
U*(x). Namely,wg =1.23%} , andw, =1.294w¢ . In par-
ticular, (46) rules out the occurrence of “deterministically
Efunning classical solutions” both i *(x) andU~(x) (cf.

Sec. Il B. Our last dimensionless number is
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pendence in one of the underlying quantum rates that is fur-
ther enhanced due to the fact thatliferenceof such rates
governs the curren3). A better understanding of this issue
is the subject of ongoing work.

We also studied other parameter values than those used
in Fig. 2 as well as somewhat modified potentids As an
example we refer to the results presented in Ref. 13. Basi-
cally, always the same qualitative behavior is observed, ex-
cept that the nonmonotonic temperature dependence disap-
pears for sufficiently large\U™"kgTg'® values. Thus all
the above-described novel features appear to be typical for a
large class of quantum ratchet systems.

To explain qualitatively the current reversal, we recall
that in the limitT—0 and »—0 the exponentially leading
contributionSg in the semiclassical rat@4) is given by the
Gamow factorSg from (34). Strictly speaking, by letting;

/Lo

FIG. 2. The classical steady state currégtand its quantum mechanical —,0 we of course violate the assumption that deterministi-
counterpart ,, for the ratchet potential from Fig. 1 in dimensionless units

I/Lw§ . Note that in the present Arrhenius plddgarithmic ordinatg the cally !’unnmg solutions S_h(?UId l?e rl'!led out. However, itis
observed behavior of the quantum current BRI T=2.8 is not the sig-  Plausible that small but finite; will exist for which the fol-
nature of a divergence but rather of a change of sign. Further worth menlowing qualitative arguments can be adapted self-
tioning features are the nonmonotonicitylgf, and that apparently,» tends  consistently. In that spirit, we now proceed to conclude from
Eﬁ‘;gig&%@&%{'?g d‘?’:g‘TF;Or'ngge d‘;‘:ﬁ; Ezgann::itﬁrfe )‘(’t"."'“es are given (23) that the sign of the quaftum current will be governed by
that of the differencé&sg |— Sg , between the Gamow factors
(34) belonging to the two rates i23). The fact that this
plot Fig. 2. Its sign is governed by that afU, —AU " and  difference is negative cannot definitely be read off by eye
is thus always positive for our example potentiforward ~ directly from Fig. 1 since it is rather small, but is readily
ratchet,” cf. Fig. 3. Furthermore, Fig. 2 depicts the quantum Vverified numerically. In other words, for very smallindeed
current above crossoveT &< T<2TT®) according to23) & negative current is predicted. On the other hand, for [&rge
and(29). In a close vicinity of either of the crossover tem- We are approaching the classical limigy,—1¢, and the
peraturesT; , an increased uncertainty of the semiclassicaPOsitive sign ofl, (as discussed aboyearries over td gm.
rate theory arises, as discussed at the end of Sec. Il C. Thfs change of sign irl 4, at some intermediate temperature is
gap in our data between roughfg™ and TJ"™" is bridged by ~ thus a necessary consequence. For more geneeid T,
the dashes in Fig. 2. For even smalle T?™ the results  guantum tunneling and thermal effects are well known to
shown in Fig. 2 have been obtained by the numerical procecOnspire in a very complicated and often counter-intuitive
dure from Sec. 11 D. The slight roughness in the curve atvay SO that simple explanations usually cannot be given.

very low T is due to numerical inaccuracigthey are not The occurrence of current reversals in ratchet models
visible in the individual rates but only in the much more When certain control parameters are varied has been a major
sensitivedifferenceof rates entering int623)]. issue of several investigations. It has, however, not always

Our first observation is that even aboVE®, quantum b_een.sqfficientlly apprecigted that typically such a change of
effects mayenhancehe classical directed transport by more Sign is immediately carried over to the dependence of the
than adecade They become negligible only beyond several CUrrent on many other model paramet@r:We exemplify
T, In other words, significant quantum corrections of theth'Smoxbser"""'“On by choosing in Fi@ a temperaturel
classically predicted particle current set in already well=To /2.8 very close to the current-inversion point, but now
above the crossover temperatufg, where tunneling pro- kgepT fixed and vary some other parameter instead. Results
cesses are still rargThey can be associated to quantumW'th the massn anq the.frlct|_on coefficieny as such controll
effects other than genuine tunneling “through” a potential Parameters are given in Figs. 3 and 4, respectively. Since
barrier®) With decreasing temperaturé’,<Tomi”, quantum reversals with respect 6 are apparently rather typical, the
transport is even much more enhanced in comparison wit§ame may be expected with respecrtand » as well. Such
the classical results. A further remarkable feature caused b Sensitive dependence of the current direction on basic prop-
the intriguing interplay between thermal noise and quantun?rt'es (_)f the Brownian pgrtlcles is of <_:on5|derable_ interest
tunneling is theénversionof the quantum current direction at POth with respect to possible new particle-separation meth-
very low temperatures. In a classical description, such a re?dS as V‘ée” as for modeling of biological transport
versal for adiabatically slow driving is ruled ogtee Ref. processed:

15). Finally, 14, approaches a finitgnegative limit when

T—0, implying a finite (positive stopping forcé also atT |1l QUANTUM STOCHASTIC RESONANCE

=0. In contrast, the classical predictibg remains positive
but becomes arbitrarily small with decreasifigA curious
detail in Fig. 2 is the nonmonotonicity of,, around We now turn to the constructive role of quantum fluc-
To®T=25. It is caused by a similar resonancelikede- tuations for the phenomenon efuantum stochastic reso-

A. General framework
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o ) o FIG. 5. Interplay of thermal activation and quantum fluctuations for quan-
FIG. 3. The steady-state quantum current in dimensionless Ljts wg tum stochastic resonance in an asymmetric bistable potential with asymme-
versus particle mass. This plot was obtained by first taking in Fi@. 2y parametete.

=T§*¥2.8 and withm, defined as the corresponding value of the particle

mass[my= 7/ w§ according to(46)]. This temperature was then kept fixed

while the massn was varied. ever, manifest themselves, as demonstrated in the previous
section, already at much higher temperatures, namely around
and even well above the cross-over temperaligreEven up

to severall ,, the classical thermally activated transition over
2 barrier is already notably affected by finite quantuaftec-

nance(QSR. Quantum effects enter the dynamics of a non-
linear bistable system whenever its size is no longer of
macroscopic extent and/or when characteristic classical er): e T
ergy scales, for example the thermal enekgl’, become tion and quantuntransmissiorprobabilities.

comparable with typical quantum mechanical energies. The Let us first investigate this semiclassical regime of SR
thermal de Broglie wavelength then is no longer muChnear and above the crossover temperature where quantum

smaller than all other characteristic length scales of the sy foect_s s@art to appreciably mpd|fy the_ classical SR dyr_1am-
tem. This regime characterizes what we shall term the “deebcs' Like in (1) qnd(_Z), we conslider again a gusntug: particle
guantum regime.” With the smallest characteristic energyc.)]c Im\;alssﬂ mov'|:r_1g na g.err]]e_rabyl.asyr?metrlcl |§ta erg)oter:\—
scale given in a bistable quantum system by the level split'Ela (x) (see Fig. 3 which is bilinearly coupled to a heat

ting A of the lowest doublet, the corresponding temperatureEuar;hfﬁétir;irr;%@ﬁai?gr;ezicgtgirse?gr;;‘ %ar?niirgt;ngeé[]rg %Lé?]n
are generally very low. For macroscopic quantum system 9 P

such as Josephson junctions or superconducting quantum i Ity (621' S:mult.ar&'eo:cjsly, the system is subject to a time-
terference device€§SQUIDS they are in the milli-Kelvin re- ependent periodic force
gion, but can reach values around room temperatures for f(t)=—A cost. (49

systems of molecular or atomic size. Quantum effects, hOWThe bistable potential(x) is characterized by an asymmetry

parametere=0 with the dimension of an energy such that
for e=0 the potential is symmetrid/(—x)=V(x). For an
arbitrary but fixede, the two metastable minima are located
at Xy, the maximum in between is denoted by Xy,

5 10°| ] yielding a maximal tunneling lengthxg, and the respective
barrier heights to be surmounted by a particle locatetat
can be written without loss of generality in the form

E E.=V,Fel2. (50

5 10%¢ ] The potential curvatures at the barrier and the wells are again
conveniently characterized by the respective “barrier-” and
-1 107} ] “well-frequencies:”

oy =V () /MM, wo:=[V"(£x0)/m]*2  (51)

18 107y, . | ] Note that for not too large, the implicitly assumed symme-
07 08 009 1 11 12 18 14 try with respect to the potential curvatures at the two wells
n/n [V"(—x0)=V"(Xg)] is not a serious loss of generality, given
0 the exact symmetry(—x)=V(x) for e=0. We also remark
FIG. 4. The same as in Fig. 3 but with the friction coefficienused as a  that the parametersyy,, wop, andVy, may still vary upon
control parametef 7,=mo} according to(46)]. changinge and that further details o¥(x) will usually not
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play any role later on. Next, we recall that the exact, dissi-
pative quantum dynamics is again governed by the quantum
Langevin equation in(10) with the corresponding Ohmic .
friction kernel (14) and with operator-valued quantum fluc- E( 7) b c@(7)= z |P(Q,A)|2e™ M7,
tuationsg(t), satisfying(13). Finally, much like in Sec. Il B, m=—c (57)
the concept of metastability holds true only when the barrier

is large enough so that the forward rate of esdapas well ~ Thus, the amplitude§P,| of the harmonics of(t) deter-
as the backward ratk™ are small compared with all the mine the weights of thej-spikes of the averaged spectral
other characteristic inverse time scales of the system dynanpower density in the asymptotic sta®(w) via the rela-
ics. In particular, because the angular frequesgylescribes  tion
the time scale for relaxation within a metastable well, the
activation energieg€.. must be sufficiently large compared

to the thermal energ¥gT to ensure that the condition

>k* is fulfilled.” In other words, we require that

P(t) —— P@(1)= 2 Pu(Q,A)e" M2 (56)

o

S@(w)=27 2_ IPm(Q,A)[28(w—mQ). (59)

In other words, in the most interesting regime of asymptoti-
Vp—€/2>kgT. (52 cally large timest, the behavior of the observables

The basic quantity of interest for SR is the time- S®)w) and C(7) follows from that of P(t) (Wiener—
dependent quantum statistical mechanical expectation valughinchine theorem The two main quantities that have been
of the particle’s position, averaged over the reduced densitgxamined in the literature on SR are the spectral amplifica-
operator p,.q(t), becoming periodic at asymptotic timés tion (or power amplitude 7, in the first frequency compo-

(see below i.e., nent of S w),>88 and the ratioR of 7, to the power
L spectrurrS(NO)(w) in the absence of a signal, evaluated at the
P(t):=(x(1)). (53 external driving frequencyw =}, the so-called signal-to-

It constitutes the output of the system when the externahoise ratio (SNR);**i.e.,
time-periodic forcef(t) (49 is acting. Beside®(t), the
P (M) 189 s acting ® T A): = 47{Py(0,A) 7,
averaged power spectrus{w), (59
- to R:=47|P1(Q,A)|?SO(Q).
S(w):=j dr €“C(7)=Sy(w)+S®¥(w), (54
— By definition, »; has the dimension of a length squared,
defined as the Fourier transform of the time-averaged quar’(yhIIe R hgs the dimension of a frequency. Thus, to |nve's't|-
tum correlation functiorE( ) gate the interplay between noise and the coherent driving
T input which yields the phenomenon of QSR, we shall con-

_ QO (2n0 1 sider two dimensionless quantities, namely the scaled power
Cln:=5- 0 dt 5 (x(t+ D)) +x(O)x(t+ 1), amplificationz; and the scaled signal-to-noise rafto They
(55  read
is a further fundamental quantity to investigate RIt _ QA (Rl wp)
should be noted that, due to the explicit time dependence of 7,(Q,A):= —— R:.= —. (60)
(AXo/ V) (AXo/Vyp)

the perturbation49), the correlation functioqx(t+ 7)x(t)

+x(t)x(t+ 7)) depends separately on the time arguménts
and 7. This explicit dependence on however, has been
omitted since it will indeed drop out in the long time limit

Thus far, all our definitions are completely general and all
relations are still exact; they describe the fufinlinearQSR
in the whole temperature regime extending from absolute

t=ee consider_ed below; tha}n_ks to the integration OVEr & zero up to room temperatures and beyond, and they approach
driving period in(55). As anticipated on the right-hand side the limit of classical nonlinear SR smoothly. The main chal-

of (54), for a time-periodic perturbation, the power spectrumlenge consists in the evaluation of tiiexac) asymptotic

results.m trf:e bsum of ]EW(,) Colnt”:ml')onsa\gheiﬁ‘(‘“’), rept;e—k quantum expectation value(t) in (56), from which every-
sents, In theabsenceot signal, the broadband “noise back- thing else follows. Since we are not able to do this in ana-

ground,” possessing a Lore(:(r)w)tman humpaat-0. We shall Iytical closed form, we next address this challenge within a
denote this contribution by ’(w). In the presence of the quantum linear response theory.

signal, Sy(w) is obtained as a product of the Lorentzian

hump S&O)(w) and a correction factofof order unity for  B- Linear response theory for quantum stochastic

weak signalsdescribing the modification of the signal on the f¢sonance

broadband “background***° The “asymptotic” contribu- Because the main focus of SR centers around the noise-
tion S w) is given by the sum ob-spikes at integer mul- driven enhancement of the response tav@akcoherent in-
tiplesw=n{ of the signal frequency, reflecting the fact that, put, we shall develop in this section the theory for QSR
for timest large compared to the time scale of the transienbased on Kubo's linear response theory, which in our case—
dynamics, the motion acquires the periodicity of the externathermal equilibrium when driving is absent—can be based
perturbation. Similarly,P(t) and C(7) approach for large on the quantum fluctuation-dissipation theord@FDT).
timest an asymptotically periodic behavior of the fol#s° This theorem relates the unperturbedl=0) power spec-
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trum of fluctuations in thermal equilibriurB{’(w) to the  in the left (n,) or right (ng) well of the bistable potential.
linear susceptibilityy(w) at the driving frequencyw= () For a state-continuous system, are defined in terms of
according to the celebrated relationship the probability density(x,t) for the particle’s position as

SO(Q)=# coth(BAO/2) Im X(Q). (61)

In the limit #8Q <1 the QFDT becomeS\(Q)=2 Im
Y(Q)/BQ, thus correctly reproducing the classical One then finds that the relaxation of an initial nonequilibrium
fluctuation—dissipation theorefsee also Sec. Il B value in Eq.(53), i.e., P(t) =Xq[ ng(t) —n.(t)], is governed

In the linear response approximation, only the harmonic®y a rate equation
0,1 of P@)t) in Eq. (56) are different from zeroP, : =
being just the thermal equilibrium valuR., in the absence P(t)==T[P(t) = Pegl, (66)
of driving, andP-. ;= (A/2)x(+ Q) being related by Kubo's Wwith
Igmous formula to the linear susceptibiligy({)) according T= k§m+ Ko 67)

() =1—ng(t)= fjidx X, t). (65)

e being thesum of the forward and backward quantum hop-
Y(Q)= ﬁf dr €270(7){([a(7),q(0) ) a0, (62)  Ping rates k;m ~and kg, respectively, and wheree:

‘°° =x0(k;m— kqm)/T" as a consequence of the detailed balance
where( . . .)a_, indicates the quantum statistical mechanicalcondition at equilibriund. Information about the detailed
evaluation of correlation functions ithermal equilibriump  form of the potential isstill contained in the averaged rdte
that is, in the absence of driving. Further, Inthe deep quantum reginie<T, the same set of equations
i{[q(7),q(0)])a=o/% becomes in the classical case the cor-holds whenever incoherent tunneling dominates the dynam-
relation function _13<q(o)Q(T)>A:0, Finally, because the ICs (and intrawell relaxation effects are still negligipl&he
linear susceptibility is related to the power spectrum in thervalidity of such an approach implies either strong enough
mal equilibrium by the fluctuation—dissipation theorédd), ~ damping, or sufficiently high temperature$?! The equilib-

the quantities fron{59) can be recast into the form rium dynamics of corresponding fluctuations of this two-
state dynamics is then also governed by the same exponential

L A2(0)]2 n
71(Q,A) = TAT X (D), (63 decay ratel, yielding for the unperturbedA=0) equilib-
1 X(Q)|2 rium power spectrurrSf\,O)(w) at the driving frequencyw

R=mA? (64) = the approximation

fi coth (BhQ2) |m Y (Q) ' _
2r

Thus, for weak external signals, the computation of the spec-  S0(Q)=4x3(k* k™ /T?)= ,
tral amplification#, or of the signal-to-noise rati® is re- r+0?
duced to the evaluation of a dissipative, thermal quantum Correspondingly, in the limit BQ<1, the(classical or
equilibrium correlation function i62). This is still a very
difficult task for a full nonlinear bistable potential as de-
picted in Fig. 5.

(68)

quantum linear susceptibilityy(Q) exhibits a quasi—ela_stic
Lorentzian_peak of amplitudeb(T)=4(x(2)/kBT)k+k*/F2
and widthI'. It thus reads

C. Tunneling corrections to stochastic resonance ~ 1
I : - x(Q)=b(T) ——=—-+0(hBQ)*. (69)
We shall simplify the analysis further by restricting our- 1-iQr—1

selves to the regime around the crossover temperdtyre

where tunneling events and classical noise-induced hoppinI Sggnglur:t(;g' \;Vrzerr‘eel\;?é;hﬁ b?ﬁmzz?aﬁ:éj g}gﬁg qéjoann(;ﬁirgn
events are of comparable importance. At such still rathe P y

I > .
high temperatures, the dissipative equilibrium quantum dy- =k exp( G/kBT_) [CE (50) and Ref. 7, we obtain for the
namics is solely incoherent. In addition we shall neglect the*caled power amplitude, the result

influence of small, relaxational intrawell quantum fluctua- V. |2 1 T2
tions. In principle their role could be accounted for by ap- 7,1(Q)=q-r ﬁ) =S - (70
proximating the fast relaxational intrawell quantum motions BT/ cosH(e/2kgT) Q?+T

by the weighted quantum dissipative harmonic oscillator dy4 jkewise, consistent with the conditidn3Q <1, the cotan-
namics in the Ief_t and right wells, respe.ct|veily. _Thege latteryent hyperbolicus ifi64) can be approximated as the inverse
guantum dynamics can be evaluated in principle in exac f its argument, and the scaled signal-to-noise-r&tide-

closed form for all tgmperaturet. Howeyer, such e_ffects_ comes effectively independent of the external frequeflcy
would play an essential role only for the signal-to-noise ratio

at small ratios off/T,.5'8Because we restrict the discussion ~ _ 77( Vv, )2 Ty
S R=o| 2] ———2—. (72)
here to t_emperatures near and abdye we can safely ne 2\ksT) cosi(el2kgT)
glect their influence. As a consequence, we can derive our
results within atwo-statedescription of the system dynam- These two relations iKi70) and(71) are the main results

ics, by introducing the probabilities, r for the system to be of our semiclassical QSR analysis. The basic assumptions
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under which they are valid are weak noi&®), small am-
plitude A, 280 <1, andT/T, not too small. Several results
now follow immediately:

(i) Within a two-state descriptiomf the incoherentun-

driven) dynamics, the linear response theory developed in
this section effectively reduces the study of QSR to the com- 02

putation of two correspondingsemiclassical quantum es-
cape ratekcfm at thermal equilibriunicf. (67)]. For tempera-
tures sufficiently beyond’, we can use Eq(28) with the
approximationA2=\", as discussed belo(82), to obtain

T— @ exp{—ﬁv }2 COSh(BG/Z) (72)
am 27wa b ,

. +w(2)+n21/2+nv7

qm_n:l —w§+n2v2+nvy
T(1—puy /)T (1—uy/v) 73

CT(1—pd T (1—pylv)

Here, we have exploitel8), (50), and (51) and we have
introduced the notations

v=2mlhp, (74
vy=nlm, (75
a=ywy, (76)
pp =wpla* (a®+1)17], (7
po = wpl a* (@?—(wol wp)?)M?]. (79)

Further,I'( .. .) in (73) denotes the gamma function. Iden-
tifying uy with u from (19), the crossover temperatu(27)
takes the form

Explicit results for the scaled signal-to-noise raioare de-
picted in Fig. 6, and the scaled amplification for QSR is

shown with Fig. 7. We note that quantum tunneling can en-
hance the classical result by almost two orders of magnitude!

(i) By construction, a linear response approximation

does hold independent of whether the coherent applied signal

(49) involves adiabatic or nonadiabatic frequencis
Hence, Eqs(63) and(64) hold for anydriving frequency(}.

On the other hand, while the expressi@9) for the linear
susceptibilityy (2) becomesexactin the classical limit, the
condition 2 B8Q)<<1 requires some care in the semiclassical

and deep quantum regimes, and may lead to restrictions on

the values of the applied driving frequen@y Whenever the
condition# BQ <1 is not fulfilled, the linear susceptibility
¥(Q) (and hencez, and R) exhibits a more complicated
dependence on the frequenfy, as determined by the full
guantum fluctuation dissipation theore(@l) and by the
Kramers—Kronig relationships between its real and imag
nary partssee also the next section for a discussion of QS
in the deep quantum regime

(i) Because Egs(70) and (71) hold independent of
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FIG. 6. Quantum stochastic resonance accordin@1p-(79) at zero asym-
metry (e=0) versus dimensionless temperatdi, , with T, the cross-
over temperature to tunneling dominated escape, as characterized by the

semiclassical scaled signal-to-noise ras° (solid line). For comparison
the classicalsignal-to-noise ratio is also depictédhashed ling obtained by
settingfqn=1 in (72). The inset makes clear that the enhancement of the

semiclassicaR*¢, over the corresponding classical signal-to-noise r&fib
can reach almost two orders of magnitude.

external signals considered in Eq30) and (71), both the
scaled spectral amplificatiow; and the scaled signal-to-
noise ratioR are independent of the external strengthbut

only 7;1 is still a function of the external frequencf.
Hence, the positioff % of the temperature maximum of the

150 T T T T

logy($2/wp)

w

a =50
Vb/hwb =1.0

Q/wb =10"*

1 { 1
300 400 500

T/T,

100 200 600

FIG. 7. Scaled spectral amplifica\ti&ﬁ'1 [see(70)] versus dimensionless
temperature for different driving frequenci€s (solid lines. For compari-
j-son, the dashed lines give the results for the classical stochastic resonance
R';pectral amplificatiorisee also Fig. 6 The inset depicts the ratio between

the total(forward plus backwandquantum ratd’ andQ at the temperature

T* where 7, assumes its maximum. The QSR maximum is thatslow
driving frequenciesonly roughly determined by the condition that twice the

whether the escape mechanism is classical or quantum, sorggape time, i.e.,[4(T%)]"*, should approximately be equal to the exter-
general features of QSR can be stated. For the case of weakl driving period 27/Q (see Ref. &
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scaled SNR effectively depends only mitrinsic parameters equally occupied, so that the limé=0 yields (with a<<1)
of the bistable system, such as the barrier helght the  no QSR phenomendi®?® As a result, in the limit of zero
asymmetrye, the relaxational angular frequencieg, and  asymmetrye=0 generallyno QSR does occur.

wq, and the friction coefficienty=m+y. On the other hand, Moreover, at such low temperatures the driven quantum
QSR for 3, can beexternally controllecby varying the ap- dynamics is generally no longer incoherent; i.e., rate descrip-
plied driving frequency(. tions of the type in(66) are not valid. In this regiménco-

(iv) On the same basis as {iii ), the generality of Eqs. herentand coherenttunneling events, with the latter occur-
(70) and (71) implies that the differences between classical,ling predominantly at weak dissipation, low temperatures
semiclassical or quantum SR are determisetely by the —and/or at nonadiabatic driving frequenci€s In the last
explicit temperature dependence of the escape tatedn  three years, much progress has been made in investigating
particular, the classicdlcf. (18)] and the semiclassical es- QSR in this regime. We refer the readers to a recent review
cape rategcf. (73)] decay exponentially as the temperature©f the behavior of nonlinear QSR in the driven spin boson
decreases. This, together with tfeassical and semiclassi- model. See Sec. VI Ain Ref. 6, or go directly to the relevant
cal) condition (52), necessary for a clear-cut separation oforiginal literature:(i) Within linear response and adiabatic
time scales, implies that the QSR maxima are determined b§ffiving, incoherent QSR has been studied byfstedt and
the competition between this exponential decay and the alcoppersmith in Ref. 23ji) analytical “linear” and nonlin-
gebraic divergencekgT) 2 in 7, or in R as the temperature €& QSR, both within coherent and incoherent tunneling re-
is decreased. Hence, the detailed balance factggimes at adiabatic and nor_w_adiabatic driviig has been in-
costi 2 (¢2kaT)<1 only plays a minor role; it always sup- Vestigated by Grifoni and Hmgi2° New features, such as
presses the SR phenomenon: With explieT) <1, ie.T driving-induced resonances and quantum coherences, occur

. e~ i in the nonadiabatic driving regime. Moreover, nonlinear
=Kkqm, the power amplification;, is exponentially reduced

. o i X QSR also exhibits for its amplification of higher harmonics
propprtlonal tofexp (—elkgT) ] likewise, the SNR IS €XPO~  hovel phenomena such as multiple quantum noise-induced
nentially (but weaker reduced proportional to

suppressions of superharmonic power amplitudes together
exp (—ekgT). This finding is in accordance with prior stud- PP b b b g

. f classical : iibri i with typical phase-shift discontinuities.
les of classical SR in nonequilibrium systems. Insightful exact numerical path integral studies for a

driven, dissipative spin-boson model have recently been car-
D. Quantum stochastic resonance at very low ried out by Makri?* The extension of this numerical ap-
temperatures proach into the regime mediating between such dissipative

Let us comment here in some detail on the situation ifWo-level models and the semiclassical limit has been
the deep cold at extreme low temperatures. As we have Seé(}tprked out in Ref. 25, revealing a multitude of new interest-
above, the main challenge in QSR consists in the evaluatiolfd aspects of QSR. , ,
of corresponding quantum expectation and correlation func- AS @ general feature of nonlinear QSR one finds that a
tions in a driven, dissipative metastable quantum systenPfinCipal maximum in the response versus temperature ap-
This task, as we have witnessed with the quantum ratchdt€@rs when the static asymmetry exceeds the driving fre-
problem, up to these days has not been possible to solve Ifp€ncyand driving strength. Moreover, nonlinear QSR ex-
analytical means in the whole temperature regime. This oblPItS @ quantum fluctuation-inducesippressiorof higher
jective has never been solved either for the much simplef@monics, together with a characteristic phase shit.
situation of its classical limit. A useful analytical scheme is
pos_sible, howevgr, i_n the_deep quantum regim_e. Ip this I_attelrv_ CONCLUSIONS
regime the physics is mainly ruled by the dissipative, driven
dynamics of thewo lowesttunneling split levelsThis typi- In summary, we have investigated the constructive role
fies the so-termed dissipative spin-boson problem which hasf quantum fluctuations for noise-driven transport in rocked
been studied in th@absenceof external driving thoroughly quantum ratchets and for the phenomenon of stochastic reso-
over the last two decades or so, with four authoritative renance in periodically driven bistable qguantum systems. The
views being availabl&.Only in recent years, however, has underlying quantum dynamics in both cases is dissipative,
this problem been addressed in the presence of driving. Aut not necessarily overdamped. As such we have accounted
few relevant works are listed in Ref. 22. Most importantly, for fluctuation-driven transport in the presence of finite iner-
the quantum rates no longer exhibit an exponentiatia effects(finite massm).?® We have found that quantum
Arrhenius-type behavior. Instead, the exponential quantummoise can substantiallgnhance but sometimes alssup-
rate assumes a much smoottmon-Arrhenius-lik¢ tempera-  press the nonlinear response due to the external periodic
ture dependence and remain finite even at zerdalriving.
temperaturé:® Further, within a two-level description of the While several ingredients, such as the coupling to a ther-
incoherent tunneling dynamics, the energy splitting of themal heat bath and the driving out of equilibrium by an ex-
two discrete energy levels is of the order of the asymmetryernal force, as well as the general technical framework, are
energye. Hence, the detailed balance factor represents ththe same for both our model of a quantum Brownian motor
relative occupation of the energy levels and it is this factorand QSR, the basic mechanisms and the typical observables
that starts to play a crucial role for QSR in the deep coldare different. In the first case, the salient point is the simul-
Now, when e<kgT, the energy levels become almost taneous breaking of the spatial symmetry and of the detailed
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