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The influence that linear and non-linear coupling to a heat bath has on the dy-
namics of the tunneling of a particdle out of a meta-stable state is examined. The
tunneling rate is calculated using the dilute bounce gas method, for finite tem-
peratures. The action corresponding to the bounce is evaluated with the aid of a
variational method. It is found that the linear coupling to the heat bath has the
effect of decreasing the characteristic cross-over temperature between the regime
of thermally activated hopping and the quantum tunneling regime. The linear
coupling is found to suppress the decay rate in the quantum tunneling regime, and
causes energy to be dissipated. The non-linear coupling has the effect of remov-
ing the normal modes of the heat bath to higher energies, and thus reduces the
effectiveness of the linear coupling, and thereby increases the tunneling rate.

1 Introduction

The phenomenon of quantal decay of metastable states appears in a myriad of
different context in Physics!~® and Chemistry’~?, and has been the subject of
continuous investigation since the advent of quantum mechanics. It has long
been recognized that the coupling of the tunneling system to the degrees of
freedom of its environment does have a significant influence on the decay rates.
The early literature on these phenomena have recognized the existence of two
temperature regimes in which the decay process has different characteristics!®,
namely a low temperature tunneling regime!! and a high temperature ther-
mally activated hopping regime!?. The description of quantum mechanical
tunneling in terms of path integrals allows both regimes to be given a general
and unified treatment. Feynman and Vernon 2 showed that the heat baths
described by normal modes which couple linearly to the system can be traced
out. The system is then governed by an effective action which contains a term
non-local in time; the influence functional. This non-local term represents
the influence of the heat bath on the systems motion, and depends upon the
spectral properties of the environmental coupling and on the temperature.
The simplest way to obtain an analytical approximation to the path inte-
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gral is to use the quasi-classical or WKB approximation!?~1¢, in which it is
assumed that the path integral is dominated by the trajectories in the vicinity
of those for which the action is stationary. In the quasi-classical approxi-
mation, the action associated with each extremal trajectory gives rise to an
exponential term in the decay rate, and the neighboring trajectories which
deviate from the extremal trajectories only by small amplitude fluctuations
give rise to the prefactors. The dominant contribution to the quantum decay
rate are due to extremal trajectories which traverse the barrier region with
imaginary velocities. These imaginary velocity extremal trajectories, when
transcribed in terms of imaginary times are the instanton or bounce trajec-
tories popularized by Coleman!?~1%, Langer!® has shown that the activated
hopping rates can also be expressed in terms of the imaginary part of the free
energy of the meta-stable state and has evaluated this in terms of extremal
trajectories that traverse the barrier. Caldeira and Leggett2? have advocated
this type of approach to tunneling phenomena, and stressed the importance of
the exponential suppression of the quantal tunneling rate by the non-local or
dissipative parts of the effective action. This method has been subsumed by
the method of periodic orbits?!. It must be emphasized that this functional
integral approach to tunneling reduces the calculation of the decay rate, at all
temperatures, to that of the evaluation of a single functional integral in the
imaginary time domain.

Caldeira and Legett?® have indicated how the zero temperature limit of
the quantum tunneling rates can be evaluated by this technique. Grabert,
Weiss and Hanggi??~? have extended this method to low temperatures, and
found the leading low temperature corrections to the zero temperature quan-
tum decay rate. However, in this low temperature regime, explicit analytic
expressions to the quantum decay rate have been found in a few select exactly
soluble cases, such as zero damping®?, weak damping?®~2%, an intermediate
value of the damping strength?” and, finally, for an asymptotically large value
of the damping strength?®. Where no exact solution can be found, the scheme
can be implemented numerically?3~2°, or by using variational methods for both
the exponents3°~3! and the prefactor®?, which give excellent agreement with
the numerical results. These results continue smoothly from the low tempera-
ture quantum tunneling regime into the high temperature thermally activated
hopping regime.

In the high temperature regime, the decay rates are of a more universal
nature, and don’t depend upon the specific details of the bounce solution. For
example, Grabert and Weiss33, and Larkin and ()vchinnikov3* were able to
explicitly calculated the general form of the decay rate in the vicinity where
the decay rate process changes from quantum tunneling to thermally activated
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hopping. Similarly the decay rate in the high temperature region has also been
expressed in a general form3%-37,

This technique and many of its applications to systems with linear cou-
plings to heat baths, have been reviewed and compared with the results of
other methods in the book by Weiss®® and also in the review article by Hanggi,
Borovec and Talkner®®. The assumption of linear coupling to the degrees of
freedom of the environment is an idealization, maile to make the elimination
of the heat bath normal coordinates tractable. It is based on the assumption
of weak coupling to each individual normal mode of the heat bath, in which
case only the first term in a Taylor series expansion in powers of the normal
coordinates need be retained. However, when the effect of the coupling to the
heat bath is large, the effects of higher order coupling may become important
in some cases*?. Also the non-linear terms may provide the leading effects of
the dissipation, in cases where the linear terms are forbidden by symmetry*?
Therefore, in this article we shall investigate the effects that the non-linear
couplings to a heat bath have on the decay rate.

2 Model

The microscopic system and its environment is modeled by a Hamiltonian
containing three terms,

H=H,+H, +H,_, (1),

where H, describes the one dimensional motion of a particle in a potential V(gq),
and H, describes the dynamics of the thermal reservoir and H,_., describes
the coupling between the system and its environment. The Hamiltonian for

the system is given by
p?

H =2 +v() (1a)

where p and ¢ are, respectively canonically conjugates operators represent-
ing the particle’s momenta and coordinates. The Hamiltonian describing the
thermal reservoir, H,, can be written as

m o 2

He = E 2m 61:2 ) tgwata (18),

where the sum over o ranges over all the normal modes of the oscillators and z4
and w, are, respectively, the normal mode coordinates and frequency. Thus,
each normal mode describes an Einstein oscillator with frequency w,. The
interaction term that couples the particle with the thermal reservoir, H,_,, is
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written as
H,. ,= Z [Aaqza + Buqzzi] (1¢),
a

The first term represents the usual bilinear term coupling of the particle’s
corrdinate to the coordinate z, of the a-th normal mode. The second term is
the non-linear coupling term. The latter is quadratic in g, as opposed to being
linear, so that in the absence of asymetry in the potential V' (gq) the total system
of particle plus heat bath are invariant under spatial inversions. This ensures
that any parity violation is solely due to V(q) and not due to the coupling
with the heat bath. The second term may be regarded as producing a position
dependent change in the oscillators frequency from wqo to wqe(q), where

2
walg)? = w2 + -Y;Ba,q2 2),

where the coefficient B, must be positive for the heat bath to be stable for all
values of q. The linear term, then has the effect of displacing the equilibrium
value of the normal mode coordinates from 0 to a, where

aq = Aqq/[mw? + 2Bq9?] (3)-

With few exceptions?®~%3, the heat bath coupling is assumed to be bi-linear,

where B, = 0. This corresponds to the assumption that any single degree of
freedom of the environment is only weakly perturbed by the particle’s motion.
This, of course, does not imply that the accummulative influence of all the
degrees of freedom of the environment on the particle’s motion is weak.

Since we are interested in the effects of the dissipation on quantum tun-
neling, we shall separate out the dynamic effects from the static effects of the
coupling to the environment by adding a counter-term AV/(g) to the potential,
which takes the zero temperature limiting form of

1 AL

This addition has the effect that the total potential experienced by the particle
is temperature independent.

3 Formulation

The path integral for the reduced density matrix can be written in terms of
an effective action S[g(7)], where 7 is an imaginary time. the path integral is
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to be evaluated over all trajectories ¢(r), which satisfy the periodic boundary
conditions ¢(r + ©) = ¢(r) where 8 is an inverse temperature © = chT The
effective action is given, to leading order in the non-linear dissipation, as

‘9/2 o
Sal= [ ar[PE 4 view)
-y
! 8/2 e/2 ’ ]2
vy [ ar [ ate - o)
3 42 _ 42 PR (- ) o)~
e/2 /2 /2 2
+-;— / dr / dr’ / dr”Lz(‘r’—‘r,r”—-r)q(r)z[q(r’)q(r”)—q(‘r)Z]
-8/2 -8/2 -0/2
e/2  of2 .
+ / dr / d‘r'M(‘r—‘r')[q(T)z—q(‘r')z]
-8/2 -9/2
+ ...... (5),

where K () represents the kernel for the usual linear damping mechanism and
is given by

K(r) = 2% / doJ (@) [[1 + N()]ezp(~wlr]) + N(w)ezp(+alr)]  (6.0)

in which N(w) is the Bose-Einstein distribution function and J(w) is the spec-
trum of the environmental coupling,

J(w) = -;-r-z [6(u - wq) :Ea] (6.5).

The non-linear dissipative terms have the kernels Ly(7/,7”) and M(7r). The
double time kernel Ly(7/,7”) is given as

Lo, ™) = 52 [ () [[1 4+ N@)]ezp(-wl) + N()eap(ulr')]
0
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x| [1 4+ N()|ezp(~w|~"]) + N()ezp(+wlr" D] (7.0),
and the coupling spectrum I,(w) is given by

L) =5 'Z[é(u e B"';:H]

Likewise, the single time kernel M(7) is given by

(7).

(=]
1 2
M(r)= e / dwH (w) [[1 + N(w)] ezp(—wir)]) + N(w)ezp(-i-wlrl)] (8.2),
0 .
in which the spectral coupling is

H(w) = %Z[&(w o) Ty Bi)z] (8.5).

It can be clearly seen that M(7) is of higher in powers of h than Lao(7,7"),
and can be neglected within the WKB approximation. However, the multi-
time kernels, containing I,(w), are of the same order in A as those explicitly
dispayed here. In the following we shall assume that the effective potential
V(q) can be approximated by the general form

Vo = gude[t- ()] @),

v(q)

Wo AQ

o
@ |

Figure 1: The form of the potential V(g), with a metastable minimum at ¢ = 0, a curvature
at the minimum of M wg . The barrier regime extends between ¢ = 0 and ¢ = Agq.

where the meta-stable minimum is located at ¢ = 0, and in the absence of
dissipation the classical forbidden region extends from ¢ = 0 to ¢ = Ag. This
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potential is shown in figure 1. We shall also assume that the linear dissipation
spectral density is of the ohmic form

J(w) = M (10).

In evaluating the effects of the non-linear dissipation we shall assume that for

small w, , B, scales with (%:;), as suggested by the form of (2). Hence, we
shall write .
w
= _— 1
h{w) = Mn( 1) (1),
where ) is a dimensionless measure of the relative strength of the non-linear

dissipation. With this particular form of scaling, the terms originating from
I,(w) are of the order of A™.

4 Tunneling Rate

The probability for decay from a meta-stable state can be characterized by a de-
cay rate, at times sufficiently long so the transients have died away and yet suf-
ficiently short so that the decay can be approximated by an exponential®. In
the dilute bounce gas approximation, the reduced density matrix of the meta-
stable system is given by the weighted sum over a set of extremal paths called
bounce trajectories, together with the quantum fluctuations around these tra-
jectories. A typical bounce trajectory is shown in figure 2. The multi-bounce
trajectory start from the meta-stable minimum, near ¢ = 0 at time r = —©/2,
and cross the barrier region any even number of times, returning to the starting
point at a later time 7 = +8/2. In the dilute bounce gas approximation the
sum of the contributions from all the multi-bounce trajectories exponentiates,
and gives rise to an imaginary part to the free energy. This approximation
neglects any interactions between the bounces and any possible interference
from paths surrounding different extremal trajectories 334,
Under the above conditions, the decay rate can be expressed as

r= (%’%)*(%)* exp[(So — S5)/A] (12),

in which Sg; and Sp are, respectively, the values of the action representing
the equilibrium solution ¢o(r) = 0 and the single bounce trajectory gg(r).
The factors Dy and Dp represent the products of eigenvalues of fs—s; evaluated
about these trajectories. The prime in the contribution from the single bounce
trajectory indicates that the zero eigenvalue has to be omitted and this is
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replaced by the zero mode normalization factor proportional to Si. For a
derivation of this process see refs.[27,45]. The factor S is given by

+8/2 y
Sy = / drg-is(r)? (13).
-8/2

e
£l

Tp

T

1 1 i

_op 1=0 on

Figure 2: A typical multi-bounce trajectory gnp(r). The bounce time 75 is the time for one
traversal of the barrier region.

The bounce trajectory gg(7) extremalizes the action, a.nd so is given by the
solution of the Euler-Lagrange equation vbox
+8/2
-Mi)+ | 42 [ @K - - o)
-8/2
+8/2  +9©/2
+2 / dr’' / drLy(r— 7,7 - r”)q(r) [a(7)a(7”) = 2¢(7)?]
-8/2 -@/2
+9/2  +©/2
+2 / dr’ / dr" Ly(r' — 7,7’ = ") [a(7")a(7")?]
-8/2 -8/2
+0/2
+2 / dr' M(r = )q(r)[g(r)? — g(7')*] =0 (14),
-8/2

subject to the periodic boundary conditions.
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5 The Bounce Tajectory
We solve the Euler-Lagrange equation in a variational approximation??~® us-

ing the ansatz,
a

1 — beos(257)]

qo(r) = [ (18),
in which a and b are variational parameters. The acceptable physical range for
these parametersis a > 0 and 1 > b > —1. The choice of ansatz for the bounce
trajectory, represented by (15), is motivated by the following considerations;
(1) it is periodic in ©, (ii) it reduces to the exact trajectory in the vicnity of the
cross-over temperature To > T 2933-34 (ijj) it reduces to the asymptotically
exact bounce trajectory in the limit a — oo 2846,

On substituting the trial bounce trajectory into the expression for the
action, we find the expression

S5 = o Sy (52) [%(92:0)2(1 =t
T~ v )
+a(é%)(l_%
"4’\"‘(92:0)[Za;‘/(libz)r”\/(ll—b?))] (16).

In this expression P,(z) is the n-th order Legendre Polynomial and F(z) is
given by the expression,

(Inl+in'|+in+n')/2
F(z)=) [%{—3] [|n+n'|+m

Inn|

(Inf + [n"])

(17).
where the sum runs over all positive and negative values of n and n’. The
first term in eqn.(16) represents the contribution from the action due to the
kinetic energy, the second and third term represent the contributions from
the potential energy V(g), and the last two terms, respectively, represent the
action of the linear and the non-linear dissipation. We have neglected terms
of order A, originating from M(r — /).

[lnl + 'l -

n,n’



365

Clearly, the form of the action simplifies when expressed in terms of the
parameterization, where

&

V(-8

_ 1
RV TS

On minimizing the action with respect to a'and b we obtain the set of

and
(18).

simultaneous equations,

[( ;:O)”(‘%;‘ D 4 of 62:0)2:: - 4/\a(62—:0-)y2F’(z) |
+l-y® :.+1(x)] =0 (19.0),
and
[(;:0)”(”22' L4 a(Z)@ - 1) - el )i F (@)
4oy 2t 2P,,+1(z)] =0 (19.5),
which determines a and b. For temperatures less than the cross-over

temperature, Tp, these equations posses three solutions. They are the solu-
tion representing the meta-stable equilibrium go(7) = 0 which corresponds to
y = 0. The solution corresponding to the unstable equilibrium is ¢r(7) =
(%)(*)Aq, le.,, y = (HL,‘)(*), z = 1. The bounce trajectory gg(r) is the
non-trivial solution where y # 0 and z # 1.

At the cross-over temperature, Tp, the bounce solution coalesces with
the unstable equilibrium solution. Thus, at this temperature, the bounce
action becomes equal to the Arrhenius factor from the top of the potential
barrier?7,33-34

y

n

T 2l (n42)1-3
The condition for the two solutions to become degenerate determines the cross-
over temperature, which is found as

(21rlc BT
th

Sa QoMulAg? (20).

)= (2X)

Oowo
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= Pﬁ(1-11x(0112))%)2+1iz-a[1—11A(6;%?5)%] (21).

Without dissipation, the cross-over temperature is simply given in terms of
the curvature of the potential at the barrier top!’. The effect of the linear
dissipation is such as to decrease the cross-over temperature from the non-
dissipative value®®. On.the other hand, the non-linear dissipation has the
opposite effect of the linear term.

Below the cross-over temperature, the bounce action decreases and thus
quantum tunneling gives rise to the dominant contribution to the decay rate.
In the limit of zero temperature, T' = 0 or © — oo, the solution for the bounce
trajectory takes on the limiting form y — 0 and ¢ — oo, where the product zy
is held constant. Under these limiting conditions, the solution becomes more
apparent when the trial trajectory is re-parameterized in terms of

)

a=b

¢ 114
Tg = (;) [—%— (22),
as ¢ is a dimensionless measure of the amplitude of the bounce and 75 is
the bounce time. The bounce time is the characteristic imaginary time scale
that the extremal trajectory spends in the classically forbidden regime. The
bounce time should not be identified with the traversal time for a wave-packet
to tunnel across the barrier region*?, as direct studies have shown that at the
instant the maximum of the wave packet reaches the barrier, the transmitted
packet emerges 3.
In this low temperature limit, the simultaneous equations can be reduced

to,
i=(ﬂ2)2[l_ (20 + 2)! ] (23),

24 2 2 22(n+1)(n + 1)!2
and

(‘-‘JOTB) n+4 (2n+2)!
2 2 un+l)(n 4 1)P

n (54 7 2
c —1] = —|:1—2/\(4ln2+——2 )c ] (23.).
In this limit, the bounce action reduces to the form

Sp = tMwAq¢®c?

1 ﬂ)—l (‘ﬁ?.:@.)[l (2n +2)! n]

w3 3 /13T (4 )




+-‘:— [1 - A(4ln2+ 2—1—)8]] (24).

From eqn(23.a) it is clear that g determines the amplitude of the bounce.
The pair of simultaneous equations, (23), can be solved analytically for the
case of zero non-linear damping, yielding

-l

for the bounce time and on re-writing (23.a) as

2252717;(:i);)!cn = [1-5&D)7] (25.6),

the amplitude follows imeadiately. One sees that the bounce time increases
with increasing dissipation, and hence the termination point of the bounce
moves to larger q values. This corresponds to the extremal trajectory ”slowing
down” and experiencing an ”energy loss” AE during the traversal, due to
the effect of the dissipation?®. The maximal energy loss occurs in the limit,
a — oo, and has the value

2n + 1)!2] 2 [2<2"+1)(n +1)2 1]

_ 2
AE = MwiAg*? [ (2n+2)! (2n +2)!

(26).

The effect of the non-linear dissipation can be inferred from eqn(25.b),
which shows the bounce time is decreased on increasing X. Since eqn(25.b) is
valid for all values of ), one can see that the exit point is decreased and the
energy loss is reduced by increasing A from zero to finite values. A similar, but
more tedious, analysis shows that the bounce action is decreased on increasing
A. This is consistent with the effect of A on the action at the cross-over tem-
perature, as represented by eqns.(21) and (22). Hence, we can safely conclude
that the non-linear dissipation, consistently, effectively reduces the strength of
the linear dissipations.

6 Conclusions

The above analysis was performed in the regime where the WKB approxima-
tion is valid. This roughly corresponds to the regime where the bounce action
Sp exceeds hwy and presents no serious limitation. An estimate of the error
involved in the use of the variational method can be found by comparing ex-
act analytic?%:24-26 and pumerical?®2° results for the case of linear dissipation.
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The largest discrepancy occurs, for zero temperature, in the limit o — 0, where
the exact bounce solution is found to be

q(r) = Aq sech'z"(m‘;or) (27),
and the corresponding value of the action is
23T%(2)
=M 2 n’Z 28),
SBA wOAq (n+4)r(%) ( )

where I'(z) is the gamma function. Comparison with the results of the vari-
ational method show that the error is limited to be less than 5.96 %, which
occurs when n = 1. For finite values of « the error is rapidly diminished, and
therefore since A only plays a role for finite & our conclusions are quite reliable.
The effect of the non-linear part of the dissipation is seen to reduce the
effect of the linear dissipation, in that it causes both the cross-over temper-
ature and the low temperature tunneling rate to increase back towards their
undamped values. The effect may be attributed to the fact that the non-linear
coupling increases the frequency of the thermal reservoir’s normal modes, as
seen in eqn(2). The resulting shift of the oscillators from smaller frequencies
to higher frequencies can be expected to yield a reduced effective dissipation
strength. The conclusion that the non-linear dissipation causes an increase
inthe tunneling rate can be seen more directly from eqn(3), which clearly shows
that the effect of the non-linear coupling is to reduce the distortion of the heat
bath caused by the linear coupling. The reduction in the tunneling rate due to
the linear dissipation is due to a polaronic effect, whereby the moving particle
has its’ effective mass increased to include the distortion of the heat bath!!~12,
Hence, by eqn(3), the non-linear dissipation reduces the distortions of the heat
bath and thereby increases the tunneling rate towards its’ undamped value.
Our results also indicate that it is the bounce time 75 that is the relevant
time scale which determines the interaction between the interaction between
the particle’s tunneling motion and the heat bath’s normal modes and it is
this time scale which determines the difference between the bounce amplitude
and the dissipationless exit point Aq. Hence, it is the bounce time which
determines the energy of the tunneling particle that is lost to the heat bath.

Acknowledgements

This work was supported by the US Department of Energy.



369

References

16.

17.
18.

19.
20.

21.
22.
23.
24.
25.
26.

27.

. F. Hund, Z. Physik 43, 805 (1927). ,

J.R. Oppenheimer, Phys. Rev. 31, 80 (1928).

G. Gamow, Z. Physik 51, 204 (1928).

R.H. Fowler and L. Nordheim, Proc. Roy. Soc. (London), Ser. A 119,

173 (1928).

R.W. Guerney and E.H. Condon, Nature (London) 122, 439 (1928).

R.W. Guerney and E.H. Condon, Phys. Rev. 33, 127 (1929).

D.G. Bourgin, Proc. Nai. Acad. Sci. USA 15, 537 (1928).

R.A. Marcus, J. Chem. Phys. 43, 2658 (1965).

W.H. Miller, J. Chem. Phys. 62, 1899 (1975).

V1. Goldanski, Dokl. Acad. Nauk, SSR 124, 1261 (1959), Dokl. Acad.

Nauk, SSR 127, 1037 (1959).

. T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959).

T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).

. R.P. Feynmann and F.L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).

. L.D. Landau and E.M. Lifschitz, Quantum Mechanics, (Pergamon Press,
Oxford, 1981).

. R.P., Feynmann and A. Hibbs, Quantum Mechanics and Path Integrals,

(McGrawHill, New York, 1956).

L. Schulman, Techniques and Applications of Path Integrals, (Wiley, New

York, 1981).

C.G. Callan and S. Coleman Phys. Rev. D, 16, 172 (1977).

S. Coleman, The Whys of Nuclear Physics, edited by A. Zichichi,

(Plenum, New York, 1979).

J.S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967).

A.O. Caldeira And A.J. Legett, Ann. Phys. (N.Y.) 149, 374 (1983),

Ann. Phys. (N.Y.) E 153, 445 (1984).

P. Hanggi and W. Hontscha, Ber. Bunsensges. Phys. Chem., 95, 379

(1991). '

H. Grabert, U. Weiss and P. Hanggi Phys. Rev. Lett., 52, 2193 (1984).

H. Grabert and U. Weiss Z. Phys. B, 56, 171 (1984).

I. Affleck Phys. Rev. Letts. 46, 388 (1981).

Yu. N. Ovchinnikov and A. Barone, J. Low. Temp. Phys., 67, 323

(1987), J. Low. Temp. Phys., E T2, 195 (1988).

E. Freidkin, P.S. Riseborough and P. Hanggi, J. Phys. C, 21, 1543

(1988).

P.S. Riseborough, P. Hanggi and E. Freidkin, Phys. Rev. A, 32, 489

(1985).



370

28.

29.
30.

31.
32.
33.
34.

35.

36.
37.
38.

39.
40.
41.
42.
43.
44.

45.
46.

47.
48.
49.

L.-D. Chang and S. Chakravarty, Phys. Rev. B, 29, 130 (1983), Phys.
Rev. B, E 30, 1566 (1984).

H. Grabert, P. Olschowski and U. Weiss, Phys. Rev. B, 32, 3348 (1985).
E. Freidkin, P.S. Riseborough and P. Hanggi Phys. Rev. B, 34, 1952
(1986), Phys. Rev. B, E 35, 1566 (1987).

E. Freidkin, P.S. Riseborough and P. Hanggi, Physica A, 142, 178 (1987).
H. Chang and P.S. Riseborough, Phys. Rev. B, 40, 2120 (1989).

H. Grabert and U. Weiss, Phys. Rev. Lett. 53, 1787 (1984).

AL Larkin and Yu.N. Ovchinnikov, Zh. Eksp Teor. Fiz., 86, 719 (1984),
J.E.T.P. 59, 420 (1984).

P. Hanggi, H. Grabert, G. Ingold and U. Weiss, Phys. Rev. Lett., 55,
761 (1985).

P.G. Wolynes, Phys. Rev. Lelt. 47, 968 (1981).

E. Pollak, J. Phys. Chem. Lett. 127, 178 (1986).

U. Weiss, Quantum Dissipative Systems,(World
Scientific,Singapore,1993).

P. Hanggi, P. Talkner and M. Borkovec, Rev. Mod. Phys. 62, 251 (1984).
P.S. Riseborough, Ann. Phys. (NY), 153, 1 (1984).

R.W. Munn and R. Silbey, J. Chem. Phys. 68, 2439 (1978).

P.S. Riseborough, Phys. Rev. B, 43, 13269 (1991).

G.R. Haynes and G.A. Voth, Phy. Rev. A, 46, 2143 (1992).
L.A.Khalfin, Zh. Eksp. Teor. Fiz. 33,1371 (1957), Sov. Phys. J.E.T.P.
6, 1053 (1958).

J. Zittartz and J.S. Langer, Phys. Rev., 148, 741 (1966).

Al Larkin and Yu. N. Ovchinnikov, Zh. FEksp. Teor. Fiz., 37, 322
(1983), J.E.T.P. 37, 382 (1983).

M. Buttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982).

E.H. Hauge and J.A. Stovneng, Rev. Mod. Phys. 61, 917 (1989).

U. Weiss, P.S. Riseborough, P. Hanggi and H. Grabert, Phys. Letl. 104
A, 10 (1984).



