in: Tunneling and its Implications,
D. Mugnai, A. Ranfagni and L. S. Schulman, eds.
(World Scientific, Singapore, 1997), pp.: 388-400 (1997).

388

CONTROL OF TUNNELING IN THE OHMIC TWO-STATE
SYSTEM BY STRONG DRIVING FIELDS

MILENA GRIFONI, PETER HANGGI
Institut fir Physsk, Universitat Augsburg, Memminger Strafle 6,
86135 Augsburg, Germany

The dissipative dynamics of a two-state system driven by a monochromatic driving
field is formulated in terms of an exact master equation. Applications of these
results to the possibility of influencing quantum tunneling via quantum stochastic
resonance or dynamical localization are discussed.

1 Imntroduction

The problem of a quantum particle coupled to a thermal bath and tunneling
through the barrier of a slightly asymmetric double-well potential is ubiquitous
in many physical and chemical systems. It can model for example long range
electron-transfer reactions !, the tunneling of atoms between an atomic-force
microscope tip and a surface 2, the low-temperature excitations of the disor-
dered lattice of amorphous solids? or the magnetic flux in a superconducting
quantum interference device (SQUID)*. At sufficiently low temperatures the
dynamics only involves the ground states of the potential minima, and the sys-
tem can be effectively restricted to the two dimensional Hilbert space spanned
by the two ground states. This two-level-system (TLS), when isolated from
the thermal bath, is the simplest system exhibiting quantum interference ef-
fects, as it can be prepared to oscillate clockwise between the eigenstates in
the left and right well. Quite generally, the stochastic influence results in a
reduction of the coherent tunneling motion by incoherent processess ¢, and
may even lead to a transition to self-trapping at zero temperature ’. An im-
portant question is to which degree the tunneling dynamics is influenced by
externally applied time-dependent fields. In particular, a complete destruc-
tion of tunneling can be induced by a coherent driving field of appropriate
frequency and strength 3. This effect can be stabilized in the presence of dis-
sipation %19, The transition temperature, above which quantum coherence is
destroyed by a stochastic environment, is modified by a driving field }°. A
novel non-markovian dynamics may arise due to driving induced correlations
between tunneling transitions'!?13 (cf. Fig. 1). A strong driving field can
even succeed in inverting the populations of the localized states, hence invert-
ing the direction of the tunneling motion 4. Moreover, the phenomenon of
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quantum stochastic resonance can be employed to substantially enhance 1%

or suppress!® the nonlinear response of the dissipative TLS, hence allowing a
distortion-free amplification of signals in quantum systems. Finally, the dis-
sipative dynamics under ac-modulation of the TLS asymmetry and coupling
energy has recently been addressed in 7.

In this work we report on the most recent advances on the transient and
asymptotic dynamics of the dissipative TLS driven by an external AC-field
modulating the asymmetry energy between the localized states.

In the following we formulate the driven dissipative dynamics in terms of
an eract non-Markovian master equation. The kernel is expressed as a power
series in the intersite coupling, in which the lowest order corresponds to the
familiar noninteracting-blip approximation (NIBA) for the stochastic forces.
This approach also allows to compute the dynamics systematically for weak
damping in the parameter regime where NIBA fails '3, and to obtain exact
results for the case @ = 1/2 of the Ohmic viscosity .

10° T T

akl, €#0
10* -  INCOHERENT -

~ HIGH FREQUENCIES
HIGH TEMPERATURES

driving induced coherence

TUNNELING -

€=0

0 0.25 a 0.5
(b)
LOW FREQUENCIES L LOW FREQUENCIES
LOW TEMPERATURES HIGH TEMPERATURES
adiabatic quantum coherence incoherent regime

(c) (a)

Figure 1: Dynamics of the driven (¢ # 0) TLS for weak Obmic coupling a. As the temper-

ature T or frequency {0 are varied, different tunneling regimes are encountered. For strong

coupling, the regimes {(a) and (b) extend down to the lowest temperatures. For comparison,

the static case (¢ = 0) is considered in the inset, where the parameter regions in the (a,T)
plane for incoherent or quantum coherent tunneling (QC) are drawn.

It is found that the dynamics encompasses a dissipative-dominated inco-
herent tunneling regime occurring at “high” temperatures and adiabatic driv-



390

i S
ing, as well as coherent tunneling regimes reached either at “low” temperature

d diabatic frequencies (see Figure 1). o
Or/a;inlalﬁl;a we discuss the applications of our results to the possibility to

. : r dyamical
influence quantum processes Via quantum stochastic resonance or dy

localization.

2 The dynamics under driving

As a working model we consider the time-dependent spix%-bosop Hamﬂtizﬁaz
where the bath is described by an ensemble of harmonic oscillators W
bilinear coupling in the TLS-bath coordinates, 1.e.,

h
H() = -—2-(Aa,+s(t)a',)
1 Pa 2.2 _ d ) (1)
- —2L My Zy — CaZally
52 (m

Here the o’s are Pauli matrices, and the eigenstates of o, are the basis states
in a localized representation where d is the tunneling distance. The tunneling
splitting energy is given by AA while the asymmetry energy is he(t) = € +
& cos (U, where ¢q represents the asymmetry energy in the absence of the driving
field.

Suppose now that at times t < 0 the particle is held at the site o; = 1
with the bath having a thermal distribution. We then compute the probability
(o:(t)) = P(t) at times ¢ > 0 for this factorizing initial state. After tracing out

the thermal bath, all environmental effects are captured by the twice-integrated
bath correlation functior®® (8 = 1/kgT)

_ @ [* J(w)coshlwp/2] - coshlw(B/2 — it)]
Q) = 7 /0 d w? sinh[w3/2] ’

where J(w) = £ 3, ;;E%:«S(w — wq) is the spectral density of the heat bath.
To make quantitative predictions, we consider the case of Ohmic dissipation
where the spectral density takes the form J(w) = (2rh%/d*)awe~*/“s, with
a the dimensionless coupling strength and w, a cut-off frequency. Then, for

times w.r > 1, Q(7) = Q(7) +1Q"(r) reads ¢
Q'(r) = 2aIn[(hBw./7) sinh(xT/RB)], Q1) = 7ax . (2)

Upon summing over the history of the system’s visits of the four states of the
reduced density matrix, we can find the formal solution for the evolution of a
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driven damped system in the form of a series in the number of time-ordered
tunneling transitions 11213 It reads

00 t tam t3
P(t) = 1+Z(—Az)"/ dtan dtgn_y1--- [ dty
oy 0 0 0
x2™ Y (R - RO 3)
{¢;=+1}
Ct) = cos®,; C{)=sind,. (4)

Here the £-charges label the two off-diagonal states of the reduced density

matrix. The phase ®, describes the influence of the time-dependent biasing
forces,

®, = &lots;) — 9ltai-1)] (5)
j=1

where g(t) = [ i ). All the dissipative influences are in the functions

Fr(\i)- To express them in compact form, we introduce the functions Q; =
Q(tj - t;,.) and

1 1 1 /

Aje = Q2j,2k—1 + sz—1,2h - Q2j,2k - Q2j—1,2k—1 1
" " i "

Xik = Qajoe41+ Qoj1,28 — Qoj2r — D2j—1,2641 -

Denoting as sojourns the periods t3; < t/ < t3;4; in which the system is in a
diagonal state, and as blips the periods ¢3;_; < t' < fy; in which the system
stays in one of the two off-diagonal states (cf. Refs. 3:%), the function A; ; de-
scribes the interblip correlations of the blip pair {j, k}, while the function Xj &
describes the correlations of the blip j with a preceding sojourn k. Then, all
intra-blip and inter-blip correlations of n blips are combined in the expression

n n j=—1
Gn = exp ( = Quaj1- P ZE:'&A:‘J:) -
j=1

j=2 k=1

Upon introducing the influence phases describing the correlations between the
k’th sojourn and the n — k succeeding blips, fnx = E;=k+1 & Xk, the full
influence functions take the form

n-1
F,E'H =Gn H CoS T i ; F,(,-) = F,S'*') tan a0 . (6)
k=0
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Up to now our results are exact. Further, having captured the bath and driv-
ing correlations in the influence functions F,gi) and in the coefficients C,(,i),
respectively, the exact master equation for the probability P(¢) can be derived
from (3) as prescribed in Ref. 13, It reads

P(t) = /0 ‘ dt'[KC)(t, ) — KD, t)P(t")], (7)

where the kernels K(¥)(t,¢') are defined by a series expression in A% In
particular, within the NIBA 8, which is formally obtained by neglecting both
the interblip correlations (A; = 0) and all blip-sojourn correlations (X = 0
for j # k + 1), the kernels in (7) reduce to the expressions

KD, t) = A% V0 eos[Q" - t) CH(t, 1)
KONt t) = A2~ 9gn[Q (- t))C ), t) (8)

It is interesting to observe that the polaron transformation approach discussed
in'%!4 Jeads , if applied to the Hamiltonian (1), to a master equation analogous
to (7) and with identical kernels (8).

Equation (7) is conveniently solved by Laplace transformation. Introduc-
ing the Laplace transform P(}) = J3 dte=**P(t) of P(t), one finds

AP(A) =1+ /0 ” dte= K7ty - KM () P@) (9)

where K,(\i)(t) = [ dt'e=* K&)(¢ + t/,t). For periodic driving the kernels

f(ﬁ*)(t) have the periodicity of the external field and can be expanded in
Fourier series, i.e.,

[
f(g‘:k)(t) = Z k#())e-imnt ’ (10)
m=-oQ
hence allowing a recursive solution*?:18, In particular for @ = 1/2 eract analyt-
ical solutions are available !*. For arbitrary Ohmic coupling and temperatures
one has to resort to approximate solutions of the dissipative dynamics. For
strong coupling a > 1, or weak coupling & < 1 and high enough temperatures,
the bath-induced correlations between tunneling transitions may be treated
within the NIBA 3®. On the other hand, for weak coupling a and low temper-
atures NIBA breaks down, and a systematic weak coupling calculation of the
kernels K() appearing in (7) is needed 3.
In the next two sections applications of these results are discussed in rela-
tion to the phenomena of quantum stochastic resonance and dynamical local-
ization, respectively.
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3 Long time dynamics and quantum stochastic resonance

An analysis of the poles of the recursive solution of eq. (9) reveals that the
asymptotic dynamics is periodic in time with the periodicity 27/ of the driv-
ing force, i.e.,

3 _. p(as) - —im{t
Jim P = PO = T pme", (1)

where the coefficients p,, have been evaluated explicitly in Refs. 1112 for the
case o = 1/2 and within NIBA, respectively. In particular, selection rules
related to spatial symmetry properties of the kernels kZ()) imply that, for
a symmetric TLS, all the Fourier components of P(®)(t) with even index
vanish. These results will now be used to discuss control of tunneling via
quantum stochastic resonance (QSR).

Stochastic resonance (SR) is a cooperative effect of noise and periodic driv-
ing in bistable systems, resulting in an increase of the response to the applied
periodic signal for some optimal value of the noise. Since its discovery in 1981
this intriguing phenomenon has been the object of many investigations in clas-
sical systems 19, Classically, the maximal enhancement in the output signal
is assumed when the thermal hopping frequency is near the frequency of the
modulation. Hence, the term resonance. In the deep quantum regime, where
tunneling is the only channel for barrier crossing, qualitative new features oc-
cur as compared to the classical case. While classical SR is maximal for a
symmetric bistable system 1°, QSR may occur only in presence of a potential
asymmetry between forward and backward transitions paths !®*. Moreover, the
quantum noise may succeed in enhancing the periodic output (QSR) in the first
harmonic response, and at the same time suppressing the (nonlinear) higher
harmonic responses 1. This anomalous suppression can indeed be utilized for
a distortion-free amplification in quantum systems.

The relevant theoretical quantity describing the dissipative dynamics un-
der the external perturbation is the expectation value P(t) = (o;(¢)). On
the other hand, the quantity of experimental interest for QSR is the aver-
aged power spectrum S(w), defined as the Fourier transform of the correlation
function C(r) = & 02'/9' dt{o;(t + 7)o:(t) + 0;(t)o:(t + 7)). The combined
influence of dissipative and driving forces render extremely difficult an evalu-
ation of the correlation function C(r) (and hence of the power spectrum) at
short times. Matters simplify for times ¢, 7 large compared to the time scale
of the transient dynamics, where P(t) and C() acquire the periodicity of the
external perturbation. In fact, it is readily seen that the amplitudes |p,,] in
(11) determine the weights of the §-spikes of the power spectrum in the asymp-
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totic state S(®*)(w) via the relation S®)(w) =27 Y |pm(Q,&)]26(w — mQ).

In particular, to investigate the nonlinear QSR, we shall examine the scaled
power amplitude 7, in the m-th frequency component of S¢**)(w), which reads

T ($2,€) = dxlpm(Q, ) /¢ . (12)

Hence, the quantitative study of QSR requires to solve the asymptotic
dynamics of the nonlinearly driven dissipative bistable system! In this con-
tribution we shall discuss some characteristics of QSR as they emerge from
the study of the ezact solvable case a = 1/2 of the Ohmic strength and, for
general Ohmic coupling, within the NIBA. For the special value a = 1/2 the
resulting fundamental power amplitude 7, is plotted in Fig. 2 as a function of
the temperature for different driving strengths €.

310-*

310

2107

m(T)

1104 =10 Q=5

- - = Linear Response é < 1

-
-

0 5 10 13 20

T

Figure 2: Amplification vs. temperature of the fundamental amplitude 7, via guantum SR,
for different driving strengths é in the eractly solvable case o = 1/2 of the Ohmic coupling
strength. The inset depicts 7y vs. driving frequency 2 for different temperatures. As the
temperature is decreased, resonances are found at submultiples @ = eo/n of the static bias
(dashed and full line). These denotes the occurence of driving-induced coherence.

Here and in Fig. 3 frequencies are in units of the bath-renormalized tun-
neling splitting A, (see below Eq. 14), temperatures in unit of A./kp. For
highly nonlinear driving fields é > ¢o the power amplitude decreases monotoni-
cally as the temperature increases (upper most curve). As the driving strength
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€ of the periodic signal is decreased, a shallow minimum followed by a max-
imum appears when the static asymmetry ¢, equals, or slightly overcomes,
the strength ¢ (intermediate curves). For even smaller external amplitudes,
the nonlinear QSR can be studied within the linear response theory (dashed
curve). In the linear region the shallow minimum is washed out and only the
principal maximum survives. It is now interesting to observe that, because for
the undriven case the TLS dynamics for a = 1/2 is always incoherent down to
T = 0, the principal maximum arises at the temperature 7" at which the re-
laxation process towards thermal equilibrium is maximal. On the other hand,
the minimum in 5, appears in the temperature region where driving-induced
coherent processes are of importance. This means that the power amplitude
m plotted versus frequency shows resonances when Q = ¢g/n (n = 1,2, ..) (see
inset in Fig. 2). Correspondingly, the dynamics is intrinsically non-Markovian!
As the temperature is increased, the coherence is increasingly lost (note the
behavior of the dot-dashed and dashed lines in the inset).

For strong coupling a@ > 1, or weak coupling o < 1 end high enough
temperatures, the bath-induced correlations between tunneling transitions may
be treated within the NIBA.

The resulting dynamics is in general non-Markovian and not even time-
translational invariant. In particular, driving-induced correlations may result
in an highly coherent dynamics, leading to resonances in the power spectrum
similar to those shown in the inset in Fig. 2. In this coherent regime QSR
never occurs: The power amplitudes 7,, always show a monotonic decay as the
temperature is increased !6.
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Figure 3: Noise-induced-suppresion (NIS) of the third power amplitude 53 vs. temperature
at low frequencies.



Only in the low-frequency regime AQ <« akT, to leading order, driving-
induced non-Markovian correlations do not contribute. The asymptotic dy-
namics, within the NIBA, is intrinsically incoherent and governed by the rate
equation P(3®)(t) = —yp (t)[P(®)(t) ~ Pey(t)], with time-dependent low fre-
quencyrate 71(t) = ReZ[0; £(t)] and equilibrium value Peq(t) = tanh[e(t)/2kT).
Here, €(t) = € + € cos 2t plays the role of a time-dependent adiabatic asym-
metry, and the rate is obtained from

L A (RBANT h(}; z)
Ehiz] = 7( o ) a+hf(A+iz)/2x’ (13)

h(X;z) = T +a+h8(A+iz)/2n)/T[l - a+ hB(A +iz)/27], (14)

where, for later convenience we expressed the rate in a form useful to investi-
gate the coupling regime a < 1. Here ['(z) denotes the Gamma function and
A, = A(A/we)*/ =2 [cos(ra)T(1-2a)]'/(?~2%) is the bath-renormalized tun-
neling splitting when a < 1. The rate equation can then be solved in terms of
quadratures 112 and the nonlinear low-frequency power spectrum can be in-
vestigated. QSR indeed occurs in this incoherent tunneling regime %1%, As for
the case a = 1/2, the QSR maximum appears only when the static asymmetry
€g overcomes the external strength ¢ 6.

Moreover Fig. 3, which shows the behavior of the third power amplitude
73 versus temperature, reveals another striking effect: As the driving frequency
is decreased, a noise-induced suppression (NIS) of higher harmonics occurs in
correspondence of the SR maximum in the fundamental harmonic. A numerical
evaluation shows that the NIS indeed appears when < min{~y(t)}, so that
the quasi-static expression holds

2x
Pm = 51;/ dz tanh[hB(eq + € cos £) /2] cos(mz) .
0

In contrast to classical SR, where the enhancement is maximal for symmetric
bistable systems, we found the necessity of a non-zero bias for QSR.. To under-
stand this behavior, we qualitative investigate the predictions for QSR within
a linear response approach (see also Fig. 2). Within linear response, only the
harmonics 0, £1 of P®*)(t) in (11) are different from zero, po being just the
thermal equilibrium value in the absence of driving and p+; = éx(£Q) being
related to the linear susceptiblility x(Q2) by Kubo’s formula. With increasing
strength € higher harmonics become important. In the regime where incoher-

ent transitions dominate the dynamics the susceptibility is explicitly obtained
in the form
g 1 1

T 4 cosh¥(Rfeo/2) 1 — iCyg L

x(©) (15)
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Here 9 = limz,oyL(t) is the sum of the forward and backward static relax-
ation rates, v, and y. respectively, out of the metastable states. The factor
1/ cosh?(hBep/2) expresses that the two rates are related by the detailed bal-
ance condition v, = eM¢+_. It is now interesting to note that the same formal
expression for the incoherent susceptibility (and hence for ;) holds true for the
classical case, with v, and v~ the forward and backward Arrenhius rates 9.
Hence, in the classical SR the maximum arises because of the competition be-
tween the thermal Arrenhius dependence of the rates and the algebraic factor
B = (kT)~! that enters the linear susceptibility, and it is then obtained at the
temperature such that the thermal hopping rate equals the driving frequency
13 On the other hand, the quantum rate possesses a rather weak temperature
dependence as compared to the Arrhenius rate 6. The crucial role is now
taken by the Arrhenius-like exponential factor 1/ coshz(hﬂeo/ 2), where in the
incoherent two-state picture kg is of the order of the energy difference between
the energy levels. Hence, whenever heg < kT the energy levels are essentially
equally occupied and no response to the external signal occurs. The second
consequence is that the maximum arises, over a wide frequency range, simply
at the temperature such that kT =~ fheg. We observe that similar qualitative
results, together with the occurence of NIS, are obtained also in the param-
eter region of low temperatures kT < hA. and weak coupling o < 1 where
damped quantum coherence occurs'®. In this regime NIBA fails to predict the
correct long-time behaviour because the neglected bath-induced correlations
contribute to the dissipative effects to first order in the coupling strength.
Nevertheless, a perturbative treatment allows an investigation on QSR even in
this coherent regime 6.

4 Transient dynamics and dynamical localization

As shown by (7) or (9), the transient as well as the long time dynamics depends
on a complicate interplay between the stochastic and driving forces. Some sim-
plifications are allowed when a separation of time scales is applicable. Here we
shall restrict to the interesting high frequency regime Q > 7!, where rx is the
characteristic time of the transient dynamics. In this approximation, the ker-
nels I%gi)(t) in (9) can be substituted with their average k¥ ()) over a period.
One obtains (for convenience we explicitly indicate the field dependence),

oo L4+ kg(A;8)/A
=S he

where the condition Q 3> 75! =~ |A| has to be proofed self-consistently. Thus, a
fast field suppresses the periodic long times oscillations and, as follows peaking

(16)
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up the A = 0 pole in (16), the TLS approaches incoherently the steady value
po = kg (0;&)/kF (0;€) with the high frequency relaxation rate kg (0;€) = vy
[see for comparison eq. (14) and the discussion above for the low frequency
rate yr,(t)]. Whithin NIBA one has

_ 2 b " —Q'(f) 2€ . QT
yi=A / dr coslQ"(r)]e~9 ") cos(eor)o (msin-) . (17)
0 .

where Jo(z) is the zero order Bessel function of first kind. In the limit é — 0
the modified rate vy reduce to the static one v *®. To make quantitative
predictions, we restrict to the case of a TLS with zero intrinsic asymmetry
(¢0 = 0) and Ohmic dissipation, where for high cut-off frequencies w.r > 1,
the functions Q' and Q" are defined by eq. (2).

As a first feature, because |Jo(z)| < 1, it is apparent that for a symmetric
TLS the effect of a fast asymmetry modulation is an overall reduction of the
incoherent tunneling rate 4y as compared to the static one vy, whenever a <
1/2. Secondly, we study the modification of the quantum coherent motion by
stochastic and driving forces, i.e., we explicitly determine the poles of (16)
resulting from the equation A 4 kF ();€) = 0. For our purposes it is convenient
to express the kernel k} (); €) in terms of the static one X()) = limz_.q k3 (A;€)

as
©0

k(e = ) JAHE/DK(A+inQ), (18)
n=-—00

and K is obtained from eq. (14) as £()\) = [, 0]. Using (13), the pole equa-
tion predicts for the static case with @ < 1/2 a destruction of quantum co-
herence by bath-induced incoherent transitions above a transition temperature
To(a) 8. For a > 1/2 the dynamics is incoherent down to T = 0. For weak
Ohmic damping a < 1 one has from (14) that h(};0) ~ 1. Hence, the pole
equation becomes just a quadratic equation in A and the transition tempera-
ture is determined by the condition of the solutions being real and degenerate
5. Such a situation is expected to be strongly modified in the presence of
ac-fields. Taking into account the high-frequency condition £ 3> |A|, up to the
order O(|A]/2)* and for o < 1, we find

a g 2 2(¢
k(X8 = K()) {J@(E/Q) + (%ﬂ) > Jn(nz/Q)} .
n#0

This equation is of fundamental importance to understand the role of driving
fields on the tunneling dynamics. Its two parts act in fact in preserving or sup-
pressing quantum coherence, respectively. When the first contribution domi-
nates, the effect of a fast field is roughly to renormalize the effective tunneling
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matrix element A, as A, — A;, where A; = A |Jo(¢/Q)[}/*~“. Hence, from
static considerations, we find the transition temperature Ti(a) ~ hA;/7akp
when a € 1. Because Ti(a) < Ty(a), the effect of asymmetry driving is an
overall reduction of quantum coherence !°. Near the zeroes of Jo(é/S2) quan-
tum coherence is completely suppressed and the particle tunnels incoherently
with rate 1 = 70 (27a/hpQ)? 3, o J2(€/Q)/n* down to T = 0. Because
TH < Y0 € Q, suppression of tunneling may be stabilized for weak dissipation
over several periods of the driving force in accordance with °.
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