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Suppression of quantum coherence: Noise effect
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Abstract

The influence of noise on the tunneling dynamics in a periodically driven two-level system is discussed. To describe the
noisy quantum dynamics the stochastic Schrodinger equation is used. It accounts for the mutual influence of both phase
damping and circularly polarized field driving with a noisy amplitude. It is shown that in absence of deterministic driving, a
random dynamic drive stabilizes the localized state while a random, non-demolition drive (see below) destabilizes the
localized state. In contrast, localization which can be induced by deterministic driving fields is destroyed by either phase
damping or fluctuations of the driving fields. The delocalization rate for intermediate-to-strong field strength turns out to be
universal. Approximate results can be obtained by a perturbation treatment. © 1998 Elsevier Science B.V. All rights
reserved. '

1. Introduction

The dynamics of a dissipative two-level system or spin—boson model has been extensively studied for more
than 25 years and it remains to be an active field to present days [1-5]. These studies were driven by various
motivations that range from fundamental physics to practical chemistry. For instance, the spin—~boson model can
be used to understand macroscopic quantum coherence [6,7], chemical reactions in condensed media [4],
hydrogen tunneling in metals [8], to name only a few. It is well known that the major effect of dissipation on
quantuim systems is the destruction of coherence. The current interest in dissipative two-level models
concentrates on the understanding how the indispensable environment destroys quantum coherence, which is the
bottleneck for the implementation of quantum computers [9,10].

There are two main distinct approaches, microscopic and phenomenological so to speak, to study dissipative
dynamics of quantum systems. The first method uses the total Hamiltonian describing the system, environment
(or heat bath) and their mutual couplings. Given an initial condition, the dynamics of the total system can in
principle be derived by solving the equation of motion — the Schrbdinger equation or the corresponding
Liouville-von Neumann equation. Because only the dynamics of the system is of interest, it is sufficient to
determine the reduced density matrix by tracing over the environmental degrees of freedom. One often assumes
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as the initial condition a factorized total density matrix in which the heat bath is in thermal equilibrium.
Therefore, in order to derive the properties of the system it is necessary to know the dynamics of the total
system, which is a difficult many-body problem. In contrast, the phenomenological approach is based on the
stochastic Schrodinger equation of the system. This latter approach does not invoke bath degrees of freedom but
rather, the influence of the heat bath is implicitly represented by a stochastic process. Generally, this approach is
more convenient to use. The two approaches are expected to yield qualitatively similar results [11].

Resorting to the stochastic Schrodinger equation, we shall investigate how noise affects the control of
quantum coherence, especially the driving induced suppression of quantum coherence by extemal fields.
Suppression of quantum coherence for a two-level system — i.e. coherent suppression of tunneling — can be
induced by monochromatic fields when the strengths and frequencies assume specific values [12-20]. This
intriguing effect has witnessed many applications in physics and chemistry, from trapping an electron in a
quantum double-well structure to controlling chemical reactions [21-29). It has been shown that strong
suppression of quantum coherence can be realized by applying both linearly [21-29] and circularly polarized
driving fields [30]. The underlying physics of this phenomenon is related to the level-crossing of the
corresponding two dressed states [15,16,30]. Many investigations concerning the influence of the environment
on quantum coherence have also been carried out within the spin—boson model with and without driving fields
[1-5,23-28,31-33]. Without external driving fields suppression of quantum coherence, i.e. localization, has
been predicted at zero temperature with strong dissipation [6,7]. In presence of an external driving, field induced
localization does not emerge if there is dissipation [24,25,31,32]. Naturally noise inherent in the driving field
should also exert an impact on the driven dynamics. This effect was first explored in [34] where the influence of
a noisy driving has been described by random periodic 8-kicks. In this case, tunneling is also hampered by the
noise [34].

To gain more physical insight into the noise effect we shall put forward an exactly solvable model. Not only
noise from the perturbations by the surroundings, termed background noise, but also noise inherent in the
applied field is taken into account in the model system. A circularly polarized field will be utilized as the
driving force. In Section 2, we describe the driven stochastic system and use a gauge transformation to change
the time-dependent Hamiltonian into a time-independent one. Exact results are shown in Section 3 in which the
influence of the two kinds of noise sources (phase damping noise and noisy driving), taken separate or
combined, is included. An analytical closed-form approximation is developed in Section 4. A summary and
conclusions are presented in Section 5.

2. Stochastic Schrodinger equation

The Hamiltonian of an open two-level system driven by a noisy circularly polarized field can be written as
H(t) = —3A00*+ af(t) o+ [3Vo + yn()][ o exp(iwr) + o7 exp( —iw?)], (D

where 4, is the energy difference between the excited state [2) and the ground state [1) of the isolated two-level
system, o are the Pauli matrices, 0 *=0*+ic” and &(t) and 7(¢) are realizations of uncorrelated Gaussian
white noise with strength a and vy, i.e. (£(2)€(s)) =28(t— s5), (n(t)n(s)) =28(t — 5). The strength of the
circularly polarized external field is given by V,. This Hamiltonian can exactly or at least approximately
describe many physical systems, e.g. a magnetic spin—1/2 particle. One notices that the background noise
operator, i.e. the second term in (1), commutes with the Hamiltonian of the isolated system. There is no energy
exchange between the system and the heat bath. This kind of noise only destroys the quantum phase of the
system. This will be termed phase damping. Fluctuations of the driving field are accounted for by the term
yn(z). One may also include other kinds of noise which are induced by the dynamic interaction. For instance,
one could consider random (magnetic) transition dipole moments proportional to ¢ *. Because we focus here on
decoherence rather than on the loss of energy, we only study the phase damping and field fluctuations, with the
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former resulting from the system—environment couplings of non-demolition type 2. As shown below, the
non-demolition perturbation of the background has a stronger effect on quantum coherence than a random
coupling to o *. Besides, one advantage of choosing a noise structure as in (1) is that average physical quantities
for this noisy Schrédinger dynamics become exactly solvable.

Suppose that |(2)) is the wavefunction state of H(t), i.e. id|y(2)) /8t = H(¢)|(2)). For the following we
set % =1 and all frequencies are measured in units of A,. Employing the gauge transformation |(2)) =
Z|y (1)), where % = exp(—iwto */2), we obtain [20]

DO+ 122 oiaayy. ®

In the basis of the superposed localized states, namely the left one |L) = (|1) +[2))/V?2 and the Tight one
IRY = (1) —[2))/ V2 — usually employed in tunneling problems — the transformed Hamiltonian H(z) reads

H(t) = — 160" +af(t)o*+ [Vy+yn(1)]o®. 3)

Here 6 = 4, — w denotes the detuning. Note, that in this form the Hamiltonian has the structure of a two-level
system driven by a linearly polarized random field and a randomly varying tunnel splitting. One can establish
the relationship between the eigenvectors of H(r) and H(2), ie. with |¢(2)) =c(IL) + cx()IR) and
|§(1)) = &I L) + E(DIR) we find

(1)) = cos( )1+1sm ]h/l(t)) (4)

Here, 1 is the 2 X 2 identity matrix. Denoting the stochastic influence of the noise sources by { the quantity
related to quantum coherence is the probability of the system occupying one of the two localized states, say
PE() =K LIy())|*. To determine PZ(z) it is convenient to define a time-dependent three-component vector
S4(1) = (S(0),S5(0). 85 (1) = () o |y(2)), which accounts for the quantum expectation at fixed stochastic
realization ¢ of 7(¢) and £(¢). If discussing a magnetic spin—1/2 system, one immediately recognizes that
$<(2) is nothing but a stochastic Bloch vector. The evolution of S¢(¢) describes the trajectory of a unit vector.
One can calculate many properties of the system described by either H or H with a given S¢(z). For instance,
the quantity of interest P#(z) turns out to be

PE(1) = 3[1 — sin( wr) $¥(1) + cos( wt) S5(1)] - (5)

We should stress that the quantity P#(z) stands for the probability in the localized state which is different
from the probabilities to find the system in the eigenstates denoted by P/(¢) and P£(2), respectively. Note that
P£(p) is associated with quantum coherence, which is represented by the oscillating population transport
between the localized states. However, the probability in the ground state P/(¢) (or in the excited state P/(z) as
well) is related to quantum transition, which does not take place for a closed system in absence of the driving
field. One can show that

Pi(r) =[1+55(n)].

Noting that the vector S4(¢) is determined by |§(2)), we only need to deal with the transformed stochastic
Hamiltonian H(z). There are two ways to calculate physical quantities of the systems described by stochastic
Hamiltonians. One is the direct perturbation treatment [41,42] and the other is based on the stochastic calculus
[43-45]. The dynamics of the noisy Schrodinger equation is not unique in the sense that one can evaluate its

2 The non-demolition interaction was first introduced in quantum measurement theory. See [35,36]. The effect induced by non-demolition
interaction in magnetic tunneling is known as topological decoherence. See for instance [37,38]. See also[39,40].



84 J. Shao et al. / Chemical Physics 235 (1998} 81-92

dynamics within the Stratonovitch or Ito calculus, respectively. This is rooted in the fact that the Schrodinger
equation corresponding to the stochastic Hamiltonian in (3) involves the stochastic products &(¢#)lyy and
n(t)l ). If we interpret these products in the sense of Stratonovitch, the corresponding Schrdinger equation
reads

d _ - - - .
ialdﬁ = =380 %) + Voo 1) + ad E()P) + yo m(H)IP) . (6)

To perform explicit calculations it is more convenient to utilize the martingale property of Tto-calculus (i.e. this
property yields vanishing expectations for the noisy products in (6)). The Schrodinger equation in (6) is
stochastically equivalent recast as the Ito—Schrodinger equation, namely

dig) =380 *1§)dt — iV o il )de —iao*[§) - AW, —iya 3§ - AW, — 3 (a® + y?)|P)ds, (7)

where + denotes multiplication in the Ito sense, and where W,(£) = [{£(s)ds and W,(¢) = [in(s)ds are two
uncorrelated Brownian motions (Wiener noise). From (7) we find the equation of motion for the quantum
expectation S¢ of the Pauli operators o’s, i.e.

dS¢ = AS%ds + BSY - dW, + CS - dW, , (8)
where
—2v? -2V, 0 0 0 0 0 -2y O
A=) 2V, —2(a’+7v?) 5 |, B=|0 0 —-2af, C=([2y 0 O
0 P —2a? 0 2a 0 o 0 0

)

Next, we investigate the statistical average of S¢(¢) with respect to the fluctuations W,(¢) and W,(¢), which we
denote by S. From (8) we obtain
s AS
® _ . 10
m (10)

because within the Tto-calculus the two Brownian noise terms do not contribute to the statistical average. Its
solution formally reads

S(t) =exp( A1)S(0). (11)

3. Results
3.1. Background noise (a # 0)

Let us first consider the case without driving, i.e. V, =0 and y = 0. In this case, of course, it is not necessary
to employ the gauge transformation. However, for the consistency of our discussion we follow the procedure
described above. The coefficient matrix in (10) becomes

0 0 0
A=10 —2¢07 5 . (12)
0 —-8 —2a?
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Upon inserting (12) into (11) we find-

5.(1)=5.0), | (13)
S,(t) = exp(—2a?t) [cos( 81)8 (0) + sin( St)WO)'] , (14)
S—z(t—)=exp(—2a2t)[—sin(8t)S_y(_07+cos(BI)EZF)—)']. (15)

Note that S, (#) being a constant means that the population densities in the eigenstates do not change with time.
This is the specific feature of the non-demolition interaction between the two-level system and the reservoir
[40], characterizing this case.

Suppose that the system evolves from the left state: S,(0) =S,(0) =0, S (0) = 1. With this initial condition
we obtain S (1) = exp(—2a’1)sin(8¢) and S,(¢) = exp(—2a*t)cos(81). Replacing S¢(+) and S{(¢) in (5) by
S,(t) and S (), respectively, we obtain the statistical average of Pf(¢), namely

P (1) =1+ texp(—2a?t)[cos( 81)cos( wt) — sin( 8¢)sin( wt)]
3 + 3exp(—2a’t)cos( Ayt)

(16)

because 8 = A, — w. Obviously, P; is generally a damped oscillating function of time. Even with A, =0, we
find P, — 1/2 as t — . Therefore, in this case the degeneracy of the bare system is split by the phase
damping.

s+ Let us now switch on an external noise-free field, i.e. y=0. If the two-level system is free from external
p\erturbations except coherent driving, localization takes place if and only if w and V|, satisfy [30]

I R (a7
24,
and w>> A, for given A,. The probability in the left state P,(#) under localization condition reads [30]
P(t)=3{1+ xz i sin?( wt) + cos( wt) 4x” 5+ it 1)2 cos( wt) } , (18)
xt+1 (2+1)° (X2+1)

where x=2V,/A,. Strong localization is achieved already for x > 4, which corresponds to a driving field of
intermediate-to-strong strength V.

We are aware that even for a # 0 the formal solution Eq. (11) can be written down analytically by solving a
cubic equation via use of Cardani formulas, but the results are formidably complicated. Of course, we can
perform exact numerical calculations if all parameters assume given values. For instance, Fig. 1 displays the
behavior of P,(¢) for =0, a=02 and a= 1.0 from exact calculations. The localization condition with
Vo,=2and w=17/2 in units of 4, =1 is used.

Wﬂﬂ{’[‘[’ﬂ"”‘”f””””WWWHHHH””””H!HHHIW

08 Lt

1% oo " ““m‘ﬁ‘“lHHH‘nnm11m
04 i
02 ]
P I S S R T T

0 5 10 15 20 25 30 35 40 45 50

Fig. 1. Time evolution of P,(¢), with P,(0) =1 under the localization condition V, =2 A,. The remaining parameters are w = 17/2 4
a=00, a =02, a =1.0 and y = 0. The dimensionless time is measured in units of Ay; ie. t = (4, /f)=1.
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Without background noise, a = 0, it is seen that the system is localized in the left state. For a small noise
strength a = 0.2, the system sustains quantum coherence (the oscillatory behavior shown in the curve) for a
very long time (beyond the time range depicted in the figure). However, if the noise strength becomes large, e.g.
a = 1.0, quantum coherence will be destroyed already on short-time scales, such as for ¢ = 15.

3.2. Field fluctuations (y + 0)

We consider the effect of noise inherent in the applied field only, ie. a=0. In this case the matrix A
becomes

-2y* =2V, ©

A=l 2y, -292 &
0 -6 0
For V=0, we solve this equation exactly to obtain
5.(7) = exp( —27%)S (0, (19)

t) = zexp(—y f)[Cl(t) - —Cz(')]_(_'Fl—exp( Y 21)Cy(1)5(0) (20)

2
Y
3(:2(‘)

<)

(1) = %g—exp(—yzt)Cz(;)sy 0) + 1

5.0, (21)

where D = \/y — 8%, C(t) =exp(Dt) + exp(—Dt) and C,(t) = exp(Dt) — exp(—Dt). A significant fact is
that while S_ always depicts an exponential damping, S, and S, . may exhibit twg distinct behaviors, depending
on whether D is real or imaginary. If D is real, i.e. 'yfv> 181, S will be an exponentlally decaying function of
time. In contrast, S will display damped oscillations if D is imaginary, i.e. Y% <|8|. For a very strong
fluctuation we have the approximate relations D = y2— 82/2y? and C,(¢) = C,(¢) = expl(y* — 82/2y)t].
As a consequence, Eq. (20) and Eq. (21) become

182 82 , 8 82 ,
Sy(t) = —;FCXP — _2—7—2t Sy(O) + EFCXp — E’y_t Sz(O)’ (22)
and
8 82 82 82
S, (t) = —%Fexp —Wt 5,(0) + (1 + Zy—)exp(—2—2-t) 5,(0). (23)

As y* > and & remains finite, we find S,(#)=0 and S,(¢) =5,(0). In other words, with an extreme
fluctuation strength, S (¢) vanishes instantaneously while S () does not vary with time.
With the initial condition S, (0) = Syi 0)=0 and S,(0) =1, ie., |¢(0)) =|L), Egs. (20) and (21) become

%]

5
(1) = 3 exp( =y 1) Co(1), (24)

and

S(H=1 Ci(1) + = cz(r) (25)
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Replacing S(¢) and S{(r) in (5) by the above expressions, respectively, we obtain the statistical average of
P£(1), namely

C(1) + ZDicz(t)

)
P(t)=1- %exp(—yzt){b—cz(t)sin( wt) — cos( wt)} . (26)

Obviously, P, generally exhibits damped oscillations. If y2 <|8|, we find the relations C, = 2cos(|D|t) and
C, = 2isin(| D|1), arriving at

D = 4~ desp(= )
For a large y we find

P (1) = 5 + 3cos( wt) . (28)
The system, therefore, seems to acquire an effective energy splitting @ from the coupling to the environment. If
w =0, then P,(¢) = 1. In this case quantum coherence is entirely suppressed. This is the effect of ‘localization
stabilized by noise’ [34,46].
Let us consider a specific case where V;, =0 and w= 0. The original Hamiltonian now becomes
H(t) = —3A 0 +2yn(0)a”*, (29)

which describes an undriven system coupled to a stochastic field through dynamic interaction. This model first
appeared in van Kampen’s book [41,42]. Its detailed dynamics was revealed only recently by Blanchard et al.
[46). For a degenerate two-level system A, = 0, Eq. (20) and Eq. (21) reduce to

5,(1) = exp(—2vy?1)S,(0) | (30)

sin(|Dlr)

Dl [ 8sin( wr) — y2cos( wr)] — cos(|DIf)cos( wt)} . 27

and .
5.(1) =5.(0). (31)

Therefore, P_L(_tj will always be unity if the system evolves from the left state. In other words, unlike in the case
of non-demolition noise, dynamic noise — the very noise in the driving field at @ = 0 — does not have impact
on quantum coherence of a degenerate two-level system.

Again, although we are able to derive an analytical solution in the case of V,# 0, its explicit solution
contains too many terms to be of insightful value. The results of numerical calculations for V, =2, w=17/2,
y=0.2 and y= 1.0 are shown in Fig. 2.

08
06
E 04 ¥=10 |
0.2 | .
0 L 1 1 1 1 1 | 1

0 5 10 15 20 25 30 35 40 45 50

Fig. 2. Time evolution of P,(¢) with P,(0) =1 under the localization condition V=24, and @ =17/24,: y=02, y =10, and « =0,
Time is measured in units of 4, i.e. r = H(4,/h)= ¢
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If the fluctuations are weak, e.g. y = 0.2, the system can miif¥ain its coherence fof a very long time. With
increasing fluctuation strength, however, e.g. v = 1.0, one can hardly resolve the oscillations of m In this
case, the dynamics is dominated by an exponential decay.

We can take both the background and the field noises into. account together. Since there is no interference
between the two noises, one expects that these yield only additive but not cooperative effects. Hence, we do not
work out the exact dynamics here; instead we will discuss the additivity by an approximate approach.

4. Approximate results
4.1. Background noise (a + 0)

For a weak background noise, i.e. a < |81, V,, we can resort to the perturbation theory to obtain a simple
approximation to P, that reads
4v} —8Vja’t
7 P

2 44V2 t
{1_ L Gk A L i

P(t)= sin( wt)sin( £2t) + cos( wr)

02

(—=2+4V¥)a’t

+ —-exp 0 ]cos(.()t)

(32)

Here, 2= /6 2+ 4V7 is the Rabi frequency. Inserting the dynamic localization condition in (17) into (32), we
obtain

P(1) =3{1 +3(p* = 3p+2)exp[(2p — p* — 2) ’t] + p(2 = p)exp[ ~2p(2 ~ p) &’ ] cos( 1)
+5p(p—1)exp[(2p—p —-2)a? t]cos(Zwt)}, (33)

where p= A,/®. Comparing this result, depicted in Fig. 3, with the exact one in Fig. 1, we see that the
approximation indeed leads to accurate results even for strong noise strength a = 1.
Asymptotically, the oscillating factors cos(wt) and cos(2 wt) are damped out. Therefore, we obtain

P(1),5u=13—3(p*—3p+2)exp{[ p(2 - p) — 2] a?t}. (34)

Fig. 3. Perturbation result for the time evolution of P,(¢) with P,(0) = 1 under the localization condition. The same parameter set is used as
in Fig. 1.
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Thus, P,(¢) will eventually decay towards 1 /2. The decay rate I" which measures the lifetime of the localized
state is

I'=[2-p(2-p)]a?. ' (35)
Because p=2/(1 + x*) with x =2V, /A,, one finds
4x?
2— ———la?. (36)
(1+x%)

One readily shows that a, <I'< 2a? The lower bound of I" thus corresponds to x=1, ie. = 4,=1,
which is the resonance condition. In this case, localization cannot take place. The upper bound of I
corresponds to x — o, which leads to perfect localization. Therefore, the lifetime of an initially localized state
under good localization condition (x > 4, for instance) is about 1/(2a?), remaining almost a constant. This
observation is similar to that of a spin—boson model driven by a linearly polarized field [33].

F=

4.2. Field fluctuations (y # 0)

For the case of weak noise for the driving field amplitude, we again use the perturbation approach to obtain

8 —(1+4V7)y? 4v¢ ~28%%
1— —exp ———02——— 02 exp hE

P =1

0 ]sin( wt)sin{ £2t) + cos( wt)

8’ 1+4V73)y?t
+ —exp[— £————:(—2—2()—)—¥—-]c0s( 0r)

QZ

} ) (37)
With the localization condition in (17), Eq. (37) with p=2/(1 + x%), x =2V, /A, becomes
P = %[1 +3(p*—3p+2)exp| — (1 +2p— p?)y*t] + cos(wr) p(2 - p)exp[ -2(p- 1)2}/21‘]

. +3p(p— l)exp[—(l +2p— pz)yzt]cos(2wt)] . (38)

This result is depicted with Fig. 4.

Compared to Fig. 2, Fig. 4 displays the second harmonic oscillation more distinctly in the case of weak
fluctuations y = 0.2, but exhibits barely resolvable oscillations in the case of strong fluctuations ¥ = 1.0, even
. during the initial period. However, on the whole, the perturbation approximation indeed reproduces well all
characteristic features of the exact dynamics.

s

] 1

0.8

0.6

Pr(t)

04 . -

0.2 -

0 1 1 1 1 A 1 1 1 !
0 5 10 15 20 25 30 35 40 45 50

Fig. 4: Result obtained within perturbation theory for the time evolution of P,(¢) with P,(0)= 1, under the localization condition, see (17).
The same parameter set is used as in Fig. 2.
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Employing the foregoing discussion for the weak background noise, we can show that the decay rate of the
localized state under the localization condition is given by

r=li+ —_|, (39)

=1+ ——=|y*.
(1+x?)°

Therefore, for an intermediate-to-strong field drive, i.e. x> 4, the decay rate assumes an universal value of

'~ y2

4.3. Combined noise (a # 0, y+ 0)

Finally, we consider the situation when both random sources act simultaneously. In the regime of
weak-to-intermediate noise the perturbation approach is also applicable. Extending the discussion above to this
case, we obtain from (17)

P(1) = %{1 +3(p?—3p+ 2)exp{— [(2 +p2—2p)a’+(1+2p-— pz)'yz]t} + cos( wt) p(2 — p)
Xexp{—2[(2p —p¥)a’+(p*— 1)272]t} +cos(2wt) p( p— l)exp{— [(2 +p2—2p)a?
+(1 +2p—p2)72]t}}. (40)

It becomes clear that the noise behaves additive in the sense that the damping rate is the sum of the two
contributions. As a check, we investigate the asymptotical behavior of P,( ) as t = x, i.e.

P(t)=15+ %(p2—3p+2)exp{—[(2+p2—2p)a2+ (1 +2p—p2)72]t}. (41)

The decay rate thus reads

4x?
r=2a*+y*+ ———(y* - a?). (42)
(1 +x?%)
Therefore, the total decay rate for intermediate-to-strong field strength, i.e. x> 4, is 2a?+ y2, being the sum
of the individual two decay rates induced by the background noise and the field noise.

5. Discussion

Starting with the stochastic Schridinger equation in (6), we have been able to present an exactly solvable
model of an open two-level system driven by noisy circularly polarized fields. Both the background noise due to
non-demolition perturbation, which induces phase damping, and the amplitude fluctuations of the driving
circularly polarized field are investigated on the same footing. Several physical consequences including the
localization stabilized by noise, the degeneracy breaking by the phase damping and the universal delocalization
rate are displayed within this model.

When there acts no driving field, i.e. V; =0, we find that dynamic noise, i.e. @ =0, still can stabilize the
localized state while the background noise (i.e. phase damping) assists delocalization even for the degenerate
two-level system. The delocalization process can be regarded as a hopping dynamics of a particle between two
classical (localized) states. Dynamic noise increases the energy barrier between the two localized states; in
contrast, phase dissipation decreases the barrier.

If the driving field is switched on, i.e. V;, # 0, however, both kinds of noise play a similar role, i.e. they
destabilize the localized state. One obvious outcome is that the action of noise and driving is to destroy the
field-controlled localization of the noise-free deterministic driven two-level system.
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The lifetime (or delocalization rate) of the localized state under localization condition has been calculated. It
assumes a universal value for intermediate-to-strong field strength V;. This is so, because the dynamics of the
noise-free system, represented by the average probability in the localized state, does not exhibit an appreciable
variation in this parameter regime [30]. Besides, there is no interference between the background and the
amplitude noise for the driving field. The two noise sources exert additive effects on the system.

This topic of field and noise-driven coherence and decoherence is closely related in spirit to prominent
contributions by Professor V.I. Mel’nikov to both field-driven escape [47,48] and field-driven tunneling through
a barrier [49,50]. One of us (PH) remembers him as a kind and compassionate friend. He benefited greatly from
his extraordinary knowledge and skills in doing analytic work. The scientific community surely will remember
him for his many insightful key contributions to reaction rate theory; he will be missed very much by those who
knew him personally.
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