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Quantum Ratchets
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We investigate quantum Brownian motion in adiabatically rocked ratchet systems. Above a cross
temperatureTc tunneling events are rare, yet they already substantially enhance the classical par
current. BelowTc, quantum tunneling prevails and the classical predictions grossly underestimate
transport. Upon approachingT ­ 0 the quantum current exhibits a tunneling induced reversal, an
tends to a finite limit. [S0031-9007(97)03540-0]

PACS numbers: 05.40.+ j, 05.30.–d, 73.23.Ad, 85.25.Dq
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The quest of extracting usable work from fluctuation
has provoked debates ever since the early days of Brow
ian motion theory [1]. Prima facie,periodic structures
with broken spatial symmetry (ratchets) seem able to p
form the job. Yet, already Smoluchowski and later Fey
man [1] point out that an intriguing probabilistic balanc
prohibits the emergence of directed motion—in reconci
ation with the second law of thermodynamics—if onl
equilibrium fluctuations are acting. As shown with th
seminal studies [2,3], this situation changes drastically
the presence of additional unbiased nonthermal forces.
deed, such classical nonequilibrium models entail a v
riety of interesting technological applications [3,4], an
may be of relevance for intracellular transport as well [5
The challenge here consists in the study of aquantum
Brownian rectifieroperating in a regime where tunneling
and other quantum fluctuation effects become importa
for the transport properties. Our work opens the pos
bility of exploiting the ratchet mechanism in physical an
biological systems in novel temperature regimes, predi
ing new qualitative effects such as atunneling-induced
current reversal. For example, a new type of supercon
ducting quantum interference device has recently been p
posed to investigate the ratchet mechanism [6]. At lo
temperature, our predictions can be observedin situ in
these mesoscopic quantum structures. Moreover, us
recent technical developments [7], semiconductor sup
lattices could be designed which, too, exhibit a quantu
ratchet effect.

To start out, we consider thequantum Brownian motion
of a particle with massm and viscous dampingh,

mẍstd ­ 2h Ùxstd 2 V 0sssxstdddd 1 fstd 1 jstd , (1)

under the simultaneous action of thermal quantum flu
tuationsjstd, and symmetric, unbiased, external drivin
forcesfstd, in an asymmetric, periodic “ratchet”-potentia
V sxd of periodL, such as (cf. Fig. 1)

V sxd ­ V0fsins2pxyLd 2 0.22 sins4pxyLdg . (2)

Equation (1) follows as the exact Heisenberg equation
the coordinateoperatorxstd from a system-plus-reservoir
model with Hamiltonian

Hstd ­ p2y2m 1 V sxd 2 xfstd 1 HBsx, qd . (3)
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Here, HBsx, qd describes the heat bath interacting wit
the particlexstd and we adopt its usual modelization b
an ensemble of harmonic oscillatorsq at thermal equi-
librium with a coupling bilinear in the bath and particl
coordinates [8]. By a suitable choice of the model p
rameters inHBsx, qd one recovers the quantum Langevi
equation (1) with the operator valued quantum therm
noise jstd being self-adjoint, stationary, and Gaussia
With b ­ 1ykBT , kB Boltzmann’s constant, andk l the
thermal average with respect toHB, the meankjstdl van-
ishes and for the symmetrized correlation1

2 kjstdjs0d 1

js0djstdl one obtainskBTh
d
dt cothsptyh̄bd (fluctuation

dissipation theorem). In the classical limit, i.e., forh̄b

much smaller than any characteristic time scale of the
terministic system (1), the symmetrized correlation co
rectly approaches2hkBTdstd and (1) goes over into the
familiar model of a real valued stochastic processxstd in
the presence of Gaussian white noise.

For general driving fstd, Eq. (1) gives rise to a
highly nontrivial nonequilibrium quantum dynamics. T

FIG. 1. Solid line: ratchet potentialV sxd in (2). Dashed
and dotted lines: tilted washboard potentialsU6sxd in (4)
with Fl ­ 0.2V0, l ­ Ly2p. Note that the extrema and the
separating barriers aredifferent for U1sxd and U2sxd, while
the periodL is in common.
© 1997 The American Physical Society
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simplify matters, we restrict ourselves to very slowl
varying forces fstd such that the system can alway
adiabatically adjust to the instantaneous thermal equil
rium state (accompanying equilibrium). We furthermor
assume thatfstd is basically restricted to the values
6F, i.e., the transitions between6F occur on a time
scale of negligible duration in comparison with the tim
the particles in (1) are exposed to either of the “tilte
washboard” potentials

U6sxd ­ V sxd 7 Fx (4)

(cf. Fig. 1). As a final assumption we require a positiv
but not too largeF, such thatU6sxd still display a local
maximum and minimum within each periodL. Apart
from this, the drivingfstd can be either of stochastic or
deterministic nature. To fix notations, let us denote b
x6

0 one of the local minima ofU6sxd and by x6
b its

neighboring local maximum to the right. The potentia
barrier which a particle atx ­ x6

0 is facing to its
right is thereforeDU6

r ­ U6sx6
b d 2 U6sx6

0 d and to its
left DU6

l ­ U6sx6
b 2 Ld 2 U6sx6

0 d, implying DU6
l ­

DU6
r 6 FL; see also Fig. 1.

We focus first on theclassical motion (1) with m
and h values such that a particle starting at rest clo
to a local maximum ofU6sxd ends in a neighboring
local minimum. So, moderate-to-strong friction dynamic
is considered and deterministically “running solutions
excluded. We further assume weak thermal noise, that
any potential barrierDU6

r ,l is much larger than the therma
energykBT . Then, the thermally induced escape rate ov
each such barrier is well approximated by the classic
Kramers rate [8]

kcl ­
m

q
U 00

0

2p

q
jU 00

b j
e2bDU , m ­

q
h2 1 4mjU 00

b j 2 h

2m
,

(5)

where indicesr, l, and 6 have been dropped, andU 00
0,b

represent the potential curvatures at the extrema. In
fixed potentialU1sxd one thus has a ratek1

cl,r of the
form (5) describing thermal hopping to the right, i.e
over DU1

r , and a second ratek1
cl,l ­ k1

cl,re2bFL for hop-
ping to the left overDU1

l , inducing a net particle cur-
rent J1

cl ­ Lsk1
cl,r 2 k1

cl,ld. The latter is positive in view
of J1

cl ­ Lk1
cl,r s1 2 e2bFLd and F . 0. Analogously,

in the quenched potentialU2sxd one finds the negative
current J2

cl ­ 2Lk2
cl,ls1 2 e2bFLd. Because of our as-

sumption of a slowly varying, symmetric drivingfstd the
average classical currentJcl ­ sJ1

cl 1 J2
cl dy2 becomes

L
2 s1 2 e2bFLd sk1

cl,r 2 k2
cl,ld.

Next we turn to thequantum ratchet dynamics(1).
We restrict ourselves to the semiclassical regime, whi
means that [9,10]̄hm6 ø 2pDU6

r ,l, with m6 as in (5).
With moderate-to-strong friction acting, the tunneling dy
namics is incoherent. Hence, a quantum rate descript
holds and the reasoning from the preceding paragraph
-

y

e

s,

r
l
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n
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plies again, except that the classical rateskcl have to be
replaced by theirquantum mechanical counterpartskqm
to obtain

Jqm ­
L
2 s1 2 e2bFLd sk1

qm,r 2 k2
qm,ld . (6)

Qualitatively, eachkqm is governed by a competition be-
tween thermal activation up to a certain energy level a
tunneling “through” the remaining part of the potentia
barrier. Quantitatively, a sophisticated line of reasonin
has been elaborated during recent years [8] which we w
briefly sketch in the following. Starting with the Hamil-
tonian system-plus-reservoir model (3) and adopting t
“imaginary free energy method” [8,10] or, equivalently
the “multidimensional quantum transition state theory
[8,9], it is possible to express the escape ratekqm in terms
of functional path integrals. After integration over th
bath modes and a steepest descent approximation, one
tains the semiclassical form

kqm ­ Ae2SBy h̄. (7)

Here, the exponentially dominating contributionSB is
defined via the nonlocal action

Sfqg ­
Z h̄b

0
dt

"
m Ùq2

2
1 Usqd

1
h

4p

Z `

2`

dt0

µ
q 2 q0

t 2 t0

∂2
#

, (8)

with the abbreviationsq ­ qstd, q0 ­ qst0d, and omit-
ting indicesr , l, and 6 as before. This action has to
be extremized for pathsqstd under the constraints that
qst 1 h̄bd ­ qstd for all t, and that there existst
with qstd ­ xb. A trivial such extremizingqstd is al-
ways qstd ; xb . Among this and the possibly existing
further extrema one selects the one that minimizesSfqg,
say qBstd, to obtainSB :­ SfqBg 2 h̄bUsx0d. The pre-
exponential factorA in (7) accounts for fluctuations abou
the semiclassically dominating pathqBstd.

Closer inspection shows that there exists a crosso
temperature

Tc ­ mh̄y2pkB (9)

above whichqBstd ; xb is the only admissible extremum
in (8), and thereforeSByh̄ ­ bDU. In view of (7) and
(4) tunneling thus does not affect the exponentially leadi
part of the rate in this regimeT $ Tc. Moreover, a
closed analytical expression for the prefactorA is available
[8,10,11], yielding for the quantum rate the result

kqm ­ kclsl0
1yLb

1 d
Ỳ
n­2

sl0
nylb

nd , T $ Tc . (10)

Here, we introduced

l0,b
n ­ mn2

n 1 hnn 1 U 00
0,b , nn ­ 2pnyh̄b ,

(11)

Lb
1 ­

q
L ypb e2bflb

1 g2yLyerfc slb
1

q
byL d , (12)
11
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L ­
fU 000

b g2

jU 00
b j

4mm2 1 jU 00
b j

2mm2 1 jU 00
b j

1
d4Usxbd

dx4 , (13)

where erfcszd ­ 2p21y2
R`

z e2y2
dy and L . 0 in (13)

has been tacitly assumed. Thel0,b
n are the eigenvalues

of the action (8) when linearized about the “extremizin
paths”qstd ; x0,b. Close toTc one haslb

1 . 0. Accord-
ingly, the quantityL

b
1 is obtained by properly including

also next to leading order contributions in the steepest d
scent approximation forA. In the classical limitT ¿ Tc

all the factors multiplyingkcl on the right-hand side of (10)
tend to unity, and thuskqm ! kcl [see (5)].

Note that the two rates in the current (6) bring
along two different crossover temperatures, sayTmax

c and
T min

c , T max
c , since jU 00

b j in (5) and thusm in (9) are
typically different for U6sxd. Similarly, we denote the
smaller of the two relevant potential barriersDU1

r and
DU2

l in (6) by DUmin.
For a numerical exemplification of our results we

use T as control parameter and fix the remaining fiv
model parametersm, h, V0, F, and l :­ Ly2p in (1),
(2), and (4). Without specifying a particular unit sys
tem this can be achieved by prescribing the follow
ing five dimensionless numbers: First we fixV0, F,
l and thusU6sxd through FlyV0 ­ 0.2, DUminyV0 ­
1.423, andjU 001

b jl2yV0 ­ 1.330 corresponding to the situ-
ation depicted in Fig. 1. Next we choosehymV0 ­
1 with V0:­fV0yl2mg1y2, meaning a moderate damp
ing as compared to inertia effects. To see this we n
tice that V0 approximates rather well the true ground
state frequencyv1

0 :­fU 001
0 ymg1y2 in the potentialU1sxd,

v
1
0 ­ 1.153V0, and similarly forU2sxd. In particular,

hymV0 ­ 1 strongly forbids deterministically running
solutions. Finally, we setDUminykBT max

c ­ 10 in order
to remain in accordance with the weak noise assumpti
underlying (5) at least up to aboutT ­ 2Tmax

c , and at the
same time to meet the semiclassical condition used in (

The classical currentJcl now readily follows with (5),
approaching a straight line for smallT in the Arrhenius
plot Fig. 2. Its direction is governed byDU2

l 2 DU1
r

and is thus positive for our example (cf. Fig. 1). Figure
covers the quantum current in the crossover regim
T max

c # T # 2Tmax
c according to (6) and (10). We see

that quantum correctionsenhancethe classical transport
by more than a factor of 10 near crossover. They becom
negligible only beyond severalT max

c .
For temperatures slightly below crossover the availab

approximations [10] for the rate (7) turned out as to
inaccurate for our purposes. This gap in our data betwe
roughly Tmax

c and Tmin
c is bridged by the dashes in

Fig. 2. For even smallerT , Tc analytical progress is
possible only in a few special cases [8], and we ha
to resort to a numerical evaluation of the rate. We ma
remark thatonly two numerical studies have previously
been available [10,12], both focusing on a cubic potent
Usxd, and exploiting heavily its special properties. Ou
12
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FIG. 2. The classical steady state currentJcl and its quantum
mechanical counterpartJqm for the ratchet potential from Fig. 1
in dimensionless unitsJyV0L. Note the change of sign, the
finite T ­ 0 limit, and the nonmonotonicity ofJqm. For more
details, see main text.

novel numerical method is based on a truncated Four
series ansatz forqBstd of the form S

N
n­0cn cosnnt 1

S
N21
n­1 sn sinnnt with the Matsubara frequenciesnn from

(11). This ansatz for the extremization of (8)—suggeste
by symmetry arguments and the required periodicity o
qBstd—leads to a set of2N coupled nonlinear equations
for the Fourier coefficientscn, sn. The possibility of
multiple saddle point solutions requires special car
OnceqBstd is determined, the action follows with (8) and
the quantum prefactorA emerges as [8,10,11]

A ­

ÉR h̄b
0 Ùq2

Bstd dt

2p h̄

Q
l

0
jnjQ0

lB
n

É1y2

, (14)

with n running from 2` to ` in the productsP.
Similarly as in (10), thelB

n here are the eigenvalues
of the action (8) when linearized aboutqBstd. One of
them is zero and has to be omitted in the primed produ
(14). By including sufficiently many Fourier coefficients
cn, sn in qBstd and sufficiently many eigenvalueslB

n in
(14) the uncertainty margin of our numerical rates is a
most a few percent for arbitraryT $ 0.1Tc. For T ,

0.1Tc reliable extrapolations can be obtained by exploitin
known asymptotical analytic results [8].

The quantum currentJqm as obtained by the above
outlined numerical scheme is depicted forT , Tmin

c in
Fig. 2. The most remarkable feature is aninversion
of the quantum current at low temperatures. Furthe
Jqm approaches a finite (negative) limit whenT ! 0,
implying a finite (positive) stopping force [3,6] also at
T ­ 0. In contrast, the classical predictionJcl remains
positive but becomes arbitrarily small with decreasin
T . A curious detail in Fig. 2 is the nonmonotonicity
of Jqm around T max

c yT . 2.5, caused via (6) by a
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similar resonancelikeT dependence of the ratek1
qm,r .

While the corresponding actionS1
B,r remains increasing

with decreasing temperature, the prefactorA1
r in (7)

suddenly grows very fast—much in contrast to the cub
potential case [10]—and so gives rise to the anomalou
resonancelike temperature dependence ofk1

qm,r . A better
understanding of this issue is the subject of ongoin
work. We also studied other parameter values than tho
used in Fig. 2 as well as somewhat modified potentia
(2). Basically, the same qualitative results are foun
except that the nonmonotonous temperature depende
disappears for sufficiently largeDUminykBT max

c values.
To explain qualitatively the current reversal, we ob

serve that in the limith ! 0, T ! 0 (no heat bath), the
actionSB from (8) goes over into the familiar Gamow for-
mula

SB ! SG ­ 2

É Z x1

x0

dq
q

2mfUsqd 2 Usx0dg

É
, (15)

where x1 denotes the first point beyond the potentia
barrier withUsx1d ­ Usx0d (the absolute value is needed
since x1 , x0 for the escape acrossDU2

l ). From (6)
and (7) the direction of the quantum current is the
governed by the differenceS2

G,l 2 S1
G,r between the

corresponding Gamow actions. The negative sign of th
difference is readily verified numerically. WithJqm !
Jcl . 0 for large T , the current inversion follows. In
this heuristic argument we tacitly ignored the possib
occurrence of deterministically running solutions in (1
for the considered smallh values.

In conclusion, we have studied quantum Brownian m
tion in a ratchet potential when rocked by slowly varying
symmetric driving forcesfstd. Significant quantum cor-
rections of the classically predicted particle current set
already well above the crossover temperatureTc, where
tunneling processes are still rare. With decreasing te
perature, quantum transport is greatly enhanced as co
pared to the classical adiabatic results [2(b),2(e)] a
eventually even takes the opposite direction. Another r
markable consequence of the intriguing interplay betwe
thermal noise and quantum tunneling is a finite curre
at T ­ 0, yielding a finite stopping force. Moreover,
the quantum Brownian rectifier exhibits a “resonancelike
temperature dependence. All these novel features app
to be typical for a large class of quantum ratchet system
Such effects clearly become of paramount importance f
applications in mesoscopic systems at low temperatur
Note thatTc can reach values larger than 100 K in som
physical and chemical systems [8], while it is in the mK
region in Josephson systems [8,10].
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The quantum-induced current reversal in slowly rocke
ratchets may be used as a diagnostic tool to detect the ro
of quantum tunneling in a ratchet dynamics. Moreover
our dissipative quantum ratchet study implicitly reports
on the behavior of one of the first ratchets with finite
inertia [13]. Whether or not biological processes in
ratchet systems in the deep quantum regime utiliz
the phenomenon of tunneling-induced directed motio
remains to be explored.
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