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Recent molecular dynamical simulations by Dury and Ristow provide important insights
into the dynamics and stochastic aspects of granular flow in rotated drums. We show
that their major findings can be explained with a recently proposed deterministic min-
imal model for granular surface flow that also includes Langevin forces which mimic
micromechanically generated stochastics.

1 Introduction

A characteristic property of granular systems such as sand, powder or grains, is that
they can flow if they are driven out of their static equilibrium by shear or vibration.
The flow that granular systems develop, however, is quite distinct of that of Newto-
nian fluids such as water. This fact can be exemplified by the avalanching flow along
granular piles and the surface flow in rotated drums {(cf. the authoritative reviews
by Jaeger et al' and Wolf?). In the latter example, a drum that is partly filled with
granular material is rotated with a constant rotation rate about its horizontally
aligned axis of symmetry. Depending on the magnitude of the rotation rate T, two
different types of dynamics have been observed experimentally by Rajchenbach3 (i)
for small @, sequences of discrete avalanches that start at the maximum angle of
repose s, stop at the minimal angle of repose .., followed by a rigid pile rotation |
until ¢, has been reached again, and (ii) for larger @, a continuous surface flow
with a mean inclination angle of the pile that increases proportional to the square
of @ for small differences of the angles of repose, s — ¢,. Recently, Dury and
Ristow * have performed important molecular dynamical simulations on granular
flow in rotated drums. Their system differs from the experiment of Rajchenbach
in two respects: (i) the difference between maximum and minimum angle of repose
for @ — 0, ps — v, ~ 12°, is considerably larger than in the experiment? and (ii)
the number of grains in the drum is very small in comparison to this experiment.
They found that (i) the continuous flow that develops for larger & is not constant
in time but fluctuates considerably about a mean value < (t) >, (ii) this mean
value < @(t) > does not increase quadratically with & but increases - in the con-
tinuous flow range - almost linearly for small @ and then crosses over to a weaker
increase for larger @, and (jii) the transition from avalanching to continuous flow
does not occur at a sharply determined w-value. Based on a stochastic extension
of a recently proposed model for surface flow of granular systems, we show that
the simulation results * can be explained in all major details within this model.
Moreover, we discuss the apparent discrepancy of the results¢ by Dury and Ristow
and the experiment ® by Rajchenbach.
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2 The Model

In order to discuss the numerical results of Dury and Ristow * from a theoreti-
cal point of view, we use a stochastic extension of the recently proposed minimal
model®*® for granular surface flow which is able to successfully model a whole vari-
ety of granular flow aspects®® In this model, the surface flow is described by two
macromechanical variables, the spatially averaged inclination angle ¢(t) of the sur-
face of the pile and the characteristic velocity v(t) which is basically given by the
square root of the kinetic energy of the flow. The model equations read

U

i

[gsin g — gka(v) cos< + C(t)]x (e, v) (1)
$ = —av+T (2)

with the friction coeflicient given by
kd(U) =bg + bgvg, (3)

and the cutoff function x(p,v) = ©(v) + B(p — ps) — O(v)B(p — v,). Here, B(y)
denotes Heaviside’s step function [©(y) =0 (1) if y < 0 (y > 0)], a, bo (being related
to @4, see below) and b, are positive constants, g is the gravitational acceleration,
and @ denotes the external (constant) rotation rate of the drum. The stochasticity
enters through the Langevin force ((¢) being Gaussian white noise with zero mean
and correlation strength A2. This mimics the micromechanically generated fluctu-
ations that are present in moving particulate matter. The deterministic part 6 of
(1) and (2) extends Coulomb’s theory of frictional motion to granular surface flow
by incorporating viscoplastic facts of the dynamical nature of avalanche/surface
motion of granular systems: The latter are (i) a nonlinear dynamical friction co-
efficient k4(v) which interpolates between solid friction and the frictious behavior
of rapid granular flow (“Bagnold” friction 2), (ii) the fact that a granular pile is
statically stable until the inclination angle ¢ exceeds the maximum angle of repose
s, (iil) the fact that a surface flow v(#) is always directed downward the pile and
stops if v(t) reaches zero, and (iv) the fact that a surface flow v(t) # 0 leads to dy-
namical changes of the inclination angle ¢ which counteract the acceleration of the
surface flow. The facts (ii) and (iii) are mimicked by the cutoff function x. Next, it
proves useful to non-dimensionalize (1) and (2) by scaling the velocity with \/g/a
and the time with 1/,/ga. Moreover, we introduce the dimensionless rotation rate
w = T/./ga and dimensionless Langevin “force” ((t) = ((t)/g. Then, we finally
obtain the model equations

v = [cosy (tanp ~ tanpg — 8Q2v*) + ((t)] x (v, v) (4)
¢ = —-v+w (5)

which we want to study in the following. In (4) we have also introduced (i) @4 =
arctan b < ¢, being basically the half of the sum of maximum and minimum angle
of repose, w4 = %(cps + ¢r), (i) Q3 = 1/ cosyq, and (iii) § = (bag/a) cospq. Note
that this model contains only two effective parameters, a and b», that describe the
deterministic flow and only one stochastic parameter A = A/g which measures
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Figure 1: Dependence of (a) the avalanche duration Ty, the duration of the rigid pile rotation

Trpr, and its overall period T = Tay + Trpr. (b) The minimum angle of repose ¢, versus the

rotation rate w. The parameters are @, = 0.87 (50°), pg = 0.77 (44°), 02 = 1/cospg = 1.4 as in
the numerical simulation of Dury and Ristow. The nonlinearity parameter 6 is 0.1.

the strength of the fluctuating acceleration forces. In experiments, the difference
between maximum and minimum angle of repose, ¢s; — ¢,, is generically only a
few angular degrees. Then, a small angle approximation about s = arctanby as
used in our previous work 5 leads to further simplifications. To compare with the
numerical results of Dury and Ristow* where ¢ — ¢, ~ 12°, such an approximation
is no longer justified.

3 No Fluctuations

To start, we discuss the dynamics of Egs. 4 and 5 without the Langevin force, i.e.
¢(t) = 0.  Similarly as in our previous work?® the model (4) and (5) possesses two
types of dynamics.

(i) For sufficiently small w, the dynamics consists of alternations of avalanches
and rigid pile rotations. The avalanches start with zero initial velocity at the max-
imum angle of repose ¢, and stop at the minimum angle of repose @, after the
avalanche duration T,,. Then, the whole pile rotates as rigid body without surface
flow until ¢, has been reached again and this lasts Typ, = (¢s — ¢r)/w. The sum of
these two processes defines the period T of the successive avalanching process. In
Fig. 1 we show the dependence of T4y, Trpr, T, and ¢, on the rotation rate w.

(ii) For larger w, the surface flow v(t) once started at y, stays positive for
all times and saturates in a continuous flow with constant velocity and surface
inclination. The long time evolution of the continuous flow solution is given by the
fixed points of Eqs. 4 and 35,

= d = (g + arct bu? (6)
ver =w and @cF = g + arctan Bt ottangs)

From (6), it follows that the inclination angle of the surface for the continuous
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Figure 2: Dependence of Ymaz, Ymin and @op on the rotation rate w. All parameters have the
same values as in Fig 1. The transition to a continuous flow occurs at wr =~ 0.35.

flow, wcr, increases quadratically with w only if w is sufficiently small. Since 4 is
typically of the order 10! and Q3 of order 1, the curvature §/Q3 is comparably
small. For larger w, pcp crosses over to a much weaker increase with w (cf. also
Fig 2). In order to distinct between the w-ranges where successive avalanching or
continuous flow are present, one can take advantage of the following fact: Avalanches
can be characterized by the minimum and maximum dynamical angles @ma., and
@min during the avalanching process. For non-zero w, @masz > @s and @Ymin < ©r
holds. In Fig. 2, we show the dependence of Y;maz, ©Ymin and wcor on the external
rotation rate w. For small w, there is successive avalanching and ¢maz (Pmin)
increases (decreases) quadratically with w. The point where @mqe, and pm., cease
to exist, determines the transition point wr to continuous flow. Above wr, there is
a continuous flow and the increase of per is close to a linear dependence on w first.
Therefore, we conclude that Rajchenbach’s results® and Dury and Ristow’s results*
are both compatible with our model depending on the w-range that is studied.

4 Impact of Fluctuations

Now we turn to the impact of a non-zero Langevin force in the model equations
(4) and (5). Clearly, the inclusion of non-zero fluctuations ((t) leads to permanent
fluctuations of the inclination angle (t) and the velocity »(¢) while flowing. These
fluctuations superpose the deterministic dynamics discussed in the previous section.
For small enough A = A /g, however, the basic deterministic dynamics will survive
in an averaged sense. There is still successive avalanching present for small enough
w and for larger w, and there is still a continuous flow with a mean inclination angle
< p(t) >~ pcr and a mean velocity < v(t) >= w. In Fig. 3, we show numerical
calculations for the dependence of the averaged inclination angle < ¢(t) > on the
rotation rate w for the whole range of w-values and the averages of the maximum
and minimal dynamical angles, < Pmer > and < @min >. In comparison with the
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Figure 3: Dependence of < Ymaz >, < Ymin > and < p > on the rotation rate w for A = 0.05.
All other parameters have the same values as in Fig 1.

deterministic limit in Fig. 2, several facts are remarkable: (i) For small w, K @mee >
and < @min > increase — as in the deterministic case — quadratically with w. For
the chosen fluctuation strength A = 0.03, < omez > and < @i, > assume values
that are basically the same as their deterministic limits. (ii) Close to the deter-
ministic transition point wy, there is a drastic change of the behavior of < Ymar >
and < ©Ymin > as function of w. This characterizes the transition from successive
avalanching to continuous flow and is slightly larger than wy in the deterministic
limit. Our numerical calculations show that this transition is not truly sharp. In a
very narrow vicinity about this transition, the dynamics alternates intermittently
between avalanching and continuous flow. Therefore, the location of the transition
slightly depends on the criterion used to distinguish between avalanching and con-
tinuous flow. In our calculations, avalanching means that the dynamics shows at
least 200 successive avalanches. (iii) Above this discontinuous transition, < Yme: >
(< @min >) decreases (increases) towards the averaged inclination angle < (t) >
first, and for larger w, the differeiice < ez > — < Ymin > of the distribution of
the inclination angle ((t) is almost constant. These results agree very well with the
finding of Dury and Ristow? (cf. their Fig. 4). As an aside, we have also investi-
gated whether the transition between avalanching and continuous flow is hysteretic
or not. For the parameters used in Fig. 3, we have adiabatically increased and
subsequently decreased the rotation rate w and have found that — as an effect of
the Langevin force — there is no hysteresis observable.

5 Conclusions

Our main result is as follows. An extension of the deterministic minimal model ®
that includes Langevin forces shows — as function of the external rotation rate w
- a transition scenario from avalanching to continuous flow which has a striking
similarity with the recent numerical simulations of Dury and Ristow? Although
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most of averaged quantities considered here are close to their deterministic limits,
the inclusion of stochastics seems to be an important aspect of the granular sur-
face dynamics even on a macromechanical level. In subsequent publications”? we
will elaborate in greater detail on the role of macromechanical fluctuations for the

granular dynamics.
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