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Controlling quantum coherence by circularly polarized fields
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In terms of analytical results, we demonstrate that, within most parts in parameter space for a two-level
magnetic system, suppression of quantum coherence can be induced by thecircularly polarized fields.Low-
frequency driving yields a dynamical localization opposite to the case of intermediate-to-high-frequency driv-
ing. The intrinsic relation between coherent suppression and the dressed-state level-crossing resonance is
revealed.@S1050-2947~97!51112-7#

PACS number~s!: 33.80.Be, 03.65.2w
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By the principle of superposition, linear combinations
eigenstates are physically legitimate states. If the invol
eigenstates are not all degenerate, then the superposed
vary with time. This effect is generally referred to as qua
tum coherence. As one can imagine, the simplest model
hibiting coherence is a two-level system~TLS!. Such a TLS
typifies many physical systems in diverse fields. For
stance, it can model either exactly a spin-1/2 particle or
proximately the chiral states of an optically active molecu
Moreover, a particle in a double-well potential can also
approximated as a TLS in the regime of low excitation e
ergies. As a consequence, coherence and destruction o
herence in this case are better interpreted as tunneling
localization, respectively@1#. In the following, both tunnel-
ing and coherence will be used interchangeably.

Based on numerical calculations, coherent suppressio
tunneling of a charged particle in a double-well potential w
reported seven years ago@2#. The driving force was chose
to be a linearly polarized electric field with well-adjuste
parameters that lie on a one-dimensional manifold@3#. Simi-
lar results were obtained for the linearly polarized drive T
that approximately describes the double-well system@3–5#.
Many applications resulting from this discovery are, amo
others @6#, the laser-induced trapping of an electron in
quantum-well structure and the control of electron trans
reactions@7–11#. According to Hund’s theory, the change
chirality, or an intramolecular rearrangement in a more g
eral sense, may be regarded as a tunneling process
~charged! particle in a double-well potential@12#. Therefore,
one can employ appropriate electric fields to localize the p
ticle, hence stabilizing one configuration of the molecule

How about localization for a circularly polarized fiel
~CPF! driving? Let us consider a spin-1/2 particle of ma
netic dipole momentm in a constant fieldBz . The Hamil-
tonian isH052D0sz/2, whereD05mBz . The eigenstates
of the system are denoted byu1& and u2&. With a driving
circularly polarized~magnetic! field whose direction rotate
in the plane perpendicular toz axis, the Hamiltonian thus
reads

H~ t !52
1

2
D0sz1

V0

2
@s1 exp~ ivt !1s2 exp~2 ivt !#,

~1!

whereV052mB ands65sx6 isy. Localization in a TLS
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has been investigated for the case of linearly polarized d
ing fields @3–5#. Can an appropriate CPF also induce d
struction of coherence in a TLS? If yes, what is the mec
nism underlying localization? We will answer thes
questions from both dynamical and quasienergy points
view. The effect of quantized fields will also be addresse

First let us explain the mathematical structure of localiz
tion for a periodically driven TLS. The generic Hamiltonia
is

Ĥ5S 2D0/2 V~ t !

V* ~ t ! D0/2D , ~2!

where V(t) is a periodic function of time, i.e.,V(t1T)
5V(t). In the following we set\51. The wave function
uc(t)& can be written as

uc~ t !&5cL~ t !uL&1cR~ t !uR&, ~3!

where uL&5(u1&1u2&)/A2 ~left state! and uR&5(u1&
2u2&)/A2 ~right state! are the two superposed~localized!
states of interest. The system is exactly characterized by
vector

C~ t ![S cL~ t !
cR~ t ! D .

From the Schro¨dinger equationi ]uc(t)&/]t5H(t)uc(t)&,
one readily derives

dC~ t !

dt
5M ~ t !C~ t !, ~4!

where

M ~ t !5 i S 1

2
D0sx1Im$V~ t !%sy2Re$V~ t !%szD .

This is a linear dynamical system with periodic coefficien
We can employ Arnold’s geometric approach to study
time-evolution dynamics@13#. To this end we defineA(t)
[Texp@*0

t dt8M(t8)#, whereT is the time-ordering operator
The most useful property is

C~nT1t !5A~ t !AnC~0!,
R4397 © 1997 The American Physical Society
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whereA[A(T) is the T-advancing map. BecauseM (t) is
anti-Hermitian,A(t) is unitary, such that

A5S a 2c

c* a* D , ~5!

whereuau21ucu251.
Although there is not a general definition, by localizati

we mean that the probability of finding the system in t
initial state will always stay large. Noting thatA is a unimo-
dular matrix, we can use the Caley-Hamilton theorem~see,
e.g.,@14#! to obtain

An5Pn21~a!A2Pn22~a!1, ~6!

where P is the Chebyshev polynomial,Pn(a)5sin@(n
11)a#/sina, with a5arccos(TrA/2) and 1 is the identity
matrix. Let the system initially evolve from the left sta
uc(0)&5uL&. Localization requires thatcR(t) be always
small. Consider stroboscopic times; using Eq.~6!, one ob-
tains

ucR~nT!u5
ucu

A@ Im~a!#21ucu2
usin~na!u. ~7!

Localization results fromucu!uIm(a)u. This is a trivial con-
sequence because this condition means that one of the
localized states has much less energy~localization via bias!.
Nontrivial localization occurs whenever sin(na) is small for
any n, being possible if and only if sin(a)50. Therefore we
have a56mp ~m integer! @5#. In this case, bothucL(t)u2
and ucR(t)u2 evolve periodically@5#.

Let us build the time-advancing mapA(t) for the Hamil-
tonian given by Eq.~1!. Because it can be solved explicitl
@15#, we will derive A(t) from the propagatorK(t,t0):
uc(t)&5K(t,t0)uc(t0)&, instead of by solving the dynamica
system itself. Using a gauge transformationuc̃(t)&
5Uuc(t)&, whereU5exp(2ivtsz/2), we arrive at@16#

i
]uc̃~ t !&

]t
5 i

]U
]t

uc~ t !&1 iU
]uc~ t !&

]t
5H̃uc̃~ t !&, ~8!

where

H̃5UHU†1 i
]U
]t
U†52S D0

2
2

v

2 Dsz1V0sx

is time independent.The energy eigenvalues areẽ65

6A(D02v)2/41V0
2. Noting that uc(t)&5U†uc̃(t)&

5U† exp(2iH̃t)uc̃(0)&, we have

K~ t,0!5U† exp~2 iH̃ t !.

The quantum mapA(t) is nothing but a representation of th
propagator in the basis ofuL& and uR&. After some algebra
we find

A~ t !5S a~ t !2 ib~ t ! 2c~ t !1 id~ t !

c~ t !1 id~ t ! a~ t !1 ib~ t !
D , ~9!

where
wo

a~ t !5cos~Vt/2!cos~vt/2!1cosu sin~Vt/2!sin~vt/2!,

b~ t !5sin u sin~Vt/2!cos~vt/2!,

c~ t !5sin u sin~Vt/2!sin~vt/2!,

d~ t !5cos~Vt/2!sin~vt/2!2cosu sin~Vt/2!cos~vt/2!

with V5A(D02v)214V0
2 being the Rabi frequency an

tanu52V0 /(v2D0).
We readily calculate theT-advancing mapA over a single

period T52p/v. Recall the general treatment give
above. The necessary condition for localization
arccos(Tr$A(T)%/2)5mp. Because Tr$A(2p/v)%5
22 cos(Vp/v), we obtainV/v5n ~n any positive integer!.
The probability of the system in the left stateuL& is

PL~ t !5a2~ t !1b2~ t !

5
1

2
@11sin2 u cos~vt !1cosu sin~vt !sin~nvt !

1cos2 u cos~vt !cos~nvt !#. ~10!

We now prove that localization is possible only forn
51. To this end let us consider the time average ofPL ,
denoted asP̄L . Simple algebra yields

P̄L5
v

2p E
0

2p/v

dt@a2~ t !1b2~ t !#

5
1

2
1

sin~2np!

4p~n221!
~n cos2 u1cosu!. ~11!

One readily findsP̄L51/2 for all nÞ1. That is, the system is
always delocalized if the Rabi frequency is a higher-ord
multiple of the driving frequencyV5nv, n.1. Therefore,
localization may take place only if the Rabi frequency co
cides with the driving frequency. Forn51, then, we thus
find the very relationship between the period and the am
tude of the acting field:

V5v5
D0

214V0
2

2D0
. ~12!

This is the central result of the CPF driving. With this co
dition we find forPL(t) and P̄L , respectively,

PL~ t !5
1

2 H 11
x221

x211
sin2~vt !1cos~vt !

3F 4x2

~x211!2 1
~x221!2

~x211!2 cos~vt !G J ~13!

and

P̄L5
11x212x4

2~11x2!2 , ~14!

wherex52V0 /D0 . A plot of P̄L vs x is depicted in Fig. 1.
On the one hand, absolute localization,P̄L→1, will be

realized forx→`. This requires an infinitely strong field



a

, it
tion.
ion
b-

es
gies.
.e.,

t
l-
tes
with

when
Real
ace
be
s

es-
-
or
ion

nd-

eal
gs
ing

ce

nce
ame
ds

ft
,

RAPID COMMUNICATIONS

56 R4399CONTROLLING QUANTUM COHERENCE BY CIRCULARLY . . .
with an infinite high frequency, as determined by Eq.~12!.
On the other hand, strong localization will be achieved
ready for intermediate-to-strong fields, becauseP̄L rapidly
assumes the saturation value one~see Fig. 1!. For instance,
setting V052D0 and v517D0/2 ~i.e., x54!, we find P̄L
.0.91. For x54, a continuous time evolution ofPL is
shown in Fig. 2.

An interesting effect appears forx,1. In this case, the
system slightly tends to occupy the right stateuR&, although
it initially evolves from the left stateuL&. The minimum of
P̄L is

P̄L
min5

7

16
, ~15!

which corresponds to

vmin5
2

3
D0 , V0

min5
1

2)
D0 S x5

1

)
D .

Figure 2 also displays the variation ofPL
min(t) with time.

FIG. 1. Time average of the probabilityP̄L of the system re-
maining in the initial stateuL& as a function ofx52V0 /D0 under
the localization condition.

FIG. 2. Time evolution of the probability of staying in the le
localized statePL(t) @PL(0)51# under the localization condition
Eq. ~12!: ~a! strong localization corresponding tox[2V0/D054
andv/D0517/2; ~b! weak localization in the other state,PL

min(t),
corresponding tox51/) and v/D052/3. Dimensionless time is
measured in terms ofD0 ; t→t(D0 /\)[t.
l-

From the consideration of time-dependent dynamics
has been demonstrated that the CPF may induce localiza
We next use the Floquet theory to reveal the localizat
mechanism@3#. The theory is based on the eigenvalue pro
lem of the Hermitian operatorH(t)[Ĥ2 i ]/]t:H(t)Fa(t)
5eaFa(t). The eigenfunctions are called Floquet mod
and the corresponding eigenvalues are called quasiener
One can show that the Floquet mode is periodic, i
Fa(t)5Fa(t1T) and the quasienergyea is unique up to
multiples of the driving frequencyv @16#. The quasienergies
in our model are

e6,n5@ ẽ61~n11/2!v# modv.

The condition of localizationV5v coincides with the exac
level crossing:e1,05e2,1 . This may be understood as fo
lows. When driven by the periodic CPF, the two eigensta
are surrounded by the field to become the dressed states
the quasienergies as their energies. As in the bare case,
the level crossing happens, coherence is suppressed.
localization is expected when the level crossing takes pl
frequently in the manifold of the dressed system. It should
stressed again thatthe level crossing of the quasienergie
yields a necessary (but not sufficient) criterion for suppr
sion of coherence@3#. Therefore, just as for the linearly po
larized case@3#, a similar interference mechanism applies f
the circularly polarized field to induce coherent suppress
of tunneling.

Concerning the effect of a quantized field, the correspo
ing Hamiltonian reads

H52
1

2
D0sz1va†a1g~as21a†s1!, ~16!

whereg is the coupling constant, which is assumed to be r
for simplicity. This is the one-mode Jaynes-Cummin
model in quantum optics and it exhibits several interest
features such as collapse and revival@17#. Recognizing that
the interaction couples only the TLS-field statesu1,n11&
[u1& ^ un11& and u2,n&[u2& ^ un& for each value ofn, one
can readily evaluate the energy eigenvalues

E6n5~n11/2!v6Vn/2.

The corresponding eigenvectors or dressed states are

u1n&5sin unu1,n11&1cosunu2,n&,

u2n&5cosunu1,n11&2sin unu2,n&,

whereun is determined by

tan 2un5
2gAn11

D02v
.

If E1n215E2n , then level-crossing resonances take pla
@18#. In the semiclassical limitn→`, one identifiesgAn
5V0 andVn5V, so that fromE1n215E2n one again finds
V5v. Therefore, the observable level-crossing-resona
reflects suppression of quantum coherence. The s
conclusion can be drawn for the linearly polarized fiel
@18–20#.
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The CPF can choose one of two helicities, which cor
spond to positive and negativev. One can show that only th
CPF with positivev is able to induce localization. This is no
surprising because only the clockwise CPF~i.e., the rotating-
wave terms of the linearly polarized field drive! interacts
effectively with the TLS. We should also point out that l
calization within our characterization is a quasistatic pro
erty ~long-time average!. It does not necessarily mean a r
duction of tunneling rate.

In summary we have demonstrated that—as in the cas
linearly polarized fields—appropriate circularly polarize
fields can induce suppression of quantum coherence
driving two-level magnetic system; cf. Eqs.~12!–~14!. The
condition is that the Rabi frequency coincide with that of t
applied circularly polarized field. Strong suppression can
achieved for intermediate-to-strong fields~compared to the
energy splitting of the two-level system!. If the driving field
um
f.

,

.

s

ev
-

-

of

a

e

is weak, however, the system slightly tends to occupy
other localized state. It should be pointed out that prepara
of a superposed~localized! state is in general a subtle prob
lem @7#. For a spin-1/2 magnetic particle placed in a const
field B2, however, this can be realized by using a stro
static magnetic field~in a direction different from thez axis!
that is suddenly switched off before the circularly polariz
field is turned on. The localization effect is closely related
the dressed-state level-crossing resonance and may be t
by experiments@18#.
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