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Symmetric white noise can induce directed current in ratchets
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Symmetric whitenoise can induce directed current in periodic potentials that lack reflection symmetry
(termed ratchejs The requirement for this to occur is that the white noise possesses non-Gaussian statistical
properties with all its odd numbered cumulant correlation averages vanishing identically. The fluctuation-
induced current is elucidated for three types of white nafgesymmetric white Poissonian shot noise with
exponentially distributed amplitude§j) two-state diffusion noise being composed of two thermal Nyquist
noise sources that successively are switcbhacand off by dichotomic noise, andiii) randomly flashing
Gaussian white noise. Because the latter two noise sources are not composed of independent increments, the
resulting ratchet dynamiegt) is non-Markovian. The current versus white-noise intensity typically exhibits a
nonmonotonic dependence with a maximum assumed at a suitably tuned noise level.
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I. INTRODUCTION we consider the stochastic flow

In spatially periodic structures, zero-mean nonequilibrium x=Ff(x)+T(t)+ &), (1
fluctuations can induce nonzero macroscopic current
(Brownian ratchets[1]. Periodic structures are described in wheref(x)=—dV(x)/dx andI'(t) represents thermal fluc-
terms of a spatially periodic potentisl(x) =V(x+L) of pe-  tuations that are modeled by Gaussiaoorrelated noise of
riod L. For systems with a reflection symmetry we haveZ€ro mean,
V(c—x)=V(c+x) for some constant. Periodic structures _ _ _
that lack this reflection symmetry are termedchets Fluc- (F(©)=0, (TOT(u))=2Dd(t=u), @
tuations driving the system can be symmetric or asymmetrignd of strengttD+. This part models thermal Nyquist noise
as well. Symmetric fluctuation&(t) are characterized by the with its intensity being proportional to the temperatdre
fact that all its odd numbered cumulant averages are identithe process:(t) is a “driving force” and models a non-
cally vanishing; in contrast, asymmetric noise of zero mearequilibrum source of fluctuations.
can possess nonvanishing odd-numbered higher-order cumu- We construct three models of symmetric afdorrelated
lants. It is a hallmark of thermal equilibrium dynamics that fluctuationsé(t), which, by virtue of statemerti), have to
(i) directed stationary motion cannot be generated by thermdie nonequilibrium and non-Gaussian. The first model studied
fluctuations(Gaussian white noigeWith a nonequilibrium  in Sec. Il is symmetric Poissonian white shot ndigg The
thermodynamics, however(ii) directed motion can be second noise source considered in Sec. Il is composite white
evoked by correlated symmetric noises in systems with &@0ise made up of two-state diffusion nois: In each state
broken spatial symmetryi.e., when the spatial potential is the system is subject to white Gaussian noise with a given
asymmetrig [1-5]. Furthermore, it is known thafiii) di-  diffusion coefficient and the system randomly jumps in a
rected motion can be induced by correlated asymmetric flucdichotomic manner between these states. The third noise, the
tuations in reflection-symmetric systerfs] and also(iv) so-called randomly interrupte@r flashing Gaussian white
transport can be caused by uncorrelated s-correlategd ~ noise, is a limiting process of two-state diffusion noise when
asymmetric shot noise in systems with or without a brokerpne of the diffusion coefficients tends to zef®]. Then
spatial symmetry6]. Thus, for generation of directed trans- jumps between the Brownian diffusional stdte Feynman
port the breaking of at least one of these symmetries is ned¢atchet carrying zero currenand a deterministic flowalso
essary. A fundamental question to be asked is what minimagarrying zero currentare steered by a dichotomous Markov
statistics of noise is needed for generation of a macroscopigrocess. It is investigated in Sec. IV. Our conclusions and a
current. In particular, is there a possibility thasgmmetric ~ summary are presented in Sec. V.
é-correlatedadditive noise does in fact evoke directed mo-

tion? This question will be answered with this work in the Il. SYMMETRIC POISSONIAN WHITE NOISE
affirmative. . . . . . ,

Let us formulate the problem in greater detail by studying " °issonian white shot noist) is defined a37]
the overdamped motion of Brownian particles in spatially N(t)
periodic potentialM(x); namely, implicitly assuming a scal- (1) = 2 z6(t—t;), 3)
ing that leads to dimensionless variab{ese the Appendix i=1
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whereN(t) is a Poisson counting process with a paramgter D.Dg Dg

(it is equal to a mean number @& impulses per unit time, N P )= )P = (Dst+Dr)P'(x)

i.e., a mean frequency of impulses or the reciprocal of the

average sojourn time between twbkicks) and {z} are +f(x)P(x)=1, 1y

weights of theés kicks distributed according to a probability

densityp(z). For symmetric white Poissonian shot noise all yhere the prime indicates differentiation with respecixto
its odd-numbered statistical correlation cumulant averagegngp=\A2.

C,ony 1 arezera This is the case when

p(z)=p(—2). (4 A. Asymptotic expansions

, . . 1. High f f shot-noise impul
The first two noise correlations @f(t) read 197 Irequency o Shot-nolse impllises

In the limiting casex—o with Dg=\A? held fixed
(&(1))=0, (&(t)é&(u))=2Dgd(t—u), (5  [which implies A—0 and p(z)— &8(z)] Poissonian white
shot noise tends to Gaussian white noise of interi3gy As
where Ds=(1/2)\(z{) is the shot-noise intensity. The a consequence, the currehapproaches zero. Whers 1,
higher-order, even-numbered cumulaets(ty,tz, ... t2n)  one can expan®(x) andJ in a power series with respect to
are given by 7] a small parametex 1, i.e.,

Con(ty o, - ton) =N(ZM S(ty— 1)+~ 8(ton_1—ton). B o
© PO)=2 N"Py(x), J=2 AT, (12
n=0 n=0
For £(t) being Poissonian white noise, the output process
x(t) defined by Eq(1) is a Markovian stochastic process. A

master equation for the probability distributi®x,t) of it is
a partial integro-differential equation of the forrh0,11

Substituting Eq(12) into Eq.(11) and equating coefficients
of equal power il\ ~! yield equations determining succes-
sively P,,(x) andJ,,. They read

IP(x,t d 92
faf - ax TP D) +Drog PXD) — (D +Dg)PH(X) + F(X)Po(x) =g,
+>\fw [P(x—zt)—P(x,t)]p(2)dz.  (7) —(D1+Dg)Pr(X) + fF(X)Pp(X) =+ Gp-1(X),

If one uses the relation exped/x)P(x,t)=P(x—zt) and the n=123,.., (13

identity
where

z
-zB_ 1 _ _ —sB ” m
e 1 Bfoe ds ®  G,(0=DJHX)P(x)]"~DDPL(X), N=012,....
(14
valid for any operatoB, Eq.(7) can be recast as a continuity _ . o N
equation that defines the probability currelfi,t). In the  This set is supplemented with the periodicity conditions
stationary state, when P(x)=Ilim,_., P(x,t) and

J=lim_,. J(x,t), it takes the form P.(x+L)=P,(x), n=0,1.2,.., (15
_DTdP(X) +f(x)P(x)+)\Jx p(z)sz(x—y)dy dz=J.  and the normalization of the distributid®(x) over the pe-
dx —w 0 riod L, i.e.,
€)
L
The stationary probability curredtis related to the averaged f Pn(x)dx=6y,, n=0,1,2,.... (16)
0

stationary velocityv) of Brownian particles via the equality

J=(v)/L. Two conditions are imposed on the integro-

differential equatior(9): (i) the periodicity of the probability ~The problem(13)—(16) can be formally solved because Eq.
P(x)=P(x+L) and(ii) the normalization oP(x) over the (13) is a(nonhomogeneourdinary differential equation of
period intervalL of the ratchet potential. At this point, the first order. The zeroth-order contribution is

above equation cannot be simplified further without specifi-

cation of the density(z). Here we assume a two-sided ex- U(x) V(x)
ponential probabilty density, i.e., Jo=0, Po(x)= JL— U(x)=exp — D;+Dg|’
U(x)dx
p(z)=(12A)e~17/A  A>0. (10) 0
17

Then Eq.(9) can be recast as awdinary differential equa-
tion of third ordey; i.e., The higher-order contributions assume the form
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fo Gp_1(X)U~1(x)dx Vix)
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n=1,23,..., (189
FIG. 1. Spatially periodic sawtooth potenti(x) of periodL,

and the constant€, are determined from Eq16). Both  Parrier heightv,, and negative asymmetry parameker

P,(x) andJ,, depend on lower-order contributions via the

functionsG,,_;(x) expressed by, ;(x) and their deriva- W) _ Ve
tives; cf. Eq.(14). Po(X)= ———, W(x)=ex .| (23)
The form of the first-order contributiody can be simpli- fo W(x)dx

fied to a tractable form, reading
The zeroth-order contributiof, follows from the second

szLf3(x)dx equation of Egs(21) for p;(x) and it turns out thaj,=0.
So The first-order contributionj, is determined from the equa-
Ji=- L . (19 tion for p,(x) and takes the form

(Dr+ DS)3JOLU(x)dxf U~ Y(x)dx

0

[ w0 [ Cmiay ax

If the potentialV(x) is reflection symmetric, the integral of
f3(x) over the period vanishes. On the contrary, for an asym-
metric potential this integral does generally not vanish and a
nonzero current can occur.

o1
hi==357

L
f W (x)dx
0

L L
1
2. Low frequency of shot-noise impulses 1 fo X W(x)dx fo X W(x)dx

For low frequency of impulses, when<1, we expand @49

L L L

P(x) andJ in a power series with respect to the small pa- fo W(x)dx fo W (x)dx
rametern,

. . The first term in the large square brackets is an equilibrium

. average positiofix) of particles in the potentia¥ (x) (in the
P(X):zfo A"Pn(x), J:nzo Nn. (20 absen?:e pof Poilgsi)niarrz fluctuatia).nthiJIe the séc)ond term

corresponds tdx), but in the inverted potentiat V(x). Let
us note that; does not depend on the shot-noise intensity
Dg. From the above two asymptotic expansions, one can
infer that the currend is a nonmonotonic function of and
assumes an optimal value at some speaifizecausel]— 0
for bothA—0 and\ —oe.

Equations determining,(x) andj, have the form
Drpg (X) [ f(X)po(x)]"=0,

DTDSpg,(X) —Dd f(X)pn(X)]"=jn-1+Hnp_1(X),

B. Sawtooth potential: Exact results
n=1,23..., (21 , .
Equation(11) can be solved exactly for special forms of

the potentiaM(x). We analyze the case of a piecewise linear

where potential with dimensionless peridd=2 (Fig. 1), i.e.,
Hny(X)=(D1+Dg)pp(x) = f(X)py(x), n=0,12,... . \Y
n 11 Ds)Pn n 22 L+02k(2X+L)' xe[—L/2k]mod
h difficul b | Vo= \ =
In this case it is more difficult to obtain solutions via recur- — Vo
. X - k,L/2]mod_,
rence relations as compared to the previous ¢a8e How- L—2k(2X L), xel 1mo

ever, we succeeded in solving the first three equations of the
system(21). The form ofpy(x) follows from the first equa- whereVy>0 andke (—L/2,L/2) determines the asymmetry
tion of Egs.(21) and reads of the potential: Foik=0 it is reflection symmetric; fok
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FIG. 2. Scaled, dimensionless probability curréms switching
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FIG. 4. Plot of the dimensionless probability currehtas a

frequency\ of o kicks of symmetric white shot noise, in the asym- function of thermal noise strengf (or rescaled temperatuf®)

metric (k= —0.5) periodic sawtooth potential with peridd=2 and
barrier heightv,=1, for fixed thermal-noise intensi;=0.1 and
selected values of white shot-noise intensitg) Dg=10, (b)
Ds=1, (c) Dg=0.5, and(d) Dg=0.1.

#0 the reflection symmetry &f(x) is broken. The asymme-

try is positive ifk>0 and vice versa. Ik>0 then the deter-

ministic force|f(x)| is smaller in the left direction or, put

differently, when starting from minima of the potent\a{x)
its slope in thex-increasing(right) direction is less than in

for fixed A=10, k=-0.3, L=2, Vy=1, and selected values of
shot-noise intensity:(a@) Dg=0.085, (b) Ds=0.078, and (c)

In contrast to Eq(26), the current(27) does not depend on
the periodL of the potential itself, but only on the asymme-
try parametek/L. If the potential is symmetri€i.e., k=0),
the current is obviously zero. For a positive asymmétry0
the current is negative; converselyki& 0 the resulting cur-

the x-decreasingleft) direction. To calculate the current in 'ent assumes positive values. This means that particles are
this case, we proceed along the same way as in Sec. VI dfansported into the direction opposite to motion caused by
Ref.[12]. The exact results are visualized in Figs. 2—4. Forthe larger forcgf(x)| [into the direction of steeper slope of

the potential25), the asymptotic$19) and(24) read as fol-
lows: For largen,

16kD3g%" Vo
(-2 e-12 P br+bg

(26)

for small\,

1 2 Vo
Orab__ -2, = — = —
oe’(e’—1)"“+ 5 coth(6/2) ik 0 D,

(27)

oMK
L
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FIG. 3. Dimensionless probability curredtvs white shot-noise
intensityDg for fixed A=10,k=—0.5,L=2, Vy=1, and selected
values of thermal-noise strengita) D;=0.002,(b) D;=0.01, and
(c) D;=0.1.

the potentialV(x) ]. Essentially, it is the same mechanism as
in flashing ratchetd1]. From time to time particles are
kicked by é impulses symmetrically to the left and to the
right; betweens kicks particles move towards a neighboring
minimum of V(x) and this mechanism determines the direc-
tion of the net flux of particles. Details of the dependence of
the current upon jumping frequenayare depicted in Fig. 2
for several values of the shot-noise intensity. The current
exhibits a bell-shaped behavior versus jump frequency

Next we focus on the current versus shot-noise intensity
Ds. For a wide range of the parametarandD+ the current
grows monotonically, approaching a maximal value for an
infinitely large intensity of noise. Qualitatively the same ef-
fect is observed for systems driven by asymmetric Poisso-
nian white shot noisg6]. However, in some domain of val-
ues of the parameters, a different effect ocdisee Fig. 3
There is an optimal shot-noise intensity that maximizes the
currentJ and approaches a nonzero valuelas—~. The
current versus thermal noise intensityr rescaled tempera-
ture) is depicted in Fig. 4. Like in the case of asymmetric
Poissonian shot noidd 2], there are two characteristic tem-
peratures at which the current assumes locally minimal and
locally (or globally maximal values. This dependence oc-
curs, however, for specific values of parameters. Generically,
the current is a monotonically decreasing function of tem-
perature of the system and approaches zeDas «.

[ll. TWO-STATE DIFFUSION NOISE

In the second model we use composite white-noise pro-
cessé(t) defined by the relation
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1 1 x=f(x)+T,(t) andx=f(x)+I,(t). Its probability distri-
EW)=5[1+n(OIT2 (O + S [1=7(OIT2(1), (28 bution p(x,t)=p.(x,t) +p_(x,t) is determined by the two
equationg 8]
wherel’;(t) (i=1,2) are independericorrelated Gaussian
white noises of strength®; and D,, respectively. Their d d 52
probabilistic characteristics are completely determined by g P+(X.)==—=T(X)P.(X1)+D1—25p.(X,1)
the moments

- + 1t — M- 1t ’
(Ii(1))=0, (Ii(HTj(u))=26;D;a(t—u), i,j=1.2. PR

(29 d d 9?
The processy(t)={—1,1} is a dichotomous Markovian pro- Ep,(x,t) - &f(X)p,(X,t)-i- DZWD*(X’U
cess, which switches back and forth between two states
1< —1 with the ratev. The processy(t) can be expressed to[p+(X,t) —p-_(x,D)], (33

by a Poisson counting proceBkt) with a parametey, i.e.,

7(t)=(—1)N®, It has a zero average and is exponentiallywhere p,(x,t)=p(x,p=+1t) and p_(xt)=p(x,7

correlated, i.e., =—1t). From the above equations one can construct an evo-

lution equation forp(x,t) that has the form of a continuity

(n())=0, (n(t)n(u))=exd—|t—ul/m), (300  equation. In turn, from the continuity equation one can ob-

tain an expression for the curredx,t). In the stationary

state,J is determined by a set of two ordinary differential

equations, namely,

with the correlation timer,=(2v) . The composite pro-
cessé(t) is of zero mean and has&correlated correlation
(white noise

(E(1))=0, (&1)&(U))=(D,+Dy)d(t—u). (31 —(D1=D2)p’ () =Dap’ () +f(x)p(x)=J, (348

Its odd-numbereccumulants are all identically zero. More-
over, it possesses nonvanishing even-numbéredrrelated
cumulants. For example, the fourth-order cumulant has the
form

D1p’t (X) =[f(x)p+(X)]" = 2vp. (x) + vp(x) =0,
(34b)

wherep(x) andp, (x) are the long-time limits op(x,t) and
(1) E(t) E(t3) &(ta))c p.(Xx,t), respectively.

_ _ 2r a—2v|ty—tg) _
(D1—=Dy) e "7sl5(t —tp) A. Asymptotics

X 8(tg—ty) +e 2t st —t5) 8(t,—t,) For large and small jump frequencies between two
ity states[or, put differently, for small and large correlation
+e TTRIS(t ) 8(ta—ta)], (32 times 7, of the dichotomic processg(t), respectively, we

expandp(x), p.(x), andJ in a power series with respect to

where the subscript indicates a cumulant average. »~1 and v, respectively. From Eq:34) we then obtain

Interestingly enough, this white noise, although beihg
correlated to all orders, is non-Markovian. Note that this J~ — 1
white noise isnot made up of independent increments as
indicated by the exponential memory contributions occuring
in Eq. (32). Thus it generates a non-Markovian dynamics
x(t). X L L

Two-state nois€28) is a random counterpart of determin- (D, + D2)3f e2V<X)’(Dl+Dz>dxf e 2VI(D1+Da)gy
istically modulated white noise or, put differently, of thermal 0 0
fluctuations with a modulated temperature. Recentlg],
ratchet systems driven by thermal noise with a periodically
modulated temperature have been studied. Randomly modu- = ) ) )
lated noise(28) can be realized in electrical circuits with Which is valid for an arbitrary form of the ratchet potential
random switching mechanisms between two different resisY(X). The current is identically zero fdb,=D, or/and for
tors. It has been observed in ulirasmall metal-oxide €flection-symmetrical potentials. Let us note that the
semiconductor transistors in which random telegraph noiségadm_g-order correction is proportional to an integral of
drain current fluctuations occufluctuations are induced by f°(X) like in Eq. (19).

L
(Dl_D2)2JO f3(x)dx

+0(v?), (35)

the trapping-detrapping mechanism of electydr. For smallv, the current behaves as
Next consider Eq(1) with £(t) substituted by composite
noise in Eq.(28). Moreover, we sef’(t)=0, although this J~v[(PL (X)) 1+ (P_(X))2—(P+(X))2—(P_(x))1]
does not imply a restriction. The resulting dynamics flips )
between two Gaussian white-noise-driven ratchet dynamics +0(r9), (36)

of different intensities. In other words, the procesg)
jumps with Poissonian statistics between two dynamicavhere for any functiorG(x)
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FIG. 5. Dimensionless probability curredtinduced by two-
state diffusion noise as a function of the intendity of one of two
Gaussian white noises for fixed mean switching frequeneys
between two Gaussian noises, in an asymmekrie{ 0.7) periodic
sawtooth potential with period=2 and barrier heigh¥,=1, and
three values of other Gaussian noise strengdh:D;=0.2, (b)
D;=0.3, and(c) D;=0.4. ForD,— the current saturates to a
nonzero value. These saturation values(&rJ=0.02 ..., and(b)
J=0.02..., and(c) J=0.013... have been evaluated analytically
from Eqg. (34) and are depicted by arrows in the figure.

L
G(x)eV™/Pidx

(G(X))i= - , i=1.2, (37
J' eV(¥)/Digy
0
and
X =+
P.(x)= fo Po (Y)dy. (38)
The probability densities
e~ V(0/Dy e~ V(0/Dy

P ()= » Po(X)=

> f Le—V(x)/Dde
0
(39

L
0

are zeroth-order approximations o, (x) and p_(x), re-
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16k(D;—D,)?p%”
T wL(LT-4k3)(eF-1)?

2V,
D,+D,’

(40)

For smallv [cf. Eq. (36)] we arrive at

vk
=30 Vo[D; *e1(e’1—1)"2+ D, te’2(e’2—1)7?]
D1+ DZ e02_e01 - -
_ D,—D, (e01_1)(902_1) , 6;=Vo/D;, i=1.2.
(41)

Modulated white noise generates transport in periodic struc-
tures with a broken reflection symmetry, that is, when
#0. The direction of current is opposite the asymmetry di-
rection: If k>0 thenJ<0, and vice versa. If the two diffu-
sion coefficients obelp;=D,, thené(t) in Eq. (28) reduces

to thermal equilibrium noise, yieldingd=0. If one of the
temperatures increases to infinity the current saturates. For
example, for fixedD,; and D,—« we find from Eq.(348

that p(x) is related top,.(x) by p(X)=p.(x)+1/2L.

The asymptotic current then emerges as
J=L"f} f(x)ps(x)dx. For a sawtooth potential it can be
evaluated analytically to give nonzero values, which are in-
dicated by the three arrows in Fig. 5. The current versus the
switching frequencyyv exhibits a bell-shaped behavior and
qualitatively is the same as in Fig. 2.

IV. RANDOMLY FLASHING GAUSSIAN WHITE NOISE

This is a limiting case of two-state diffusion noise when
one of Gaussian white noises is switched off, namely, if, e.g.,

1
§)=35[1+ (O] (V). (42

Moreover, we sel’(t)=0 for the ratchet dynamics in Eg.
(1). The procesg42) is white noise as well. However, the
output procesx(t) is again non-Markovian. The dynamics
of the resulting process(t) consists of two parts: the deter-
ministic motion x=f(x) and the diffusional motion

x=f(x)+I,(t), with Poissonian statistics of jumping be-

spectively. It is remarkable that for the corresponding systeriVé€n them. The stationary current can be obtained from
driven by noise with a periodically modulated temperature of=dS-(34) by settingD,=0. For the sawtooth potenti&k5),

frequencyw [13], the first-order contributions are propor-

tional to w2 for fast oscillationsw>1 and tow? for slow
oscillationsw<1, respectively.

B. Sawtooth potential
We consider the piecewise linear potentiab) and use

the same method as in the previous case. The periodic dis-

tribution p(x) is normalized to 1 over the intervadkg,
Xo+ L], while the periodic distributiop, (x) is normalized
to 1/2 over the same interv@ince it is the stationary prob-

ability Pro (t)=1}=1/2). Exact results are presented in

Fig. 5.
For largev [cf. Eq. (35)] one finds

the high- and low-frequency asymptotics can be obtained
from Eqgs.(40) and(41), carrying out the limitD,—0. Fol-
lowing the previous reasoning we find that for largeve
have

16kD7B%# 2V,
== B2 B 49
vL(L?—4k?)?(ef—1) D,
and for smally we obtain
vk[1+(6,—1)e’:
_ KL+ (6, 1)en 0,=V,o/D,. (44

2L(e1—1)>
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From these two expressions it follows that the current exhibgenerates intrinsically a stationary nonequilibrium ratchet
its a bell-shaped behavior versus increasing jump frequencgynamics that does not satisfy a fluctuation-dissipation rela-
V. tion between noise correlation and intrinsic constant friction
[1]. Put differently, with the ratchet flow in E¢l) composed
of white thermal noise and white nonthermal noise it is not
V. CONCLUDING REMARKS possible to recast the dynamics in terms afiregle additive
We have shown thasymmetricbut nonthermal(non- G_aussiqn white—nois_e source. _The cht the}t two-state Qiffu—
Gaussiah white noisecan induce directed transport in peri- Sion noise and flashing Gaussian white noise can readily be

odic structures. Three examples of such noise have been cof¥Perimentally realized14] provides a good prospect that
structed: Poissonian shot noise with exponentially distribute®™€ of our results derived herein may find their way to-
weights of thes kicks (other distributions of weights can be wards alternative applications of _ratchet d_ewce_s that are able
considered as well two-state(modulatedl diffusion noise, t© Pump and separate mechanical or biological micropar-
and randomly flashing Gaussian white noise. As a generdicles:

property we find that the current is in the opposite direction

to asymmetryk of the potential. The asymptotic current in ACKNOWLEDGMENTS
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volves, via the integral oV’(x)”, the cubic power of the for the discussion on experimental realizations of two-state
ratchet force. Such a dependence is characteristic and occWBusion noise

in other ratchet problems as wé¢B].
In conclusion, we find that symmetric non-Gaussian white
noise is sufficient to generate directed motion in periodic

structures that lack reflection symmetry. The symmetric |n accordance with the dissipation-fluctuation theorem,
white Poissonian shot noise generates a Markovian ratch@he Langevin equation for a Brownian particle of mass

dynamics. The fluctuation-induced current typically exhibitsyeads in dimensional variablémdicated by a cargt
a bell-shaped behavior versus increasing switching fre-

guency\. At fixed shot-noise intensity, the current versus
thermal noise intensity is generally a nonmonotonic function, N . d{/(g() .
approaching zero with increasing intensiby of Nyquist mx+ myx=—WﬂL(mkaT)l/zF(t)Jri(t), (A1)
noise. For two-state diffusion noise, which is composed of
two thermal Nyquist noises the ratchet dynami€s is non-
Markovian, leading to a finite current. This situation mimics herel'(d) i G . hit : ith th
a random walker that succesively switches back and forth’ er.e (t)is Z ero-mean Saussian White nois e.WI © cor
between two Gaussian white-noise-driven ratchet dynamicg€lation function(I'(t)['(s))=25(t—s) and £(1) is the ad-
An interesting limiting situation is obtained when one of theditional nonthermal noise. The potentigl(x) is spatially
thermal noise sources is set to zero: The ratchet dynamidaeriodic with period.. _
then statistically flips between a deterministic flgearrying In the overdamped limin—0 andy—-< in such a way
zero currentand an equilibrium ratchet dynamitagain car-  that the producty is fixed, Eq.(A1) reduces to the form
rying zero fluy. Thus the resulting nonvanishing current is
solely due to the switching dynamics itself. Interestingly d\A/(A)
enough, the non-Gaussian, white-noise-induced current is, as A X 2R L 3R
pointed out above, directed opposite to the natural direction myx=- dx + (MykgT)T(1) +£(0). (A2)
of motion caused by the larger average fof@é(x)|. This
feature mimics the behavior in a “flashing” ratchgt,15]
or, likewise, the behavior in a “diffusion” ratchdtl,13]. Let us introduce next the dimensionless variables
This result is in clear contrast to the characteristic feature in
ratchets driven by additive colored noi@®rrelation ratchets . R
[1-3)). It can be visualized by noting that the addtional t=9t, x=2x/L. (A3)
source of white noise mimics a varying temperature, thus
ressembling closely the physics in a diffusion ratchet: The ) ) )
direction of current is towards the shorter distance betweerfhen Eq.(A2) assumes the dimensionless fofi with
the locally stable well and the neighboring barrier top. This
is so because upon a “cooling” cycle from noise intensity ~ ~a
D,—D,, whereD,;>D,, the Brownian particles above and Vix)= 4V(X) £(t)= 2§(1)
near the potential maxima escape preferably over the barrier my?L?’ my?L
top that is located closest to its average position.

The finding thatadditive white but non-Gaussian noise andI'(t) is rescaled zero-mean Gaussian white noise with
does indeed induce a finite current is not in conflict with thethe correlation function(I'(t)T'(s))=D+4é(t—s), where
second law of thermodynamics: The non-Gaussian statistid® = 4kgT/my?L2.

APPENDIX
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