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Quantum Ratchets
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We investigate quantum Brownian motion in adiabatically rocked ratchet systems. Above a crossover
temperaturel. tunneling events are rare, yet they already substantially enhance the classical particle
current. BelowT ., quantum tunneling prevails and the classical predictions grossly underestimate the
transport. Upon approachinf = 0 the quantum current exhibits a tunneling induced reversal, and
tends to a finite limit. [S0031-9007(97)03540-0]

PACS numbers: 05.40.+j, 05.30.—d, 73.23.Ad, 85.25.Dq

The quest of extracting usable work from fluctuationsHere, Hp(x, q) describes the heat bath interacting with
has provoked debates ever since the early days of Browrhe particlex(z) and we adopt its usual modelization by
ian motion theory [1]. Prima facie, periodic structures an ensemble of harmonic oscillatogsat thermal equi-
with broken spatial symmetry (ratchets) seem able to petibrium with a coupling bilinear in the bath and particle
form the job. Yet, already Smoluchowski and later Feyn-coordinates [8]. By a suitable choice of the model pa-
man [1] point out that an intriguing probabilistic balance rameters inHz(x, q) one recovers the quantum Langevin
prohibits the emergence of directed motion—in reconcili-equation (1) with the operator valued quantum thermal
ation with the second law of thermodynamics—if only noise £(¢) being self-adjoint, stationary, and Gaussian.
equilibrium fluctuations are acting. As shown with the With 8 = 1/kgT, kg Boltzmann’s constant, and) the
seminal studies [2,3], this situation changes drastically irthermal average with respect iy, the meané(r)) van-
the presence of additional unbiased nonthermal forces. Inshes and for the symmetrized correlatiéfgr(;)g(o) +

deed, such classical nonequilibrium models entail a vag(g)¢(r)) one obtainskBTn% coth(w¢/iB) (fluctuation
riety of interesting technological applications [3,4], andgjssipation theorem). In the classical limit, i.e., fop
may be of relevance for intracellular transport as well [S].mych smaller than any characteristic time scale of the de-
The challenge here consists in the study of@ntum terministic system (1), the symmetrized correlation cor-
Brownian rectifieroperating in a regime where tunneling rectly approache@nkzT 5(r) and (1) goes over into the
and other quantum fluctuation effects become importaniamiliar model of a real valued stochastic proce$s in

for the transport properties. Our work opens the possithe presence of Gaussian white noise.

bility of exploiting the ratchet mechanism in physical and gqr general driving f(r), Eq. (1) gives rise to a

biological systems in novel temperature regimes, predicthighly nontrivial nonequilibrium quantum dynamics. To
ing new qualitative effects such astanneling-induced

current reversal For example, a new type of supercon-
ducting quantum interference device has recently been pro-
posed to investigate the ratchet mechanism [6]. At low
temperature, our predictions can be obserireditu in
these mesoscopic quantum structures. Moreover, using
recent technical developments [7], semiconductor super-
lattices could be designed which, too, exhibit a quantum _o
ratchet effect.

To start out, we consider trguantum Brownian motion
of a particle with mass: and viscous damping,

mi(r) = —nx(t) = V'(x(0) + f(1) + £€@), ()
under the simultaneous action of thermal quantum fluc-
tuations £(¢), and symmetric, unbiased, external driving

V(x)/V

forcesf(z), in an asymmetric, periodic “ratchet’-potential v,
V(x) of periodL, such as (cf. Fig. 1) BT s 5 o5 ) PR
V(x) = Vy[sinmx/L) — 0.22sindm7x/L)]. (2) x/L

Equation (1) follows as the exact Heisenberg equation foFIG. 1. Solid line: ratchet potentiaV(x) in (2). Dashed
the coordinateperatorx(r) from a system-plus-reservoir and dotted lines: tilted washboard potentidls=(x) in (4)
model with Hamiltonian with FI = 0.2V, | = L/27. Note that the extrema and the
separating barriers ardifferent for U*(x) and U~ (x), while
H(t) = p*/2m + V(x) — xf(t) + Hg(x,q). (3) the periodL is in common.
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simplify matters, we restrict ourselves to very slowly plies again, except that the classical ratgshave to be
varying forces f(¢) such that the system can always replaced by theiquantum mechanical counterparkg,
adiabatically adjust to the instantaneous thermal equilibto obtain

rium state (accompanying equilibrium). We furthermore Jo = 5(1 — e BFLY (K — kT ) 6)
assume thatf(¢) is basically restricted to the values am- 2 qm.r am.l /-

+F, i.e., the transitions between F occur on a time Qualitatively, eachk,, is governed by a competition be-
scale of negligible duration in comparison with the timetween thermal activation up to a certain energy level and

the particles in (1) are exposed to either of the “tiltedtunneling “through” the remaining part of the potential
washboard” potentials barrier. Quantitatively, a sophisticated line of reasoning
N _ has been elaborated during recent years [8] which we will
U™(x) = V(x) & Fx ) briefly sketch in the following. Starting with the Hamil-
(cf. Fig. 1). As a final assumption we require a positivetonian system-plus-reservoir model (3) and adopting the
but not too largeF, such thatU = (x) still display a local “imaginary free energy method” [8,10] or, equivalently,
maximum and minimum within each perio. Apart the “multidimensional quantum transition state theory”
from this, the drivingf(z) can be either of stochastic or [8,9], it is possible to express the escape fate in terms
dgterministic nature. To fix notations, let us dgnote byof functional path integrals. After integration over the
xo one of the local minima ofU~(x) and byx, its  bath modes and a steepest descent approximation, one ob-
neighboring local maximum to the right. The potential tains the semiclassical form
barrier which a particle atx = x; is facing to its

H H + +/. * +/ =+ : k m AeiSB/h. (7)
right is thereforeAU,” = U~ (x, ) — U~ (xy ) and to its 4
left AU = U*(x; — L) — U*(xq), implying AU =  Here, the exponentially dominating contributicfy is
AU * FL; see also Fig. 1. defined via the nonlocal action

We focus first on theclassical motion (1) with m rB ma?
and 7 values such that a particle starting at rest close S[g] = f d{T + Ulg)

to a local maximum ofU*(x) ends in a neighboring
local minimum. So, moderate-to-strong friction dynamics N if J /<¢1 - 61')2} (8)
is considered and deterministically “running solutions” 47 ) _w T— 7 ’
excluded. We further assume weak thermal noise, that is, . - , , :
any potential barrieA U, is much larger than the thermal With the abbreviations = ¢(7), ¢" = ¢(r"), and omit-
energyksT. Then, the thermally induced escape rate ovefi"d indicesr, [, and = as before. This action has to

each such barrier is well approximated by the classica?® €xtremized for pathg(r) under the constraints that
Kramers rate [8] q(r + iB) = g(7) for all =, and that there exists

with g(7) = x,. A trivial such extremizingg(r) is al-
ur Ul \n? + 4m|UY| — n ways ¢g(7) = x,. Among this and the possibly existing
kg = ——=e¢ PAU m= > , further extrema one selects the one that minimigisg|,
274/ 1Up | " say gp(7), to obtainSp = S[qz] — FBU(xo). The pre-
(5)  exponential facton in (7) accounts for fluctuations about
where indicesr, /, and = have been dropped, and), the semiclassically dominating paif3 (7).

represent the potential curvatures at the extrema. In the Closet[ inspection shows that there exists a crossover
fixed potential U*(x) one thus has a raté;, of the ‘cMmperature
form (5) describing thermal hopping to the right, i.e., T. = uh/2mwks 9)

+ b = kT e BFL - . . .
oyerAU, ,and a secon(ilr ) = ke f‘?r hop- apove whichgz(7) = x, is the only admissible extremum
ping to the left overAU,’, inducing a net particle cur- i, (g) ang thereforesy /i = BAU. In view of (7) and
rentJq = L(ka, — kC_l’é)F'L The latter is positive in view 4y nneling thus does not affect the exponentially leading
of Ji = Lkq,(1 —e”7"") and F > 0. Analogously, part of the rate in this regim@ = T,. Moreover, a
in the quenched potentid/~(x) one finds the negative ¢jsed analytical expression for the prefactds available

- - _ ,—BFL b .
currentJo = —Lkq (1 — e PEL). Because of our as- g 10,11], yielding for the quantum rate the result
sumption of a slowly varying, symmetric driving(z) the

aleerage_cIassiCEI currenk; = (Ja + Ja)/2 becomes kqm = ke (A2/AD) l_[ (A°/AD), T=T.. (10
5(1 - € BFL) (kcl,r - kcl,l)- ) n=2

Next we turn to thequantum r_atche_t dynar_nlc(sl). _ Here, we introduced
We restrict ourselves to the semiclassical regime, which
means that [9,10fiu™ < 27 AU, with u* as in (5). A0l = mp? + qu, + Uy, v, =2mn/hf3,
With moderate-to-strong friction acting, the tunneling dy- (11)
namics is incoherent. Hence, a quantum rate description .
holds and the reasoning from the preceding paragraph ap- A% =/ L /7B e PN/ Ljerfc(A24/B/L),  (12)

)
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_ LUP 4mp® + ULl | d*U(x)

L = + , 13 E
U 2mu? + U dx? (13) 1
10° L
where erfdz) = 277'/2 [T e dy and L > 0 in (13) Jom
has been tacitly assumed. Th&’ are the eigenvalues 107}

of the action (8) when linearized about the “extremizing _,
paths”q(7) = xq,. Close tol'. one has\ = 0. Accord-
ingly, the quantityA? is obtained by properly including
also next to leading order contributions in the steepest de- . am
scent approximation fat. In the classical limit’ > T. 10 e FN
all the factors multiplyingc.; on the right-hand side of (10) 100k ]
tend to unity, and thug,,, — k. [see (5)].

Note that the two rates in the current (6) bring 100 o
alongtwo different crossover temperatures, s and , J, , , ‘ , ‘ ,
Tmin < T since |Uy| in (5) and thusu in (9) are 05 1 15 2 25 3 35 4 45
typically different for U=(x). Similarly, we denote the T™T

smaller of the two relevant potential barrietd/;" and ) )
AU/ in (6) by AU™, FIG. 2. The classical steady state currégtand its quantum

mechanical counterpart,, for the ratchet potential from Fig. 1

For a numerical exempllflcatlon of our re_sglts W€ in dimensionless unitd /QoL. Note the change of sign, the
use T as control parameter and fix the remaining fivefinite 7 = 0 limit, and the nonmonotonicity alym. For more

model parameters:, n, Vo, F, and! = L/27 in (1), details, see main text.
(2), and (4). Without specifying a particular unit sys-
tem this can be achieved by prescribing the follow-
ing five dimensionless numbers: First we fi%, F,

I and thusU™*(x) through FI/V, = 0.2, AU™"/V, =
1.423, and|U} " |12/V,y = 1.330 corresponding to the situ-

=]
g
-

novel numerical method is based on a truncated Fourier
series ansatz fogz(r) of the form 3Y_ic, cosv,r +
Eﬁzv;llsn sinv, 7 with the Matsubara frequencies, from
. ; L _ (11). This ansatz for the extremization of (8)—suggested
ation depicted in Fig. 1. Next we choose/m < by symmetry arguments and the required periodicity of

1 with Q¢=[Vo/I>2m]"/?, meaning a moderate damp- ; .
ing as compared to inertia effects. To see this we nofI’B(T)_I(e"jldS to a set oIN coupled nonlinear equations

T ks aer e i grons e o coficinicy . e gty of
state frequency, =[UJ" /m]"/? in the potentialU * (x), P P 4 P :

o = 115300, and similarly for/~(x). In particular, Oncegp(7) is determined, the action follows with (8) and

n/m{y = 1 strongly forbids deterministically running the quantum prefactot emerges as [8,10,11]
solutions. Finally, we seAU™" /kzT™> = 10 in order 58 g3 (rydr TIAY |

to remain in accordance with the weak noise assumption A= Py TaAz| (14)
underlying (5) at least up to aboflit= 27¥*, and at the "

same time to meet the semiclassical condition used in (7ith n running from — to o in the productsII.

The classical current,; now readily follows with (5), Similarly as in (10), theA? here are the eigenvalues
approaching a straight line for smdll in the Arrhenius of the action (8) when linearized aboyg(7). One of
plot Fig. 2. Its direction is governed b U, — AU,  them is zero and has to be omitted in the primed product
and is thus positive for our example (cf. Fig. 1). Figure 2(14). By including sufficiently many Fourier coefficients
covers the quantum current in the crossover regime,, s, in gp(7) and sufficiently many eigenvalueg in
Tr™ < T < 2T according to (6) and (10). We see (14) the uncertainty margin of our numerical rates is at
that quantum correctionsnhancethe classical transport most a few percent for arbitrary = 0.17.. For T <
by more than a factor of 10 near crossover. They becom@.17. reliable extrapolations can be obtained by exploiting
negligible only beyond severd™x. known asymptotical analytic results [8].

For temperatures slightly below crossover the available The quantum currenf,, as obtained by the above
approximations [10] for the rate (7) turned out as toooutlined numerical scheme is depicted fBr< 7" in
inaccurate for our purposes. This gap in our data betweeRig. 2. The most remarkable feature is amersion
roughly 7™ and 7™" is bridged by the dashes in of the quantum current at low temperatures. Further,
Fig. 2. For even smallel’ < T, analytical progress is Jqn approaches a finite (negative) limit wheh— 0,
possible only in a few special cases [8], and we havémplying a finite (positive) stopping force [3,6] also at
to resort to a numerical evaluation of the rate. We mayl’ = 0. In contrast, the classical predictioy remains
remark thatonly two numerical studies have previously positive but becomes arbitrarily small with decreasing
been available [10,12], both focusing on a cubic potential". A curious detail in Fig. 2 is the nonmonotonicity
U(x), and exploiting heavily its special properties. Ourof J4n around T*/T =25, caused via (6) by a
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similar resonancelikel’ dependence of the ratk;m,,. The quantum-induced current reversal in slowly rocked
While the corresponding actioﬂ;r remains increasing ratchets may be used as a diagnostic tool to detect the role
with decreasing temperature, the prefactor in (7)  of quantum tunneling in a ratchet dynamics. Moreover,
suddenly grows very fast—much in contrast to the cubicour dissipative quantum ratchet study implicitly reports
potential case [10]—and so gives rise to the anomaloun the behavior of one of the first ratchets with finite
resonancelike temperature dependenck/gf.. A better inertia [13]. Whether or not biological processes in
understanding of this issue is the subject of ongoingatchet systems in the deep quantum regime utilize
work. We also studied other parameter values than thog&8e phenomenon of tunneling-induced directed motion
used in Fig. 2 as well as somewhat modified potential§emains to be explored.
(2). Basically, the same qualitative results are found M.G. and P.H. gratefully acknowledge the Deutsche
except that the nonmonotonous temperature dependenE@rschungsgemeinschaft (HA1517/-14-1).
disappears for sufficiently largeU™" /kzT™* values.
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