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Over the last two decades, stochastic resonance has continuously attracted considerable attention. The
term is given to a phenomenon that is manifest in nonlinear systems whereby generally feeble input
information (such as a weak signal) can be be amplified and optimized by the assistance of noise. The
effect requires three basic ingredients: (i) an energetic activation barrier or, more generally, a form of
threshold; (ii) a weak coherent input (such as a periodic signal); (iii) a source of noise that is inherent
in the system, or that adds to the coherent input. Given these features, the response of the system
undergoes resonance-like behavior as a function of the noise level; hence the name stochastic
resonance. The underlying mechanism is fairly simple and robust. As a consequence, stochastic
resonance has been observed in a large variety of systems, including bistable ring lasers,
semiconductor devices, chemical reactions, and mechanoreceptor cells in the tail fan of a crayfish. In
this paper, the authors report, interpret, and extend much of the current understanding of the theory
and physics of stochastic resonance. They introduce the readers to the basic features of stochastic
resonance and its recent history. Definitions of the characteristic quantities that are important to
quantify stochastic resonance, together with the most important tools necessary to actually compute
those quantities, are presented. The essence of classical stochastic resonance theory is presented, and
important applications of stochastic resonance in nonlinear optics, solid state devices, and
neurophysiology are described and put into context with stochastic resonance theory. More elaborate
and recent developments of stochastic resonance theory are discussed, ranging from fundamental
quantum properties—being important at low temperatures—over spatiotemporal aspects in spatially
distributed systems, to realizations in chaotic maps. In conclusion the authors summarize the
achievements and attempt to indicate the most promising areas for future research in theory and
experiment. [S0034-6861(98)00101-9]
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I. INTRODUCTION

Users of modern communication devices are annoyed
by any source of background hiss. Under certain circum-
stances, however, an extra dose of noise can in fact help
rather than hinder the performance of some devices.
There is now even a name for the phenomenon: stochas-
tic resonance. It is presently creating a buzz in fields such
as physics, chemistry, biomedical sciences, and engineer-
ing.

The mechanism of stochastic resonance is simple to
explain. Consider a heavily damped particle of mass m
and viscous friction g, moving in a symmetric double-
well potential V(x) [see Fig. 1(a)]. The particle is sub-
ject to fluctuational forces that are, for example, induced
by coupling to a heat bath. Such a model is archetypal
for investigations in reaction-rate theory (Hänggi,
Talkner, and Borkovec, 1990). The fluctuational forces
cause transitions between the neighboring potential
wells with a rate given by the famous Kramers rate
(Kramers, 1940), i.e.,

rK5
v0vb

2pg
expS 2

DV

D D . (1.1)

with v0
25V9(xm)/m being the squared angular fre-

quency of the potential in the potential minima at 6xm ,
and vb

25uV9(xb)/mu the squared angular frequency at
the top of the barrier, located at xb; DV is the height of

the potential barrier separating the two minima. The
noise strength D5kBT is related to the temperature T .

If we apply a weak periodic forcing to the particle, the
double-well potential is tilted asymmetrically up and
down, periodically raising and lowering the potential
barrier, as shown in Fig. 1(b). Although the periodic
forcing is too weak to let the particle roll periodically
from one potential well into the other one, noise-
induced hopping between the potential wells can be-
come synchronized with the weak periodic forcing. This
statistical synchronization takes place when the average
waiting time TK(D)51/rK between two noise-induced
interwell transitions is comparable with half the period
TV of the periodic forcing. This yields the time-scale
matching condition for stochastic resonance, i.e.,

2TK~D !5TV . (1.2)

In short, stochastic resonance in a symmetric double-
well potential manifests itself by a synchronization of
activated hopping events between the potential minima

FIG. 1. Stochastic resonance in a symmetric double well. (a)
Sketch of the double-well potential V(x)5(1/4)bx4

2(1/2)ax2. The minima are located at 6xm , where
xm5(a/b)1/2. These are separated by a potential barrier with
the height given by DV5a2/(4b). The barrier top is located at
xb50. In the presence of periodic driving, the double-well po-
tential V(x ,t)5V(x)2A0x cos(Vt) is tilted back and forth,
thereby raising and lowering successively the potential barriers
of the right and the left well, respectively, in an antisymmetric
manner. This cyclic variation is shown in our cartoon (b). A
suitable dose of noise (i.e., when the period of the driving
approximately equals twice the noise-induced escape time) will
make the ‘‘sad face’’ happy by allowing synchronized hopping
to the globally stable state (strictly speaking, this holds true
only in the statistical average).
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with the weak periodic forcing (Gammaitoni,
Marchesoni, et al., 1989). For a given period of the forc-
ing TV , the time-scale matching condition can be ful-
filled by tuning the noise level Dmax to the value deter-
mined by Eq. (1.2).

The concept of stochastic resonance was originally put
forward in the seminal papers by Benzi and collabora-
tors (Benzi et al., 1981, 1982, 1983) wherein they address
the problem of the periodically recurrent ice ages. This
very suggestion that stochastic resonance might rule the
periodicity of the primary cycle of recurrent ice ages was
raised independently by C. Nicolis and G. Nicolis (Nic-
olis, 1981, 1982, 1993; Nicolis and Nicolis, 1981). A sta-
tistical analysis of continental ice volume variations over
the last 106 yr shows that the glaciation sequence has an
average periodicity of about 105 yr. This conclusion is
intriguing because the only comparable astronomical
time scale in earth dynamics known so far is the modu-
lation period of its orbital eccentricity caused by plan-
etary gravitational perturbations. The ensuing variations
of the solar energy influx (or solar constant) on the earth
surface are exceedingly small, about 0.1%. The question
climatologists (still) debate is whether a geodynamical
model can be devised, capable of enhancing the climate
sensitivity to such a small external periodic forcing. Sto-
chastic resonance provides a simple, although not con-
clusive answer to this question (Matteucci, 1989, 1991;
Winograd et al., 1992; Imbrie et al., 1993). In the model
of Benzi et al. (1981, 1982, 1983), the global climate is
represented by a double-well potential, where one mini-
mum represents a small temperature corresponding to a
largely ice-covered earth. The small modulation of the
earth’s orbital eccentricity is represented by a weak pe-
riodic forcing. Short-term climate fluctuations, such as
the annual fluctuations in solar radiation, are modeled
by Gaussian white noise. If the noise is tuned according
to Eq. (1.2), synchronized hopping between the cold and
warm climate could significantly enhance the response
of the earth’s climate to the weak perturbations caused
by the earth’s orbital eccentricity, according to argu-
ments by Benzi et al. (1981, 1982).

A first experimental verification of the stochastic reso-
nance phenomenon was obtained by Fauve and Heslot
(1983), who studied the noise dependence of the spectral
line of an ac-driven Schmitt trigger. The field then re-
mained somewhat dormant until the modern age of sto-
chastic resonance was ushered in by a key experiment in
a bistable ring laser (McNamara, Wiesenfeld, and Roy,
1988). Soon after, prominent dynamical theories in the
adiabatic limit (Gammaitoni, Marchesoni, Menichella-
Saetta, and Santucci, 1989; McNamara and Wiesenfeld,
1989; Presilla, Marchesoni, and Gammaitoni, 1989; Hu
et al., 1990) and in the full nonadiabatic regime (Jung
and Hänggi, 1989, 1990, 1991a) have been proposed.
Moreover, descriptions in terms of the linear-response
approximation have frequently been introduced to char-
acterize stochastic resonance (Dykman et al., 1990a,
1990b; Gammaitoni et al., 1990; Dykman, Haken, et al.,
1993; Jung and Hänggi, 1991a; Hu, Haken, and Ning,
1992).

Over time, the notion of stochastic resonance has
been widened to include a number of different mecha-
nisms. The unifying feature of all these systems is the
increased sensitivity to small perturbations at an optimal
noise level. Under this widened notion of stochastic
resonance, the first non-bistable systems discussed were
excitable systems (Longtin, 1993). In contrast to bistable
systems, excitable systems have only one stable state
(the rest state), but possess a threshold to an excited
state which is not stable and decays after a relatively
long time (in comparison to the relaxation rate of small
perturbations around the stable state) to the rest state.
Soon afterwards, threshold detectors (see Sec. V.C,
which presents cartoon versions of excitable systems)
were discovered as a class of simple systems exhibiting
stochastic resonance (Jung, 1994; Wiesenfeld et al. 1994;
Gingl, Kiss, and Moss, 1995; Gammaitoni, 1995a; Jung,
1995). In the same spirit, stochastic-resonance-like fea-
tures in purely autonomous systems have been reported
(Hu, Ditzinger, et al., 1993; Rappel and Strogatz, 1994).

The framework developed for excitable and threshold
dynamical systems has paved the way for stochastic
resonance applications in neurophysiology: stochastic
resonance has been demonstrated in mechanoreceptor
neurons located in the tail fan of crayfish (Douglass
et al., 1993) and in hair cells of crickets (Levin and
Miller, 1996).

In the course of an ever-increasing flourishing of sto-
chastic resonance, new applications with novel types of
stochastic resonance have been discovered, and there
seems to be no end in sight. Most recently, the notion of
stochastic resonance has been extended into the domain
of microscopic and mesoscopic physics by addressing the
quantum analog of stochastic resonance (Löfstedt and
Coppersmith, 1994a, 1994b; Grifoni and Hänggi, 1996a,
1996b) and also into the world of spatially extended,
pattern-forming systems (spatiotemporal stochastic
resonance) (Jung and Mayer-Kress, 1995; Löcher et al.,
1996; Marchesoni et al., 1996; Wio, 1996; Castelpoggi
and Wio, 1997; Vilar and Rubı́, 1997). Other important
extensions of stochastic resonance include stochastic
resonance phenomena in coupled systems, reviewed in
Sec. VII.B, and stochastic resonance in deterministic
systems exhibiting chaos (see Sec. VI.C).

Stochastic resonance is by now a well-established phe-
nomenon. In the following sections, the authors have
attempted to present a comprehensive review of the
present status of stochastic resonance theory, applica-
tions, and experimental evidences. After having intro-
duced the reader into different quantitative measures of
stochastic resonance, we outline the theoretical tools. A
series of topical applications that are rooted in the physi-
cal and biomedical sciences are reviewed in some detail.

The authors trust that with the given selection of top-
ics and theoretical techniques a reader will enjoy the
tour through the multifaceted scope that underpins the
physics of stochastic resonance. Moreover, this compre-
hensive review will put the reader at the very forefront
of present and future stochastic resonance studies. The
reader may also profit by consulting other, generally
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more confined reviews and historical surveys, which in
several aspects complement our work and/or provide ad-
ditional insights into topics covered herein. In this con-
text we refer the reader to the accounts given by Moss
(1991, 1994), Jung (1993), Moss, Pierson, and O’Gorman
(1994), Moss and Wiesenfeld (1995a, 1995b), Wiesenfeld
and Moss (1995), Dykman, Luchinsky, et al. (1995), Bul-
sara and Gammaitoni (1996), as well as to the compre-
hensive proceedings of two recent conferences (Moss,
Bulsara, and Shlesinger, 1993; Bulsara et al., 1995).

II. CHARACTERIZATION OF STOCHASTIC RESONANCE

Having elucidated the main physical ideas of stochas-
tic resonance in the preceding section, we next define
the observables that actually quantify the effect. These
observables should be physically motivated, easily mea-
surable, and/or be of technical relevance. In the seminal
paper by Benzi et al. (1981), stochastic resonance was
quantified by the intensity of a peak in the power spec-
trum. Observables based on the power spectrum are in-
deed very convenient in theory and experiment, since
they have immediate intuitive meaning and are readily
measurable. In the neurophysiological applications of
stochastic resonance another measure has become fash-
ionable, namely the interval distributions between acti-
vated events such as those given by successive neuronal
firing spikes or consecutive barrier crossings.

We follow here the historical development of stochas-
tic resonance and first discuss important quantifiers of
stochastic resonance based on the power spectrum.
Along with the introduction of the quantifiers, we dem-
onstrate their properties for two generic models of sto-
chastic resonance; the periodically driven bistable two-
state system and the double-well system. The detailed
mathematical analysis of these models is the subject of
Secs. III, IV, and the Appendix. Important results
therein are used within this section to support a more
intuitive approach. In a second part, we discuss quanti-
fiers that are based on the interval distribution; these
latter measures emphasize the synchronization aspect of
stochastic resonance. We finish the section with a list of
other, alternative methods and tools that have been used
to study stochastic resonance. In addition, we present a
list of experimental demonstrations.

A. A generic model

We consider the overdamped motion of a Brownian
particle in a bistable potential in the presence of noise
and periodic forcing

ẋ~ t !52V8~x !1A0 cos~Vt1w!1j~ t !, (2.1)

where V(x) denotes the reflection-symmetric quartic
potential

V~x !52
a

2
x21

b

4
x4. (2.2a)

By means of an appropriate scale transformation, cf.

Sec. IV.A, the potential parameters a and b can be
eliminated such that Eq. (2.2a) assumes the dimension-
less form

V~x !52
1
2

x21
1
4

x4. (2.2b)

In Eq. (2.1) j(t) denotes a zero-mean, Gaussian white
noise with autocorrelation function

^j~ t !j~0 !&52Dd~ t ! (2.3)

and intensity D . The potential V(x) is bistable with
minima located at 6xm , with xm51. The height of the
potential barrier between the minima is given by DV5
1
4 [see Fig. 1(a)].

In the absence of periodic forcing, x(t) fluctuates
around its local stable states with a statistical variance
proportional to the noise intensity D . Noise-induced
hopping between the local equilibrium states with the
Kramers rate

rK5
1

&p
expS 2

DV

D D (2.4)

enforces the mean value ^x(t)& to vanish.
In the presence of periodic forcing, the reflection sym-

metry of the system is broken and the mean value ^x(t)&
does not vanish. This can be intuitively understood as
the consequence of the periodic biasing towards one or
the other potential well.

Filtering all the information about x(t), except for
identifying in which potential well the particle resides at
time t (known as two-state filtering), one can achieve a
binary reduction of the two-state model (McNamara and
Wiesenfeld, 1989). The starting point of the two-state
model is the master equation for the probabilities n6 of
being in one of the two potential wells denoted by their
equilibrium positions 6xm , i.e.,

ṅ6~ t !52W7~ t !n61W6~ t !n7 , (2.5)

with corresponding transition rates W7(t). The periodic
bias toward one or the other state is reflected in a peri-
odic dependence of the transition rates; see Eq. (3.3)
below.

1. The periodic response

For convenience, we choose the phase of the periodic
driving w50, i.e., the input signal reads explicitly
A(t)5A0 cos(Vt). The mean value ^x(t)ux0 ,t0& is ob-
tained by averaging the inhomogeneous process x(t)
with initial conditions x05x(t0) over the ensemble of
the noise realizations. Asymptotically (t0→2`), the
memory of the initial conditions gets lost and
^x(t)ux0 ,t0& becomes a periodic function of time, i.e.,
^x(t)&as5^x(t1TV)&as with TV52p/V . For small am-
plitudes, the response of the system to the periodic input
signal can be written as

^x~ t !&as5 x̄ cos~Vt2f̄ !, (2.6)
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with amplitude x̄ and a phase lag f̄ . Approximate ex-
pressions for the amplitude and phase shift read

x̄ ~D !5
A0^x2&0

D

2rK

A4rK
2 1V2

(2.7a)

and

f̄~D !5arctanS V

2rK
D , (2.7b)

where ^x2&0 is the D-dependent variance of the station-
ary unperturbed system (A050). Equation (2.7) has
been shown to hold in leading order of the modulation
amplitude A0xm /D for both discrete and continuous
one-dimensional systems (Nicolis, 1982; McNamara and
Wiesenfeld, 1989; Presilla, Marchesoni, and Gammai-
toni, 1989; Hu, Nicolis, and Nicolis, 1990). While post-
poning a more accurate discussion of the validity of the
above equations for x̄ and f̄ to Sec. IV.B, we notice
here that Eq. (2.7a) allows within the two-state approxi-
mation, i.e., ^x2&05xm

2 , a direct estimate for the noise
intensity DSR that maximizes the output x̄ versus D for
fixed driving strength and driving frequency.

The first and most important feature of the amplitude
x̄ is that it depends on the noise strength D , i.e., the
periodic response of the system can be manipulated by
changing the noise level. At a closer inspection of Eq.
(2.7), we note that the amplitude x̄ first increases with
increasing noise level, reaches a maximum, and then de-
creases again. This is the celebrated stochastic resonance
effect. In Fig. 2, we show the result of a simulation of the
double-well system [Eqs. (2.1)–(2.3)] for several weak
amplitudes of the periodic forcing A0 . Upon decreasing
the driving frequency V, the position of the peak moves
to smaller noise strength (see Fig. 6, below).

Next we attempt to assign a physical meaning to the
value of DSR . The answer was given originally by Benzi
and co-workers (Benzi et al. 1981, 1982, 1983): an unper-

turbed bistable system with A050 switches spontane-
ously between its stable states with rate rK . The input
signal modulates the symmetric bistable system, making
successively one stable state less stable than the other
over half a period of the forcing. Tuning the noise inten-
sity so that the random-switching frequency rK is made
to agree closely with the forcing angular frequency V,
the system attains the maximum probability for an es-
cape out of the less stable state into the more stable one,
before a random back switching event takes place.
When the noise intensity D is too small (D!DSR), the
switching events become very rare; thus the periodic
component(s) of the interwell dynamics are hardly vis-
ible. Under such circumstances, the periodic component
of the output signal x(t) is determined primarily by mo-
tion around the potential minima—the intrawell motion.
A similar loss of synchronization happens in the oppo-
site case when D@DSR : The system driven by the ran-
dom source flips too many times between its stable
states within each half forcing period for the forced com-
ponents of the interwell dynamics to be statistically rel-
evant.

In this spirit, the time-scale matching condition in Eq.
(1.2), which with TK51/rK is recast as V5prK , pro-
vides a reasonable condition for the maximum of the
response amplitude x̄ . Although the time-scale match-
ing argument yields a value for DSR that is reasonably
close to the exact value it is important to note that it is
not exact (Fox and Lu, 1993). Within the two-state
model, the value DSR obeys the transcendental equation

4rK
2 ~DSR!5V2~DV/DSR21 !, (2.8)

obtained from Eq. (2.7a). The time-scale matching con-
dition obviously does not fulfill Eq. (2.8); thus underpin-
ning its approximate nature.

The phase lag f̄ exhibits a transition from f̄=p/2 at
D501 to f̄}V in the vicinity of DSR . By taking the
second derivative of the function f̄ in Eq. (2.7b) and
comparing with Eq. (2.8) one easily checks that DSR lies
on the right-hand side of the point of inflection of f̄ ,
being f̄9(DSR).0.

It is important to note that the variation of the angu-
lar frequency V at a fixed value of the noise intensity D
does not yield a resonance-like behavior of the response
amplitude. This behavior is immediately evident from
Eq. (2.7a) and also from numerical studies (for those
who don’t trust the theory). A more refined analysis
(Thorwart and Jung, 1997) shows that the decomposi-
tion of the susceptibility into its real and imaginary parts
restores a nonmonotonic frequency dependence—see
also the work on dynamical hysteresis and stochastic
resonance by Phillips and Schulten (1995), and Mahato
and Shenoy (1994).

Finally, we introduce an alternative interpretation of
the quantity x̄ (D) due to Jung and Hänggi (1989,
1991a): the integrated power p1 stored in the delta-like
spikes of S(v) at 6V is p15p x̄ 2(D). Analogously, the
modulation signal carries a total power pA5pA0

2.
Hence the spectral amplification reads

FIG. 2. Amplitude x̄ (D) of the periodic component of the
system response (2.6) vs the noise intensity D (in units of DV)
for the following values of the input amplitude:
A0xm /DV50.4 (triangles), A0xm /DV50.2 (circles), and
A0xm /DV50.1 (diamonds) in the quartic double-well poten-
tial (2.2a) with a5104 s−1, xm510 (in units [x] used in the
experiment), and V=100 s−1.
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h[p1 /pA5@ x̄ ~D !/A0#2. (2.9)

In the linear-response regime of Eq. (2.7), h is indepen-
dent of the input amplitude. This spectral amplification
h will frequently be invoked in Sec. IV, instead of
x̄ (D).

2. Signal-to-noise ratio

Instead of taking the ensemble average of the system
response, it sometimes can be more convenient to ex-
tract the relevant phase-averaged power spectral density
S(v), defined here as (see Secs. III and IV.A)

S~v!5E
2`

1`

e2ivt^^x~ t1t!x~ t !&&dt , (2.10)

where the inner brackets denote the ensemble average
over the realizations of the noise and outer brackets in-
dicate the average over the input initial phase w. In Fig.
3(a) we display a typical example of S(n) (v=2pn) for
the bistable system. Qualitatively, S(v) may be de-
scribed as the superposition of a background power
spectral density SN(v) and a structure of delta spikes
centered at v5(2n11)V with n=0,61,62 . . . . The
generation of only odd higher harmonics of the input
frequency are typical fingerprints of periodically driven
symmetric nonlinear systems (Jung and Hänggi, 1989).
Since the strength (i.e., the integrated power) of such
spectral spikes decays with n according to a power law

such as A0
2n , we can restrict ourselves to the first spec-

tral spike, being consistent with the linear-response as-
sumption implicit in Eq. (2.6). For small forcing ampli-
tudes, SN(v) does not deviate much from the power
spectral density SN

0 (v) of the unperturbed system. For a
bistable system with relaxation rate 2rK , the hopping
contribution to SN

0 (v) reads

SN
0 ~v!54rK^x2&0 /~4rK

2 1v2!. (2.11)

The spectral spike at V was verified experimentally
(Debnath, Zhou, and Moss, 1989; Gammaitoni,
Marchesoni, et al., 1989; Gammaitoni, Menichella-
Saetta, Santucci, Marchesoni, and Presilla, 1989; Zhou
and Moss, 1990) to be a delta function, thus signaling the
presence of a periodic component with angular fre-
quency V in the system response [Eq. (2.6)]. In fact, for
A0xm!DV we are led to separate x(t) into a noisy
background (which coincides, apart from a normaliza-
tion constant, with the unperturbed output signal) and a
periodic component with ^x(t)&as given by Eq. (2.6)
(Jung and Hänggi, 1989). On adding the power spectral
density of either component, we easily obtain

S~v!5~p/2! x̄ ~D !2@d~v2V!1d~v1V!#1SN~v!,
(2.12)

with SN(v)5SN
0 (v)1O(A0

2) and x̄ (D) given in Eq.
(2.7a). In Fig. 3(b) the strength of the delta-like spike of
S(v) (more precisely x̄ ) is plotted as a function of D .

Stochastic resonance can be envisioned as a particular
problem of signal extraction from background noise. It
is quite natural that a number of authors tried to char-
acterize stochastic resonance within the formalism of
data analysis, most notably by introducing the notion of
signal-to-noise ratio (SNR) (McNamara et al., 1988;
Debnath et al., 1989; Gammaitoni, Marchesoni, et al.,
1989; Vemuri and Roy, 1989; Zhou and Moss, 1990;
Gong et al., 1991, 1992). We adopt here the following
definition of the signal-to-noise ratio

SNR52F lim
Dv→0

E
V2Dv

V1Dv

S~v!dvG YSN~V!. (2.13)

Hence on combining Eqs. (2.11) and (2.12), the SN ratio
for a symmetric bistable system reads in leading order

SNR5p~A0xm /D !2rK . (2.14)

Note that the factor of 2 in the definition (2.13) was
introduced for convenience, in view of the power spec-
tral density symmetry S(v)5S(2v). The SN ratio
SNR for the power spectral density plotted in Fig. 3(a)
versus frequency n (v52pn) is displayed in Fig. 3(b).
The noise intensity D̄SR at which SNR assumes its maxi-
mum does not coincide with the value DSR that maxi-
mizes the response amplitude x̄ , or equivalently the
strength of the delta spike in the power spectrum given
by Eq. (2.12). As a matter of fact, if the prefactor of the
Kramers rate is independent of D , we find that the SN
ratio of Eq. (2.14) has a maximum at

D̄SR5DV/2. (2.15)

FIG. 3. Characterization of stochastic resonance. (a) A typical
power spectral density S(n) vs frequency n for the case of the
quartic double-well potential in Eq. (2.2a). The delta-like
spikes at (2n11)nV , V52pnV , with n50, 1, and 2, are dis-
played as finite-size histogram bins. (b) Strength of the first
delta spike, Eq. (2.12), and the signal-to-noise ratio SNR , Eq.
(2.13), vs D (in units of DV). The arrow denotes the D value
corresponding to the power spectral density plotted in (a). The
other parameters are Axm /DV50.1, a5104 s−1, and xm510
(in units [x] used in the experiment).
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B. Residence-time distribution

In Sec. II.A we interpreted the resonant-like depen-
dence of the amplitude x̄ (D) of the periodic response
on the noise intensity D by means of a synchronization
argument, originally formulated by Benzi and co-
workers (Benzi et al., 1981). Moreover, we pointed out
that the response amplitude does not show this synchro-
nization if the driving frequency V is tuned against the

escape rate rK . However, any experimentalist who ever
tried to reproduce stochastic resonance in a real system
(including here the analog circuits) knows by experience
that a synchronization phenomenon takes place any
time the condition rK;V is established by varying ei-
ther D or V. In Figs. 4(a) and 4(b) we depict the typical
input-output synchronization effect in the bistable sys-
tem Eqs. (2.1)–(2.3). In Fig. 4(a) the noise intensity is
increased from low (rare random switching events) up to
very large values, crossing the resonance values DSR of
Eqs. (2.8). In the latter case the output signal x(t) be-
comes tightly locked to the periodic input. In Fig. 4(b),
the noise intensity D is kept fixed and the forcing fre-
quency V is increased. At low values of V, we notice an
alternate asymmetry of the output signal towards either
positive or negative values, depending on the sign of the
input signal. However, many switches occur in both di-
rections within any half forcing period. At large values
of V, the effect of the time modulation is averaged out
and the symmetry of the output signal seems to be fully
restored. Finally, at V;rK the synchronization mecha-
nism is established with clear resemblance to Fig. 4(a).
In the following subsection we characterize stochastic
resonance as a ‘‘resonant’’ synchronization phenom-
enon, resulting from the combined action of noise and
periodic forcing in a bistable system. The tool employed
to this purpose is the residence-time distribution. Intro-
duced as a tool (Gammaitoni, Marchesoni, et al., 1989;
Zhou and Moss, 1990; Zhou, et al., 1990; Löfstedt and
Coppersmith, 1994b; Gammaitoni, Marchesoni, and
Santucci, 1995), such a notion proved useful for applica-
tions in diverse areas of natural sciences (Bulsara et al.,
1991; Longtin et al., 1991; Simon and Libchaber, 1992;
Carroll and Pecora, 1993b; Gammaitoni, Marchesoni,
et al. 1993; Mahato and Shenoy, 1994; Mannella et al.,
1995; Shulgin et al., 1995).

1. Level crossings

A deeper understanding of the mechanism of stochas-
tic resonance in a bistable system can be gained by map-
ping the continuous stochastic process x(t) (the system
output signal) into a stochastic point process $t i%. The
symmetric signal x(t) is converted into a point process
by setting two crossing levels, for instance at x656c
with 0<c<xm . On sampling the signal x(t) with an ap-
propriate time base, the times t i are determined as fol-
lows: data acquisition is triggered at time t050 when
x(t) crosses, say, x2 with negative time derivative
@x(0)52c , ẋ(0),0]; t1 is the subsequent time when
x(t) first crosses x1 with positive derivative [x(t1)5c ,
ẋ(t1).0]; t2 is the time when x(t) switches back to
negative values by recrossing x2 with negative deriva-
tive, and so on. The quantities T(i)5t i2t i21 represent
the residence times between two subsequent switching
events. For simplicity and to make contact with the
theory of Sec. IV.C, we set c5xm . The statistical prop-
erties of the stochastic point process $t i% are the subject
of intricate theorems of probability theory (Rice, 1944;
Papoulis, 1965; Blake and Lindsey, 1973). In particular,
no systematic way is known to find the distribution of

FIG. 4. Example of input/output synchronization in the sym-
metric bistable system of Eqs. (2.1)–(2.2a). (a) Varying the
noise intensity D with V held constant. The sampled signal
shown with dashes is the input A(t) (arbitrary units). The re-
maining trajectories are the corresponding system output (in
units of xm) for increasing D values (from bottom to top). (b)
Effect of varying V with D held constant. The three output
samples x(t) (in units of xm) are displayed for increasing V
values (from top to bottom). The parameters for (a) and (b)
are Axm /DV50.1, a5104 s−1, and xm5(a/b)1/2 5 10, cf. in
Fig. 2.
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threshold crossing times. An exception is the symmetric
bistable system: here, the long intervals T of consecutive
crossings obey Poissonian statistics with an exponential
distribution (Papoulis, 1965)

N~T !5~1/TK!exp~2T/TK!. (2.16)

The distribution (2.16) is important for the forthcom-
ing discussion, because it describes to a good approxima-
tion the first-passage time distribution between the po-
tential minima in unmodulated bistable systems [see also
Hänggi, Talkner, and Borkovec (1990), and references
therein].

2. Input-output synchronization

In the absence of periodic forcing, the residence time
distribution has the exponential form of Eq. (2.16). In
the presence of the periodic forcing (Fig. 5), one ob-
serves a series of peaks, centered at odd multiples of the
half driving period TV52p/V , i.e., at Tn5(n2 1

2 )TV ,
with n51,2,.. . . The heights of these peaks decrease ex-
ponentially with their order n . These peaks are simply
explained: the best time for the system to switch be-
tween the potential wells is when the relevant potential
barrier assumes a minimum. This is the case when the
potential V(x ,t)5V(x)2A0x cos(Vt1w) is tilted most
extremely to the right or the left (in whichever well the
system is residing). If the system switches at this time
into the other well it then takes half a period waiting
time in the other well until the new relevant barrier as-
sumes a minimum. Thus TV/2 is a preferred residence
interval. If the system ‘‘misses’’ a ‘‘good opportunity’’ to
jump, it has to wait another full period until the relevant
potential barrier for a switch again assumes the mini-
mum. The second peak in the residence-time distribu-
tion is therefore located at 3/2TV . The location of the
other peaks is evident. The peak heights decay exponen-
tially because the probabilities of the system to jump
over a minimal barrier are statistically independent. We
now argue that the strength P1 of the first peak at TV/2
(the area under the peak) is a measure of the synchro-
nization between the periodic forcing and the switching
between the wells: If the mean residence time of the
system in one potential well is much larger than the pe-
riod of the driving, the system is not likely to jump the
first time the relevant potential barrier assumes its mini-
mum. The escape-time distribution exhibits in such a
case a large number of peaks where P1 is small. If the
mean residence-time of the system in one well is much
shorter than the period of the driving, the system will
not ‘‘wait’’ with switching until the relevant potential
barrier assumes its maximum and the residence-time dis-
tribution has already decayed practically to zero before
the time TV/2 is reached and the weight P1 is again
small. Optimal synchronization, i.e., a maximum of P1 ,
is reached when the mean residence time matches half
the period of the driving frequency, i.e., our old time-
scale matching condition Eq. (1.2). This resonance con-
dition can be achieved by varying either V or D . This is
demonstrated in Figs. 5(a) and 5(b). In the insets we

have plotted the strength of the peak at TV/2 as a func-
tion of the noise strength D [Fig. 5(a)] and as a function
of the driving frequency V [Fig. 5(b)]. In passing, we

FIG. 5. Residence time distributions N(T) for the symmetric
bistable system of Eqs. (2.1)–(2.2a). (a) Increasing D (from
below) with V held constant; inset: the strength P1 of the first
peak of N(T) vs D (in units of DV). The definition of P1 is as
in Eq. (4.67) with a51/4. (b) Increasing V (from below) with
D held constant; inset: P1 versus nV. Here, V is in units of rK.
The numbers 1–4 in the insets correspond to the D values (a)
and the V values (b) of the distributions on display. The pa-
rameters for (a) and (b) are Axm /DV50.1, a5104 s−1, and
xm5(a/b)1/2 5 10, cf. Fig. 2.
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anticipate that also the remaining peaks of N(T) at Tn
with n.1 exhibit stochastic resonance [see Sec. IV.C].

We conclude with a comment on the multipeaked
residence-time distributions: the existence of peaks in
the residence-time distribution N(T) at Tn with n.1
should not mislead the reader to think that the power
spectral density S(v) exhibits subharmonics of the fun-
damental frequency V (i.e., delta spikes at frequencies
smaller than V). Although it may happen that the sys-
tem waits for an odd number of half forcing periods (i.e.,
an integer number of extra ‘‘wait loops’’) before switch-
ing states, such occurrences are randomly spaced in time
and, therefore, do not correspond to any definite spec-
tral component (Papoulis, 1965).

C. Tools

The seminal paper by Benzi et al. (1981) provoked no
immediate reaction in the literature. Apart from a few
early theoretical studies by Nicolis (1982), Eckmann and
Thomas (1982), and Benzi et al. (1982, 1983, 1985), only
one experimental paper (Fauve and Heslot, 1983) ad-
dressed the phenomenon of stochastic resonance. One
reason may be the technical difficulty of treating nonsta-
tionary Fokker-Planck equations with time-dependent
coefficients (Jung, 1993). Moreover, extensive numerical
computations were not yet everyday practice. The ex-
perimental article by McNamara, Wiesenfeld, and Roy
(1988) marked a renaissance of stochastic resonance,
which has flourished and developed ever since in differ-
ent directions. Our present knowledge of this topic has
been reached through a variety of investigation tools. In
the following paragraphs, we outline the most popular
ones, with particular attention given to their advantages
and limitations.

1. Digital simulations

The first evidence of stochastic resonance was pro-
duced by simulating the Budyko-Sellers model of cli-
mate change (Benzi et al., 1982) on a Digital Instru-
ments mainframe computer (model PDP 1000), an
advanced computer at the time! Nowadays accurate
digital simulations of either continuous or discrete sto-
chastic processes can be carried out at home on unso-
phisticated personal desktop computers. Regardless of
the particular algorithm adopted in the diverse cases,
digital simulations proved particularly useful in the
study of stochastic resonance in numerous cases (Nicolis
et al., 1990; Dayan et al., 1992; Mahato and Shenoy,
1994; Masoliver et al., 1995) and in chaotic (Carroll and
Pecora, 1993a, 1993b; Hu, Haken, and Ning, 1993; Ippen
et al., 1993; Anishchenko et al., 1994) or spatially ex-
tended systems (Neiman and Schimansky-Geier, 1994,
1995; Jung and Mayer-Kress, 1995; Lindner et al., 1995).
A decisive contribution to the understanding of the sto-
chastic resonance phenomenon was produced in Augs-
burg (Germany) by Jung and Hänggi (1989, 1990, 1991a,
1991b, 1993), who encoded the matrix-continued frac-
tion algorithm (Risken, 1984; Risken and Vollmer,
1989). Convergence problems at low noise intensities

and small driving frequencies, due to the truncation pro-
cedure, are the main limitations of this algorithm.

2. Analog simulations

This type of simulation allows more flexibility than
digital simulation and for this reason has been preferred
by a number of researchers. Rather than quoting all of
them individually, we mention here the prominent
groups, including those active in Perugia (Italy) (Gam-
maitoni, Marchesoni, et al., 1989, 1993, 1994, 1995; Gam-
maitoni, Menichella-Saetta, et al., 1989), in St. Louis
(USA) (Debnath et al., 1989; Zhou and Moss, 1990;
Moss, 1991, 1994), in Lancaster (England) (Dykman,
Mannella, et al., 1990b, 1992) and in Beijing (China) (Hu
et al., 1991; Gong et al., 1991, 1992). Analog simulators
of stochastic processes are easy to design and assemble.
Their results are not as accurate as digital simulations,
but offer some advantages: (a) a large range of param-
eter space can be explored rather quickly; (b) high-
dimensional systems may be simulated more readily
than by computer, though systematic inaccuracies must
be estimated and treated carefully. The block diagram of
the Perugia simulator is illustrated in Sec. V.B.1 for the
case of a damped quartic double-well oscillator sub-
jected to both noisy and periodic driving. In passing, we
mention here that Figs. 1–5 were actually obtained by
means of that simulation circuit. In order to give the
reader an idea of the reliability of analog simulation, we
point out that all directly measured quantities are given
with a maximum error of about 5%.

3. Experiments

By now, stochastic resonance has been repeatedly ob-
served in a large variety of experiments. The first experi-
ment was on an electronic circuit. Fauve and Heslot
(1983) used a Schmitt trigger to demonstrate the effect.
A first in situ physical experiment by McNamara, Wie-
senfeld, and Roy (1988) used a bistable ring laser to
demonstrate stochastic resonance in the noise-induced
switching between the two counter-propagating laser
modes. Stochastic resonance has also been demon-
strated optically in a semiconductor feedback laser (Ian-
nelli et al., 1994), in a unidirectional photoreactive ring
resonator (Jost and Sahleh, 1996), and in optical hetero-
dyning (Dykman, Golubev, et al., 1995). Relevance of
stochastic resonance in electronic paramagnetic reso-
nance has been identified by Gammaitoni, Martinelli,
Pardi, and Santucci (1991, 1993). Simon and Libchaber
(1992) observed SR in a beautifully designed optical
trap, where a dielectric particle moves in the field of two
overlapping Gaussian laser-beams that try to pull the
particle into their center. Spano and collaborators
(1992) have observed stochastic resonance in a paramag-
netically driven bistable buckling ribbon. Magnetosto-
chastic resonance in ferrite-garnet films has been mea-
sured by Grigorenko et al. (1994) and in yttrium-iron
spheres by Reibold et al. (1997). I and Liu (1995) ob-
served stochastic resonance in weakly ionized magneto-
plasmas, and Claes and van den Broeck (1991) for dis-
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persion of particles suspended in time-periodic flows. A
first demonstration of stochastic resonance in a semicon-
ductor device, more precisely in the low-temperature
ionization breakdown in p-type germanium, has been re-
ported by Kittel et al. (1993). Stochastic resonance has
been observed in superconducting quantum interference
devices (SQUID) by Hibbs et al. (1995) and Rouse et al.
(1995). Furthermore, Rouse et al. provided the first ex-
perimental evidence of noise-induced resonances (see
Sec. VII.D.1) in their SQUID system. In recent experi-
ments by Mantegna and Spagnolo (1994, 1995, 1996),
stochastic resonance was demonstrated in yet another
semiconductor device, a tunnel diode. Stochastic reso-
nance has also been observed in modulated bistable
chemical reaction dynamics (Minimal-Bromate and
Belousov-Zhabotinsky reactions) by Hohmann, Müller,
and Schneider (1996).

Undoubtedly, the neurophysiological experiments on
stochastic resonance constitute a cornerstone in the
field. They have triggered the interest of scientists from
biology and biomedical engineering to medicine. Long-
tin, Bulsara, and Moss (1991) have demonstrated the
surprising similarity between interspike interval histo-
grams of periodically stimulated sensory neurons and
residence-time distributions of periodically driven
bistable systems (see Secs. II.B and IV.C). Stochastic
resonance in a living system was first demonstrated by
Douglass et al. (1993) (see also in Moss et al., 1994) in
the mechanoreceptor cells located in the tail fan of cray-
fish. A similar experiment using the sensory hair cells of
a cricket was performed by Levin and Miller (1996). A
cricket can detect an approaching predator by the coher-
ent motion of the air although the coherence is buried
under a huge random background. Fairly convincing ar-
guments had been given by Levin and Miller that sto-
chastic resonance is actually responsible for this capabil-
ity of the cricket. Since the functionality of neurons is
based on gating ion channels in the cell membrane,
Bezrukov and Vodyanoy (1995) have studied the impact
of stochastic resonance on ion-channel gating. Stochastic
resonance has been studied in visual perceptions [Riani
and Simonotto, 1994, 1995; Simonotto et al. (1997); Chi-
alvo and Apkarian (1993)] and in the synchronized re-
sponse of neuronal assemblies to a global low-frequency
field (Gluckman et al., 1996).

III. TWO-STATE MODEL

In this section we discuss the simplest model that
epitomizes the class of symmetric bistable systems intro-
duced in Sec. II.A. Such a discrete model was proposed
originally as a stochastic resonance study case by Mc-
Namara and Wiesenfeld (1989), who also pointed out
that under certain restrictions it renders an accurate rep-
resentation of most continuous bistable systems. For this
reason, we discuss the two-state model in some detail.
Most of the results reported below are of general valid-
ity and provide the reader with a preliminary analytical
scheme on which to rely.

Let us consider a symmetric unperturbed system that
switches between two discrete states 6xm with rate W0
out of either state. We define n6(t) to be the probabili-
ties that the system occupies either state 6 at time t ,
that is x(t)56xm . In the presence of a periodic input
signal A(t)5A0 cos(Vt), which biases the state 6 alter-
natively, the transition probability densities W7(t) out
of the states 6xm depend periodically on time. Hence
the relevant master equation for n6(t) reads

ṅ6~ t !52W7~ t !n61W6~ t !n7 (3.1a)

or, making use of the normalization condition
n11n251,

ṅ6~ t !52@W6~ t !1W7~ t !#n61W6~ t !. (3.1b)

The solution of the rate equation (3.1) is given by

n6~ t !5g~ t !Fn6~ t0!1E
t0

t
W6~t!g21~t!dtG ,

g~ t !5expS 2E
t0

t
@W1~t!1W2~t!#dt D , (3.2)

with unspecified initial condition n6(t0). For the transi-
tion probability densities W7(t), McNamara and Wie-
senfeld (1989) proposed to use periodically modulated
escape rates of the Arrhenius type

W7~ t !5rK expF7
A0xm

D
cos~Vt !G . (3.3)

On assuming, as in Sec. II.A, that the modulation ampli-
tude is small, i.e., A0xm!D , we can use the following
expansions in the small parameter A0xm /D ,

W7~ t !5rKF17
A0xm

D
cos~Vt !

1
1
2 S A0xm

D D 2

cos2~Vt !7 . . . G ,

W1~ t !1W2~ t !52rKF11
1
2 S A0xm

D D 2

cos2~Vt !1 . . . G .

(3.4)

In Sec. IV.C, we discuss in more detail the validity of the
expression (3.3) for the rates. The most important con-
dition is a small driving frequency (adiabatic assump-
tion). The integrals in Eq. (3.2) can be performed ana-
lytically to first order in A0xm /D ,

n1~ tux0 ,t0!512n2~ tux0 ,t0!5 1
2 $exp@22rK~ t2t0!#

3@2dx0 ,xm
212k~ t0!#111k~ t !%, (3.5)

where k(t)52rK(A0xm /D)cos(Vt2f̄)/A4rK
2 1V2, and

f̄5arctan@V/(2rK)#. The quantity n1(tux0 ,t0) in Eq.
(3.5) should be read as the conditional probability that
x(t) is in the state + at time t , given that its initial state
is x0[x(t0). Here the Kronecker delta dx0 ,xm

is 1 when
the system is initially in the state +.

From Eq. (3.5), any statistical quantity of the discrete
process x(t) can be computed to first order in A0xm /D ,
namely:
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(a) The time-dependent response ^x(t)ux0 ,t0& to
the periodic forcing. From the definition
^x(t)ux0 ,t0&5*xP(x ,tux0 ,t0)dx with P(x ,tux0 ,t0)
[n1(t)d(x2xm)1n2(t)d(x1xm), it follows immedi-
ately that in the asymptotic limit t0→2` ,

lim
t0→2`

^x~ t !ux0 ,t0&[^x~ t !&as5 x̄ ~D !cos@Vt2f̄~D !# ,

(3.6)

with

x̄ ~D !5
A0xm

2

D

2rK

A4rK
2 1V2

(3.7a)

and

f̄~D !5arctanS V

2rK
D . (3.7b)

Equation (3.7) coincides with Eq. (2.7) for ^x2&05xm
2 .

(b) The autocorrelation function ^x(t1t)x(t)ux0 ,t0&.
The general definition

^x~ t1t!x~ t !ux0 ,t0&

5E E xyP~x ,t1tuy ,t !

3P~y ,tux0 ,t0!dxdy (3.8)

greatly simplifies in the stationary limit t0→2` ,

lim
t0→2`

^x~ t1t!x~ t !ux0 ,t0&

[^x~ t1t!x~ t !&as5xm
2 exp~22rKutu!@12k~ t !2#

1xm
2 k~ t1t!k~ t !. (3.9)

In Eq. (3.9) we can easily separate an exponentially de-
caying branch due to randomness and a periodically os-
cillating tail driven by the periodic input signal. Note
that even in the stationary limit t0→2` , the output-
signal autocorrelation function depends on both times
t1t and t . However, in real experiments t represents
the time set for the trigger in the data acquisition proce-
dure. Typically, the averages implied by the definition of
the autocorrelation function are taken over many sam-
pling records of the signal x(t), triggered at a large num-
ber of times t within one period of the forcing TV .
Hence, the corresponding phases of the input signal,
u5Vt1w , are uniformly distributed between 0 and 2p.
This corresponds to averaging ^x(t1t)x(t)&as with re-
spect to t uniformly over an entire forcing period,
whence

^^x~ t1t!x~ t !&&

5xm
2 exp~22rKutu!F12

1
2 S A0xm

D D 2 4rK
2

4rK
2 1V2G

1
xm

2

2 S A0xm

D D 2 4rK
2

4rK
2 1V2 cos~Vt!, (3.10)

where the outer brackets ^ . . . & stay for
(1/TV)*0

TV@ . . . #dt .

(c) The power spectral density S(v). The power spec-
tral density commonly reported in the literature is the
Fourier transform of Eq. (3.10) [see Eq. (2.10)]

S~v!5F12
1
2 S A0xm

D D 2 4rK
2

4rK
2 1V2G 4rKxm

2

4rK
2 1v2

1
p

2 S A0xm

D D 2 4rK
2 xm

2

4rK
2 1V2 @d~v2V!1d~v1V!# ,

(3.11)

which has the same form as the expression for S(v)
derived in Eq. (2.12). As a matter of fact, SN(v) is the
product of the Lorentzian curve obtained with no input
signal A050 and a factor that depends on the forcing
amplitude A0 , but is smaller than unity. The total out-
put power, signal plus noise, for the two-state model
discussed here, is 2pxm

2 , independent of the input-signal
amplitude A0 and frequency V. Hence the effect of the
input signal is to transfer power from the broadband
noise background into the delta spike(s) of the power
spectral density. Finally, the SN ratio follows as

SNR5pS A0xm

D D 2

rK1O~A0
4!. (3.12)

To leading order in A0xm /D , Eq. (3.12) coincides with
Eq. (2.14).

The residence-time distribution N(T) for the two-
state model was calculated by Zhou, Moss, and Jung
(1990), and by Löfstedt and Coppersmith (1994a, 1994b)
within a two-state model, yielding in leading order of
A0xm /D [cf. Sec. IV.D],

N~T !5N0@12~1/2!~A0xm /D !2 cos~VT !#rK

3exp~2rKT !, (3.13)

with N0
21512(1/2)(A0xm /D)2/@11(V/rK)2# . Note

that N(T) exhibits the peak structure of Fig. 5, with
Tn5(n21/2)TV . Furthermore, the strength P1 of the
first peak can be easily calculated by integrating N(T)
over an interval @( 1

2 2a),( 1
2 1a)#TV , with 0,a<1/4.

Skipping the details of the integration, one realizes that
P1 is a function of the ratio V/rK and attains its maxi-
mum for rK.2nV as illustrated in the inset of Fig. 5(b).

In this section we detailed the symmetric two-state
model as an archetypal system that features stochastic
resonance. We profited greatly from the analytical study
of McNamara and Wiesenfeld (1989). The two-state
model can be regarded as an adiabatic approximation to
any continuous bistable system, like the overdamped
quartic double-well oscillator of Eqs. (2.1)–(2.3), pro-
vided that the input-signal frequency is low enough for
the notion of transition rates [Eq. (3.4)] to apply.

In general, the difficulty lies in the derivation of time-
dependent transition rates in a continuous model. A sys-
tematic method consists of finding the unstable periodic
orbits in the absence of noise, since they act as basin
boundaries in an extended phase-space description
(Jung and Hänggi, 1991b). Rates in periodically driven
systems can be defined as the transition rates across

233Gammaitoni et al.: Stochastic resonance

Rev. Mod. Phys., Vol. 70, No. 1, January 1998



those basin boundaries and correspond to the lowest-
lying Floquet eigenvalue of the time-periodic Fokker-
Planck operator (Jung, 1989, 1993)—see also the Sec.
VII.D.3. Depending on the degree of approximation
needed, the intrawell dynamics may become significant
and more sophisticated formalisms may be required.

IV. CONTINUOUS BISTABLE SYSTEMS

A two-state description of stochastic resonance is of
limited use for a number of reasons. First, the dynamics
is reduced to the switching mechanism between two
metastable states only. Thus it neglects the short-time
dynamics that takes place within the immediate neigh-
borhood of the metastable states themselves. Moreover,
our goal is to describe both the linear as well as the
nonlinear stochastic resonance response in the whole re-
gime of modulation frequencies, extending from expo-
nentially small Kramers rates up to intrawell frequen-
cies, and higher. Put differently, a more elaborate
approach has to model the nonadiabatic regime of driv-
ing in the whole accessible state space of the dynamical
process x(t). This goal will be presented within the class
of continuous-state random systems (Stratonovitch,
1963; Hänggi and Thomas, 1982; Risken, 1984; van Ka-
mpen, 1992), which can be modeled in terms of a
Fokker-Planck equation.

A. Fokker-Planck description

As a generic system modeling stochastic resonance we
shall consider a Brownian particle of mass m that moves
in a bistable potential V(x) and is subjected to thermal
noise j(t) of the Nyquist type at temperature T . More-
over, we perturb the particle with a periodically varying
force, i.e., we start from the Langevin equation

mẍ52mg ẋ2V8~x !1mA0 cos~Vt1w!

1A2mgkTj~ t !. (4.1)

Here j(t) denotes a Gaussian white noise with zero av-
erage and autocorrelation function ^j(t)j(s)&5d(t2s).
The external forcing term is characterized by an ampli-
tude A0 , an angular frequency V, and an arbitrary but
fixed initial phase w. The statistically equivalent descrip-
tion for the corresponding probability density
p(x ,v5 ẋ ,t ;w) is governed by the two-dimensional
Fokker-Planck equation

]

]t
p~x ,v ,t ;w!5H 2

]

]x
v1

]

]v

3@gv1f~x !2A0 cos~Vt1w!#

1gD
]2

]v2 J p~x ,v ,t ;w!, (4.2)

where we introduced f(x)52V8(x)/m and the diffu-
sion strength D5kT/m . For large values of the friction
coefficient g we can simplify the above inertial dynamics
through adiabatic elimination of the velocity variable
ẋ5v (Marchesoni and Grigolini, 1983; Risken, 1984;

Grigolini and Marchesoni, 1985) to arrive at the periodi-
cally modulated Langevin equation

g ẋ5f~x !1A0 cos~Vt1w!1A2gDj~ t !. (4.3)

With the choice f(x)5(ax2bx3)/m , where a.0, b.0,
we recover the bistable quartic double-well potential
V(x)52(1/2)ax21(1/4)bx4 of Fig. 1. On making use
of the rescaled variables:

x̄ 5x/xm , t̄ 5at/g , Ā05A0 /axm ,

D̄5D/axm
2 , V̄5gV/a , (4.4)

where 6xm5Aa/b locate the minima of V(x), the rel-
evant Fokker-Planck equation takes on a dimensionless
form. Dropping, for the sake of convenience, all over-
bars one recovers the Smoluchowski limit of Eq. (4.2);
i.e., in terms of an operator notation we obtain

]

]t
p~x ,t ;w!5L~ t !p~x ,t ;w![@L01Lext~ t !#p~x ,t ;w!.

(4.5)

Here, the Fokker Planck operator

L052
]

]x
~x2x3!1D

]2

]x2 (4.6)

describes the unperturbed dynamics in the rescaled
bistable potential

V~x !52
1
2

x21
1
4

x4, (4.7)

with barrier height DV5 1
4 . The operator Lext(t) de-

notes the gradient-type perturbation

Lext~ t !52A0 cos~Vt1w!
]

]x
. (4.8)

1. Floquet approach

The inertial, as well as the overdamped Brownian dy-
namics in Eqs. (4.2) and (4.5) describe a nonstationary
Markovian process where the symmetry under time
translation is retained in a discrete manner only. Since
the Fokker-Planck operators in Eqs. (4.2) and (4.5) are
invariant under the discrete time translations t→t1TV ,
where TV52p/V denotes the modulation period, the
Floquet theorem (Floquet, 1883; Magnus and Winkler,
1979) applies to the corresponding partial differential
equation. For a general periodic Fokker-Planck opera-
tor such as L(t)5L(t1TV), defined on the
multidimensional space of state vectors
X(t)5(x(t);v(t)5 ẋ(t); . . . ), one finds that the rel-
evant Floquet solutions are functions of the type

p~X ,t ;w!5exp~2mt !pm~X ,t ;w! (4.9)

with Floquet eigenvalue m and periodic Floquet modes
pm ,

pm~X ,t ;w!5pm~X ,t1TV ;w!. (4.10)

The periodic Floquet modes $pm% are the (right) eigen-
functions of the Floquet operator
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FL~ t !2
]

]tGpm~X ,t ;w!52mpm~X ,t ;w!. (4.11)

Here the Floquet modes $pm% are elements of the prod-
uct space L1(X) %TV , where TV is the space of func-
tions that are periodic in time with period TV , and
L1(X) is the linear space of the functions that are inte-
grable over the state space. In view of the identity

exp~2mt !pm~X ,t ;w!5exp@2~m1ikV!t#pm~X ,t ;w!

3exp~ ikVt !

[exp~2m̂t !p̂m~X ,t ;w!, (4.12)

where m̂5m1ikV , k50,61,62, . . . , and
p̂m(X ,t ;w)5pm(X ,t ;w)exp(ikVt)5p̂m(X, t1TV ;w), we
observe that the Floquet eigenvalues $mn% can be de-
fined only mod(iV). Likewise, we introduce the set of
Floquet modes of the adjoint operator L†(t), that is

FL†~ t !1
]

]tGpm
† ~X ,t ;w!52mpm

† ~X ,t ;w!. (4.13)

Here the sets $pm% and $pm
† % are bi-orthogonal, obey-

ing the equal-time normalization condition

1
TV

E
0

TV
dtE dXpmn

~X ,t ;w!pmm

† ~X ,t ;w!5dn ,m .

(4.14)

Eqs. (4.11) and (4.13) allow for a spectral representation
of the time inhomogeneous conditional probability
P(X ,tuY ,s): With t.s we find

P~X ,tuY ,s !5 (
n50

`

pmn
~X ,t ;w!pmn

† ~Y ,s ;w!

3exp@2mn~ t2s !#

5P~X ,t1TVuY ,s1TV!. (4.15)

With all real parts Re@mn#.0 for n.0, the limit s→2`
of Eq. (4.15) yields the ergodic, time-periodic probabil-
ity

pas~X ,t ;w!5pm50~X ,t ;w!. (4.16)

The asymptotic probability pas(X ,t ;w) can be expanded
into a Fourier series, i.e.,

pas~X ,t ;w!5 (
m52`

`

am~X !exp@ im~Vt1w!# . (4.17)

With the arbitrary initial phase being distributed uni-
formly, i.e., with the probability density for w given by
w(w)5(2p)21, the time average of Eq. (4.17) equals
the phase average (Jung and Hänggi, 1989, 1990; Jung,
1993). Hence

p̄ as~X !5
1

2p E
0

2p

pas~X ,t ;w!dw

5
1

TV
E

0

TV
pm50~X ,t ;w!dt5a0~X !. (4.18)

At this stage it is worth pointing out a peculiarity of all

periodically driven stochastic systems: With u5Vt1w
we could as well embed a periodic N-dimensional
Fokker-Planck equation into a Markovian
(N11)-dimensional, time-homogeneous Fokker-Planck
equation by noting that u̇5V . With the corresponding
stationary probability pas(x ,u) not explicitly time de-
pendent, an integration over u does not yield the ergodic
probability pas(x ,t ;w) in Eq. (4.16) but rather the time-
averaged result p̄ as of Eq. (4.18), not withstanding a
claim to the contrary (Hu et al., 1990).

Given the spectral representation (4.15) for the con-
ditional probability, we can evaluate mean values and
correlation functions. Of particular importance for sto-
chastic resonance is the asymptotic expectation value

^X~ t !&as5^X~ t !uY0 ,t0→2`&, (4.19)

where ^X(t)uY0 ,t0& is the conditional average
^X(t)uY0 ,t0&5*dXXP(X ,tuY0 ,t0). With P(X ,tuY0 ,t0
→2`) approaching the asymptotic time-periodic prob-
ability, the relevant asymptotic average ^X(t)&as is also
periodic in time and thus admits the Fourier series rep-
resentation

^X~ t !&as5 (
n52`

`

Mn exp@ in~Vt1w!# . (4.20)

The complex-valued amplitudes Mn[Mn(V ,A0) de-
pend nonlinearly on both the forcing frequency V and
the modulation amplitude A0 . Within a linear-response
approximation (see Sec. IV.B), only the contributions
with unu50,1 contribute to Eq. (4.20). Nonlinear contri-
butions to the stochastic resonance observables, both for
M1 and higher-order harmonics with unu.1 have been
evaluated numerically by Jung and Hänggi (1989, 1991a)
by implementing the Floquet approach for the Fokker-
Planck equation of the overdamped driven quartic
double-well potential. The spectral amplification h of
Eq. (2.9), i.e., the integrated power in the time-averaged
power spectral density at 6V (Jung and Hänggi, 1989,
1991a) [note also Eq. (4.24) below], is expressed in
terms of uM1u, i.e.,

FIG. 6. The spectral amplification h for stochastic resonance in
the symmetric bistable quartic double well is depicted vs the
dimensionless noise strength D at a fixed modulation ampli-
tude A050.2 for three different values of the frequency V. The
results were evaluated with the nonadiabatic Floquet theory
for the corresponding time-periodic Fokker-Planck equation in
Eq. (4.5). After Jung and Hänggi (1991a).
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h5S 2uM1u
A0

D 2

. (4.21)

Its behavior versus the noise strength D is depicted
for different angular driving frequencies in Fig. 6. We
observe that for a fixed modulation amplitude A0 the
stochastic resonance behavior of the spectral power am-
plification h decreases upon increasing the forcing fre-
quency V. The behavior of h versus increasing V at fixed
noise strength D is generally that of a monotonically
decreasing function. An exception occurs in a symmetric
bistable potential composed of two square wells and a
square barrier with one well depth modulated periodi-
cally. For this case the SNR versus V has been shown to
be nonmonotonic (Berdichevsky and Gitterman, 1996).
The dependence on the modulation amplitude A0 at
fixed forcing frequency V is depicted in Fig. 7. We note
that the maximum of the spectral amplification decreases
with increasing amplitude A0 . Hence nonlinear re-
sponse effects tend to diminish the stochastic resonance
phenomenon. For a small, fixed noise strength D (so
that the driving frequency V exceeds the Kramers rate
rK), the spectral amplification h exhibits, however, a
maximum as a function of the forcing amplitude
A0—note the behavior in Fig. 7 below D;0.15, and Fig.
36 in Sec. V.C.5.

The analog of the correlation function of a stationary
process is the asymptotic time-inhomogeneous correla-
tion

^X~ t !X~ t8!&as5K~ t ,t8;w!5E E XYP~X ,tuY ,t8!

3pas~Y ,t8;w!dXdY , (4.22)

where t5t81t , with t>0 and t8→` . An additional av-
eraging procedure (indicated by the double brackets)
over a uniformly distributed initial phase w for
K(t ,t8;w) (or equivalently, a time average over one
modulation cycle) yields a time-homogeneous, station-
ary correlation function

K̄~t!5^^X~ t !X~ t8!&&as[
1

2p E K~ t ,t8;w!dw . (4.23)

In terms of the Fourier amplitudes $Mn% of Eq. (4.20),
the long-time limit of K̄(t) assumes the oscillatory ex-
pression

K̄~t! ——→
t→`

[K̄as~t!5^^X~ t1t!&as^X~ t !&as&

5 (
n52`

`

uMnu2 exp~ inVt!

52 (
n51

`

uMnu2 cos~nVt!. (4.24)

In the last equality we used the fact that M050 for a
reflection-symmetric potential. Note that this asymptotic
result is independent of the initial phase w (no phase lag
here!). This is in contrast with ^X(t)&as , where the

complex-valued amplitudes $Mn% bring in an additional
phase lag f̄n for each Fourier component (see Sec. IV.B
below).

This oscillatory, asymptotic long-time behavior yields
in turn sharp d spikes at multiples of the driving angular
frequency V for the power spectral density of K̄(t). De-
pending on the symmetry properties of the Floquet op-
erator, one finds that some of the amplitudes Mn assume
vanishing weights (Jung and Hänggi, 1989; Hänggi et al.,
1993). In particular, for a symmetric double well, all
even-numbered amplitudes M2n assume zero weight;
likewise a multiplicative driving xA0 cos(Vt) in Eq. (4.2)
in a symmetric double well yields identically vanishing
weights for all n50,61,62, . . . .

Before we proceed by introducing the linear-response
theory (LRT), we also point out that the result for the
corresponding conditional probability (4.15) for zero
forcing A050 boils down to the time-homogeneous con-
ditional probability density, i.e., with t5(t2s).0

P0~X ,tuY ,0!5 (
n50

`

cn~X !wn~Y !exp~2lnt!. (4.25)

Here, for A0→0 the set $mn% (with k50) reduces to the
set of eigenvalues $ln% of L0 , the set $pmn

(X ,t)% reduces
to the right eigenfunction $cn% of L0 , and $pmn

† (Y ,s)% to

the right eigenfunctions $wn(Y)% of L0
† , respectively.

B. Linear-response theory

As detailed in the Introduction, the prominent role of
the stochastic resonance phenomenon is that it can be
used to boost weak signals embedded in a noisy environ-
ment. Thus the linear-response concept, or more gen-
eral, the concept of perturbation theory (see Appendix)
for spectral quantities like the Floquet modes and the
Floquet eigenvalues as discussed in the previous section
are adequate methods for studying the basic physics that
characterizes stochastic resonance. Both concepts have
been repeatedly invoked and investigated in stochastic
resonance studies by several research groups (Fox, 1989;

FIG. 7. The spectral amplification h versus the noise intensity
D at a fixed modulation frequency V50.1 is depicted for four
values of the driving amplitude A[A0 . The result of the lin-
ear response approximation in Eq. (4.51) is depicted by the
dotted line. From Jung and Hänggi (1991a).
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McNamara and Wiesenfeld, 1989; Presilla et al., 1989;
Dykman et al., 1990a, 1990b; Hu et al., 1990; Jung and
Hänggi, 1991a, 1993; Dykman, Mannella, et al., 1992;
Hu, Haken, and Ning, 1992; Dykman, Luchinsky, et al.,
1995). Here we shall focus on the linear-response con-
cept, which also emerges as a specific application of per-
turbation theory. In doing so, we shall rely on the linear-
response theory pioneered by Kubo (1957, 1966) for
equilibrium systems—and extended by Hänggi and Tho-
mas (1982) to the wider class of stochastic processes that
admit also nonthermal, stationary nonequilibrium states.
This extension is of particular relevance because many
prominent applications of stochastic resonance in opti-
cal, chemical, and biological systems operate far from
thermal equilibrium. Without lack of generality, we con-
fine the further analysis to a one-dimensional Markovian
observable x(t) subjected to an external weak periodic
perturbation. Following Hänggi (1978) and Hänggi and
Thomas (1982), the long-time limit of the response
^x(t)&as due to the perturbation A(t)5A0 cos(Vt), i.e.,
we set w50, assumes up to first order the form

^x~ t !&as5^x~ t !&01E
2`

t
dsx~ t2s !A0 cos~Vs !,

(4.26)

where ^x(t)&0 denotes the stationary average of the un-
perturbed process. The memory kernel x(t) of Eq.
(4.26) is termed, hereafter, the response function. For an
external perturbation operator of the general form

Lext~ t ![A0 cos~Vt !Gext , (4.27)

x(t) is expressed by

x~ t !5H~ t !E E E dxdydzP0~x ,tuy ,0!xGext~y ,z !p0~z !.

(4.28)

H(t) denotes the (Heaviside) step function expressing
causality of the response, p0(z) is the stationary prob-
ability density of the corresponding unperturbed, gener-
ally nonthermal equilibrium process, P0(x ,tuy ,0) de-
notes the conditional probability density, and Gext(x ,y)
denotes the kernel of the operator Gext that describes
the perturbation in the master operator (either an inte-
gral operator or a differential operator such as in the
Fokker-Planck case of Sec. IV.A, e.g., Gext(y ,z)
5d8(z2y) for Eq. (4.8)). An appealing form of the re-
sponse function can be obtained by introducing the fluc-
tuation z(x(t)) defined by

E dyGext~x ,y !p0~y !52E dzL0~x ,z !z~z !p0~z !,

(4.29)

where L0(x ,z) is the kernel of the unperturbed Fokker-
Planck operator. We note that z(x(t)) is indeed a fluc-
tuation, i.e., it satisfies ^z(x(t))&050. The response func-
tion (4.28) can then be expressed through the fluctuation
theorem

x~ t !52H~ t !
d

dt
^x~ t !z(x~0 !)&0 . (4.30)

For dx(t)5x(t)2^x(t)&0 this can be recast as

x~ t !52H~ t !
d

dt
^dx~ t !z(x~0 !)&0 . (4.31)

This result is intriguing: the linear-response function can
be obtained as the time derivative of a stationary, gen-
erally nonthermal correlation function between the two
unperturbed fluctuations dx(t) and z(x(t)). From the
spectral representation of the time-homogeneous condi-
tional probability (4.25), it follows immediately that (on
assuming that the eigenvalue l050 is not degenerate)

x~ t !5H~ t ! (
n51

`

gnln exp~2lnt !. (4.32)

The coefficients $gn% are given by

gn5^dxcn~x !&0^z~y !wn~y !&0 . (4.33)

The corresponding Fourier transform
*0

` exp(2ivt)x(t)dt will be denoted by x(v), with
x(v)5x8(v)2ix9(v). Generally, the eigenvalues of
the real-valued operator L0 are complex valued and oc-
cur by the pair, e.g., ln and ln* with the corresponding
eigenfunctions cn(x) and fn(x) introduced above.
Hence the contribution of each pair of complex conju-
gate eigenvalues is a real-valued quantity, thus yielding
an overall real expression for x(t) in Eq. (4.32). Upon
substituting Eq. (4.32) into Eq. (4.26) we find the linear-
response approximation

^dx~ t !&5^x~ t !&as2^x~ t !&05
A0

2 (
n51

`

lngn

3F eiVt

ln1iV
1

e2iVt

ln2iV G . (4.34)

Moreover, on Fourier transforming Eq. (4.32) we derive
the spectral representation of x(t), i.e.,

x~v!5x8~v!2ix9~v!5 (
n51

`
lngn

ln1iv
. (4.35)

Therefore, the result of Eq. (4.34) can be cast into the
form

^dx~ t !&52uM1ucos~Vt2f̄ !, (4.36)

where the spectral amplitude uM1u is given by

uM1u5
A0

2
ux~V!u, (4.37)

and the retarded positive phase shift f̄ reads

f̄5arctanH x9~V!

x8~V!J . (4.38)

The above results are valid for a general nonthermal
stationary system. The fluctuation z(x(t)) can be evalu-
ated in a straightforward manner for all one-dimensional
systems modeled by a Fokker-Planck equation. Ex-
amples include the stochastic resonance for absorptive
optical bistability, Sec. V.A.3, or that for colored noise-
driven bistable systems in Sec. VI.D.
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For the case of the quartic double-well potential [Eqs.
(2.1)–(2.3)], where the unmodulated system admits ther-
mal equilibrium, the perturbation operator Lext(t)
is of the gradient type: from Eq. (4.8), Lext(t)
5A0 cos(Vt)@2]/]x#. This, in turn, implies that the re-
sponse function obeys the well-known fluctuation-
dissipation theorem known from classical equilibrium
statistical mechanics (Kubo, 1957, 1966), i.e.,

x~ t !52@H~ t !/D#
d

dt
^dx~ t !dx~0 !&0 , (4.39)

where the corresponding fluctuation z reads
z(x(0))5dx(0)/D . Note that this result holds true irre-
spective of the detailed form of the equilibrium dynam-
ics.

1. Intrawell versus interwell motion

Given the spectral representation (4.35) of the re-
sponse function x(t), we can express the two stochastic
resonance quantifiers, namely the spectral amplification
h of Eqs. (2.9), Eq. (4.21), and the signal-to-noise ratio
of Eq. (2.13) in terms of the spectral amplitude uM1u.
From Eq. (4.36) we find for the spectral amplification
within linear response

h5~2uM1u/A0!25ux~V!u2. (4.40)

In view of the unperturbed power spectral density
SN

0 (V) of the fluctuations dx(t), i.e.,

SN
0 ~v!5E

2`

`

e2ivt^dx~t!dx~0 !&0dt , (4.41)

the linear response result for the SNR reads

SNR54puM1u2/SN
0 ~V!5pA0

2ux~V!u2/SN
0 ~V!.

(4.42)

Both stochastic resonance observables possess a spectral
representation via the spectral representations of ux(v)u
and SN

0 (v).
In the following we shall explicitly assume that the

noise strength D is weak. This implies that for a general
bistable dynamics there exists a clear-cut separation of
time scales. These are the escape time scale to leave the
corresponding wells, i.e., the exponentially large time
scale for interwell hopping, and the time scale that char-
acterizes local relaxation within a metastable state. The
eigenvalue l1 that characterizes the intrawell dynamics
is always real valued and of the Kramers type (Hänggi
et al., 1990), i.e.,

l152rK5r11r2[l , (4.43)

where r6 are the forward and backward transition rates,
respectively. The rates r6 depend through the Arrhen-
ius factor on the activation energies DF0

6 , where F0(x)
is the generalized (non-thermal-equilibrium) potential
associated with the unperturbed stationary probability
density

p0~x !5Z21~x !exp~2F0~x !/D !. (4.44)

The relevant intrawell relaxation rates in the two wells
located at x5x1,2

0 are estimated as the real part of the
two smallest eigenvalues that describe the equilibration
of the probability density in the vicinity of the two stable
states xm , m51,2, respectively. For small noise intensi-
ties, these eigenvalues can be approximated as

l25F09~x5x1! (4.45)

and

l35F09~x5x2!. (4.46)

Note that, here, the indices of l2 and l3 have been cho-
sen for later convenience and do not necessarily coin-
cide with the index ordering of the Fokker-Planck spec-
trum $ln%. Given these three dominant time scales, the
response at weak noise is cast as the sum of three terms,
i.e., for a driving phase w50 we have the weak-noise
approximation

^dx~ t !&5
A0

2 (
m51,2,3

lmgmF eiVt

lm1iV
1

e2iVt

lm2iV G ,

(4.47)

yielding corresponding estimates for x(V) and the sto-
chastic resonance quantifiers h and the SNR . The
weights gm can be evaluated from the corresponding ap-
proximate eigenfunctions (Hänggi and Thomas, 1982;
Dykman, Haken, et al., 1993), or from a three-term ex-
ponential ansatz for the response function (Jung, 1993).

For the overdamped, symmetric quartic double-well
dynamics [Eq. (4.7)], the spectral amplification given by
Eq. (4.40) has been evaluated in the literature by means
of Eq. (4.37) to give (Jung and Hänggi, 1991a, 1993)

h5D22F 4g1
2rK

2

4rK
2 1V2 1

g2a2

a21V2

1
4g1garK~2arK1V2!

~4rK
2 1V2!~a21V2! G . (4.48)

where l25l3[a , with a52, and g25g3[g/2. The rel-
evant weights gn for D→0 read

g1.12~11a21!D1O~D2!,

g5D/a1O~D2!, (4.49)

and rK is the steepest-descent approximation for the
Kramers rate

rK5~&p!21 exp@21/~4D !# . (4.50)

Upon neglecting the intrawell motion, the leading-order
contribution in Eq. (4.48) reproduces Eq. (2.7a), i.e.,

h.
1

D2 F11
p2

2
V2 expS 1

2D D G21

. (4.51)

This approximation exhibits the typical bell-shaped sto-
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chastic resonance behavior as a function of increasing
noise intensity D—see again Fig. 7, and also Figs. 18 and
19 below. Likewise, we can evaluate the SNR for the
potential under study. In the weak-noise limit we have

SN
0 ~V!.

4rK

4rK
2 1V21

2gl2

l2
21V2 , (4.52)

whence yielding the linear-response result for the SNR
(Hu et al., 1992; Jung, 1993), i.e.,

SNR5
pA0

2

2D2

4g1
2rK

2 ~a21V2!1~ga!2~4rK
2 1V2!14ag1rK~2arK1V2!

2g1rK~a21V2!1ga~4rK
2 1V2!

. (4.53)

This result, when plotted vs D displays a bell-shaped
behavior for V not too large (see Fig. 8). Moreover, note
that the result for the SNR diverges as D→0, propor-
tional to D21. This is due to the intrawell contributions
in Eq. (4.53). This feature is in agreement with simula-
tions (McNamara and Wiesenfeld, 1989). On neglecting
intrawell contributions, i.e., by setting g25g350, one
finds in leading order the result of Eq. (2.14) (Gammai-
toni, Marchesoni, et al., 1989; McNamara and Wiesen-
feld, 1989; Presilla et al., 1989; Dykman et al., 1990b),
i.e.,

SNR5~pA0
2/D2!rK5@A0

2/~&D2!#exp@21/~4D !# .
(4.54)

We remark that within this interwell approximation the
SNR—contrary to the spectral amplification h in Eq.
(4.51)—is no longer dependent on the angular modula-
tion frequency V! This effective two-state approxima-
tion also exhibits a bell-shaped behavior, typical for sto-
chastic resonance. In contrast to Eq. (4.53) the SN ratio
vanishes for D→0. It is also worthwhile to point out the
difference in how rK enters the two stochastic resonance
observables. The leading order contribution to SNR in
Eq. (4.54) is proportional to rK , while h in Eq. (4.51) is
proportional to rK

2 .

2. Role of asymmetry

In this subsection we study the effect of a potential
asymmetry on stochastic resonance detectability. Here,
the asymmetry of F0(x) is characterized by the differ-
ence e5DF0

22DF0
1 between the Arrhenius energies

for backward and forward transitions. We shall assume
that e.0; thus the backward rate r2 is exponentially
suppressed over the forward escape rate. Such an asym-
metry implies also an exponential suppression of the
corresponding weight g1;1→exp(2e/D) [see Eq.
(6.3.46) of Hänggi and Thomas, 1982]. As a conse-
quence, the spectral amplification suffers an exponential
suppression proportional to @exp(2e/D)#25exp(22e/D),
while the suppression of the SN ratio is weaker, being
proportional to exp(2e/D).

On inspecting the leading order results in Eq. (4.51)
for h and Eq. (4.54) for SNR , we note that the stochas-
tic resonance maximum is located in the neighborhood
where the monotonic decreasing function y15D22

crosses the monotonic, exponentially increasing Arrhen-
ius factor y25exp(2DF0 /D) for the symmetric barrier
with DF0

15DF0
25DF0 . The suppression caused by

asymmetry now modifies y2 into exp(2e/D)y2 . Hence
the intersection point of y1 and y2 as functions of D is
moved to larger noise intensities. Both the exponential
decrease (induced by the asymmetry in activation barri-
ers in the unperturbed potential) of the peak for h (and
likewise for the SNR), as well as the shift to larger noise
intensities of the peak position have been confirmed nu-
merically for a nonequilibrium optical bistable system
(Bartussek, Jung, and Hänggi, 1993; Bartussek, Hänggi,
and Jung, 1994) (see also Sec. V.A.3) and again numeri-
cally in an asymmetric rf SQUID loop by Bulsara, In-
chiosa, and Gammaitoni (1996). The detailed analysis
for an asymmetric quartic bistable well with asymmetry
energy e, but identical curvatures, gives for the spectral
amplification (Jung and Bartussek, 1996; Grifoni et al.,
1996)

h5
1

D2 Fcosh4S e

2D D S 11
V2

4rK
2 ~e! D G

21

, (4.55)

with rK(e)5rK cosh(e/2D), while the corresponding re-
sult for the SNR in the in presence of an asymmetry e
reads

SNR~e!5
pA0

2

D2

1
cosh2~e/2D !

rK~e!. (4.56)

FIG. 8. The signal-to-noise ratio as function of the noise
strength D for A050.1 and different driving frequencies V. In
contrast to the spectral amplification h—see Fig. 7—we note
that the signal-to-noise ratio diverges as the noise strength
D→0.
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An important feature of Eq. (4.55) is its universal shape
for vanishing driving frequencies: In contrast to the sym-
metric case e50, where the maximum of the spectral
amplification increases with decreasing driving frequen-
cies V (see Fig. 6 and Fig. 18 below for the optical bista-
bility) the spectral amplification in asymmetric systems
(see Fig. 19 below) approaches for V→0 a limiting
curve, with the stochastic resonance maximum assumed
at a finite noise level. As a result, there exists no obvious
time-scale matching condition in asymmetric systems.

3. Phase lag

The asymptotic probability pas(x ,t ;w) [see Eq. (4.17)]
depends periodically on the modulation phase
u5Vt1w . Moreover, due to the complex-valued ampli-
tudes am(x), the contribution to pas(x ,t ;w) stemming
from the pair of 6m introduces each its own additional
phase lag f̄m . For periodically driven (linear) Gauss-
Markov processes, only the terms with m561 and
m50 contribute to Eq. (4.17). The corresponding phase
lag f̄1 for the asymptotic probability of a Brownian har-
monic oscillator has been evaluated explicitly as a func-
tion of the friction coefficient g by Jung and Hänggi
(1990). Analogously, in Eq. (4.20) each nonlinear contri-
bution to ^x(t)&as with power amplitude Mn introduces
its own phase lag f̄m .

From the linear-response function x(V) we obtain the
phase lag f̄[f̄1 of Eq. (4.38). Correspondingly, the
linear-response approximation for pas(x ,t ;w) in Eq.
(4.17) yields such a phase lag in terms of the amplitude
M1 of Eqs. (4.20) and (4.37). Neglecting all the intrawell
terms gn with n>2 in Eq. (4.32) gives the single-
exponential approximation (2.7b) for the phase lag f̄
(Nicolis, 1982; McNamara and Wiesenfeld, 1989; Gam-
maitoni, Marchesoni, et al., 1991), i.e.,

f̄5arctanS V

2rK
D . (4.57)

f̄ decreases monotonically from p/2 at D501 to zero
(for V→0) as D is made to grow to infinity. Note that
this is the equivalent of the two-state approximation of
Sec. III. The inclusion of intrawell terms (Dykman,
Mannella, et al., 1992; Gammaitoni and Marchesoni,
1993; Dykman, Mannella, McClintock, and Stocks, 1993)
changes this monotonic behavior into a bell-shaped be-
havior, as long as the modulation amplitude A0 remains
small. This feature is consistent with the linear-response
result [Eq. (4.47)], which accounts for the hopping term
with rate rK and the two intrawell terms with rates l2
and l3 . In particular, in a symmetric bistable potential
with D→0, f̄ approaches arctan(V/a)—see the defini-
tion of a below Eq. (4.48). The presence of the intrawell
dynamics suppresses at low noise the influence of the
interwell dynamics on the phase lag. Hence within the
regime of validity of the linear-response approximation,
the peak of the phase shift marks the turnover between
the regimes dominated by hopping and intrawell mo-
tion. Note that this maximum is not physically related to

the maximum that characterizes stochastic resonance.
Put differently, the noise value for the maximum of h, or
SNR , is in no immediate relationship with the noise
value that characterizes the maximum of f̄ : The sto-
chastic resonance phenomenon is rooted in a physical
synchronization effect between the interwell time scale
and the period of the modulation signal, which acts here
as an external ‘‘clock’’ (Jung and Hänggi, 1991a, 1993;
Fox and Lu, 1993; Gammaitoni, Marchesoni, and San-
tucci, 1995). In contrast, a peak in f̄ vs noise intensity D
at small amplitude A0 and small angular frequency V is
due to the competition between hopping and intrawell
dynamics—and should not be mistaken for a signature
of stochastic resonance. The peak behavior of f̄ van-
ishes with increasing modulation amplitude A0 (Jung
and Hänggi, 1993), where no clear-cut time-scale sepa-
ration for hopping versus intrawell motion occurs. Such
a dependence on the modulation amplitude is depicted
in Fig. 9 as a function of the angular driving frequency
V. The characteristic dependence of f̄ on the driving
strength A0 (V held constant) clearly lies beyond the
regime of validity of linear-response theory (Jung and
Hänggi, 1993; Gómez-Ordóñez and Morillo, 1994).

C. Residence-time distributions

The residence-time distribution offers another possi-
bility to characterize stochastic resonance. Historically,
residence-time distributions were first employed in the
stochastic resonance literature by Gammaitoni,
Marchesoni, Menichella-Saetta, and Santucci (1989) and
Zhou and Moss (1990) and then interpreted theoreti-
cally by Zhou, Moss, and Jung (1990).

Residence-time distributions were mentioned briefly
in Sec. II. In this section, we discuss in more detail how
these residence-time distributions can be obtained ap-
proximately and how stochastic resonance is manifested
in their properties.

FIG. 9. Phase shift f̄ of stochastic resonance in a periodically
driven, overdamped quartic double well for a dimensionless
noise strength D50.05 vs driving frequency V for increasing
driving amplitudes (1) A050.1, (2) A050.3, (3) A050.4, (4)
A050.5, and (5) A051. The lines are evaluated within a full
nonadiabatic Floquet approach for the overdamped, time-
periodic Fokker-Planck equation; see Jung and Hänggi (1993).
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In the absence of periodic forcing, an escape-time dis-
tribution is defined as the distribution of times it takes
for the system to escape out of a potential well. For
weak noise, such a distribution is independent of the
initial point apart from a small boundary layer around
the basin boundary. In periodically driven systems,
escape-time distributions depend additionally on the ini-
tial phase of the periodic forcing—they represent there-
fore a conditional escape-time distribution.

Residence-time distributions are defined as the distri-
bution of time intervals Dn between two consecutive es-
cape events, regardless of the phases of the periodic
forcing f5Vt at which these switching events occur.
Each time interval Dn corresponds to a different switch-
ing phase fn which in turn depends on the prehistory of
the process. The approximation strategy of Zhou, Moss,
and Jung (1990) to obtain the residence-time distribu-
tions is to first compute the conditional escape-time dis-
tribution and then to average over the distribution func-
tion of the switching phases f: i.e., the temporal
modulation of the potential must be slow.

Although we refer to the quartic double-well potential
[Eq. (2.2)] throughout, the conclusions we arrive at are
of general validity since only hopping between the stable
states is taken into account—relaxational motion within
the potential wells is neglected. We therefore essentially
resort to a two-state description, discussed in Sec. II.
Furthermore, the subsequent analysis holds true only for
low forcing frequencies according to the adiabatic ap-
proximation; this means that the temporal change of the
adiabatic potential [Eq. (4.59) below] has to be slow in
comparison to the intrawell relaxation. Such a restric-
tion is needed here for the definition of the interwell
transition rates r6(t) to make sense. On the other hand,
it is clear (see below) that under such a circumstance,
the two-state model is a good approximation to the con-
tinuous dynamics of a bistable process.

A detailed calculation of both the escape- and
residence-time distributions has been reported in a re-
cent paper by Choi, Fox, and Jung (1998). To help the
reader interpret the results in Figs. 4 and 5, without bog-
ging down in complicated algebraic manipulations, we
outline here the simplified approach developed earlier
by Zhou, Moss, and Jung (1990), with the caution that
its validity is restricted to relatively large values of V.
The starting point for the calculation of the conditional
escape-time distribution re(t) out of the left potential
well is the instantaneous rate equation for the popula-
tion in the left well n2(t ,f), i.e.,

ṅ2~ t ;f!52r1~Vt1f!n2~ t ;f!. (4.58)

The quasistationary forward rate r1(Vt1f) denotes
the adiabatic transition rate, obtained for a frozen po-
tential

Vad~x ,t !5x4/42x2/22A0x cos~Vt1f!. (4.59)

Initially, the system is in the left well, yielding the initial
condition n2(0,f)51. The quasistationary rate
r1(Vt1f) can be obtained from the weakly driven

double-well potential upon combining the Kramers ap-
proach with the adiabatic assumption of a slow potential
Vad(x ,t) (Jung, 1989), i.e.,

r1~Vt1f!5
1

2p
AuVad9 ~xb!uVad9 ~xm!

3expF2
DV2~Vt1f!

D G , (4.60)

where the barrier height DV2(Vt1f) and the curva-
tures of the adiabatic potential at the barrier top V9(xb)
and in the left potential minimum V9(xm) can be ob-
tained for small A0 to give

r1~Vt1f!'rKF12
3
4

A0 cos~Vt1f!G
3expFA0

D
cos~Vt1f!G . (4.61)

The escape rate of the undriven system rK is given in
Eq. (2.4). As mentioned above, the applicability of Eq.
(4.61) is restricted to the adiabatic regime, i.e., the fre-
quency V has to be small compared to the local relax-
ation rate. In our scaled units this means V!2, as well as
weak forcing, i.e., A0!A4/27. The two-state model rates
W6(t) of Eq. (3.3) can thus be recovered from this adia-
batic theory when prefactor corrections due to the forc-
ing are neglected.

On coming back to Eq. (4.58), we note that the con-
ditional escape-time distribution re(t ;f) can be written
as

re~ t ;f!52ṅ2~ t ;f!5r1~Vt1f!

3expF2
1
V E

0

Vt
r1~u1f!duG . (4.62)

In order to obtain the residence-time distribution we
have to find an expression for the distribution of the
jump phase out of the left well Y2(f). It should be
noted that this problem has not yet been solved system-
atically. For driving frequencies much smaller than the
Kramers rate, there is no preferred phase and thus
Y(f)51/(2p). For larger frequencies, the following
self-consistent approximation has been proposed:

Y6~f!5
1

2pI0~A0 /D !
expS 6

A0

D
cos~f! D , (4.63)

with I0(x) being a modified Bessel function (Abramow-
itz and Stegun, 1965). The residence-time distribution in
the symmetric bistable potential of Eq. (2.2) thus reads

N~T !5^N~ t ;f!&5E
0

2p

Y2~f!r1~VT1f!

3expF2
1
V E

0

VT
r1~u1f!duGdf . (4.64)

Performing a series expansion for small A0 /D in Eq.
(4.64) we find after some algebra that
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N~T !5N0F12
1
2 S A0

D D 2

cos~VT !GrKe2rKT, (4.65)

with N0
21512 1

2 (A0xm /D)2/@11(V/rK)2# . To indicate
the dimensional dependence we use 15xm throughout
the remaining part of this section. The opposite limit,
namely DV@A0xm@D , is reported here for complete-
ness, though it will be used only in Sec. IV.D. The
saddle-point approximation for the integral in Eq. (4.64)
yields

N~T !.exp@2~A0 /D !cos~VT !#

3exp$2~rmax/2V!~2pD/A0!1/2

3@2n111erf~AA0/2D~VT̄2p!#%, (4.66)

where erf(x) denotes the error function (Abramowitz
and Stegun, 1965), rmax5rK exp(A0 /D) and VT̄
5mod(VT ,2p). Both limiting expressions (4.65) and
(4.66) for N(T) exhibit a series of peaks centered at
Tn5(2n21)(TV/2) (see Fig. 5). The location of the first
peak is due to the fact that the clock was triggered at
T50, immediately after the system had crossed the bar-
rier at x50 and half a forcing period before the relevant
escape barrier attained a minimum for the first time.
The nth peak corresponds to the event that the system
switches first after n21 entire periods. Such ‘‘wait
loops’’ do not correspond to any subharmonic compo-
nent in the process power spectral distribution as
pointed out in Sec. II.B.

We are now in a position to discuss the synchroniza-
tion mechanism that occurs in the bistable potential of
Eq. (2.2) subjected to a periodic driving. In order to
quantify the strength of the nth peak of N(T), we in-

troduce the areas under the peaks

Pn5E
Tn2aTV

Tn1aTV
N~T !dT , (4.67)

with n51,2, . . . and 0,a< 1
4 . The actual value of the

parameter a is immaterial for the behavior of P1 . Let us
focus now on the distribution of Eq. (4.65). In the re-
gime of validity of Eq. (4.65), i.e., rK,V!2, the back-
ground of the distribution N(T) is negligible. The
strength Pn of the nth peak is thus a function of the ratio
rK /V alone. As a consequence, Pn attains its maximum
by setting either the forcing frequency nV to

nn.~2n21 !rK/2, (4.68)

or tuning the noise, with constant nV , according to Eq.
(4.68). The picture of SR as a ‘‘resonant’’ synchroniza-
tion mechanism is thus fully established (Gammaitoni,
Marchesoni, and Santucci, 1995). However, the reader
should keep in mind that although the weight P1 exhib-
its a maximum as a function of the frequency, the under-
lying mechanism is not a resonance in the sense of dy-
namical systems. While a dynamical resonance is due to
the interaction of two degrees of freedom when their
time scales agree, the nature of the peak of P1 as a
function of V is merely due to the coincidence of two
time scales. For the sake of comparison, in Figs. 10 and
11 we show the dependence of Pn on D and V, as pro-
duced by means of an analog simulation. The basic
properties of the synchronization mechanism are clearly
visible: (i) For D tending to zero at fixed V (Fig. 10), all
Pn approach a constant value independent on n , as ex-
pected in the nonadiabatic weak-noise limit of Sec.
IV.D. (ii) Each curve Pn5Pn(D) passes through a

FIG. 10. Observable x̄ (arbitrary logarithmic scale) and height
of the nth peak Pn with n51,2,3 vs D for nV540 Hz and

a5
1
4 . Data obtained by means of analog simulation of system

of Eqs. (4.3)–(4.7) with A0xm50.5DV and a53.23104 s−1. Af-
ter Gammaitoni, Marchesoni, and Santucci (1995).

FIG. 11. Observable x̄ (arbitrary logarithmic scale) and height
of the nth peak Pn with n51,2,3 vs nV for D50.3DV and
a51/4. Other simulation circuit parameters are as in Fig. 10.
An independent measurement yielded mK51.831022a . After
Gammaitoni, Marchesoni, and Santucci (1995).
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maximum, the position Dn of which shifts progressively
towards smaller values with the index n . (iii) The ob-
servables x̄ (D) and P1 peak at different D values, in
agreement with the predictions for DSR , Eq. (2.8), and
D1 , Eq. (4.68). (iv) Contrary to x̄ , which decreases
monotonically with the forcing frequency, the curves
Pn5Pn(nV) of Fig. 11 exhibit a clear-cut resonant-like
profile. The positions nn of the maxima of Pn are appar-
ently odd multiples of the fundamental frequency rK/2;
(v) Moreover, we notice that the inequality
Pn(nV).Pm(nV) holds for n,m in the whole range of
simulated forcing frequencies. Finally, we stress that for
V;rK or smaller, condition in Eq. (4.68) may be ful-
filled by the exponential background of the distribution
N(T) alone, even in the absence of peaks at Tn. Of
course, in this limit the quantities Pn provide no charac-
terization of the synchronization mechanism.

As an application of the residence-time analysis, we
now show how stochastic resonance may occur in the
absence of symmetry breaking. Following Dykman,
Luchinsky, et al. (1992), we consider the symmetric
bistable process

ẋ52V8~x !1f~ t !, (4.69)

where the potential function V(x) is as in Eq. (2.2) and

f~ t !5@A0 cos~Vt1w!1B#j~ t !, (4.70)

with A0 , B>0. On setting w50 for convenience, the
autocorrelation function of the noise reads

^f~ t !f~ t8!&52Dd~ t2t8!@A0 cos~Vt !1B#2. (4.71)

In Fig. 12 we show examples of digitized time series for
f(t) in the three typical cases discussed below, i.e., for
A051 and B50, for B50.2 and B51, and for fixed
effective noise intensity D̄5D(B21A0

2/2).
Contrary to the process of Eqs. (2.1)–(2.3), the pro-

cess under investigation here is symmetric under parity
transformation x→2x at any time. As a consequence,
^x(t ;f)&as50 vanishes identically and no peak is detect-
able in the power spectrum S(v).

Evidence of stochastic resonance effects can be de-
tected through a synchronization-based analysis (Gam-
maitoni, Marchesoni, Menichella-Saetta, and Santucci,
1994). In Fig. 13, residence-time distributions are dis-
played for the same A0 and B values as in Fig. 12. The
series of exponentially decaying peaks is apparent.
Moreover, the dependence of N(T) on the offset pa-
rameter B [see Eq. (4.71)] is also noteworthy. As illus-
trated in Fig. 12 for B>A0 the modulation period of
f(t) is TV , whence the peaks of N(T) are centered at
Tn5nTV . For B50, instead, the f(t) modulation pe-
riod is half the forcing period and, accordingly, the
peaks of N(T) are located at Tn5nTV/2. In the inter-
mediate case 0,B,A0 , two series of higher and lower
peaks show up with maxima at the even and odd mul-
tiples of TV/2, respectively.

When the strength of the first peak is plotted against
the noise intensity D , the curves P1(D) pass through a
maximum for D15D1(B). The B dependence of D1
can be interpreted quantitatively as follows. For A0!B
the rate performs small oscillations about the unper-
turbed rate rK(B2D), where B2D is the effective inten-
sity D̄ for A050. Therefore, according to the stochastic
resonance condition (4.68), the synchronization of
switching events and periodic noise amplitude modula-
tion is maximum for nV5rK(B2D1)/2. For A0@B , the
characteristic switching rate to compare with is the

FIG. 12. Digitized time series for f(t) with nV540 Hz, A051,
and different values of B . The envelope function
6uA0 cos(Vt)1Bu is drawn for convenience. Ordinate units are
arbitrary (Gammaitoni, Marchesoni, and Santucci, 1994).

FIG. 13. Simulated residence-time distribution N(T) for the
system of Eqs. (4.69) and (4.70) with nV540 Hz, A051, and
different values of B . Other circuital parameters are a
523104 s−1, xm51, and D̄50.16DV . After Gammaitoni,
Marchesoni, and Santucci (1994).
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Kramers rate rK with effective noise intensity
D̄5A0

2D1/2. On remembering that the period of the
f(t) amplitude modulation is now TV/2, we conclude
that the relevant stochastic resonance condition is
2nV5rK(A0

2D1/2)/2. Of course, such estimates for
D1(B), which fit very closely the simulation results of
Gammaitoni, Marchesoni, Menichella-Saetta, and San-
tucci (1994), could have been obtained by explicitly cal-
culating the relevant distributions N(T).

D. Weak-noise limit of stochastic
resonance—power spectra

The most common approach in investigating stochas-
tic resonance (apart from numerical solutions or analog
simulations) is linear-response theory or the perturba-
tion theory outlined in the Appendix. The condition for
linear-response theory and perturbation theory to work
well is that the effect of the periodic forcing can be
treated as a small perturbation, i.e., A0xm!D . The re-
sponse of the periodic driving can then be described in
terms of quantities of the unperturbed Fokker-Planck
equation, such as its eigenfunctions and eigenvalues
and/or some corresponding unperturbed correlation
function.

In this section, we consider the complementary limit
where A0xm@D , i.e., linear-response theory is no
longer valid. This weak noise limit, sometimes also
termed nonlinear stochastic resonance limit, reveals
some peculiar properties of the power spectrum that we
shall discuss (Shneidman et al., 1994a, 1994b; Stocks,
1995). The starting point for these investigations is, as in
Sec. III, the two-state master equation Eq. (3.1) for the
population dynamics. Assuming adiabatic conditions,
i.e., the change of the adiabatic potential
V(x ,t)5V0(x)2A0x cos(Vt) is slower than the thermal
relaxation within a potential well (in our units V!2),
the two stable states in the master equation are given by
the local (time-dependent) minima x6(t) of the adia-
batic potential V(x ,t). Fluctuations of the system within
the potential wells will be neglected, or treated as a
small perturbation.

We consider a situation in which the noise strength D
is the smallest parameter. The driving frequency is large
enough (though adiabatically slow) so that almost all
escape events take place when the potential barriers as-
sume their smallest values. Under these conditions, the
transition probability densities W6(t) are sharply
peaked at those instants when the escape times are mini-
mal. For the continuous bistable systems under study,
two adiabatic transition rates r6(t) were introduced in
Eq. (4.61). As a starting point, on taking the limit
D/A0xm→0 of Eq. (4.61) for A0xm!DV , we set

W7~ t !5ad@ t2~2m1d61,1!~p/V!# . (4.72)

The constant a, not related to the quantity in Sec.
IV.B.1, is the escape probability (rmax/V)(2pD/
A0xm)1/2, with rmax5rK exp(A0xm /D), and
m50,61,62, . . . (phase locking approximation).

Heading towards the power spectrum of this two-state
process, we subtract the periodic oscillations of the
asymptotic correlation (see Sec. IV.A) by introducing
the newly defined correlation function, i.e., with w set 0
we write

K~ t1t ,t !5^@x~ t1t!2^x~ t1t!&#@x~ t !2^x~ t !&#& .
(4.73)

The phase-averaged correlation function K̄(t), defined
by averaging K(t1t ,t) over one period of t , has been
obtained by solving the two-state master equation to
yield

K̄~t!54
xm

2 mt/D11

~11m!2 m [t/D](12~12m!@t/D#), (4.74)

where D5TV/2, m[exp(2a), and @t/D# denotes the in-
teger part of t in units of D (Shneidman et al., 1994a,
1994b). The autocorrelation function K̄(t) exhibits
cusps at each multiple of TV/2. While such cusps of
K̄(t) look to be a minor artifact of the phase-locking
approximation for D/A0xm→0, the periodicity of their
recurrence will affect the corresponding power spectral
density in a rather peculiar way. The Fourier transform
of K̄(t) reads

S~v!5
4xm

2

D

m~12m!

~11m!v2

3
12cos~Dv!

@12m cos~Dv!#21m2 sin2~Dv!
. (4.75)

We next discuss this result and its regime of validity.
(i) S(v) corresponds to the noise background compo-

nent of the power spectral density of the periodically
driven dynamics analyzed in Sec. IV.A. It depends on
the forcing frequency V through a modulation factor
and decays according to the same ‘‘universal’’ v22

power law as the unperturbed system does. Equation
(4.75) was derived by assuming the deltalike transition
rates of Eq. (4.72). On increasing the noise intensity or,
equivalently, upon decreasing the forcing frequency,
such an assumption becomes progressively invalid: The
switching phase may no longer be locked to the phase of
the input signal.

(ii) S(v) exhibits sharp dips at even multiples of the
driving frequency. In the asymptotic approximation [Eq.
(4.75)] the power spectral density vanishes at 2nV , that
is S(2nV)50. These zeros in the profile of S(v) are the
fingerprints of the periodic structure of nonanalytical
cusps in the correlation function K̄(t).

(iii) The experimental observability of the S(v) dips
is a delicate matter. For finite noise intensities these dips
broaden and undergo a ‘‘wash out’’ effect to an extent
that we estimate only at the end of this subsection. Here,
we limit ourselves to noticing that the width of the sharp
peaks in the transition rates r6(t) is, in fact, of order
(D/A0xm)1/2V21. It follows that for spectral frequencies
v smaller than V(A0xm /D)1/2 the deltalike approxima-
tion (4.72) is sound, and the predictions of the present
analysis are physically correct. For larger frequencies,
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i.e., a finer temporal resolution, the cusps of K̄(t) be-
come increasingly unphysical. The condition of observ-
ability for the mth dip is thus

~2m !2!A0xm /D . (4.76)

Note that detecting even the fundamental dip requires a
sufficiently large value of the ratio A0xm /D . This ex-
plains why dips have not been predicted within the
linear-response treatment where A0xm /D!1 (see Secs.
IV.B and Appendix). The fact that sometimes (at weak
noise) the dips were seen experimentally (termed ‘‘un-
explained’’ or ‘‘strange’’—see Zhou and Moss, 1990;
Bulsara et al., 1991; Kiss et al., 1993), and sometimes (at
strong noise) not, has continued to baffle experimental-
ists and theorists at the heyday of early stochastic reso-
nance simulations.

(iv) In the derivation of S(v), the modulation of the
quasiequilibrium states x6(t) has been neglected. This
effect is significant at large frequencies, when the sys-
tem, far from being synchronized, may sojourn many
forcing cycles in one well. The approximation
x1(t)2x2(t)52xm employed to derive Eq. (4.74) ought
to be improved. Without specializing our analysis to any
potential, we observe that the next-to-leading order cor-
rection to the difference x1(t)2x2(t) is proportional to
(A0xm /DV)2 cos2(Vt1w). It follows that only correc-
tions to fourth order in A0xm /DV , i.e., proportional to
(A0xm /DV)4 cos(2Vt)cos@2V(t1t)#, may become im-
portant in the computation of the phase-averaged corre-
lation function K̄(t) and its Fourier transform S(v).
Shneidman, Jung, and Hänggi (1994a, 1994b) concluded
that for

V@rmax~2pD/A0xm!1/2~DV/A0xm!2, (4.77)

a finite-width intrawell peak may become detectable at
2V, and may even dominate over the relevant S(v) dip.
Furthermore, on accounting for higher-order terms of
the time modulation x6(t), we can generate a harmonic
structure of intrawell peaks at all even multiples of the
forcing frequency.

In the weak-noise limit, the residence-time distribu-
tion can be calculated analytically without much effort.
We can either proceed as for the two-state model, or
adopt the approach of the foregoing Sec. IV.C. In both
cases, consistently with the assumptions used above, we
can assume a phase-switch distribution given by
Y6(f)5d(f2pd61,1). Not surprisingly, the final result
coincides with Eq. (4.66), the low-noise expression for
N(T) in the adiabatic approximation. It follows imme-
diately that the ratio of any two consecutive N(T) peaks
is given by

N~Tn11!/N~Tn!5exp~2a/2!, (4.78)

with Tn5(n21/2)TV , and a defined below Eq. (4.72).
Thus, as anticipated in Sec. IV.C, the strengths Pn of the
N(T) peaks approach one another in the asymptotic
limit a→0. Moreover, the width of such peaks is of the
order of (D/A0xm)1/2V21, namely the same as that of
the sharp peaks of the actual transition densities r6(t) at
low noise, cf. Eq. (4.61).

In a recent paper, Gammaitoni, Marchesoni,
Menichella-Saetta, and Santucci (1995) used analog
simulations for the periodically driven weak-noise limit
of the quartic double-well dynamics to verify the theo-
retical predictions of Eqs. (4.75)–(4.78). In order to
build up significant statistics, these authors increased the
amplitude A0 of the input signal close to, but smaller
than, the critical value Ac above which bistability is lost
when the maximal tilt is assumed. In this way, the ratios
of A0xm /D became of the order 103, and could easily be
simulated (strong-forcing regime). As a matter of fact,
the condition A0xm!DV does not enter explicitly in the
discrete-switching approximation. It was originally intro-
duced to simplify r6(u) to rK exp@7(A0xm /D)cos u# in
Eq. (4.61) and to determine the probability a in Eq.
(4.72). Therefore, we expect that in the strong-forcing
regime rmax does differ substantially from
rK exp(A0xm /D) in Eq. (4.72), but its physical role re-
mains unchanged. Gammaitoni, Marchesoni,
Menichella-Saetta, and Santucci (1995) verified that in

FIG. 14. Unsubtracted power spectral density (p.s.d.) (arbi-
trary units) of: (a) the full signal; (b) the filtered signal, for
different values of the forcing frequency nV5V/2p . The cir-
cuital parameters are DV/D51.63103, A0xm /D52.33103,
and a53.23104 s−1. After Gammaitoni, Marchesoni,
Menichella-Saetta, and Santucci (1995).

245Gammaitoni et al.: Stochastic resonance

Rev. Mod. Phys., Vol. 70, No. 1, January 1998



the limit of weak noise and strong forcing the shape of
the nth N(T) peak is approximated well by a Gaussian
function with standard deviation sT5(D/A0xm)1/2V21

independent of n . Furthermore, the peak height N(Tn)
turned out to decay according to the exponential law
(4.78), whence the estimate of the parameter a. Mante-
gna and Spagnolo (1996) reached the same conclusion in
their experimental investigation of the switching-time
distributions in a periodically driven tunnel diode.

Gammaitoni, Marchesoni, Menichella-Saetta, and
Santucci (1995) experimentally confirmed the predic-
tions of Shneidman, Jung, and Hänggi (1994a, 1994b) in
great detail. In particular, the following.

(a) The interwell and intrawell dynamics were sepa-
rated by filtering the output signal x(t) through a two-
state filter (x56xm) and contrasting the statistics of the
filtered signal with that of the full signal. The nonsub-
tracted power spectral densities for both output signals
are displayed in Fig. 14. In both cases the number of
resolved dips m is bounded from above by the inequal-
ity in Eq. (4.76).

(b) The dip structure of the power spectral densities
becomes more apparent by filtering x(t). Most notably,
the spectral dips tend to disappear with increasing V,
and their shape is not as sharp as that predicted by Eq.
(4.75).

(c) No peak structure due to the intrawell modulation
is observable in the power spectral density of the filtered
signal. In contrast, for the full signal, broad peaks lo-
cated in the vicinity around 2nV can be resolved at rela-
tively high values of V, namely for a!1, in agreement
with Eq. (4.77) for A0xm.DV . Moreover, such peaks
get sharper on further increasing V, and their height de-
creases with increasing peak index.

(d) Dips and peaks of the power spectral density may
coexist for the full signal, as suggested by items (a) and
(b). In such a case, their position deviates slightly from
the predicted value 2nV , by shifting to the right and,
possibly, to the left. At very low V values, no intrawell
modulation peak is detectable, whereas at high V values,
peaks dominate over dips which, in turn, tend to vanish.
We additionally remark that these intrawell modulation
peaks should not be mistaken for the delta-like spikes at
(2n11)V .

Finally, we mention that in addition to the detailed
experimental analog simulations (Gammaitoni,
Marchesoni, Menichella-Saetta, and Santucci, 1995), the
structure of the characteristic dips in the time-averaged
power spectrum S(v) at even-numbered harmonics
have also been observed in computer simulations of a
neural network using a model describing the perceptual
interpretation of ambiguous figures (Riani and Simo-
notto, 1994, 1995) and even in in situ experiments with
human observers (Riani and Simonotto, 1995). These
latter experiments yielded results that are in good quali-
tative agreement with the neural model predictions for
the stochastic resonance power spectra that characterize
the perceptual bistability in the presence of noise and
weak periodic perturbations.

V. APPLICATIONS

A. Optical systems

1. Bistable ring laser

A ring laser (Sargent et al., 1974) consists of a ring
interferometer formed by three or more mirrors and a
laser medium inside the cavity. In two-mode ring lasers,
the light can travel in a clockwise or counterclockwise
direction. Bistability with respect to the direction has
been discussed in large detail—see, for example, Man-
del, Roy, and Singh (1981). Random switching of the
beam intensities, initiated by spontaneous emission in
the laser medium and fluctuations in the pump mecha-
nism, indicates bistable operation of the ring laser. To
demonstrate stochastic resonance, the symmetry be-
tween the two modes has to be broken by applying a
periodic modulation that favors one of the modes. In the
pioneering experiment by McNamara, Wiesenfeld, and
Roy (1988), an acousto-optic modulator (Roy et al.,
1987) has been used to convert an acoustic frequency to
a modulation of the pump parameter. Gage and Mandel
(1988) have alternatively used Faraday and quartz rota-
tors to control the asymmetry of the modes. Before we
discuss the experiment by McNamara, Wiesenfeld, and
Roy (1988), we briefly review the theoretical description
of bistable ring lasers.

The semiclassical equations for a two-mode ring laser
(Sargent et al., 1974) augmented by noise sources G1,2(t)
to account for the effect of spontaneous emission and
pump noise p(t) assume in dimensionless units the form

İ152I1~a11p~ t !2I12jI2!1A2I1G1~ t !,

İ252I2~a21p~ t !2I22jI1!1A2I2G2~ t !, (5.1)

where I1 and I2 are the scaled dimensionless intensities
of the modes. The terms linear in I1,2 describe the net
gain of the laser modes, those with I1,2

2 describe satura-
tion and the mixed terms jI1I2 represent coupling be-
tween the laser modes. The fluctuations of the pumping
mechanism are described by the exponentially corre-
lated Gaussian noise p(t), i.e.,

^p~ t !p~ t8!&5
P

tc
expS 2

1
tc

ut2t8u D ,

^p~ t !&50 (5.2)

with correlation time tc and intensity P , while the
spontaneous-emission noise terms are assumed to be un-
correlated:

^G i~ t !G j~ t8!&5d ijd~ t2t8!,

^G i ,j~ t !&50. (5.3)

The pump parameters a1 and a2 are modulated antisym-
metrically by noise and a periodic signal (Vemuri and
Roy, 1989)

a1~ t !5 ā 1Da~ t !1r~ t !,

a2~ t !5 ā 2Da~ t !2r~ t !, (5.4)
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with r(t) being white Gaussian (injected) noise

^r~ t !r~ t8!&52Rd~ t2t8!,

^r~ t !&50, (5.5)

and

Da~ t !5A0 cos~Vt !. (5.6)

In the absence of the periodic modulation
(Da=const.), pump noise, and injected noise, the station-
ary probability Pst(I1 ,I2) can be obtained analytically
(Sargent et al., 1974). Integration over the intensity I2
yields the stationary probability density of I1 , which can
be written as

Pst~I1!5E
0

`

Pst~I1 ,I2!dI25
1
Z

exp@2V~I1!# , (5.7)

with the effective potential

V~I1!52
1
4

~j221 !I1
21F1

2
ā ~j21 !2

1
4

Da~j11 !GI1

2lnH erfcF1
2

jI12
1
2

ā 1
1
4

Da G J , (5.8)

and erfc being the complementary error function
(Abramowitz and Stegun, 1965). For slow and weak pe-
riodic driving, the potential V(I1) undergoes a periodic
change obtained by substituting Da by A0 cos(Vt), but it
remains bistable. The minimum corresponding to the
ON state (high intensity) rocks up and down—see Fig.
15. This situation looks similar to the quartic double-
well potential, discussed in Sec. IV. There are, however,
some differences:

(1) The potential V(I1) is only an effective potential.
For its construction, the pump noise and injected
noise had been neglected. The intuitive picture of a
particle (here the intensity) moving in the effective
potential can be used only as a heuristic guideline.

(2) The original Langevin equations (5.1) exhibit no in-
version symmetry.

In the experiment by McNamara, Wiesenfeld, and
Roy (1988), the intensity of one of the two modes has
been extracted from the ring laser. The time series for
the intensity has subsequently been compressed into a
binary pulse train that contains only information on
whether the mode was ‘‘ON’’ or ‘‘OFF.’’ This procedure
has been repeated for a large number of samples to ob-
tain the sample-averaged power spectrum. The power
spectrum consists of a smooth background, a sharp peak
at the frequency of the modulating field V, and smaller
peaks at multiples of V. Most significantly, the intensity
of the peaks at the driving frequency first increases with
increasing injected noise strength, passes through a
maximum and then decreases again. The signal-to-noise
ratio, shown in Fig. 16, reflects this characteristic bell-
shaped behavior.

For the archetypal quartic bistable potential in Sec.
IV, the power spectrum contains peaks only at odd mul-
tiples of the driving frequency. In the power spectrum

FIG. 15. The effective potential of Eq. (5.8) for the intensity of
a single laser mode in a bistable ring laser is plotted as a func-
tion of the intensity at the pump strength ā 560 and the cou-
pling j52 for different amplitudes Da5A0 cos(Vt) of the ex-
ternal field (i.e., during one period of the external field). It is
seen that the effective barrier height for a transition between
the ‘‘ON’’ state and the ‘‘OFF’’ state becomes periodically
modulated. After Vemuri and Roy (1989).

FIG. 16. The signal-to-noise ratio, obtained from the time de-
pendence of the intensity of one laser mode, shown as a func-
tion of the injected noise strength. After McNamaura, Wiesen-
feld, and Roy (1988).

FIG. 17. The light intensity of a single-mode laser with a satu-
rable absorber shown as a function of the pump current. The
hysteresis loop indicates optical bistability.
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here, however, a peak at twice the driving frequency can
be observed, reflecting the lack of inversion symmetry of
the two-mode laser Langevin equations (5.1), or the ef-
fective potential (5.8).

Digital simulations of Eq. (5.1) in Vemuri and Roy
(1989) are in qualitative agreement with the experimen-
tal results.

2. Lasers with saturable absorbers

A laser with a saturable absorber is a quantum device
consisting of a laser cavity where an amplifying as well
as an absorbing medium are placed. Bistability has been
observed in these devices by Arimondo and Dinelli
(1983) and Arimondo et al. (1987). Within a certain
range of the pump intensity, the output of the laser can
be in two different modes, depending on its previous
history.

In Fig. 17, the laser intensity (Fioretti et al., 1993) is
shown as a function of the pump current, which was
slowly increased until the output switched to the high
intensity level, and then decreased again. The observed
hysteresis loop is an indication of bistability.

In the experiment by Fioretti et al. (1993), the dc
pump current is chosen in order that the laser operates
in the bistable regime. The pump current is modulated
around this dc value by a small periodic signal plus an
external Gaussian noise source whose intensity can be
controlled.

The periodic signal is too small to cause switching by
itself. In the presence of pump noise, however, switching
takes place. The intensity of the laser light has been re-
corded as a function of time and subsequently filtered by
a two-bit filter, which only detects ‘‘ON’’ and ‘‘OFF’’
information. The extracted signal-to-noise ratios exhibit
maxima as a function of noise strength Q (see below).

The laser with a saturated absorber is described on a
semiclassical level by a system of three ordinary differ-
ential equations (Zambon et al., 1989)

Ė52
1
2 S D1

Ā

11auEu2 11 D E1j~ t !,

Ḋ52g~D1A1DuEu2!2c1~S2D !,

Ṡ52g1~S2D !, (5.9)

where E is the complex field amplitude and D is the
difference between the population of the upper and
lower energy level of the amplifier medium relevant for
lasing. The quantity S describes the influence of other
energy levels coupled to the populations of the lasing
levels; A and Ā describe the strength of the amplifying
and absorbing medium, respectively. Quantum fluctua-
tions are modeled by zero-mean white Gaussian noise
j(t) with ^j* (t)j(t8)& 5 4qd(t2t8). In order to sim-
plify the laser equations, S and D are adiabatically
eliminated by assuming the field strength E to be small
and much slower varying in time than S and D . Periodic
modulation and (Gaussian) fluctuations z(t) of the

pump current are taken into account by modulating the
amplifier strength A , i.e., A→A(t)5A1F cos(Vt)
1z(t), with

^z~ t !z~ t8!&52qd~ t2t8!,

^z~ t !&50. (5.10)

One finally arrives at the equation of motion for the
field intensity I[E* E

İ52IS 11
Ā

11aI
2

A

11I
2

z~ t !1F cos~Vt !

11I D
1AIG~ t !, (5.11)

with the real-valued zero-mean Gaussian noise G(t),
characterized by the correlation function

^G~ t !G~ t8!&52Qd~ t2t8!. (5.12)

Again, in contrast to the quartic double-well system in
Sec. IV.A, the equation of motion (5.11) does not have
inversion symmetry. The stationary intensities in the ab-
sence of fluctuations and modulation, are determined by
the zeros of F(I)5I(11Ā/(11aI)2A/(11I)). For
a.A/(A21), the dynamical system exhibits a subcriti-
cal pitchfork bifurcation at A5Ā11, which explains the
hysteretic behavior (see Fig. 17), bistability, and stochas-
tic resonance observed in the experiment when the
pump current A is ramped slowly up and down.

3. Model for absorptive optical bistability

Consider a ring interferometer with a passive medium
placed in it. Light is coupled into the interferometer
through a semipermeable mirror and, likewise, light is
transmitted at another mirror. Measuring the intensity
of the transmitted wave against the intensity of the inci-
dent wave, one finds an S-shaped curve; e.g., for some
values of the intensity of the incident beam the intensity
of the transmitted wave can have a small and a large
intensity. There are different mechanisms that can be
responsible for this behavior. One of them is due to non-
linear absorption in the passive medium.

A model for purely absorptive optical bistability in a
cavity was introduced by Bonifacio and Lugiato (1978).
For the scaled dimensionless amplitude y of the input
light and the scaled dimensionless amplitude of the
transmitted light x , they have derived the equation of
motion

ẋ5y2x2
2cx

11x2 1
x

11x2 G~ t !, (5.13)

with G(t) denoting Gaussian fluctuations of the inver-
sion

^G~ t !G~ t8!&52Dd~ t2t8!,

^G~ t !&50. (5.14)

The dimensionless parameter c is proportional to the
population difference in the two relevant atomic levels.
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For a large enough population difference c , the sta-
tionary transmitted light amplitude is an S-shaped func-
tion of the amplitude of the injected light, thus indicat-
ing bistability.

In the presence of a small, periodic perturbation of
the incident light, the parameter y in Eq. (5.13) has to be
modified by y→y(t)5y1A0 cos(Vt). The Fokker-

Planck equation corresponding to the Langevin equa-
tion (5.13) with the modulated parameter y has been
solved numerically by Bartussek, Hänggi, and Jung
(1994) by using the matrix-continued fraction technique,
and alternatively with linear-response theory for weak
modulation A0 . According to Sec. IV, the spectral am-
plification h [see Eq. (4.21)] of the periodic modulation
has been constructed from the asymptotic long-time so-
lution of the Fokker-Planck equation.

The following discussion is restricted to the bistable
regime. Here, it is important to distinguish a symmetric
case from an asymmetric case. In the symmetric case the
stationary probability density in the absence of periodic
driving has two peaks with the same heights in the zero-
noise limit D→0. For all other cases (asymmetric cases),
the peaks have different probabilistic weights at weak
noise.

In the symmetric case, one observes stochastic reso-
nance very much like in the quartic bistable double-well
potential (see Fig. 18), i.e., a peak in the amplification of
the modulation when the sum of the mean escape times
out of both stable states equals the period of the driving
(the values of the noise strength D where we have such
a time-scale matching are indicated by dashed lines in
Fig. 18).

In the asymmetric case (Fig. 19), the spectral amplifi-
cation is suppressed at weak noise, because—in contrast
to the symmetric case—the contribution of the hopping
motion to the response of the system disappears expo-
nentially for small noise; cf. Sec. IV.B.2. As a conse-
quence, the maximum of the spectral amplification does
not indicate a time-scale matching as in the symmetric
case. For small driving frequencies, the maximum of the
spectral amplification becomes independent of the driv-
ing frequency.

4. Thermally induced optical bistability in semiconductors

It has been shown that semiconductors exhibit a ther-
mally induced optical bistability facilitated by the ther-
mal shift of the fundamental band edge (Lambsdorff
et al., 1986; Grohs et al., 1989). The semiconductor is al-
most transparent at low intensities of the incident light.

FIG. 18. The numerical results for the spectral amplification h
are shown by the solid lines for the ‘‘symmetric case’’
y056.72584 at c56 and A051024. Different lines labeled ac-
cording to ‘‘n’’ correspond to the external angular frequency
V5102n. The dotted lines correspond to results within the
linear-response approximation. They can be distinguished
from the numerical results only for frequencies larger than
about 1022. The vertical dashed lines indicate the position
DSR of the maxima determined by the argument of matching
time scales discussed in Sec. II, and also in Bartussek, Hänggi,
and Jung (1994).

FIG. 19. The numerical results for the spectral amplification h
are shown by the solid lines for the ‘‘asymmetric case’’ y056.8
at c56 and A051024. Different lines labeled according to
‘‘n’’ correspond to the external frequency V5102n. The
curves for V,1023 are not distinguishable from the curve for
V51023. The dotted lines correspond to results within the
linear-response approximation. They can be distinguished
from the numerical results only for frequencies larger than
about 1022. The rightmost dashed vertical line indicates the
position DSR of the maximum determined by the argument of
matching time scales between the period of driving TV and the
sum of corresponding two escape times at V 5 1021; see
Bartussek, Hänggi, and Jung (1994). The angular driving fre-
quencies corresponding to the vertical dashed lines from right
to left are V 5 1021, V 5 1022, V 5 1023, V 5 1024, and
V 5 1027.

FIG. 20. Transmitted intensity It vs incident light intensity I0
for a laser-illuminated sample of the optical bistable semicon-
ductor CdS. The pulse length of the incident light intensity
determines the rate at which the hysteresis loop is run through.
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Increasing the intensity, the absorbed fraction of light
heats up the probe, which in turn induces a stronger
light absorption—a nonlinear effect. For large intensities
of the incoming light, the transmitted intensity is there-
fore small. Ramping down the intensity of the incoming
light, the transmitted intensity becomes larger again, but
describes a hysteresis loop (see Fig. 20) if the absorbed
fraction of light is a steep function of the temperature.
For increasing ramping speed, the hysteresis loop
smears out, but its area increases (a quantitative study of

the overshoot has been done by Grohs et al., 1991, and
Jung et al., 1990). Thermally optically bistable semicon-
ductors have been discussed for the design of optical
parallel computers (Grohs et al., 1989).

Experiments on stochastic resonance have been per-
formed (Grohs et al., 1994) with a semiconductor (CdS).
The CdS crystal had a thickness of about 6 mm and
shows thermally induced optical bistability (Lambsdorff
et al., 1986; Grohs et al., 1989) under illumination with
an Ar+ laser (l5514.5 nm). A two-beam setup has been
used for the experiments, with both beams incident on
the same spot of the crystal and having an equal diam-
eter of approximately 100 mm. The transmission state of
the crystal is read by a constant beam with an intensity
that is too small to induce nonlinear behavior by itself.
The intensity of the second beam consists of a constant
part to hold the system at the working point (i.e., in the
bistable regime), and of a weak periodic signal. More-
over, the weak periodic signal is perturbed by additional
injected noise j with a controllable amplitude. The
transmitted intensity has been measured as a function of
time and the power spectrum has been measured. In Fig.
21, the signal-to-noise ratio is shown as a function of the
strength of the injected noise. It shows the bell-shaped
curve, which is characteristic of stochastic resonance.

5. Optical trap

In the experiment by Simon and Libchaber (1992) a
spatial bistable potential was generated by optical
means. The experimental setup was based on the fact

FIG. 21. The signal-to-noise ratio of the transmitted light in-
tensity as a function of the noise strength (in arbitrary units)
for different amplitudes A (in arbitrary units) of the modula-
tion of the incident light intensity. The lines are to guide the
eye.

FIG. 22. Escape-time distributions of a particle in an optical trap. The time is measured in units of the mean escape time TK (from
one potential minimum to the other one). (a) The period of the forcing in units of the mean escape time was chosen as
T/TK53.08.1; (b) the period is given by T/TK50.76,1. While in (b), the peaks are clearly located at odd multiples of half the
forcing period, the second peak in (a) is shifted to the left (as far as the accuracy allows for such an interpretation).
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that in the presence of an electrical field gradient, a di-
electric object (here a 1 mm glass sphere) moves towards
the region of highest field strength. The electric field of a
laser beam has typically a transverse Gaussian intensity
profile, so that dielectric objects are pulled into the
beam axis. The two double wells are created by two
Gaussian beams obtained from one beam of an Ar laser
by utilizing beam splitters. In order to observe stochastic
resonance, the depths of the potential wells have to be
modulated periodically, which is achieved by modulating
the intensity of the two partial beams. The experimental
setup was positioned under a microscope so that the mo-
tion of the glass sphere in water was directly observable.
The pictures were recorded on video and electronically
analyzed.

Simon and Libchaber measured the distribution of
times the dielectric sphere stayed in one well before it
was kicked into the other one. In the absence of modu-
lations, they obtained an exponentially decaying distri-
bution. In the presence of the periodic forcing, they ob-
served a sequence of peaks at odd multiples of the half
driving period, with exponentially decaying peak height
as shown in Fig. 22. The time is measured in units of the
mean escape time TK out of a potential well in the ab-
sence of periodic modulation, i.e., t̃ 5t/TK . The period
of the modulation in Fig. 22 is measured in the same
units. They are given by T/TK53.08 (a) and T/TK50.76
(b). The first peaks are observed at t̃ '1.54 (a) and
t̃ '0.38 (b), i.e., at the half period of the driving. The
other peaks are located at odd multiples of the half pe-
riod of the driving as predicted by the theory in Sec.
IV.C.

In the case that the dwell time equals half the period
T an optimal synchronization occurs, leading to the con-
centration of the escape within the first period; thus an-
ticipating the notion of stochastic resonance in symmet-
ric, bistable systems as a ‘‘resonant’’ synchronization
phenomenon (see Sec. IV).

B. Electronic and magnetic systems

In this subsection we review some applications of sto-
chastic resonance to electronic and magnetic systems.
We recall that the very first experimental verification of
stochastic resonance was realized in an electronic circuit,
a simple Schmitt trigger (Fauve and Heslot, 1983). Since
then, stochastic resonance has been observed in a vari-
ety of more or less complicated electronic devices,
mostly constructed with the purpose of building flexible
and inexpensive simulation tools. A rather peculiar elec-
tronic device that exhibits stochastic resonance is the
tunnel diode, a semiconductor device with a bistable
characteristic I-V curve, whose dynamics can be con-
trolled by tuning the operating voltage. Due to the fast
switching dynamics between stable states (a few tenths
of a ns), stochastic resonance in a tunnel diode has been
observed for forcing frequencies as high as 10 KHz
(Mantegna and Spagnolo, 1994, 1995, 1996). More re-
cently, stochastic resonance has been reported also in a

non-bistable standard np semiconductor diode (Jung
and Wiesenfeld, 1997). Further experimental evidence
of stochastic resonance driven by externally time-
modulated magnetic fields (magnetic stochastic reso-
nance) was reported by Spano, Wun-Fogle, and Ditto
(1992) in magnetoelastic ribbons, and by I and Liu
(1995) in weakly ionized magnetoplasmas. Finally, mag-
netic stochastic resonance was predicted theoretically by
Grigorenko, Konov, and Nikitin (1990) and Grigorenko
and Nikitin (1995) for the interdomain magnetization
tunneling in uniaxial ferromagnets, by Raikher and
Stepanov (1994) for single-domain uniaxial superpara-
magnetic particles, and by Pérez-Madrid and Rubı́
(1995) in an assembly of single-domain ferromagnetic
particles dispersed in a low-concentration solid phase. In
recent experiments, stochastic resonance has been dem-
onstrated in Bi-substituted ferrite-garnet films (Grig-
orenko et al., 1994) and also in yttrium-iron garnet
spheres, where the noise-free, chaotic spin-wave dynam-
ics alone induces stochastic resonance in the presence of
an external modulation (Reibold et al., 1997).

1. Analog electronic simulators

As mentioned in Sec. II.C, electronic circuits have
been widely employed in the study of nonlinear stochas-
tic equations (for reviews, see McClintock and Moss,
1989; Fronzoni et al., 1989). Initially (Debnath et al.,
1989; Gammaitoni, Marchesoni, et al., 1989; Gammai-
toni, Menichella-Saetta, Santucci, Marchesoni, and
Presilla, 1989; Zhou and Moss, 1990, Hu et al., 1991), the
stochastic resonance studies via analog simulations con-
centrated on the simulation of the standard quartic
double-well system of Eq. (2.1). The temporal behavior
of the stochastic process x(t) can be reproduced by us-
ing a voltage source v(t) that obeys Eq. (2.1): the coef-
ficients for the dynamical flow are realized by means of a
suitable combination of passive analog components, like
resistors and capacitors. Active elements (transistors,
signal generators, etc.) are employed to simulate more

FIG. 23. Functional block scheme for simulating a heavily
damped particle moving in a quartic double-well potential; see
Eq. (2.1). The triangles denote operational amplifiers.
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complicated potential functions. The block scheme of
the circuit corresponding to Eq. (2.1) is drawn in Fig. 23.
The signal in A is assumed to represent the derivative
ẋ(t) of the variable of interest at time t . In B, after the
integration block, the signal x(t) is fed into three input
terminals: the terminal of the amplifier block a, to obtain
the signal ax , and the terminals of two multiplier blocks
X, which yield x2 after the first block, and x3 after the
second block. The latter signal is then inverted and am-
plified through two cascaded amplifying blocks. Finally,
the three signals in C are added together through block
S to give the starting signal ẋ(t).

The realization of an electronic simulation circuit re-
quires the design of specific electronic devices which op-
erate as the single components of the block scheme de-
picted in Fig. 23. Nowadays, such a purpose is best
served by the use of operational amplifiers (Millman,
1983): versatile electronic analog devices characterized
by high input impedance, low output impedance, and
wide frequency-response range. In Fig. 24 we show the
main devices employed to simulate Eq. (2.1). The rel-
evant output voltages v0 are

v0~ t !5
1

RC E
0

t
v i~t!dt (5.15)

for a Miller integrator,

v0~ t !5
R

R1
v11

R

R2
v21

R

R3
v3 (5.16)

for an adder amplifier, and

v0~ t !5
~x12x2!~y12y2!

10
1~z12z2! (5.17)

for a multiplier. The block scheme of Fig. 23 can thus be
translated into the electronic circuit scheme of Fig. 25.
The underdamped dynamics of Eq. (4.1), with V(x) de-
fined in Eq. (4.7), can be simulated by a modified ver-
sion of the previous circuit—see Fig. 26. Usually both
the stochastic force j(t) and the periodic modulation
A0 cos(Vt) are fed into the simulation circuits by means
of suitable voltage generators. The output voltage v0(t)
is sampled at regularly spaced times tm , with
tm112tm5Dt , digitized as v0,m5v0(tm) and then stored
into a digital memory unit. The sequence (tm ,vm) is fi-
nally analyzed, mostly off line, by means of standard
data-analysis algorithms.

The first, and probably the simplest circuit of this type
employed to investigate stochastic resonance dates back
to Fauve and Heslot (1983). It consists of a Schmitt trig-
ger, a two-state hysteretic device, that can be easily re-
alized by means of an operational amplifier with positive
feedback (Fig. 27). If the input voltage v i is lower than a
threshold value V1 , the output voltage v0 takes on the
constant value v05V . On increasing v i through V1 , the
output voltage v0 switches to v052V and stays negative
as long as v i is larger than a second threshold value V2

with V2,V1 . Vice versa, the output transition from
2V to V occurs at v i5V2 . The amplitude of the hys-
teresis cycle is given by V12V2 . The stochastic reso-
nance phenomenon follows from the periodic modula-
tion of the position of the center of the hysteresis cycle
around the mean value (V11V2)/2. Such a modulation
is reminiscent of the periodic tilting of the wells of a
bistable potential model. As a matter of fact, Eqs. (2.6)
and (2.7) apply to the output x(t)[v0(t) of a symmetric
Schmitt trigger (where, say, V152V25Vb) with minor

FIG. 24. Circuits for the functional blocks. (a) Miller integrator; (b) adder-amplifier; (c) multiplier.

FIG. 25. Simulator circuit for the overdamped dynamics of Eq.
(4.3).

FIG. 26. Simulator circuit for the underdamped dynamics of
Eq. (4.1).
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changes. For a Gaussian, exponentially autocorrelated
input signal v i(t) with zero mean, variance s i

2, and cor-
relation time t i , the parameters in Eqs. (2.7) read
xm5V , D5s i

2t i , and rK5@TK#21. The time T0(Vb)
denotes the mean-first-passage time for v i(t) to diffuse
from 2Vb up to Vb ; in the subthreshold limit s i!Vb it
may be approximated to t iA2p(s i /Vb)exp(Vb

2/2s i
2)

(Melnikov, 1993; Shulgin et al., 1995). Note that when
the amplitude of the hysteresis cycle is forced to zero,
the two thresholds overlap and we end up with a single
threshold system (see Sec. VII.A.1).

By now, stochastic resonance has been studied in a
variety of analog circuits: symmetric and asymmetric
quartic double-well potentials (Debnath et al., 1989;
Dykman, Luchinsky, et al., 1992; Gammaitoni,
Marchesoni, and Santucci, 1994; Gammaitoni,
Marchesoni, et al., 1994); the Hopfield neuron potential
(Bulsara, Jacobs, Zhou, Moss, and Kiss, 1991); the
Fitzhugh-Nagumo neuron model (Wiesenfeld et al.,
1994), to mention only a few.

2. Electron paramagnetic resonance

An EPR system consists of a paramagnetic sample
placed in a microwave cavity. A microwave generator
irradiates the sample while a feedback electronic circuit
locks the oscillator frequency to the resonant frequency
nc of the cavity. A static magnetic field H0 is applied to
the cavity and slowly modulated in order to vary the
Larmor frequency n05gH0/2p of the sample. Here g is
the gyromagnetic factor. The cavity response, deter-
mined by measuring the reflected microwave power,
usually exhibits a single minimum at n5nc ; however, in
the presence of a strong coupling between the cavity and
the spin system (a high number of paramagnetic cen-
ters), one observes a splitting of the resonance fre-
quency into two frequencies and the cavity response ex-
hibits two distinct minima separated by a local
maximum. The block scheme of an EPR experiment is
shown in Fig. 28: an electronic adder (block S); a stan-
dard microwave spectrometer (block S) made of a mi-
crowave generator, a resonant cavity, and the relevant
circuitry; and the feedback system (block F) that locks
the microwave source frequency to the maximum ab-
sorption of the cavity. Block C contains the measure-
ment instrumentation, mainly a frequency counter, to
monitor the working frequency, and a power meter to

measure the power reflected from the cavity. Block D
represents the data acquisition system.

In such a device, stochastic resonance was observed
first by monitoring the working frequency n (Gammai-
toni, Marchesoni, et al., 1991; Gammaitoni, Martinelli,
et al., 1991, 1992). A polypyrrole paramagnetic sample
was placed in the resonant cavity. The reflection coeffi-
cient of the cavity, measured as the ratio between the
reflected to the incoming power, was monitored by vary-
ing the working frequency. Under proper conditions
(strong coupling) the reflection coefficient, as a function
of the frequency, showed two separated minima, both
stable working points for the spectrometer. The dynami-
cal behavior of the frequency n is driven by the feedback
system. Under stationary conditions, n fluctuates around
the frequency of one of the two minima of the reflection
coefficient due to the action of the internal noise of the
system. When such noise intensity grows appreciable
compared to the height of the barrier that separates the
two minima, random switches are observed. Under such
circumstances the EPR system shows a noise-driven op-
erating frequency. Its dynamics can be described by the
approximate stochastic differential equation:

n̈52gṅ2V8~n!1j~ t !, (5.18)

where V(n) denotes the effective bistable potential re-
lated to the reflection coefficient. The same dynamics
can be observed by measuring the error voltage signal
generated by the feedback system. On inserting in the
feedback loop an external signal made of a periodic and
a random component and varying the intensity of the
injected noise, behavior typical of stochastic resonance
was detected and measured.

3. Superconducting quantum interference devices

The basic components of a SQUID are a supercon-
ducting loop and a Josephson junction. For practical
purposes, a SQUID can be envisioned as an electromag-
netic device that converts a magnetic flux variation into
a voltage variation and, as such, it has been successfully
employed in monitoring small magnetic field fluctua-
tions. One of the major limitations to a wide use of these
devices is their extreme sensitivity to environmental
noise. Recently, two different groups (Hibbs et al., 1995;
Rouse et al., 1995) succeeded in operating SQUIDs un-
der stochastic resonance conditions with the aim of in-

FIG. 27. Operational amplifier in the Schmitt trigger configu-
ration: (a) transfer characteristic; (b) electronic scheme.

FIG. 28. Block scheme of an EPR system. Block S: EPR spec-
trometer; block C: measurement devices; block D: data-
acquisition system; block F: feedback system; block S: adder.
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creasing low magnetic-field detection performance. The
dynamics of the magnetic flux F trapped in a standard
rf. SQUID can be generally described in terms of a
second-order differential equation:

LCF̈52tLḞ2V8~F!1Fe~ t !, (5.19)

where

V~F!5F1~b/2p!sin~2pF! (5.20)

plays the role of an effective potential and Fe(t) repre-
sents an externally induced flux variation. Here, the flux
F is measured in units of the fundamental flux quantum
F05h/2e ; L is the inductance of the loop, while C is the
junction capacitance and tL5L/Rj , where Rj is the
normal-state resistance of the junction. The quantity
b52pLic /F0 , with ic being the loop critical current, is
the adjustable parameter that allows us to set the shape
of the effective potential. With a proper choice of b and
for small F values, the system undergoes bistable dy-
namics. The SQUID loop can be shunted by a low resis-
tance in order to reduce the capacitance and discard in-
ertial effects in the flux [Eq. (5.19)].

The block scheme of a generic SQUID system is
shown in Fig. 29. Blocks A and B represent two
SQUIDs. The first one is driven with the external signal
and the second one is used to pick up the signal output.
The inductive coupling between the two loops and with
the outside circuitry is also shown (block C). The system
is shielded by a low-temperature cage (block D). Sto-
chastic resonance was observed both in the external
noise-injected configuration (Hibbs et al., 1995) and in
the thermally driven configuration (Rouse et al., 1995),
where the switching of the magnetic flux was driven by
the internal noise inherent in the SQUID. In both cases
a low-frequency periodic signal was injected externally.

C. Neuronal systems

The development of stochastic resonance took a large
leap forward when its potential relevance for neuro-
physiological processes had been recognized. Longtin,
Bulsara, and Moss (1991) observed that interspike inter-
val histograms of periodically stimulated neurons exhibit
a remarkable resemblance to residence-time distribu-
tions of periodically driven bistable systems (Gammai-

toni, Marchesoni, Menichella-Saetta, and Santucci, 1989;
Zhou et al., 1990). In this section, we report on the rel-
evant neurophysiological experiments and describe how
stochastic resonance enters naturally into standard mod-
els for neuronal dynamics. By now, stochastic resonance
is a well accepted paradigm in the biological and neuro-
physiological sciences, and several recent reviews on
neurophysiological applications of stochastic resonance
are available (Moss, 1994; Moss et al., 1994; Moss and
Wiesenfeld, 1995a, 1995b; Wiesenfeld and Moss, 1995).
Thus we keep this subsection—though there is a prodi-
gious potential for future applications—somewhat tight.

1. Neurophysiological background

There is a large variety of types of neurons in the
nervous system of animals and humans with variations
in structure, function, and size. Let us restrict ourselves
here to a canonical neuron (Amit, 1989), which presents
the underlying functional skeleton for all neurons. The
canonical neuron is divided into three parts, an input
part (the dendritic arbor), a processing part (the soma),
and a signal transmission part (the axon).

A neuron communicates via synapses, which are the
interfaces between its dendrites and axons of presynap-
tic neurons, i.e., neutrons that talk to the considered
neuron. There are a number of dendritic trees entering
the soma of the neuron. Usually, one axon leaves the
soma and then, downstream, it branches repeatedly to
communicate with many postsynaptic neurons, i.e., the
neurons the specified neuron is talking to. The funda-
mental process of neural communication is based upon
the following sequence:

(1) The neural axon is in one of two possible states. In
the first state, it propagates an action potential
based on the result of the processing in the soma.
The shape and amplitude of the propagating action
potential—the potential difference across the cell
membrane—is very stable, and is replicated at the
branching points in the axon. The amplitude is of
the order of 1021 mV. In the second state of the
axon, i.e., the resting state, no action potential is
propagated along the axons.

(2) When the propagating action potential reaches the
endings of the axons it triggers the secretion of neu-
rotransmitters into the synaptic cleft.

(3) The neurotransmitters travel across the synapse and
reach the membrane of the postsynaptic neuron.
The neurotransmitters bind to receptors that cause
the opening of channels, allowing the penetration of
ionic currents into the postsynaptic neuron. The
amount of penetrating current per presynaptic spike
is a parameter that specifies the efficiency of the syn-
apse. There are different ion channels for different
ions. To open, say, a potassium channel, a specific
neurotransmitter substance is required.

(4) In the absence of a neurotransmitter the resting po-
tential of the membrane of the postsynaptic neuron
is determined by the balance of the resting fluxes of
ions such as sodium and potassium. The resting

FIG. 29. Block scheme of the SQUID system. Block A : test
SQUID, driven by the external signal; block B : measurement
SQUID; block C : inductive coupling between the SQUIDs
and with the outside circuitry; block D : low-temperature
shield.
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membrane voltage is typically slightly above the
low-lying potassium voltage. The opening of say a
sodium channel disturbs the equilibrium and trig-
gers a postsynaptic potential close to the high so-
dium voltage. The membrane voltage is bound be-
tween the lower potassium voltage and the higher
sodium voltage. The fact that the rest state is very
close to the lower limit leads to a rectification of
external stimulus in sensory neurons and is of par-
ticular importance for the study of stochastic reso-
nance in neurons.

(5) The postsynaptic potential diffuses in a graded man-
ner towards the soma. It loses thereby around 80%
of its amplitude. Here, in the processing unit of the
neuron, the inputs from all presynaptic neurons (of
the order 104) are summed. The individual postsyn-
aptic potentials are about 1 mV in amplitude. These
inputs may be excitatory—depolarizing the mem-
brane of the postsynaptic neuron, increasing the
probability of a neuronal discharge event (spike), or
they may be inhibitory—hyperpolarizing the
postsynaptic membrane, thereby reducing the prob-
ability of a spike. The high connectivity allows for
two kinds of summation processes, temporal and
spatial summation. Both summation processes are
used in nature. Having a serial input of a train of
incoming pulses at one synapse, local summation
can take place. The typical separation of the pulses
is, however, of the same order as the typical decay
time of a postsynaptical potential (leakage rate).
Spatial summation of incoming events from many
different synapses does not suffer from the leakage
rate, but requires a spatial distribution of (even very
little) information throughout a local neural net-
work.

(6) If the sum of postsynaptic potentials arriving within
a short period of time exceeds a certain threshold,
the probability for the emission of a spike becomes
very large. This threshold is of the order of tens of
milliseconds and it therefore requires quite a num-
ber of inputs to produce a spike.

2. Stochastic resonance, interspike interval histograms,
and neural response to periodic stimuli

Over the last 50 years a large body of research has
been carried out to understand the encoding of acoustic
information on the primary auditory nerve of mammali-
ans (see, for example, Teich et al., 1993, and references
therein). Rose, Brugge, Anderson, and Hind (1967)
measured the interspike interval histogram of sinusoi-
dally stimulated auditory nerve fibers. A few typical ex-
amples from a squirrel monkey are shown in Fig. 30. On
the vertical axes, the numbers of intervals of length t
(horizontal axes) between two subsequent spikes (taken
from a long spike train) are shown. The first peak is
located at the period TV of the stimulus and the follow-
ing peaks are located at multiples of TV. In contrast to
the conventional theory of auditory information encod-
ing, the results above indicate that the information of

the period of the stimulus is also encoded in the tempo-
ral sequence of the action potentials (spikes). In other
words, there is a correlation between the temporal se-
quence of neuronal discharge and the time dependence
of the stimulus. In the neurophysiological literature this
correlation is termed phase locking. Earlier work report-
ing the limitation of the phase locking of the neural dis-
charge to the stimulus to small frequencies (,6 kHz)
(Rose et al., 1967) has been suggested to be too pessi-
mistic by Teich, Khanna, and Guiney (1993). These au-
thors argue that the synchronization holds up to 18 kHz.
They further argue that information about the period of
the stimulus is encoded in the temporal sequence of the
action potentials over virtually the complete band of
acoustical perception.

The resemblance of interspike interval histograms and
residence-time distributions of noisy driven bistable
systems—see Sec. IV.D—has connected stochastic reso-
nance research with neuronal processes. In Longtin,
Bulsara, and Moss (1991), Longtin (1993), and Longtin
et al. (1994), the interspike interval histograms of a sinu-
soidally stimulated auditory nerve from a cat have been
compared with return-time distributions of the periodi-
cally driven quartic bistable potential, i.e.,

ẋ5x2x31j~ t !1A0 cos~Vt !, (5.21)

and a soft bistable potential

ẋ52x1b tanh~x !1j~ t !1A0 cos~Vt !, (5.22)

with the Gaussian noise

^j~ t !j~ t8!&5
D

tc
expS 2

ut2t8u
tc

D ,

^j~ t !&50. (5.23)

The left potential well corresponds to a neuron that is
quiescent; the right potential well corresponds to the fir-
ing state. The noise correlation time tc has been ad-
justed to a typical value of the decay of a membrane
potential, i.e., tc51024 in the same dimensionless units
as in Eqs. (5.21) and (5.22). In Fig. 31, the return-time
distributions, i.e., the density of time intervals T it takes
for the system to be first kicked from one stable state to
the other and back again (this second process simulates
a reset mechanism), are compared with interspike inter-
val histograms taken from the cat’s primary auditory
nerve. With only one fitting parameter, it was possible to
achieve excellent agreement. In particular, the sequence
of peaks in the return-time distributions as well as those
in the interspike interval histograms decay exponentially
for large return times.

The key question is whether neurons also exhibit sto-
chastic resonance. To this end, Moss and collaborators
set up an experiment to study the neural response of
sinusoidally stimulated mechanoreceptor cells of cray-
fish (Douglass, Wilkens, Pantazelou, and Moss, 1993).
This experiment has allowed detailed studies of inter-
spike interval histograms to be carried out for a wide
range of values of the amplitude and frequency of the
stimulation. As in Longtin, Bulsara, and Moss (1991),
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the interspike interval histograms have been reproduced
by return-time distributions of periodically driven
bistable systems. Without a stimulus, the interspike in-
terval histograms decay exponentially for large return

times. In the presence of periodic driving, Moss et al.
(1993) found—as in the earlier experiments—a multi-
peaked structure with exponentially decaying peak
heights. In order to identify stochastic resonance, the

FIG. 30. Distributions of interspike intervals when pure tones of different frequencies activate the neuron. Stimulus frequency in
cycles per second (cps) is indicated in each graph. Time on the abscissa is in milliseconds. The dots below the abscissa indicate
multiples of the period for each frequency employed. On the ordinate, the number of intervals in one bin is plotted
(1 bin=100 ms). N is the total number of interspike intervals in the sample. N is given as two numbers: the first indicates the
number of intervals plotted; the second is the number of intervals whose values exceeded the maximal value of the abscissa. After
Rose et al. (1967).
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noise level had to be changed. To change the intrinsic
noise level is not straightforward and requires some
more involved experimental procedures (Pei et al.,
1996). Douglass, Wilkens, Pantazelou, and Moss (1993)
chose to change the noise level by adding noise exter-
nally, i.e., by applying to the neuron a sum of a single
tone and some noise. The spectral properties of the se-
ries of action potentials were analyzed, yielding a power
spectrum typified by background noise plus sharp peaks
at multiples of the frequency of the stimulus. The signal-
to-noise ratio is shown in Fig. 32. The shape of the curve
indicates stochastic resonance in a living neuron. An al-
ternative way of describing stochastic resonance is the
dependence of the peak height of the peaks in the inter-
spike interval histograms on the noise level (Zhou et al.,
1990). The height of the first histogram peak at the pe-
riod of the stimulus runs as a function of the noise
strength through a maximum at a value of the noise that
is very close to the peak of the signal-to-noise ratio (see
Fig. 32).

The experiments provide evidence that the firing of

periodically stimulated neurons actually exhibits sto-
chastic resonance. These results, obtained as in situ ex-
perimental results, are quite satisfactory. The present
theory, however, based on bistable dynamics [Eqs.
(5.21) and (5.22)], does not describe neuronal dynamics
very well. This is because the firing state of a neuron is
not a stable state. After a neuron has fired, it becomes
automatically quiescent after a refractory time. For a
more realistic modeling of stochastic resonance in neu-
ronal processes it is therefore necessary to study differ-
ent, nonlinear (nonbistable) systems.

3. Neuron firing and Poissonian spike trains

Wiesenfeld, Pierson, Pantazelou, Dames, and Moss
(1994) proposed a very elegant approximate theory for
modeling neuron firing in the presence of noise and a
periodic stimulus. The neuron emits uncorrelated, sharp
spikes (d spikes with weights normalized to unity) at
random times tn . The spiking rate, however, is inhomo-
geneous, i.e., sinusoidally modulated. This sort of pro-

FIG. 31. Return-time distributions for a sinusoidally stimulated auditory nerve: (a), (b) experimental interspike-interval histogram
data from a cat primary auditory nerve with an 800-Hz stimulus. The amplitude of the stimulus is 60 dB in (a) and 30 dB in (b).
The full curves in (c) and (d) are results obtained from analog simulation of the standard quartic model of Eqs. (5.21)–(5.23). The
parameters A0 and tc have been chosen fixed, while D has been fitted to yield best agreement with the interspike-interval
histograms in (a) and (b). The best fit in (c) is obtained at a smaller noise level D than in (d). The ratio of driving and noise level
in (c) is thus higher than in (d). This is in agreement with the higher stimulus in (a) than in (b). After Longtin, Bulsara, Pierson,
and Moss (1994).
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cess is described by the theory of inhomogeneous Pois-
sonian point processes—see, for example, chapter 6 of
Stratonovich (1963). Given the time-dependent spiking
rate r(t), the probability to find s events in the time
interval T is given by [cf. Eq. (6.33) in Stratonovich
(1963)]

Ps5
1
s! F E

0

T
r~ t !dtG s

expH 2E
0

T
r~ t !dtJ . (5.24)

The (phase-averaged) spectral density of the spike
train consists of a frequency-independent term (white
shot noise), given by the time-averaged spiking rate r̄ ,
and a sum of d peaks at multiples of the stimulus fre-
quency, where the intensities of the peaks are given by
the Fourier coefficients an of the periodic spiking rate
r(t), i.e.,

S~v!5 r̄ 12p (
n51

`

urnu2d~v2nV!,

rn5
1
T E

0

T
r~ t !exp~2inVt !dt . (5.25)

At this point, the only assumption made is that there are
no correlations between the spikes. It is remarkable that
spike-spike correlations yield only an additional term to
the spectral density (Jung, 1995), but otherwise leave the
result [Eq. (5.25)] invariant. To analyze further the ex-
pression (5.25), some approximations need to be made.
For r(t), an expression has been chosen, motivated by
the rate theory for noise-induced barrier crossing in the
presence of periodic external forces, i.e. [cf. Eq. (4.60)],

r~ t !5n expF2
DV

D
2

A0xm

D
cos~Vt !G , (5.26)

where DV is the barrier height in the absence of the
forcing, D is the noise strength, A0 is the amplitude and
V is the frequency of the periodic forcing, xm is a scale
factor, and the prefactor n depends on details of the rate
process. The expression (5.26) is limited to slow and
weak periodic forcing, i.e., V is small compared to the
local (intrawell) relaxation rate and A0 is small enough
that its effect on the rate can be treated as a perturba-
tion, i.e., A0xm /D has to be small. In leading order
(A0xm /D)2, the signal-to-noise ratio (SNR) is given by
the ratio of the intensity of the d peak of S(v) at V, i.e.,

r15nI1~A0xm /D !expS 2
DV

D D'n
A0xm

2D

3expS 2
DV

D D for A0xm /D!1, (5.27)

to the noise background in the absence of the periodic
driving

SN
0 ~V!5 r̄5n expS 2

DV

D D , (5.28)

yielding

SNR5
4pur1u2

r̄
'

pxm
2 A0

2

D2 expS 2
DV

D D . (5.29)

Note that corresponding expression in Wiesenfeld, Pier-
son, Pantazelou, Dames, and Moss (1994) differs in the
prefactor, because they used a different definition of the
spectral density.

The signal-to-noise ratio shows the characteristic fea-
ture of stochastic resonance, i.e., a peak as a function of
the noise strength D . Comparison with data obtained
from spike sequences of a mechanically modulated
mechanoreceptor of a crayfish (see Fig. 33) shows quali-
tative agreement. The decrease of the SNR at large
noise levels, however, is overestimated by this theory. A
nonadiabatic theory based on threshold crossing dynam-
ics (see Sec. V.C.5) predicts a slower decrease. Stochas-
tic resonance was also demonstrated in an experiment
that uses a sensory hair cell of a cricket (Levin and
Miller, 1996).

FIG. 32. Stochastic resonance in mechanoreceptor cells of the
tail fan of a crayfish: (a) The signal-to-noise ratio obtained
from power spectra and (b) from the peak height of the first
peak in the interspike-interval histogram as a function of the
externally applied noise level.
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4. Integrate-and-fire models

A very common model for neuronal dynamics is the
so-called integrate-and-fire model. The model works as
follows: the input i(t) of the neuron consists of a spike
train (cortical neurons) or a continuous signal (sensory
neurons). The membrane voltage u(t) is obtained by
integrating the input i(t). A capacitance C together
with an ohmic resistance R across the membrane leads
to an exponential decay of the membrane voltage. With
additional noise j(t), the equation of motion for the
membrane voltage u reads

u̇52
1

tRC
u1i~ t !1j~ t !, (5.30)

where tRC5RC . Due to the linearity of Eq. (5.30), the
noise j(t) can consist of a sum of two contributions
stemming from inherent (correlated) fluctuations of the
membrane potential and noise in the input. Here, we
consider only noisy input and assume that j(t) is Gauss-
ian white noise, i.e.,

^j~ t !j~ t8!&52Dd~ t2t8!,

^j~ t !&50. (5.31)

When the membrane voltage reaches a critical value u0
(the threshold), the neuron fires, then is reset, and the
whole procedure can start all over again.

Denoting by tn the times at which the neuron fires, the
neuron exhibits a spike train of the form

y~ t !5(
n

h~ t2tn!5E
2`

`

yd~ t2s !h~s !ds ,

yd~ t !5(
n

d~ t2tn!, (5.32)

where h(t) describes the (fixed) shape of a neuronal
spike. Given the distribution function of the times tn , or
equivalently that of the interspike intervals
Dn5tn2tn21 , the spectral properties of the spike train
can be computed by means of the theory of random
point processes [see, for example, Stratonovich (1963)].

In the case of a ‘‘perfect’’ integrator @1/(RC)50# , the
Fokker-Planck equation for the membrane voltage,
equivalent to Eq. (5.30), reads for a sinusoidal input
i(t)5i01A0 cos(Vt)

]P~u ,t !
]t

52@ i01A0 cos~Vt !#
]P~u ,t !

]u

1D
]2P~u ,t !

]u2 . (5.33)

The distribution function of the interspike intervals t
5 D is given by the mean-first-passage time distribution
rMFPT(t) [see, for example, Hänggi et al. (1990)], which
is obtained by solving Eq. (5.33) with absorbing bound-
ary conditions at the threshold b , i.e., P(u5b ,t)50, and

FIG. 33. Signal-to-noise ratio in crayfish mechanoreceptors
(squares) compared to the electronic Fitzhugh-Nagumo simu-
lation (diamonds) (Wiesenfeld et al., 1994) and the theory of
Sec. V.C.3 (solid curve). The horizontal axis represents the
intensity of externally applied noise: hydrodynamic noise in
the case of the mechanoreceptors, and electronic noise in the
case of neuron models. The crayfish data do not decrease rap-
idly for small noise because of the residual internal noise of the
neuron. Figure provided by Professor Moss.

FIG. 34. The first-passage time distribution function g(t) vs
time measured in units of the normalized time t/TV (note that
in the figure t denotes the first passage time, and T5TV is the
forcing period). The figure contains two sets of curves, one
with solid lines and another with dashed lines. The set with
solid lines corresponds to a current i050.065 A0. The smooth
solid curve (without multiple peaks) represents the distribu-
tion function without periodic stimulus (A050) while the solid
curve with the peaks corresponds to A050.03. The smooth
dashed curve corresponds to A050 and the multipeaked
dashed curve corresponds to A050.03. The other parameters
(for all curves) are b520, V50.1, D50.2.
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subsequent differentiation with respect to time. This
task was carried out first analytically in the absence of
the periodic stimulus A050 [see also the corresponding
solution for a finite leakage rate 1/(RC) in Goel and
Richter-Dyn (1974)], and then numerically in the pres-
ence of the stimulus by Gerstein and Mandelbrot (1964).
More recently, Bulsara, Lowen, and Rees (1994) and
Bulsara, Elston, Doering, Lowen, and Lindenberg
(1996) used an approximate image-source method to
solve the Fokker-Planck equation in the presence of a
weak and slowly varying sinusoidal stimulus. The fea-
tures of their result follow:

(1) The first-passage time distribution shows in the pres-
ence of the periodic stimulus a multipeaked struc-
ture (see Fig. 34). For sufficiently large stimulus, the
peaks are located at tmax

n 5nTV , with TV52p/V be-
ing the period of the stimulus [see also Gerstein and
Mandelbrot (1964)].

(2) The peak heights decay exponentially for increasing
intervals t .

(3) The peak heights run through a maximum as a func-
tion of the noise strength D .

This behavior resembles very closely the behavior of
return-time distribution of the bistable models described
in Sec. V.C.2. As yet, the theory above is based on a
number of unrealistic assumptions; moreover, it contains
technical difficulties that have yet to be overcome:

(1) The phase of the sinusoidal stimulus has been reset
after each firing event to the same initial value. This
approximation is unrealistic from a physiological
point of view, since a large amount of information
about the coherence of the stimulus is eliminated. A
theory of first-passage time distributions in the pres-
ence of a periodic forcing that explicitly avoids this
assumption has not yet been put forward.

(2) Since the resting voltage of the membrane of a neu-
ron is very close to the potassium voltage, being a
lower bound for the variation of the membrane volt-
age, an originally sinusoidal stimulus becomes
strongly rectified. It is therefore not realistic simply
to add the sinusoidal stimulus to the membrane volt-
age in the integrate-and-fire model without taking
into account rectification.

(3) Strictly speaking, the method of image sources is ap-
plicable only to diffusion processes that are homo-
geneous in space and time variables. The error made
by using this method (as an approximation) in time-
inhomogeneous equations such as Eq. (5.33) has not
been estimated mathematically.

5. Neuron firing and threshold crossing

The threshold-crossing model for neuronal spiking is
motivated from the leaky integrate-and-fire model as
follows: the input i(t) consists of a constant i0 and a
sinusoidal modulation A0 sin(Vt). In the absence of
noise, the solution of Eq. (5.30) reads for large times

u`~ t !5i0tRC1
A0tRC

A11V2tRC
2 sin~Vt2wRC!, (5.34)

where tan(wRC)5V/tRC . The threshold is larger than the
maximum of u`(t), i.e., we assume a subthreshold
stimulus. In the presence of the noise j(t), the mem-
brane voltage u(t) will randomly cross the threshold. In
contrast to the integrate-and-fire model, the membrane
voltage is not reset after a threshold crossing in the mod-
els being discussed here. The threshold-crossing models
are relying on a stochastic self-resetting due to the noise
itself.

The simple picture we are drawing is the following:
the input of our threshold trigger consists of the sum of
a sinusoidal signal with amplitude
A0→A0tRC /A11V2tRC

2 and random noise j(t) which
occasionally crosses the reduced threshold
b→b2i0tRC . Whenever the threshold b is being
crossed (at times tn), a spike is created. This yields a
stochastic spike train given in Eq. (5.32). To keep things
simple, we assume a d-shaped spike with area normal-
ized to unity, i.e., h(t)5d(t) in Eq. (5.32). In specific
terms, we assume Gaussian-colored noise j(t) with a
zero mean and the correlation function

^j~ t !j~0 !&5
D

t2
22t1

2 @t2 exp~2t/t2!

2t1 exp~2t/t1!# , (5.35)

where t1 and t2 are characteristic time scales. Using the
fundamental work of Rice (1948), one finds for the
threshold crossing rate the central result (Jung, 1995)

r~ t !5
1

2pAt1t2

expS 2
(12Ā sin~Vt !)2

2 s̄ 2 D
3F expS 2

Ā2e2 cos2~Vt !

2 s̄ 2 D
1

1
2

ĀeA2p

s̄ 2
cos~Vt !erfcS 2

Āe cos~Vt !

A2 s̄ 2 D G
[

1

At1t2

f~Ā , s̄ ,e!, (5.36)

with the scaled parameters Ā5A0 /b , s̄ 25s2/b2,
e25V2t1t2 . The periodicity reflects the encoding of the
periodic input signal in the spike train. The power spec-
trum of the spike train has the same form as in Eq.
(5.25) but has an additional term describing the spike-
spike correlation function. Computing the Fourier coef-
ficient r1 of the periodic threshold crossing rate r(t),
one finds for the spectral amplification

h5
4ur1u2

A0
2 5

1
t1t2

h̄ ~Ā , s̄ 2,e!. (5.37)

The spectral amplification h describes the encoding gain
of the periodicity of the input signal in the stochastic
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spike train. The scaled spectral amplification h̄ is shown
as a function of the variance of the noise in Fig. 35. For
A0 /b,1, i.e., in the subthreshold regime, the spectral
amplification first increases with increasing noise,
reaches a maximum at s̄max

2 '1/2, and then decreases
again. For small time scales t1,2 , the spectral amplifica-
tion becomes large and describes a real encoding gain
facilitated by random noise. The position of the maxi-
mum is obtained from Eq. (5.36) by expanding for
A0tRC /D!1, i.e.,

h5
1
2

r2~A050 !S 1

s̄ 4
1e2

p

2 s̄ 2D . (5.38)

The first term on the right-hand side of Eq. (5.38) has
been obtained within the adiabatic theory of Gingl, Kiss,
and Moss (1995), and also by the approach of Wiesen-
feld et al. (1994) (see Sec. V.C.3), while the other term
represents nonadiabatic corrections (Jung, 1995). For
large variances of the noise, the nonadiabatic correc-
tions become very important; they yield a decrease of
the spectral amplification proportional to 1/s̄ 2 instead of
1/s̄ 4 in the adiabatic limit. The position of the peak de-
viates significantly from that in a driven symmetric
bistable system. In the limit of vanishing frequency V,
the spectral amplification approaches a limit curve with
the maximum at approximately s̄max

2 5 1
2 . Increasing the

frequency, the peak increases due to periodic jittering
back and forth across the threshold, and shifts towards
larger values of the variance s̄ 2.

In Fig. 36, the scaled spectral amplification h̄ is shown
as a function of the amplitude Ā . For s̄ 2, s̄max

2 , the
spectral amplification shows a maximum as a function of

the amplitude, as in the quartic double-well system (Sec.
IV).

In conclusion, stochastic resonance has been demon-
strated experimentally in neuronal systems although
these systems are not bistable. In the course of develop-
ing a theoretical understanding of these experimental
results, the notion of stochastic resonance has been gen-
eralized to include excitable systems with threshold dy-
namics. In this latter context we refer also to related
work of Collins and collaborators on aperiodic stochas-
tic resonance (Collins et al., 1995a, 1995b, Collins,
Chow, et al., 1996; Collins, Imhoff, and Grigg, 1996;
Heneghan et al., 1996), and the recent developments
aimed at detecting stochastic resonance in nondynamical
systems with no intrinsic sharp thresholds (Fuliński,
1995; Barzykin and Seki, 1997; Bezrukov and Vodyanoy,
1997; Jung, 1997; Jung and Wiesenfeld, 1997).

VI. STOCHASTIC RESONANCE—CARRIED ON

A. Quantum stochastic resonance

Recently, the question has been posed whether sto-
chastic resonance manifests itself on a quantum scale. In
particular, recent experiments in a macroscopic quan-
tum system, such as a superconducting quantum inter-
ference device (SQUID), established the mechanism of
stochastic resonance in the classical regime of thermal
activation (Rouse et al., 1995; Hibbs et al., 1995). The
experimental work of Rouse, Han, and Lukens (1995)
also addressed nonlinear stochastic resonance, such as
the noise-induced resonances, which are elucidated in
Sec. VII.D.1 below. Because quantum noise persists
even at absolute zero temperature, the transport of
quantum information should naturally be aided by quan-
tum fluctuations as well. Indeed, quantum mechanics

FIG. 35. The scaled spectral amplification h̄ , of Eq. (5.37), is
shown as a function of the variance of the noise (a) for Ā50.1,
(b) Ā50.5, and (c) Ā51. The time-scale ratio e was chosen as
e51. Note that due to the scaling relation for h in Eq. (5.37),
the actual spectral amplification can become much larger than
unity (real spectral amplification) if the cutoff frequencies 1/t1
and/or 1/t2 are chosen large enough.

FIG. 36. The scaled spectral amplification h̄ shown as a func-
tion of the amplitude of the sinusoidal signal Ā (a) for
s̄ 250.1,(b) s̄ 250.5, and (c) s̄ 251. The time-scale ratio e was
chosen as e51.
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provides the nonlinear system with an additional chan-
nel to overcome a threshold. This additional channel is
provided by quantum tunneling, i.e., a particle can tun-
nel through a barrier without ever going over it. As a
matter of fact, we shall see that the classical stochastic
resonance effect can be assisted by quantum tunneling
contributions even at finite temperatures. For strongly
damped systems, such contributions can enhance the
classical stochastic resonance effect up to two orders of
magnitude. With decreasing temperature, quantum tran-
sitions thus start to dominate over thermally activated
transitions below a crossover temperature T0 (Hänggi
et al., 1985), which characterizes the temperature at
which activated hopping and quantum tunneling become
equally important. Its value depends both on the pote-
nial barrier shape and the dissipative mechanism. It is
interesting to note that this crossover temperature can
be quite large, reaching in some physical and chemical
systems values larger than 100 K (Hänggi et al., 1990;
Hänggi, 1993). On the other hand, in Josephson systems
(Schwartz et al., 1985; Clarke et al., 1988; Hänggi, 1993)
and in mesoscopic, disordered metals (Golding et al.,
1992; Chun and Birge, 1993) tunneling dominates in the
cold mK region only. The various escape mechanisms
that predominate the physics of stochastic resonance as
a function of temperature T are depicted in Fig. 37.

1. Quantum corrections to stochastic resonance

Let us first focus on the regime T*T0 , where quan-
tum tunneling is not the dominant escape path, but nev-
ertheless leads to significant quantum corrections. The

role of quantum tunneling in this regime has been inves-
tigated only recently by Grifoni et al. (1996). These au-
thors investigated the dissipative inertial bistable quan-
tum dynamics x(t) at thermal temperature T in a
double-well configuration which is modulated by the pe-
riodic force A0 cos(Vt). The asymptotic power spectrum
Sas(v)5*2`

` exp(2ivt)K̄as(t)dt, cf. Eq. (4.24), of the
time-averaged, symmetrized autocorrelation function of
x(t) is given by

Sas~v!52p (
n52`

`

uMn~V ,A0!u2d~v2nV!. (6.1)

Hereby, we introduced the notation Mn(V ,A0) for the
complex-valued Fourier amplitude to explicitly indicate
the dependence on the relevant parameters. The two
quantities to exhibit quantum stochastic resonance are
the power amplitude h in the first frequency component
of Sas(v) and the ratio of h to the unperturbed, equilib-
rium power spectrum SN

0 (v) of x(t) in the absence of
driving, evaluated at the external modulation frequency
V, i.e. the so-called signal-to-noise ratio (SNR):

h54puM1~V ,A0!u2,

SNR54puM1~V ,A0!u2/SN
0 ~V!. (6.2)

By definition, h has the dimension of a length squared,
while SNR has the dimension of a frequency. Thus to
investigate the interplay between noise and the coherent
driving input, giving rise to the phenomenon of stochas-
tic resonance, we shall consider two dimensionless quan-
tities: The scaled spectral amplification h̃ , and the scaled
signal-to-noise ratio SNR̃ . They read

h̃5
4puM1~V ,A0!u2

~A0xm
2 /Vb!2 ,

SNR̃5
@4puM1~V ,A0!u2/SN

0 ~V!#/vb

~A0xm /Vb!2 . (6.3)

Here, Vb is the barrier height at the barrier position
xb50, vb denotes the corresponding angular barrier fre-
quency, and 6xm are the positions of the two minima of
the bistable potential. These two quantities that charac-
terize stochastic resonance can be evaluated within
quantum linear-response theory to give for the scaled
spectral amplification

h̃5pS Vb

kBT D 2 1
cosh4~e0 /2kBT !

l2

V21l2 . (6.4)

Here, kB is the Boltzmann constant, and l5r11r2 is
the sum of the forward and backward quantum rates r1

and r2 , respectively. These unperturbed quantum rates
have been evaluated previously in the literature—see
Sec. IX in the review of Hänggi, Talkner, and Borkovec
(1990). A possible difference between the left and the
right potential minimum is accounted for by the bias
energy e0 . The backward and forward rates are related
by the detailed-balance condition r25r1 exp(2e0 /kBT).
Note that information about the detailed form of the
potential, and the dissipative mechanism as well, is still

FIG. 37. The dominant escape mechanisms out of a metastable
potential, and corresponding regimes for stochastic resonance
depicted vs temperature T . T0 denotes the crossover tempera-
ture below which quantum tunneling dominates over thermally
activated hopping events. We note that T0 depends on the
potential shape and also on the dissipative mechanism (Hänggi
et al., 1985). The relative size of the corresponding stochastic
resonance regions hence vary with the dissipation strength. In
the region marked by a question mark, quantum stochastic
resonance has presently not yet been investigated analytically;
a two-level approximation is no longer adequate in that tem-
perature regime.
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contained in the total quantum rate l. Likewise, one
finds the result for the scaled SNR̃ , i.e.,

SNR̃5
p

2 S Vb

kBT D 2 l/vb

cosh2~e0 /2kBT !
. (6.5)

Both the zero-point energy fluctuations and the dissipa-
tive tunneling across the barrier near the barrier top re-

sult in a characteristic enhancement of the SNR̃ , or the
scaled spectral amplification h̃ . The enhancement can
reach values up to two orders of magnitude as compared
to a prediction based solely on a classical analysis. In
Fig. 38 we depict the quantum-tunneling-corrected,
scaled SNR for zero bias, i.e., e050, together with the
enhancement over the corresponding classical study (see
the inset).

The temperature dependence at different driving fre-
quencies V of the scaled spectral amplification is de-
picted in Fig. 39 for quantum stochastic resonance in a
symmetric (e050) double well subjected to ohmic quan-
tum friction. In presence of tunneling, the role of both
temperature and dissipation must be treated simulta-
neously in a manner consistent with the fluctuation-
dissipation theorem (Grifoni et al., 1996). In particular,
with strong damping the effects of quantum fluctuations
on stochastic resonance can extend well above the cross-
over temperature T0 . As depicted in the inset of Fig. 39,
the stochastic resonance peak is dominated by the two

competing effects of an increasing Arrhenius factor and
a decreasing factor (kBT)2 with increasing noise tem-
perature. These two quantities characteristically rule the
stochastic resonance effects—see Eqs. (4.51) and (4.54).

2. Quantum stochastic resonance in the deep cold

The situation changes drastically when we proceed to-
wards the extreme cold. Here, we shall focus on the
deep quantum regime, where tunneling is the only chan-
nel for barrier crossing. In this low-temperature regime,
periodic driving induces several new interesting, coun-
terintuitive physical phenomena, such as ‘‘coherent de-
struction of tunneling’’ (Grossmann et al., 1991), the
‘‘stabilization of dissipative coherence’’ with increasing
temperature (Dittrich et al., 1993; Oelschlägel et al.,
1993), or the effect of driving-induced quantum coher-
ence (Grifoni et al., 1995). Quantum stochastic reso-
nance within the regime of incoherent tunneling transi-
tions at adiabatic driving frequencies has been
investigated first by Löfstedt and Coppersmith (1994a,
1994b) in the context of impurity tunneling in ac-driven
mesoscopic metals (Golding et al., 1992; Chun and
Birge, 1993; Coppinger et al., 1995). Linear response for
quantum stochastic resonance as well as nonlinear quan-
tum stochastic resonance has been investigated in the
whole parameter range by Grifoni and Hänggi (1996a,
1996b); their studies encompass adiabatic and nonadia-
batic driving frequencies, as well as the role of both an

FIG. 38. The scaled signal-to-noise ratio [within linear re-
sponse; see Eq. (6.5)] SNR̃ of semiclassical, inertial dynamics
in a symmetric double well vs the dimensionless temperature
T/T0 , with T0 denoting the crossover temperature (see text),
for ohmic friction g of strength a5g/2vb550. The solid line
gives the dimensionless semiclassical signal-to-noise ratio with
tunneling corrections. The dashed line gives the corresponding
classical result without quantum corrections. The ratio be-
tween semiclassical quantum signal-to-noise ratio, SNR̃ , and
the corresponding classical result, SNR̃cl, is depicted in the
inset. Note that the tunneling contribution can enhance sto-
chastic resonance up to two orders of magnitude. From Grifoni
et al. (1996).

FIG. 39. Scaled spectral amplification h̃ [see Eq. (6.4)] in a
symmetric double well vs dimensionless temperature (cf. Fig.
38) for different driving frequencies V (solid lines). For com-
parison, the dashed lines give the results for the classical sto-
chastic resonance spectral amplification. The dimensionless
ohmic friction strength is a5g/2vb550. The inset depicts the
ratio between the total (forward and backward) rate Ḡ [ l
and V at the temperature Th* where h̃ assumes its maximum.
The stochastic resonance maximum is thus approximately de-
termined by the condition that twice the escape rate, i.e.
Ḡ(Th* ), approximately equals the external driving frequency
V. After Grifoni et al. (1996).
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incoherent (i.e., rate-dominated relaxation) and coher-
ent (i.e., oscillatory-dominated damped relaxation) tun-
neling dynamics.

In the regime below the crossover regime, i.e., the
regime marked by a question mark (?) in Fig. 37, there
exist at present no analytical studies of quantum sto-
chastic resonance. This is due mainly to the fact that in
this regime the dissipation-driven tunneling dynamics in-
volve many states. At very low temperatures, however,
the dynamics are ruled mainly by two tunnel-split levels
only. Thus in the deep quantum regime the investigation
of quantum stochastic resonance reduces to the study of
the dynamics of the spin-boson system in the presence of
ohmic dissipation which, in addition, is subjected to pe-
riodic driving (Grifoni et al., 1993, 1995; Dakhnovskii
and Coalson, 1995; Makarov and Makri, 1995; Goychuk,
Petrov, and May, 1996; Makri, 1997). More explicitly, let
us consider the driven spin-boson Hamiltonian
H5HTLS(t)1HB , i.e.,

HTLS~ t !52
\

2
~Dsx1e0sz!2

\ê

2
cos~Vt !sz (6.6)

represents the driven bistable system in a two-level-
system approximation with (\ê/a)cos (Vt) being the ap-
plied harmonic force. The s’s are Pauli matrices, and the
eigenstates of sz are the basis states in a localized rep-
resentation, while a[2xm is the tunneling distance. The
tunneling splitting energy of the symmetric two-level
system is given by \D while the bias energy is again \e0 .
Within the spin-boson model (Leggett et al., 1987;
Weiss, 1993), the environment is modeled by a term HB
describing an ensemble at thermal temperature T of
harmonic oscillators. The term HB in addition includes
the interaction between the two-level system and the
bath via a bilinear coupling in the two-level system-bath
coordinates. The effects of the bath are captured by the
spectral density J(v) of the environment coupling. We
make the specific choice of ohmic dissipation
J(v)5(2p\/a2)ave2v/vc, where a denotes the dimen-
sionless ohmic coupling strength and vc@v0 is a cutoff
frequency. Insightful exact numerical path-integral stud-
ies of this driven, dissipative spin-boson system have
been carried out recently by Makri (1997).

The relevant theoretical quantity describing the dissi-
pative dynamics under the external perturbation is the
expectation value P(t)5^sz(t)&. On the other hand, the
quantity of experimental interest for quantum stochastic
resonance is the time-averaged power spectrum S(v),
defined as the Fourier transform of the correlation func-
tion

K̄~t!5
V

2p E
0

2p/V
dt

1
2 ^sz~ t1t!sz~ t !1sz~ t !sz~ t1t!&.

The combined influence of dissipative and driving forces
renders an evaluation of the full correlation function
K̄(t) extremely difficult (and hence of the power spec-
trum). Matters simplify for times t ,t large compared to
the time scale of the transient dynamics, where P(t) and

K̄(t) acquire in the asymptotic regime the periodicity of
the external perturbation. Upon expanding the
asymptotic expectation Pas(t)5limt→`P(t) into a Fou-
rier series, i.e.,

Pas~ t !5 (
n52`

`

Mn~V , ê !exp~2inVt !, (6.7)

it is readily seen that the amplitudes uMn(V , ê)u deter-
mine the weights of the d spikes of the power spectrum
in the asymptotic state Sas(v) via the relation
Sas(v)52p(n52`

` uMn(V , ê)u2d(v2nV). In particular,
to investigate nonlinear quantum stochastic resonance,
we shall examine the newly scaled power amplitude hn
in the nth frequency component of Sas(v), i.e.,

hn54puMn~V , ê !/\êu2. (6.8)

For a quantitative study of quantum stochastic reso-
nance, it is necessary to solve the asymptotic dynamics
of the nonlinearly driven dissipative bistable system. In
doing so, we shall take advantage of novel results for the
driven dynamics obtained by use of a real-time path-
integral approach (Grifoni et al., 1993; 1995). At weak
and strong ohmic coupling, driving distinctly alters the
qualitative tunneling dynamics: see Fig. 40. The incoher-
ent dynamics can still be modeled by rate equations,
however. At low driving frequencies, these rate equa-
tions are intrinsically Markovian—see region (a) in Fig.
40. As the external frequency V is increased and/or
when the temperature is lowered, quantum coherence
and/or driving-induced correlations render the

FIG. 40. Sketch of the different regimes for the driven
@(\ê/a)cos Vt# dissipative tunneling dynamics for a two-level
system subject to weak ohmic coupling a[g(a2/2p\) (a de-
notes the tunneling distance and g denotes the Ohmic viscous
strength). As the temperature T or the driving angular fre-
quency V are varied in the parameter space of ‘‘TEMPERA-
TURE’’ and ‘‘FREQUENCY’’ [see the boxes labeled (a), (b),
(c)], different novel tunneling regimes are encountered. For
strong dimensionless ohmic coupling a, the regimes (a) and (b)
extend down to the lowest temperatures. For comparison we
also depict the static situation, i.e., ê50, in the upper left
panel: in it, we sketch the dissipative tunneling behavior in the
(T ,a) parameter space for quantum incoherent and quantum
coherent (QC) tunneling.
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asymptotic dynamics intrinsically non-Markovian—note
regions (b) and (c) in Fig. 40.

Let us focus first on some characteristics of quantum
stochastic resonance as they emerge from the study of
the case a51/2 of the ohmic strength. For the special
value a5 1

2 , exact analytical solutions for quantum sto-
chastic resonance are possible (Grifoni and Hänggi,
1996a, 1996b). The resulting fundamental power ampli-
tude h1[h is plotted in Fig. 41 as a function of the
temperature for different driving strengths ê . There, and
in Fig. 42, frequencies are in units of the
bath-renormalized tunneling splitting De5D(D/
vc)a/(12a)@cos(pa)G(122a)#1/(222a), a,1. For a5 1

2 , De

reduces to pD2/2vc . For a.1, relevant energy scale is
set by Dren , which equals the previous expression De
without the term in the square brackets (Legget et al.,
1987; Weiss, 1993; Löfstedt and Coppersmith, 1994a).
The temperatures are in units of \De /kB . Note that the
spectral amplification is measured in units of (\De)22.
For highly nonlinear driving fields ê.e0 , the power am-
plitude decreases monotonically as the temperature in-
creases (uppermost curve). As the driving strength ê of
the periodic signal is decreased, a shallow minimum, fol-
lowed by a maximum, appears when the static asymme-
try e0 equals, or slightly overcomes, the strength ê (in-
termediate curves). For even smaller external
amplitudes, quantum stochastic resonance can be stud-
ied within the quantum linear-response theory (dashed
curve in Fig. 41). In the linear-response region the shal-
low minimum is washed out, and only the principal
maximum survives. It is now interesting to observe
that—because the undriven two-level system dynamics
(which comprises linear-response theory) for a5 1

2 is al-
ways incoherent down to T50—the principal maximum
arises at the temperature T at which the relaxation pro-

cess towards thermal equilibrium is maximal. On the
other hand, the minimum in h appears in the tempera-
ture region where driving-induced coherent processes
are of importance. This latter feature is a nonlinear
quantum stochastic resonance effect, which linear-
response theory clearly cannot describe. In addition, this
implies that the power amplitude h plotted versus fre-
quency shows resonances when V'e0 /n (n51,2, . . . );
correspondingly, the driven dissipative dynamics are in-
trinsically non-Markovian! For arbitrary values of the
ohmic coupling strength, one has to resort to approxi-
mate solutions of the dissipative dynamics. For strong
coupling a.1, or weak coupling a,1 and high enough
temperatures, the bath-induced correlations between
tunneling transitions may be treated within the noninter-
acting blip approximation (Leggett et al., 1987; Weiss,
1993). A set of coupled equations for the Fourier coef-
ficients Mn can then be derived for any strength and
frequency of the driving force. In particular, driving-
induced correlations may result in an highly coherent
dynamics, leading to resonances in the power spectrum.
In this coherent regime, quantum stochastic resonance
never occurs: the power amplitudes hn always show a
monotonic decay as the temperature is increased (Gri-
foni and Hänggi, 1996a, 1996b). It is only in the low-
frequency regime \V!akBT that—to leading order—
driving-induced non-Markovian correlations do not
contribute. The asymptotic dynamics, within the nonin-
teracting blip approximation, are intrinsically incoherent
and governed by the rate equation Ṗas(t)52l(t)
3@Pas(t)2Peq(t)# , with time-dependent rate
l(t)5Re S@«(t)# and equilibrium value Peq(t)
5tanh@\«(t)/2kT# . Here, «(t)5e01 ê cos Vt plays the
role of a time-dependent adiabatic asymmetry, and the
rate l(t) (a,1) is obtained as the real part of

S@«~ t !#5
De

p S bDe

2p D 122a G~a1i\b«~ t !/2p!

G~12a1i\b«~ t !/2p!
,

(6.9)

FIG. 41. The spectral amplification h1 , Eq. (6.8), for the peri-
odically driven (driving strength ê), ohmic damped spin-boson
system depicted vs temperatures T at a fixed bias energy
\e0510 and at an angular driving frequency V55. The dimen-
sionless parameters are defined in the text. For the smallest
driving strength ê55 we additionally depict the linear-
response theory approximation (dashed line). The solid lines
give the nonlinear quantum stochastic resonance for the ex-
actly solvable case of ohmic coupling strength at a51/2 (cf.
Fig. 40). The data are taken from Grifoni and Hänggi (1996b).

FIG. 42. Quantum noise-induced resonances for the third-
order amplitude h354puM3(V , ê)/\êu2 vs temperature T in
the regime of adiabatic incoherent tunneling. The different
lines are for three different driving frequencies V. The noise-
induced suppression which characterizes the ‘‘resonance’’
sharpens with decreasing driving frequency V. The results are
for a bias energy e0520, driving strength ê510, and a coupling
strength of a50.1. Data are from Grifoni and Hänggi (1996b).
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where G(z) denotes the gamma function, and b is
the inverse temperature (1/kBT).

The rate equation can then be solved in terms of
quadratures, and the nonlinear low-frequency power
spectrum can be investigated. Quantum stochastic reso-
nance indeed occurs in this incoherent tunneling regime.

As for the case a5 1
2 , the quantum stochastic resonance

maximum appears only when the static asymmetry e0

overcomes the external strength ê . Moreover, Fig. 42,
which shows the behavior of the third scaled spectral
amplification h3 versus temperature, reveals another
striking effect: As the driving frequency is decreased, a
noise-induced suppression of higher harmonics occurs in
correspondence to the stochastic resonance maximum in
the fundamental harmonic. In this regime one finds the
quantum analogue of noise-induced resonances that
characterize classical nonlinear stochastic resonance (see
Sec. IV.A). A numerical evaluation shows that the
noise-induced suppression indeed appears when
V!minl(t), so that the quasistatic expression holds,
i.e.,

Mn5
1

2p E
0

2p

dx tanh@\b~e01 ê cos x !/2#cos~mx !.

(6.10)

In contrast to classical stochastic resonance, where the
enhancement is maximal for symmetric bistable systems,
we find that a nonzero bias is necessary for quantum
stochastic resonance. To understand this behavior, one
can investigate the predictions for quantum stochastic
resonance within a linear-response approach. In this
case, only the harmonics 0,61 of Pas(t) in Eq. (6.7) are
different from zero. In particular, P0 becomes the ther-
mal equilibrium value Peq of the operator sz in the ab-
sence of driving, and M615\êx(6V) is related by Ku-
bo’s formula to the linear susceptibility
x̃ xx(V)5a2x(V) for the particle position x5(a/2)sz ,
where

x̃ xx~V!5
i

\ E
2`

1`

dt exp~2iVt!H~t!

3^@x~t!,x~0 !#&b . (6.11)

Here, H(t) is the Heaviside function, [ . . . , . . . ] de-
notes the commutator, and ^ . . . &b the thermal statistical
average of the full system in the absence of the external
periodic force ( ê50). In the regime where incoherent
transitions dominate, the dynamical susceptibility is ex-
plicitly obtained in the form

x~V!5
1

4kBT

1
cosh2~e0/2kBT !

l

l2iV
. (6.12)

The quantity l5ReS(e0), a , 1 [for a>1, see Hänggi,
Talkner, and Borkovec (1990), or Weiss (1993)] is the
sum of the forward and backward (static) quantum rates
out of the metastable states, r1 and r2 , respectively.
The factor 1/cosh2(\e0 /2kBT) expresses the fact that the
two rates are related by the detailed balance condition

r15eb\e0r2 . It is now interesting to note that formally
the same expression for the incoherent susceptibility
(and hence for h) holds true for the classical case, with
r1 and r2 denoting the corresponding classical forward
and backward Kramers rates. Thus in classical stochastic
resonance, the maximum arises because of competition
between the thermal Arrhenius dependence of these
rates and the algebraic factor (kBT)21 that enters the
linear susceptibility, and this maximum occurs (roughly)
at a temperature that follows from the matching be-
tween the frequency scales of the thermal hopping rate
and the driving frequency. Detailed investigation reveals
that quantum stochastic resonance characteristically oc-
curs when incoherent tunneling contributions dominate
over coherent tunneling transitions. Moreover, in clear
contrast to classical stochastic resonance, and also to
semiclassical stochastic resonance near and above T0
(see above), quantum stochastic resonance in the deep
cold occurs only in the presence of a finite asymmetry
e0Þ0 between forward and backward escape paths.
Thus while classical and semiclassical stochastic reso-
nance is maximal for zero bias [see Eqs. (4.55), (4.56)]
the quantum stochastic resonance phenomenon vanishes
in the deep quantum regime when the symmetry be-
tween forward and backward dissipative tunneling tran-
sitions is approached. What is the physics that governs
this behavior? Clearly, with decreasing temperature the
thermal, exponential-like Arrhenius factor no longer
dominates the escape rates; rather, its role is taken over
by the action of the tunneling paths that govern adia-
batic and nonadiabatic tunneling—see Sec. IX in
Hänggi, Talkner, and Borkovec (1990). This non-
Arrhenius action term possesses a rather weak tempera-
ture dependence as compared to the Arrhenius depen-
dence. Hence the crucial factor in quantum stochastic
resonance is not this exponential action part governing
the quantum rate behavior but rather the Arrhenius-like
detailed balance factor relating the forward rate to the
backward rate [see below Eq. (6.12)]. This exponential
detailed balance factor contains the energy scale
(\e0/kBT); thus it is this exponential dependence that
crucially competes with the algebraic factor (kBT)21

that enters the linear susceptibility. Whenever
\e0!kBT , the energy levels are essentially equally oc-
cupied; hence with e050 no quantum stochastic reso-
nance peaks occur!

The second consequence is that over a wide range of
driving frequencies the stochastic resonance maximum
arises at a temperature obeying kBT.\e0 . Similar
qualitative results, together with the occurrence of
noise-induced suppression are obtained also in the pa-
rameter region of low temperatures kT<\D and weak
coupling a!1, where overdamped quantum coherence
occurs. In this regime, the noninteracting blip approxi-
mation fails to predict the correct long-time behavior.
This is so because the neglected bath-induced correla-
tions contribute to the dissipative effects to first order in
the coupling strength. Nevertheless, a perturbative treat-
ment allows an investigation of quantum stochastic reso-
nance even in this regime.
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In conclusion, quantum noise in the presence of peri-
odic driving can substantially enhance or suppress quan-
tum stochastic resonance. Note also that all of this dis-
cussion of quantum stochastic resonance constitutes a
situation where inertial effects in stochastic resonance
(i.e., finite ohmic friction strengths a) are always implic-
itly accounted for. Of particular relevance is the occur-
rence of noise-induced suppression within nonlinear
quantum stochastic resonance. This phenomenon of sig-
nal suppression at higher harmonics can be used for a
distortion-free spectral amplification of information in
quantum systems. Experimental candidates to observe
these novel quantum stochastic resonance effects are the
above-mentioned mesoscopic metals (Golding et al.,
1992; Chun and Birge, 1993; Löfstedt and Coppersmith,
1994a, 1994b; Coppinger et al., 1995), ac-driven SQUID
systems (Hibbs et al., 1995; Rouse et al., 1995), as well as
ac-driven atomic force microscopy (Eigler and
Schweitzer, 1990; Louis and Sethna, 1995), or ac-
modulated proton tunneling (Grabert and Wipf, 1990;
Benderskii et al., 1994).

B. Stochastic resonance in spatially extended systems

So far we mainly investigated stochastic resonance in
systems with only one degree of freedom, such as a par-
ticle moving in a potential under the influence of an
external driving force and noise. In this section we de-
scribe how stochastic resonance manifests itself in spa-
tially extended systems such as a string moving in a
bistable potential under the influence of noise and exter-
nal forcing, or in a two-dimensional medium forming
spatiotemporal patterns in the presence of noise.

1. Global synchronization of a bistable string

In this section, we consider a one-dimensional bistable
medium in the presence of noise and isotropic periodic
forcing. The model is described by the one-dimensional
Ginzburg-Landau equation (Benzi et al., 1985):

]F~x ,t !
]t

5mF~x ,t !2F3~x ,t !1k
]2F~x ,t !

]x2

1A0 cos~Vt !1j~x ,t !, (6.13)

where j(x ,t) is white Gaussian noise in both time and
space, i.e.,

^j~x ,t !j~x8,t8!&52Dd~ t2t8!d~x2x8!

^j~x ,t !&50. (6.14)

In the absence of driving, Eq. (6.13) can be cast in the
form

]F~x ,t !
]t

52
dV@F#

dF
1j~x ,t !, (6.15)

with the functional V@F# (Rajaraman, 1982)

V@F#5E
0

LF1
4

F42
1
2

mF21
k

2 S ]F

]x D 2Gdx . (6.16)

The stationary solutions F(x) in the absence of the
noise, obeying

mF2F31k
d2F

dx2 50, (6.17)

with von Neumann boundary conditions

dF~0 !

dx
5

dF~L !

dx
50, (6.18)

extremalize the functional V@F# . Equation (6.17) can be
interpreted as a Newtonian equation of motion in the

inverse double-well potential UN(F)52 1
4 F41 1

2 mF2

with x as the time variable. The relevant homogeneous
stationary solutions (stationary solution in the Newton-
ian picture) with boundary conditions (6.18) are given
by

F656Am ,

F050, (6.19)

with

V@F1#5V@F2#52
1
4

m2L ,

V@F0#50. (6.20)

The first two solutions (the whole string is sitting in
one of the potential minima) are stable and the third
one (the whole string is sitting on the barrier top) is
unstable. There is also a class of stable inhomogeneous
solutions, the multi-instanton solutions F(k), that obey
the boundary conditions (6.18) and have k zeros in the
interval @0,L# . For the potential energies V@F(k)# one
finds the inequalities

V@F~0 !#,V@F~1 !#,V@F~2 !# . . . , (6.21)

with F(0)5F6 . In the presence of noise, the string can
escape out of the stable homogeneous states F6 . A
generalization of Ventsel and Freidlin’s theory (Benzi
et al., 1985) yields for the mean exit times in the weak-
noise limit D!DV

T65C expS 2DV

D D , (6.22)

with C independent of D . Here, DV5V@F(2)#2V@F6#
denotes the smallest V@F# barrier that separates the two
stable states F6 . This conclusion was verified numeri-
cally by solving the discretized version of Eq. (6.13) (see
below). In the presence of a weak and slow homoge-
neous external forcing (A5A0!m3/2), Benzi et al.
(1985) derived analytical expressions for the mean exit
times T1

a and T1
b , relevant to the transition F1→F2 in

the potential configurations with cos(Vt)561, i.e.,

T1
a 5C exp@2~DV2A0LAm !/D# ,

T1
b 5C exp@2~DV1A0LAm !/D# . (6.23)

The system shows stochastic resonance if one of the
exit times of Eq. (6.23) is shorter than the half driving
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period and the other is longer, so that on average the
exit times are of the order the half driving period (the
factor of 2 stems from the fact that the string has to
escape twice within one period of the driving). This
yields an upper and a lower bound for the optimal noise
strength with arithmetic mean

DSR5
2DV

ln~p/CV!
. (6.24)

A more refined analysis of stochastic resonance in a
modulated string has been derived recently by
Marchesoni, Gammaitoni, and Bulsara (1996) within the
framework of the theory of thermal nucleation in one-
dimensional chains (Hänggi, Marchesoni, and Sodano,
1988). The ensuing theoretical predictions have been
verified experimentally by Löcher, Johnson, and Hunt
(1996).

A full numerical investigation of the discretized
Ginzburg-Landau equation has been carried out by
Benzi et al. (1985). The discretized Ginzburg-Landau
equation [Eq. (6.13)] reads

ċn~ t !5mcn2cn
31

k

~Dx !2 @cn11~ t !1cn21~ t !

22cn~ t !#1A0 cos~Vt !1AD/Dxjn~ t !,

(6.25)

with discretization step Dx , string sites cn(t)5F(xn ,t),
and

^jn~ t !jm~ t8!&52dnmd~ t2t8!,

^jn~ t !&50. (6.26)

In Fig. 43, the string collective coordinate
u5(1/L)*0

LF(x)dx is shown as a function of time at
three different levels of the homogeneous noise inten-
sity. For a properly chosen value of the noise level DSR

(second plot), the collective coordinate switches almost
periodically between Am and 2Am , i.e., between states
where the entire string is either in the right or in the left
potential well—the noise has globally synchronized the
hopping along the bistable string. A similar conclusion
has been reached recently by Lindner et al. (1995), who
simulated numerically the same discretized Ginzburg-
Landau equation [Eq. (6.13)]. Here, the different nota-
tion k/(Dx)2→g and D/Dx→e hides the underlying
Ginzburg-Landau equation. Using L5NDx , the scaling
relations g}N2 and e}N , which were derived in
Marchesoni, Gammaitoni, and Bulsara (1996), follow
immediately. These authors also noticed that, while
jumping back and forth between the stable configura-
tions F6, a long string develops a remarkable spatial
periodicity, which attains its maximum at resonance.
The relevant spatial correlation length can be easily es-
timated within the thermal nucleation theory. Related to
these studies of stochastic resonance in extended sys-
tems is the recent study by Wio (1996) on stochastic
resonance in a bistable reaction-diffusion system, or the
investigation of stochastic resonance in weakly per-
turbed Ising models (Néda, 1995a, 1995b; Brey and Pra-
dos, 1996; Schimansky-Geier and Siewert, 1997).

2. Spatiotemporal stochastic resonance in excitable media

Pattern formation in excitable media is an important
paradigm with many applications in biology and medi-
cine such as contraction waves in cardiac muscle, slime
mold aggregation patterns, and cortical depression
waves, to name only a few (for an overview, see Murray,
1989). While most theoretical and experimental work on
excitable media focuses on the propagation of spiral
waves, the role of fluctuations for pattern selection and
propagation has been studied only recently (Jung and
Mayer-Kress, 1995) by using a stochastic cellular model.
One of the many interesting features of noisy media is
that spatiotemporal structures and coherence can
strongly vary with the noise level. Spatiotemporal sto-
chastic resonance describes the enhancement of a spa-
tiotemporal pattern (externally applied or intrinsic) by
an optimal dose of noise.

The model of Jung and Mayer-Kress consists of a
square array of excitable threshold elements with lattice
constant a . Each element eij can assume three states: the
quiescent state, the excited state, and a subsequent re-
fractory state. The state of each element eij is controlled
by an input xij(t). If the input xij(t) is below a threshold
b , the element is quiescent. If xij(t) is crossing a thresh-
old from below, the element switches into the excited
state, i.e., it fires. The inputs xij(t) are coupled to a ho-
mogeneous thermal environment, i.e., the time depen-
dence is described by the Langevin equation

ẋ ij52gxij1Ags2j ij~ t !, (6.27)

with ^xij
2 &5s2 and zero-mean, uncorrelated noise in

space and time ^j ij(t)jkl(t8)&52d(ij),(kl)d(t2t8). The
excitable elements communicate via pulse coupling.
When an element ekl fires, it emits a spike that is re-

FIG. 43. The collective coordinate u 5 *f(x ,t)dx/L plotted
against time for D/Dx50.002 (upper plot), D/Dx50.07
(middle plot), and D/Dx50.11 (lower plot). The parameters
are L51, N520, m50.25, A50.0125, v50.01p/3, and
B51/64. These parameters imply a barrier height of 1/64 and
an Arrhenius factor of 4.457.
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ceived by an element eij with an intensity depending on
the distance r(ij),(kl) between ekl and eij . Element eij
integrates the incoming spikes from all firing elements
yielding after one time step Dt (the smallest time scale
of our system) the additional input f ij

f ij5K(
kl

expS 2l
r ~ ij !,~kl !

2

a2 D , (6.28)

which is added to xij . The parameter l describes the
inverse range of the interaction and the parameter K the
coupling strength. The medium is updated synchro-
nously in time steps of the smallest time scale Dt , the
time interval of firing. All other time scales are mea-
sured in units of Dt . The proper normalization of this
model is given by s̄ 25s2/b2, ḡ 5gDt , K̄5K/b . The
time step and the threshold are therefore normalized to
unity. The dissipation constant ḡ defines the typical time
scale of the temporal evolution of a single element. For
large dissipation ( ḡ .1), the element forgets its prehis-
tory within one time step of temporal evolution, while
for small dissipation ḡ !1, the system—as a whole—can
build up a long memory.

It has been demonstrated that this model shows for
large coupling K̄ (in the absence of noise) the typical
excitation patterns of excitable media, i.e., rotating spi-
ral waves or target waves, usually described in terms of
reaction diffusion equations with two species (Murray,
1989). In the presence of noise, the typical excitation
patterns can still be observed, but they exhibit rough
wave fronts and—depending on the noise level—more
serious imperfections such as breakup of wave fronts
and collisions with noise-nucleated waves. The overall
picture in the strong-coupling regime is the coexistence
of multiple finite-sized cells with coherent patterns.

For weak coupling K̄ , however, the discrete nature of
the model becomes important and different phenomena
can be observed. To maintain a firing pattern, the cou-
pling K̄ has to exceed a critical value K̄0 , which is esti-
mated for small l and negligible curvature effects as fol-
lows: an infinite front of firing elements reduces the
firing threshold of an element next to the front by an
amount S0 which is the sum of the contributions from all
firing elements along the front. The element, however, is
precharged by the sum of the contributions S̄ pre of firing
elements of the front at earlier times (and larger spatial
distances). At the critical coupling, the sum of the pre-
charge S̄ pre and S̄ 0 of an element right before the front
is unity (the normalized threshold), i.e.,

K̄0~g!'Al

p

1

exp~2l!1exp~g!(n52
` exp~2ln22ng!

.

(6.29)

Spatiotemporal stochastic resonance can be observed
for coupling strengths below the critical coupling, which
we define as the subthreshold regime. The excitable me-
dium (in the subthreshold regime) is driven by a single
wave front (a line in the array) from bottom to top,

FIG. 44. The excitable medium (2003200 elements) driven by
a single wave front of slightly increased excitability, A0
5 0.3. The wave front is a single horizontal line in our array
moving from bottom to top. The position of the wave front at
the instant of time we took a snapshot is marked by a pointer
on the right margin. The diamonds denote firing elements. We
show three snapshots at three different noise levels; (a)
s̄ 250.1, (b) s̄ 250.16, and (c) s̄ 250.2. The other parameters
are K̄50.121, l50.1, ḡ 50.5.
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along which the excitability is slightly increased; i.e., the
threshold b is reduced: b→b 2 A0. In Fig. 45, the re-
sponse of the medium, characterized by the correlation
between the driving pattern and the firing pattern (see
Fig. 44), is shown. The correlation is defined here as the
mean excess firing rate along the front of the driving
wave, i.e., the number of excess firing events along the
front in comparison to the average number of firing
events along all other lines (a small layer around the
front had been excluded). For vanishing coupling K̄50,
one finds the maximum correlation according to the re-
sults for single thresholds at s̄ 251/2. For increasing cou-
pling, the effective threshold that has to be overcome
with the help of noise is reduced. Therefore, the maxi-
mum correlation is shifted to smaller values of the noise.
The peak also becomes more pronounced since the fir-
ing activity is synchronized in an area determined by the
interaction range 1/l .

A rough estimate of the optimal value of the variance
for the enhancement of spatiotemporal patterns has
been given in Jung and Mayer-Kress (1995) in terms of a
mean-field type approximation.

The firing elements along the front generate a sto-
chastic field acting on the elements the front is ap-
proaching. The main contributions to the field acting on
the element eij stem from firing elements along the front
close to eij. Assuming that all of these elements are ac-
tually firing, we approximate the sum of these contribu-
tions (for small l) by a Gaussian integral and obtain for
the mean field

f̄ 5K̄Ap/lexp~2l!. (6.30)

The firing threshold is reduced by the mean field, i.e.,
b̄ eff512 f̄ , leading to a renormalized condition for spa-
tiotemporal stochastic resonance

s̄opt
2 5

1
2

b̄ eff
2 5

1
2

@12K̄Ap/l exp~2l!#2. (6.31)

The effect of improving an image by using stochastic
resonance has been demonstrated very nicely in a recent
work by Simonotto, Riani, Seife, Roberts, Twitty, and
Moss (1997) for an array of uncoupled threshold detec-
tors (in the model above, this corresponds to the case
K̄50).

C. Stochastic resonance, chaos, and crisis

It is well known that deterministic chaos resembles
the features of noise on a coarse-grained time scale. It is
therefore a natural question to ask whether stochastic
resonance can be observed in dynamical systems in the
absence of noise. Two different approaches to this prob-
lem have been put forward in the recent literature. Car-
roll and Pecora (1993a, 1993b) substitute the stochastic
noise by a chaotic source. The chaotic source is applied
to a periodically driven Duffing oscillator in a regime
where it produces a period-doubled periodic response.
The chaotic source yields switching between the attrac-
tors corresponding to the two phase-shifted responses of
the Duffing oscillator, separated by an unstable period-1
orbit. The switching happens at some preferred loca-
tions along the orbits, which are being visited periodi-
cally. It is therefore synchronized with the orbit. This
situation resembles the conventional setup for stochastic

FIG. 45. The mean excess firing rate shown a function of the
variance of the noise s̄ 2 for l50.1, ḡ 50.5, and A050.3 at
three different values of the coupling K̄ .

FIG. 46. The probability density p(x) of 106 iterates xn shown
in the absence of modulation (A050) (a) below the crisis at
a53.57, and (b) above the crisis at a53.62.
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resonance and yields stochastic resonance as expected.
A similar study has been published by Kapitaniak (1994)
and by Yang, Ding, and Hu (1995). For the Lorentz sys-
tem with a time-periodic variation of the control param-
eter operating near the threshold to chaos, stochastic
resonance has been observed by Crisanti, Falcioni, Pala-
din, and Vulpiani (1994).

A conceptually different approach has been put for-
ward by Anishchenko, Neiman, and Safanova (1993).
They use the intrinsic chaotic dynamics of a nonlinear
map in the vicinity of a band-merging crisis to generate a
sort of activated hopping process which is then synchro-
nized by a small periodic signal. No external source is
necessary to provide the randomness. They use the non-
linear periodically driven map

xn115~a21 !xn2axn
31A0 sin~2pf0n !. (6.32)

The complete description of the period-doubling sce-
nario towards chaos is described in Anishchenko,
Neimann, and Safanova (1993). Most important for the
following discussion is a crisis due to the merging of two
chaotic bands (x.0 and x,0) at a'3.598[a0 . This is
demonstrated in Fig. 46 by the invariant measures of the
undriven map A050 at a53.57 (a) and a53.62 (b). The
fixed point x150 is stable for 0,a,2 and unstable for
a.2. Two chaotic bands emerge out of two disjoint
Feigenbaum-type period-doubling scenarios at a>3.3.
For a,a0 , these bands are separated by the unstable
fixed point x150. At a5a0 the bands merge. The un-
stable fixed point x150 acts in the vicinity of the band-
merging point a0 as a repellor allowing the trajectory to
traverse between the formerly separated chaotic bands
only very rarely, yielding activation-type behavior of the
trajectory. The statistical distribution pe(t) of times be-
tween two exits, i.e., the residence-time distribution, is
shown in Fig. 47. It shows for not too small times the
typical exponential decay

pe~ t !5
1

Te
exp~2t/Te!, (6.33)

with the mean residence time

Te5E
0

`

tpe~ t !dt . (6.34)

The power-law scaling of the mean residence time Te
with the distance to the crisis a2a0 , i.e.,

Te~a !}~a2a0!2g, (6.35)

(see Fig. 48), is—according to Grebogi, Ott, and Yorke
(1987)—characteristic of a crisis. There are some dips in
Te(a), e.g., at a50.36405, that correspond to periodic
windows in the map.

The decrease (at least in the average) of the mean
residence time for increasing a2a0 implies an increasing
level of stochasticity, i.e., the level of stochasticity can be
controlled by varying a2a0 .

FIG. 47. The distribution of residence times t shown in the
absence of forcing (A050) at a53.6 and a53.62, both above
the crisis a053.59.

FIG. 48. The mean residence time shown in the absence of the
driving as a function of the control parameter a2a0 , where a0
is the value of the control parameter at which the crisis occurs.
The triangles represent results from a numerical calculation.
Apart from the resonances (the dips) the mean residence time
can be fitted very well by a power law Te}(a2a0)g, with
g50.576 (solid line).

FIG. 49. The distribution of residence times t shown in the
presence of the driving at a53.60, A050.01, and f050.1. The
carets show actual data points, while the solid line has been
added to guide the eye. The locations of the sequence of
exponentially decaying peaks are given by
tn5(1/2)f0

21 ,(3/2)f0
21 ,(5/2)f0

21 ,. . . .
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In the presence of a periodic forcing, i.e., for A0Þ0,
the residence-time distribution exhibits a series of expo-
nentially decaying peaks, located at odd multiples of the
half period of the driving (see Fig. 49). In order to iden-
tify stochastic resonance, one has to vary the stochastic-
ity in the presence of the periodic driving and compute
the intensity of the spike (the signal strength) in the
power spectrum of x(t). To single out contributions to
the response from forced periodic motion or resonances
within the chaotic bands, we apply a binary filter process
to monitor whether the system is in the right band (11)
or left band (21). The response of the binary variable
y[x/uxu measured in terms of the intensity of the line in
its power spectrum at the driving frequency is shown in
Fig. 50. Starting at the crisis, i.e., at a5a0 , one observes
that the signal strength increases until it reaches a maxi-
mum, and then decreases again.

The differences to stochastic resonance in a noisy
bistable system follow:

(i) There are several peaks plus additional resonances
where the driving frequency f0 and the switching fre-
quency fs51/Te are commensurable, i.e., f0 /fs5m/n ,
with m ,n51,2,3, . . . .

(ii) Changing a2a0 does not change the stochasticity
(noise strength) in a systematic way. To systematically
compare with stochastic resonance in a noisy bistable
system, one should first find a mapping between the
noise strength and a2a0 .

(iii) The periodic windows of period M of the unper-
turbed map yield resonances with the external driving
whenever their periods agree, i.e., f051/M .

Similar results have been obtained by Nicolis et al.
(1993) by studying a one-dimensional intermittent map.

D. Effects of noise color

In many practical situations the finite time scale tc
characterizing the relaxation of the autocorrelation of
the noise (i.e., colored noise) is much shorter than the
characteristic time scale of the system. Hence as we did

in Sec. IV for the driven bistable dynamics, it often is
appropriate to model the noise source by a (white) ran-
dom force j(t). In the physical world, however, such an
idealization is never exactly realized. In order to inves-
tigate the importance of corrections to white noise, ap-
proximate techniques were introduced to compute the
effects of small to moderate to arbitrarily large noise
correlation times tc (Hänggi et al., 1984, 1989; Hänggi
and Jung, 1995). Strong color (i.e., a large tc value) is
not unrealistic for many physical applications. Usually, a
strongly correlated noise emerges as the result of coarse
graining over a hidden set of slowly varying variables
(Kubo et al., 1985), or colored noise is simply applied
and monitored externally by the experimenter.

The effect of color on stochastic resonance may be
nontrivial, as suggested by the very characterization of
stochastic resonance as a synchronization mechanism.
The noise correlation time tc may compete with TV and
TK to determine the realization and the magnitude of
the resonance phenomenon. We anticipate that stochas-
tic resonance in overdamped systems driven by an addi-
tive exponentially correlated Gaussian noise j(t) is gen-
erally reduced compared to the case of white noise tc50
of equal strength D . The stochastic resonance peak is
shifted to larger noise intensities due to the fact that
colored noise exponentially suppresses the switching
rate with increasing tc (Gammaitoni, Menichella-Saetta,
Santucci, Marchesoni, and Presilla, 1989; Hänggi et al.,
1993).

Following the approach developed by Hänggi et al.
(1993), we treat here the archetypal case of a periodi-
cally perturbed double well in the presence of exponen-
tially colored Gaussian noise (Ornstein-Uhlenbeck
noise). In scaled, dimensionless variables, the dynamics
reads explicitly

ẋ52V8~x !1A0 cos~Vt !1j~ t !, (6.36a)

j̇52
1
tc

j1
1
tc

e~ t !, (6.36b)

where V(x) is the standard quartic double-well poten-
tial of Sec. IV.A, i.e., V(x)52x2/21x4/4, and j(t) is an
Ornstein-Uhlenbeck stochastic process driven by the
Gaussian white noise e(t) with ^e(t)&50 and
^e(t)e(0)&52Dd(t). The stationary autocorrelation
function of e(t) is an exponential function with time
constant tc ,

^j~ t !j~0 !&5~D/tc!exp~2utu/tc!. (6.37)

In the limit of zero correlation time tc→0, Eq. (6.37)
reproduces the white-noise source of Secs. II and IV.
Within the framework of the linear-response theory of
Sec. IV.B for small forcing amplitudes, the relevant re-
sponse function [Eq. (4.30)] assumes the form of a fluc-
tuation theorem; i.e., it is given in terms of a stationary
correlation of two fluctuations of the unperturbed pro-
cess

x~ t !52H~ t !
d

dt
^x~ t !z(x~0 !)&0 , (6.38)

FIG. 50. The response to the periodic forcing (more precisely,
the intensity of the line in the power spectrum at the driving
frequency) shown as a function of the control parameter a2a0
for A050.01 and f050.01.
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where H(t) denotes a Heaviside step function. In the
opposite limits tc!1 (i.e., weak color) and tc@1 (i.e.,
strong color), z(x(t)) may be approximated to read

z(x~ t !)5
1
D

@x1tcV8~x !# , (6.39)

whereas the unperturbed averages ^•••&0 in Eq. (6.38)
must be taken over the relevant (approximate) probabil-
ity density

pst~x ,tc!5
N1

u12tcV9~x !u
expF2

V~x !

D
2

tc

2D
V82~x !G

(6.40a)

for tc!1, and

pst~x ,tc!5N2u11tcV9~x !u

3expF2
V~x !

D
2

tc

2D
V82~x !G (6.40b)

for tc@1. Here, N1 and N2 denote the appropriate nor-
malization constants.

Within the long-time approximation, the correlation
function ^x(t)z(x(0))& (see Sec. IV.B) can in leading
order be estimated as

^x~ t !z(x~0 !)&0;^xz&0 exp@22rK~tc!t# (6.41)

with the colored noise-driven escape rate given as

rK~tc!5rK~123tc/2! (6.42a)

for weakly colored noise tc!1, and

rK~tc!5rK exp@2~8/27!tc~DV/D !# (6.42b)

for strongly colored noise, i.e., tc@1. Upon inserting
Eqs. (6.41) and (6.39) into the expression for the suscep-
tibility in Eq. (6.38) we finally obtain for the spectral
amplification h

h5
^x2&01tc^xV8~x !&0

D2

4rK
2 ~tc!

4rK
2 ~tc!1V2 , (6.43)

with rK(tc) and ^•••&0 computed in the appropriate lim-
its of Eqs. (6.42) and (6.40), respectively.

Prediction (6.43) for both color regimes suggests that
noise color degrades the observability of stochastic reso-
nance. Indeed, upon increasing tc , the relaxation rate
rK(tc) gets exponentially depressed with respect to
rK(tc50). For V fixed, we therefore must increase D to
match the stochastic resonance condition, which consists
of maximizing h (see Sec. IV.B). This results in a shift of
the stochastic resonance peak towards higher D values
and a corresponding reduction of the peak height.

We note that the limiting expressions (6.42) for rK(tc)
stem from one unified approximation scheme (Hänggi
and Jung, 1995), that is

rK~tc!5
1

&p
~113tc!21/2

3expF2
DV

D S 11 27
16 tc1 1

2 ~tc!2

11 27
16 tc

D G . (6.44)

Correspondingly, the analytical expression obtained by
replacing rK(tc) of Eq. (6.43) with Eq. (6.44) bridges the
two limiting expressions of h for tc!1 and tc@1. In Fig.
51 we display four such curves for h versus D , for in-
creasing values of noise color t. As expected, noise color
suppresses stochastic resonance monotonically with tc .
This feature is in accordance with the early analog simu-
lations by Gammaitoni, Menichella-Saetta, Santucci,
Marchesoni, and Presilla (1989), as depicted in Fig. 52.
The suppression of stochastic resonance with increasing
noise color has recently been demonstrated experimen-
tally in a tunnel diode (Mantegna and Spagnolo, 1995),
and by use of Monte Carlo simulations by Berghaus
et al. (1996).

Inertial effects, which result in (non-Markovian)
memory effects for the spatial coordinate x(t) have
been addressed theoretically for the spectral amplifica-

FIG. 51. The spectral amplification h (in linear response), as
predicted by Eqs. (6.43) and (6.44) for the quartic double-well
potential V(x)52x2/21x4/4, shown for increasing values of
the dimensionless noise correlation time tc at V50.1.

FIG. 52. Signal-to-noise ratio (SNR) vs D for different values
of tc : tc530 ms (crosses); tc550 ms (diamonds); tc5100 ms
(squares); tc5200 ms (pluses). Other simulation parameters
are nV530 Hz, Axm50.5DV , xm57.3 V, and a56850 Hz.
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tion h by Hänggi et al. (1993), and experimentally for
the signal-to-noise ratio by Gammaitoni, Menichella-
Saetta, Santucci, Marchesoni, and Presilla (1989). Like-
wise, the role of memory friction, which relates—via the
fluctuation-dissipation theorem—to internal colored
noise, has been studied for overdamped dynamics by
Neiman and Sung (1996). The result that inertial effects,
or equivalently, decreasing finite friction strengths tend
to enhance stochastic resonance can similarly be induced
with strong color for the memory friction (Neiman and
Sung, 1996).

VII. SUNDRY TOPICS

In this section we present several topics relating to the
physics of stochastic resonance that have not been fea-
tured in detail in the previous sections. In doing so, we
have confined ourselves to particular examples deter-
mined only by our knowledge and personal taste; thus
this selection is necessarily incomplete.

A. Devices

1. Stochastic resonance and the dithering effect

A Schmitt trigger, see Sec. V.B.1, operating in the lim-
iting case when its two threshold voltages coincide, pro-
vides an example of a two-state system, namely a thresh-
old device. There are many examples of this kind of
electronic device, the more common class being repre-
sented by the analog-to-digital converters (ADC). The
basic (1-bit) ADC device consists of a signal comparator
(an operational amplifier followed by a resistor and two
back-to-back Zener diodes), the output voltage of which
switches between V and 2 V when the input v i crosses a
reference voltage. Multibit ADCs, realized by a proper
combination of comparators (see, e.g., Millman, 1983),
are of common use in digital signal processing (Oppen-
heim and Schaffer, 1975), where analog signals are
sampled at discrete times and converted into a sequence
of numbers. Since the register length is finite, the con-
version procedure, termed signal quantization, results in
distortion and loss of signal detail. In order to avoid
distortion and recover the signal detail, it has become a
common practice, since the 1960s, to add a small amount
of noise to the analog signal prior to quantization—a
technique termed dithering (Bennet, 1948). To under-
stand how the addition of a proper quantity of noise can
improve the performances of an ADC, we note that the
conversion from a continuous (analog) to a digital signal
consists of two different operations: time discretization
and amplitude quantization. Time discretization, if prop-
erly applied, can be shown to be error free. The effects
of amplitude quantization (finite word length) are in-
stead always present and manifest themselves in a num-
ber of different ways. First, due to the presence of a
nonlinear-response characteristic, signal quantization
leads to an unavoidable distortion, i.e., the presence of
spurious signals in a frequency band other than the
original one. There is also a loss of signal detail that is
small compared to the quantization step. The effects of

the amplitude quantization can be quantified by intro-
ducing a proper quantization error, z5y2x , where x is
the analog signal before quantization and y is the quan-
tized signal. It is clear from this definition that if we had
a linear-response characteristic (apart from amplifica-
tion factors) z would be zero and there would be no
distortion at all. A number of studies were performed
over the last thirty years in order to find a way of reduc-
ing z. The main conclusions follow:

(1) The addition of a proper external signal (called
dither) to the input x can statistically reduce z.

(2) The best choice for the dither signal is a random
dither uniformly distributed.

(3) There exists an optimal value of the random dither
amplitude, which coincides with the amplitude of the
quantization step.

Hence the quantization error z is minimized and, cor-
respondingly, the ADC performances maximized, when
a noise of a proper intensity is added to the input signal.
The similarity with stochastic resonance, where an opti-
mal strength of the added noise maximizes the output
signal-to-noise ratio, is apparent. As a matter of fact,
stochastic resonance in this class of threshold systems is
equivalent to the dithering effect, as demonstrated by
Gammaitoni (1995a, 1995b).

B. Stochastic resonance in coupled systems

In this section we discuss the impact of noise and pe-
riodic forcing on an ensemble of coupled bistable sys-
tems. In view of a possible collective response of the
system (especially close to a phase transition), one can
expect that the stochastic resonance effect will be even
more pronounced than in a single system (Jung et al.,
1992).

1. Two coupled bistable systems

The simplest way to study stochastic resonance in
coupled systems is to consider two coupled overdamped
bistable elements in the presence of noise and periodic
forcing (Neiman and Schimansky-Geier, 1995):

ẋ5ax2x31g~y2x !1jx~ t !1A0 cos~Vt !,

ẏ5by2y31g~x2y !1jy~ t !1A0 cos~Vt !, (7.1)

with independent Gaussian white noise terms, but iden-
tical periodic forcing, i.e.,

^jx~ t !jy~ t8!&52Ddxyd~ t2t8!. (7.2)

As in the bistable string (see Sec. VI.B.1), stochastic
resonance in the coupled system has been quantified by
the linear response for the sum s(t) of the two degrees
of freedom s(t)5x(t)1y(t) due to small periodic
modulations. With the help of digital simulations and
approximation theory, the following results have been
obtained:

(1) At a given coupling constant, the signal-to-noise
ratio goes through a maximum as a function of the noise
strength.
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(2) Starting from zero coupling (which corresponds to
two independent systems), the signal-to-noise ratio vs
coupling first increases (i.e., the collective response is
indeed higher than that of two uncoupled systems), runs
through a maximum, and decreases again for large cou-
pling towards an asymptotic (finite) value.

2. Collective response in globally coupled bistable systems

An early study dealing with stochastic resonance for
systems with many degrees of freedom (Jung et al.,
1992) focused on a large number N of identical, linearly
and homogeneously coupled bistable systems in the
presence of periodic forcing. The coupled equations of
motion are given by

ẋn~ t !5xn2xn
31

1
N (

m51

N

g~xm2xn!1jn~ t !

1A0 cos~Vt !, (7.3)

with Gaussian, mutually independent and uncorrelated
fluctuations

^jn~ t !jm~ t8!&52Ddnmd~ t2t8!

^jn~ t !&50. (7.4)

The coupling constant is denoted by g. Systems such as
this exhibit spontaneous-ordering transitions (Bruce,
1980; Amit, 1984; Dewel et al., 1985; Valls and Mazenko,
1986). Analytical studies of these phase transitions are
possible within a mean-field approximation (Mansour
and Nicolis, 1975; Desai and Zwanzig, 1978; Bruce, 1980;
Shiino, 1987; Van den Broeck et al., 1994; Drozdov and
Morillo, 1996; Hu, Haken, and Xie, 1996). The station-
ary solution of the Fokker-Planck equation in mean-
field approximation is not unique below a critical noise
strength. There are three solutions: two stable solutions
with spontaneous symmetry breaking, which represent
ferromagnetic ordered states, and an unstable one with
zero magnetization m ; here the order parameter m is
given by the averaged population difference in the po-
tential wells. At the critical point D5Dc , the system
undergoes a phase transition of second order.

Within the mean-field approximation and a two-state
description, the response of the order parameter ^x&[m
to the periodic forcing and thus the spectral amplifica-
tion h of the order parameter has been obtained as

h5S 2rK

D D 2 12m2

V21L2 , (7.5)

with the collective relaxation rate given by

L52rKA12m2S 1
12m2 2

g

D D . (7.6)

The mean value m determined by the transcendental
equation m5tanh@(g/D)m#.

The spectral amplification strongly increases with the
coupling to exhibit a peak at the critical point
D5Dc5g . The maximum spectral amplification attains
a maximum at g5DV , a phenomenon that has been ob-

served for two coupled bistable systems (cf. Sec.
VII.B.1) and for coupled-neuron models in Sec. VII.B.3.
These results have also been confirmed in later studies
by Morillo et al. (1995), and Hu, Haken, and Xie (1996).

3. Globally coupled neuron models

Another approach to describe the response of globally
coupled bistable systems to periodic forcing is the appli-
cation of adiabatic elimination of all but one degree of
freedom (Bulsara and Schmera, 1993; Inchiosa and Bul-
sara, 1995a, 1995b,1995c; Inchiosa and Bulsara, 1996).
The model used is motivated by the dynamics of artifi-
cial neural networks (Amit, 1989; Krogh and Palmer,
1991), namely

Ciu̇i52
ui

Ri
1(

j51

N

Jij tanh~uj!1j~ t !1A0 cos~Vt !,

(7.7)

with Ci and Ri denoting capacitances and resistances of
the membranes. The zero-mean Gaussian noise and the
periodic signal are assumed to be identical for all ele-
ments. The coupling constants Jij can be chosen arbi-
trarily. The correlation function of the noise is given by

^j~ t !j~ t8!&52Dd~ t2t8!. (7.8)

The globally coupled system of Eq. (7.7) has been solved
numerically and analytically by assuming a separation of
time scales of one neuron vs the rest of the neurons
acting as a linearized bath, thus allowing for adiabatic
elimination of the bath neurons. The most important re-
sult of these studies is that, as above, the maximal signal-
to-noise ratio goes through a maximum as a function of
the coupling strength (the J8s); moreover, the signal-to-
noise ratio between the incoming periodic signal
A0 cos(Vt) and the noise strength D has been shown to
provide an upper bound to the signal-to-noise ratio of
the output ui(t).

C. Miscellaneous topics on stochastic resonance

1. Multiplicative stochastic resonance

There exist many cases of physical interest where the
role of fluctuating control parameters is mimicked by
multiplicative noise (Fox, 1978; Schenzle and Brand,
1979; Faetti et al., 1982; Graham and Schenzle, 1982).
Gammaitoni, Marchesoni, Menichella-Saetta, and San-
tucci (1994) have analogously simulated the phenom-
enon of stochastic resonance in the overdamped bistable
system described by the stochastic differential equation

ẋ52V8~x !1xjM~ t !1jA~ t !1A~ t !, (7.9)

where V(x) is the standard quartic double-well poten-
tial and A(t)5A0 cos(Vt), with A0xm!DV . The fluctu-
ating parameters j i(t), with i5A ,M , are stationary
zero-mean valued, Gaussian random processes with au-
tocorrelation functions

^j i~ t !j j~0 !&52Qid ijd~ t !. (7.10)
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The main conclusion of their investigation is that the
process x(t) develops a periodic component ^x(t)&as ac-
cording to the approximate law (2.6); the amplitude x̄
and the phase f̄ of ^x(t)&as depend on A0 , QA , and
QM . Most notably, x̄ shows typical stochastic resonance
behavior with increasing QM while keeping QA fixed
(multiplicative stochastic resonance). In Fig. 53, the de-
pendence of x̄ 1 on QM is plotted for the most remark-
able case of a purely multiplicative bistable process
QA50.

To interpret the outcome of the analog simulation of
Eq. (7.9), one should solve the relevant time-dependent
Fokker-Planck equation

]

]t
p5

]

]x FV8~x !2QMx2A0 cos Vt

1
]

]x
~QA1QMx2!Gp (7.11)

for the probability density p5p(x ,t ;A0). In the pres-
ence of a static tilting, i.e., for A0Þ0 and V50, the sta-
tionary solution of Eq. (7.11) reads

p0~x ;A0!5N0~A0!S x21
QA

QM
D 2 1/21k@11 ~k/2!~QA /DV !#

3expS 2k
x2

xm
2 2

A0

QMuxu D , (7.12)

where k[a/2QM and N0(A0) is a suitable normalization
constant. In the presence of a periodic tilting; i.e., for
V.0, the process x(t) is no longer stationary and a
time-dependent probability density pas(x ,t ;A0) is re-
quired to describe its asymptotic state. However, in the

limit of low forcing frequency V, the adiabatic approxi-
mation pas(x ,t ;A0).p0(x ;A(t)) suffices to shed light
on the nonstationary dynamics underlying the phenom-
enon of multiplicative stochastic resonance.

In the purely multiplicative case QA50 (Fig. 53), the
forcing term alone is responsible for x(t) switching back
and forth between the positive and the negative half
axis. Should the adiabatic approximation hold true for
any value of QM , the process x(t) would approach in-
stantaneously its most probable value in the vicinity of
the peak of p0(x ;A(t)). Therefore, the amplitude x̄ of
^x(t)&as would be of the order of x̄ m , which is a mono-
tonic decreasing function of QM . However, Fig. 53
shows a dramatic drop of x̄ as QM tends to zero. Such a
deviation from the prediction of the adiabatic approxi-
mation is due to the fact that, with decreasing QM , the
switch time of x(t) between positive and negative val-
ues, controlled by A(t) with periodically reversing sign,
grows much larger than the forcing period TV52p/V .
For instance, assuming that at t50 the variable x is con-
fined to the unstable axis x,xA.A0 /a with A0.0, the
mean-first-passage time TA required by x to escape
through xA onto the stable half axis x.xA diverges
strongly for xA /xm→0. On increasing QM close to a ,
such a divergence is substantially weakened, so that the
adiabatic approximation TA!TV applies. In this regime
the relaxation process is controlled mainly by the modu-
lated interwell dynamics of x(t) described by
p0(x ;A(t)) and, as stated above, x̄ approaches x̄ m . In
the opposite limit, TA@TV (i.e., QM!a), the steady-
state distribution of x(t) spreads over the entire x axis
with oscillating local maxima at 6xm1A(t)/2(a2QM)
(modulated intrawell dynamics). It follows immediately
that for QM501 the amplitude x̄ is of the order A0/2a ,
which is much smaller than the value of x̄ m at k51,
whence the appearance of the stochastic resonance
peaks of Fig. 53 for VTA;1. Accordingly, the stochastic
resonance peaks shift to the left with increasing A0 . In
conclusion, the crossover from intrawell to interwell
modulated dynamics is the basic mechanism responsible
for multiplicative stochastic resonance.

2. Resonant crossing

In this section, we report on an intricate colored-noise
effect for the residence-time distributions, which takes
place when the correlation time of the noise is large
(Gammaitoni, Marchesoni, et al., 1993). In such a situa-
tion, the system dynamics are characterized by four time
scales: the local relaxation rate a within a potential well,
the correlation time of the noise tc , the forcing fre-
quency V, and the transition rate rK . The residence-
time distribution (at small amplitudes of the driving A0)
consists—as shown repeatedly in figures throughout this
review—of a series of peaks located at odd multiples of
the half period of the driving TV52p/V , superimposed
on an exponential backbone. The periodic part can be
extracted from the exponential backbone by a fitting
procedure.

FIG. 53. The normalized response amplitude x̄ /xm depicted vs
the dimensionless multiplicative noise strength k21[2QM /a
for A050.1axm and different values of QA . The potential pa-
rameters are xm52.2 V and a5104 s−1. After Gammaitoni,
Marchesoni, Menichella-Saetta, and Santucci (1994).
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It has been demonstrated that the amplitude of the
periodic part evolves as a function of the driving fre-
quency V through a maximum if the correlation time tc
of the noise is large, i.e., atc@1. The location of the
maximum has been estimated by Vmax

2 ;a/tc . In contrast
to the time-scale matching condition for stochastic reso-
nance, i.e., V;prK , this new condition describes a
matching between the intrawell time scale and the driv-
ing frequency V.

3. Aperiodic stochastic resonance

Since most of the studies on stochastic resonance as-
sume periodic external forcing, it is interesting to ask
whether noise can also amplify small aperiodic signals.
To this end several different studies (in scope and tech-
nique) have been put forward.

Jung and Hänggi (1991a) considered noise due to the
phase diffusion of the external force. This is a realistic
assumption, for instance, if the external field is provided
by a laser where spontaneous emission generates phase
diffusion (Haken, 1970). Instead of a deterministic phase
Vt , they proposed the use of a stochastic phase u, i.e.,
u̇5V1 (1/td) ju(t), with ju(t) the derivative of a
Wiener process. The finite coherence time of the phase
dynamics leads to a broadening of the peaks in the
power spectrum and a suppression of the stochastic
resonance effect.

Neiman and Schimansky-Geier (1994) considered the
overdamped motion of a particle in a bistable potential
V(x)5 1

4 x42 1
2 x2, driven by white Gaussian noise and

harmonic noise (Schimansky-Geier and Zülicke, 1990;
Dykman, Mannella, McClintock, Stein, and Stocks,
1993b). Harmonic noise y(t) is generated by applying
white Gaussian noise on a second-order linear filter. The
spectral density of the harmonic noise has a peak at a
nonzero frequency vp and thus mimics a certain degree
of periodicity. The power spectrum of x(t) exhibits a
maximum at vmax , which is located close to vp , but
with a small variation as a function of the noise. As in
the case of phase diffusion, the peaks have a finite width.
The signal-to-noise ratio shows a relative maximum at a
finite noise strength typical of stochastic resonance.

In recent years, we witness a prosperous period for
aperiodic stochastic resonance, which was ushered in by
addressing the problem of optimizing information trans-
fer in excitable systems (Collins et al., 1995a, 1995b; De
Weese and Bialek, 1995; Collins, Chow, et al., 1996; Col-
lins, Imhoff, and Grigg, 1996; Heneghan et al., 1996;
Levin and Miller, 1996; Nieman et al., 1997). The above-
named authors considered the Fitzhugh-Nagumo equa-
tions driven by white noise and an arbitrary aperiodic
signal. This system was operated below threshold and
the aperiodic signal was not large enough to induce ex-
citation. Together with the noise, however, excitations
were possible. Stochastic resonance has been demon-
strated for the correlation of the aperiodic signal with
the excitation rate (the number of excitation events per
unit time).

This area has stimulated an interesting ongoing dis-
cussion: Do there exist suitable measures quantifying
stochastic resonance—and what are they—that can be
based solely on information theory considerations? A
promising approach has been put forward by Heneghan
et al. (1996) who consider the so-termed transinforma-
tion that quantifies the rate of information transfer from
stimulus to response. They demonstrated that the pres-
ence of noise optimizes, via aperiodic stochastic reso-
nance, the information-transfer rate. An attempt to
characterize conventional stochastic resonance by means
of information theory tools has been put forward by
Schimansky-Geier and co-workers (Neiman et al., 1996;
Schimansky-Geier et al., 1998), by Bulsara and Zador
(1996), and by Chapeau-Blondeau (1997). Considering
conditional entropies and Kullback measures,
Schimansky-Geier et al. (1998) demonstrated with a
Schmitt trigger system, driven periodically at strong, but
still subthreshold amplitude strengths, that information
measures do exhibit characteristic extrema. These ex-
trema, however, do not decribe the conventional regime
of stochastic resonance for the signal-to-noise ratio, but
they rather seem to mimic the stochastic resonance be-
havior in a regime that is in accordance with stochastic
resonance for the spectral amplification h.

D. Stochastic resonance—related topics

1. Noise-induced resonances

In studying stochastic resonance, one looks at the pe-
riodic contribution of the output at the same frequency
as the input. More recently, the general question of the
generation of higher harmonics in the presence of noise
has been addressed in a number of studies (Bartussek
et al., 1993; Dykman, Mannella, McClintock, Stein, and
Stocks, 1993a; Bartussek, Hänggi, and Jung, 1994; Dyk-
man et al., 1994; Jung and Talkner, 1995; Bulsara, In-
chiosa, and Gammaitoni, 1996; Jung and Bartussek,
1996). In this section we focus on a novel effect (Bar-
tussek, Hänggi, and Jung, 1994), namely the noise-
selective resonance-like suppression of higher harmon-
ics. These ‘‘noise-induced resonances’’ have been
observed using numerical solutions of the Fokker-
Planck equation in bistable systems (Bartussek, Hänggi,
and Jung, 1994) as well as in monostable systems (Jung
and Bartussek, 1996). Noise-induced resonances have al-
ready been observed in experiments with a periodically
driven SQUID by Rouse, Han, and Lukens (1995). Re-
cently, similar resonances have been predicted for quan-
tum stochastic resonance by Grifoni and Hänggi (1996a,
1996b).

Apart from numerical, adiabatic studies (Bartussek,
Hänggi, and Jung, 1994; Rouse et al., 1995), an analytical
theory allowing one to predict whether or not a particu-
lar system would exhibit noise-induced resonance has
been put forward by Jung and Talkner (1995). Their ap-
proach is sketched as follows: we consider here a general
overdamped system subject to additive white noise and
periodic forcing, i.e.,

ẋ5f~x !1A0 cos~Vt !1j~ t !, (7.13)

where j(t) is as usual white Gaussian noise with zero
mean and strength D , and f(x) is the forcing function.
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As shown in Sec. IV.A, the spectral density consists of a
broad background and d spikes at multiples of the driv-
ing frequency. The weights of the d spikes are given by
gn52puMnu2, where Mn are the complex Fourier coef-
ficients of the asymptotic (large times) mean value
^x(t)&as . Since the nth harmonic is in leading order pro-
portional to A0

n (see Jung and Bartussek, 1996), the in-
tensities gn are proportional to A0

2n . We therefore de-
fine the characteristic coefficients

gn[
4puMnu2

n!2A0
2n , (7.14)

to describe the intensities of the harmonics. In the adia-
batic approximation, the characteristic coefficients gn
have been obtained by Jung and Talkner (1995) in their
respective leading order A0

2n as

gn5
4puMnu2

n!2A0
2n '

4p

~2D !2n S Kn11

n! D 2

, (7.15)

where Kn are the cumulants of the stationary probability
density of the unperturbed process (A050). The inten-
sity of the basic harmonic g1 cannot exhibit noise-
induced resonance for any system, because the second
order cumulant is strictly positive. The sign of the cumu-
lants Kn.2 can change, for example, as a function of the
noise strength D , giving rise to zeros of the intensities
gn of the higher harmonics, i.e., to noise-induced reso-
nances.

Decomposing the complex amplitude Mn into the
product Mn5uMnusin fn, it can be seen that whenever a
noise-induced resonance occurs, the phase fn exhibits a
jump of magnitude p. Several concrete systems (single
well, double well, two-state system, etc.) have been dis-
cussed by Jung and Talkner (1995).

2. Periodically rocked molecular motors

It is generally appreciated that useful work cannot be
extracted from thermal equilibrium fluctuations. Such a
device would violate the second law of thermodynamics.
Feynman et al. (1966) discussed this issue by means of a
model of a mechanical ratchet—a scheme that was origi-
nally devised and elucidated during the heyday of early
Brownian motion by M. V. Smoluchowski (1912, 1914).
In his articles, which these days still provide delightful
reading, Smoluchowski (1912, 1914) shows that in the
absence of an intelligent creature, such as a Maxwell
demon, no net currents will occur. In the presence of
nonequilibrium forces the situation changes drastically:
now a thermal ratchet system, that is, a periodic struc-
ture with spatial asymmetry subjected to noise, can rec-
tify symmetric, unbiased nonequilibrium fluctuations
into a fluctuation-induced directed current (Ajdari and
Prost, 1992; Magnasco, 1993; Astumian and Bier, 1994;
Bartussek, Hänggi, and Kissner, 1994; Doering et al.,
1994; Leibler, 1994; for a comprehensive reviews see
Hänggi and Bartussek, 1996; Astumian, 1997; Jülicher
et al., 1997). Put differently, by a ratchet we mean a sys-
tem that is able to move particles with finite macroscopic
velocity in the absence of any macroscopic bias forces

such as static external force fields, field gradients of ther-
mal, chemical, or other origin. Hence the acting non-
equilibrium forces of zero ensemble average are spa-
tially uniform, and generally are statistically symmetric.
The same principle applies if the stationary nonequilib-
rium forces are substituted by a spatially uniform, coher-
ent periodic signal F(t) of zero temporal average (Ma-
gnasco, 1993; Ajdari et al., 1994; Bartussek, Hänggi, and
Kissner, 1994). These systems are thus closely related in
spirit to the stochastic resonance phenomenon:
Fluctuation-induced escape among neighboring states in
a periodic, multistable potential supported by weak de-
terministic periodic signals is responsible for moving
particles forward noisily. In short, a deterministic driving
alone, which exceeds a lower threshold is sufficient to
create an induced current. Increasing at fixed angular
frequency V the driving strength in overdamped, deter-
ministic ratchet dynamics reveals numerous interesting
features such as a devil’s staircase behavior of current vs
driving strength, current-quantization phenomena, and
further peculiar features. In the presence of thermal Ny-
quist noise z(t), with ^z(t)&50 and correlation
^z(t)z(t8)&52Dd(t2t8) the noisy, periodically driven,
overdamped rocking ratchet dynamics reads

ẋ52
d

dx
VR~x !1A0 cos~Vt !1z~ t !. (7.16)

Herein VR(x) is the periodic (period L) sawtooth-like
ratchet potential VR(x)5VR(x1L) possessing no re-
flection symmetry VR(x)ÞVR(2x). In Fig. 54 we de-
pict the noise-induced current versus the thermal inten-
sity D . Noteworthy in Fig. 54 is the stochastic-

FIG. 54. Unidirectional probability current J̄ vs noise strength
D at fixed driving amplitude A050.5 in a rocking ratchet with
asymmetric periodic potential VR(x)52@sin(2px)
1

1
4 sin(4px)#/2p . The various lines correspond to different

driving angular frequencies V: adiabatic driving: V50.01 (solid
line); and nonadiabatic driving: V51 (dashed), V52.5 (short-
dashed), V54 (dotted), and V57 (dashed-dotted). With the
period L of the ratchet potential equal to unity, the average
particle drift ^ẋ&5L J̄ equals in this case the probability cur-
rent J̄ . A characteristic current reversal (with J̄ passing
through zero) occurs in the regime of nonadiabatic driving!
The adiabatic theory, see Eq. (7.17), falls on to the line with
V50.01. After Bartussek, Hänggi, and Kissner (1994).
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resonance-like feature of the probability current J̄ vs D
characteristics, as well as the phenomenon of current re-
versal (Bartussek, Hänggi, and Kissner, 1994) that oc-
curs for nonadiabatic driving frequencies V. The mean
velocity of the particle position is given by ^ẋ&5L J̄ ,
where J̄ is the time-averaged probability current.
Within an adiabatic approximation, i.e., for slow driving
(V→0) the current J̄ reads explicitly

J̄ 5
D

2p/V E
0

2p/V
dtH $12exp@F~L ,t !#%21

3E
0

L
dxE

0

L
dy exp@F~y ,t !2F~x ,t !#

2E
0

L
dxE

0

x
dy exp@F~y ,t !2F~x ,t !#J 21

, (7.17)

where F(x ,t)5@VR(x)2xA0 cos(Vt)#/D.
In Fig. 54 this approximation for the smallest fre-

quency V50.01 coincides within line thickness with the
exact Floquet-theory result (solid line). The effects of
inertia and/or weak friction are also intriguing: In the
absence of thermal noise, the characteristic chaotic mo-
tion is sufficient to induce a directed current J , which
exhibits multiple current reversals vs the driving ampli-
tude A0 (Jung et al., 1996).

Another ratchet type that is related closely to the
rocking ratchet in Eq. (7.16) is obtained if one substi-
tutes the external coherent driving by an oscillating tem-
perature, i.e.,

A0 cos~Vt !→z~ t !@11A0 cos~Vt !# . (7.18)

This defines a diffusion ratchet (Reimann et al., 1996),
which tends to resist carrying a finite current in the
asymptotic limits of fast and slow driving. In this case
the current starts only proportional to V2, as V→0 (i.e.,
a zero net current in the leading-order adiabatic ap-
proximation) and vanishes again proportional to V22, as
V→` .

3. Escape rates in periodically driven systems

The problem of activated rates in threshold systems
that are exposed to noise and periodic perturbations is
nontrivial. The phase Vt[u of the periodic driving con-
stitutes an additional dimension that can be used to de-
fine the escape rate out of a basin of attraction in ex-
tended space (Jung and Hänggi, 1991b). The basin of
attraction is then shown to be separated by an unstable
periodic orbit in extended x-u space. For a bistable po-
tential, this rate is related to the smallest nonzero Flo-
quet eigenvalue m. Note that this very quantity rules the
long-time relaxation of general statistical quantities such
as time-dependent mean values or time-averaged corre-
lations. This positive-valued, rate-determining eigen-
value, being at weak noise well separated from higher-
order relaxational Floquet eigenvalues, has been
investigated for a driven, symmetric double well by Jung
(1989; see Figs. 4–6 therein). For the pecularities that

occur in periodically driven dynamics in a periodic po-
tential, where the rate-determining Floquet eigenvalue
is related to the Floquet eigenvalue at one of the two
boundaries of the first Brillouin zone, we refer the
reader to the discussion given in Jung and Hänggi
(1991b). A main result is that the rate (or Floquet eigen-
value), which increases proportional to A0

2, does not ex-
hibit any kind of resonance-like behavior! Thus, as re-
peatedly demonstrated in this review, the stochastic
resonance phenomenon is not due to a resonance for the
rate of escape in the periodically driven system. In re-
cent studies by Reichl and her collaborators (Alpatov
and Reichl, 1994; Kim and Reichl, 1996) the higher-
order Floquet eigenvalues have been investigated by
formally mapping the periodically driven overdamped
system onto an equivalent quantum dynamics at imagi-
nary times. As a main result they find that in the regime
where the quantum system exhibits a transition to chaos
the spectrum of Floquet eigenvalues shows level repul-
sion.

Yet another quantity related to the rate-determining
Floquet eigenvalue is the diffusion coefficient in a tilted
periodic potential. Here, the interplay of subthreshold
static drive and thermal fluctuations results in an en-
hancement of the ensuing stationary current, with a
maximum for a certain value of the temperature. Such
an effect, not observable in the overdamped limit (Hu,
1993; Gittermann, Khalfin, and Shapiro, 1994; Casado,
Mejı́as, and Morillo, 1995), may be important in weakly
damped systems (Marchesoni, 1997). If the static drive is
replaced by a periodic tilt with suprathreshold ampli-
tude, novel effects can be induced such as an enhance-
ment of the diffusion rate that even exceeds (Hu, Daf-
ferstshofer, and Haken, 1996) the rate of free diffusion!
Likewise, the role of suprathreshold driving strengths
applied to stochastic resonance systems has recently
been studied for the phenomenon of a noise-induced
failure mechanism for driven switch transitions (Apos-
tolico et al., 1997).

VIII. CONCLUSIONS AND OUTLOOK

In this review we have shown that adding noise to a
system can sometimes improve its ability to transfer in-
formation reliably. This phenomenon—known as sto-
chastic resonance—was originally proposed, almost sev-
enteen years ago, to account for the periodicity in the
Earth’s ice ages, but has since been shown to occur in
many systems. By now, understanding of the phenom-
enon of stochastic resonance has reached a mature level
that we have attempted to review with this long paper.
Numerous contributions to stochastic resonance have
appeared in most physics journals and can be found scat-
tered through many other scientific journals (e.g., see
http://www.umbrars.com/sr), particularly in the fields of
biology and physiology; it thus has reached the level of
what we may term an ‘‘industry.’’

Undoubtedly, the neurophysiological applications
represent cornerstones in the field of stochastic reso-
nance. Such applications have attracted continued inter-
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est from scientists in biology, biomedical engineering,
and medicine. A new interdisciplinary field beyond con-
ventional stochastic resonance, with inputs from nonlin-
ear dynamics, nonequilibrium statistical physics, biologi-
cal and medical sciences has emerged.

The general feature of a system exhibiting stochastic
resonance is its increased sensitivity to small perturba-
tions when an appropriate dose of noise is added; see
the Introduction and Sec. II. The idea that random noise
can be beneficial to the formation of ‘‘order’’ sounds
paradoxical, but must be taken seriously by now. Sto-
chastic resonance simply stands for a new paradigm
wherein noise represents a useful tool, rather than a nui-
sance. Given the basic three ingredients of stochastic
resonance, which are (1) a form of threshold, (2) a
source of ‘‘noise,’’ and (3) a generally weak input
source, it is clear that stochastic resonance is generic
enough to be observable in a large variety of systems.

For the benefit of the reader let us summarize here
what we think has been achieved in the field of stochas-
tic resonance, point out open questions, and finally share
our views about future perspectives.

For simple physical systems that can be described by
either one of the two generic models introduced in Sec.
III (two-state model) and in Secs. IV.A and IV.B
(continuous-state bistable model), the mechanism that
underpins the stochastic resonance effect is by now well
understood. The increased response of the system in the
presence of noise is due to the synchronization of noise-
induced hopping with the temporal profile of the weak
perturbation. This response of the system is ruled by two
competing aspects: starting out from the zero-noise
limit, increasing noise allows—correlated with the small
perturbation—excursions into the neighboring well. This
causes an increased response. On the other hand, in-
creasing the noise level counteracts the aforementioned
correlation; thereby reducing the response. These two
aspects are encoded mathematically by the susceptibility
x, which essentially is made up of two factors: the prod-
uct of an Arrhenius factor, describing the activated hop-
ping, and a factor proportional to the inverse noise in-
tensity 1/D , characterizing the degradation of the
response. The result is a bell-shaped curve for the re-
sponse amplitude vs noise intensity, hence the term sto-
chastic resonance—an expression that for some may ap-
pear ill-defined. This physics in turn determines the most
common quantifiers for stochastic resonance: the signal-
to-noise ratio (SNR) of the output, and the spectral
(power) amplification h; see Secs. II.A and IV.B. Like-
wise, the statistical features of the driven residence-time
distributions N(T) (see Sec. IV.C), reflect the synchro-
nization between random hopping and external modula-
tion. The multipeaked signatures exhibited by the
residence-time distribution at odd multiples of half the
driving period are nothing but the fingerprints of this
synchronization process that occurs in the competition
between the active driving source and the passive dissi-
pation. It should not go unnoticed that the understand-
ing of this very concept of driven residence-time distri-

butions paved the way to interpreting a mass of
physiological data from a new viewpoint; see Secs. IV.C
and V.C.

Equipped with the basics of stochastic resonance
theory, developed in some detail in Secs. III and IV, we
discussed and interpreted in Sec. V several prominent
applications and experiments taken from the fields of
physics and neurophysiology (a more detailed list of ex-
perimental stochastic resonance demonstrations is given
in Sec. II.C.3).

More recent developments in the field of stochastic
resonance presently in the limelight of the activities of
many research groups are discussed in Sec. VI. Both
quantum stochastic resonance and spatiotemporal sto-
chastic resonance have only just begun to be explored.
Quantum tunneling assists the stochastic resonance ef-
fect in the semiclassical regime; in the deep cold, how-
ever, quantum coherence increasingly spoils the effect;
see Sec. VI.A. The notion of stochastic resonance gen-
eralized to spatially extended pattern-forming systems
has been the subject of Sec. VI.B: spatiotemporal pat-
terns can be enhanced by adding the proper amount of
noise. The notion of deterministic chaos, which intrinsi-
cally provides a source of disorder, has been studied by
various groups, and has been reviewed in Sec. VI.C. The
last section, Sec. VI.D, has been devoted to the study of
the effects of finite correlation times (colored noise) of
the background noise. For overdamped dynamics the
role of colored noise generally results in a reduction of
the efficiency of stochastic resonance. In contrast, finite
inertia effects, induced by moderate friction, tend to
boost the stochastic resonance response. The physics of
stochastic resonance at extreme weak friction, however,
still needs to be investigated in greater detail.

The field of stochastic resonance research has wit-
nessed a remarkable flourishing during the last few
years; needless to say it is no longer possible to present a
detailed account on each single contribution. In Sec. VII
we have discussed selected contributions that provide
additional insight. Stochastic resonance and its connec-
tion with the dithering effect, globally coupled periodi-
cally modulated bistable elements, or the impact of ad-
ditional multiplicative noise on stochastic resonance in
the presence of additive noise (see Sec. VII.C.1) are all
topics that relate closely to stochastic resonance. Re-
cently, research on stochastic resonance in physical sys-
tems has diverged into neighboring fields such as the
problem of noise-induced transport in Brownian ratch-
ets; see Sec. VII.D.2. The modern topic of nonlinear sto-
chastic resonance involves the impact of noise on the
generation and mixing of higher harmonics; see Sec.
VII.D.1. A peculiar effect, the suppression of higher
harmonics at some specific noise strengths, is being re-
ported there. This effective elimination of higher har-
monics could be used to the effect of minimizing the
distortion of information transfer in nonlinear systems.

In Sec. VII.C.3 on aperiodic stochastic resonance—
i.e., the phenomenon being obtained in presence of a
nonperiodic input signal—we touched on a still open
problem. Can stochastic resonance be suitably charac-
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terized by means of information theory concepts alone?
In view of quantum stochastic resonance, which intrinsi-
cally avoids the notion of joint probability measures, a
unifying answer seems anything but trivial.

It may be worthwhile to conclude with some specula-
tions on what the future of stochastic resonance may
look like. What is still lacking from a physics point of
view is a detailed, microscopic approach to stochastic
resonance that would account for the mutual interplay
between the transfer of power among the system x(t),
the bath(s) [or sources of noise j(t)], and the external
signal A(t). Another promising area for fruitful further
research is quantum stochastic resonance. For example,
almost nothing is known about the quantum analog of
stochastic resonance in threshold-crossing devices, sto-
chastic resonance in arrays of coupled quantum systems,
or—last but not least—the difficult problem of modeling
quantum stochastic resonance in stationary nonequilib-
rium systems (i.e., the physics occurring in driven, dissi-
pative quantum systems that are far from thermal equi-
librium). The observation that classical concepts become
increasingly invalid upon crossing the borderline be-
tween the classical and the quantum world, and beyond,
is an indication that several surprises and novel stochas-
tic resonance phenomena are waiting to be uncovered.
The same holds true for spatiotemporal stochastic reso-
nance, which yet has to be extended into three-
dimensional structures.

Clearly, stochastic resonance constitutes an
information-transmitting phenomenon that exploits the
noise in a self-optimizing manner. Therefore, its prom-
ising role in complex systems such as the nervous sys-
tem, or even the brain have not gone unnoticed in the
communities of physiological, biological, and medical
sciences; see the reviews by Moss, Pierson, and
O’Gorman (1994) and Wiesenfeld and Moss (1995). For
example, the question of whether extremely low-
frequency electromagnetic fields actually affect biologi-
cal function via the stochastic resonance phenomenon
still remains open. What has been achieved so far is the
successful demonstration of stochastic resonance with
injected external noise in the peripheral nervous system
of crayfish (Douglass et al., 1993; Pei et al., 1996), in
crickets (Levin and Miller, 1996), in the human visual
perception (Riani and Simonotto, 1995; Simonotto et al.,
1997), and in ion channels (Bezrukov and Vodyanoy,
1995), to name a few. Without doubt this latter area,
too, is expected to prosper by providing numerous inter-
esting new results and novel insights.
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APPENDIX: PERTURBATION THEORY

For weak external forcing, the time-inhomogeneous
term in the Fokker-Planck equation can be treated as a
small perturbation with the amplitude A0 acting as small
parameter. Perturbation theory (Presilla et al., 1989; Hu
et al., 1990; Jung, 1993) provides explicit expressions for
characteristic quantities of the driven systems, such as
the Floquet eigenvalues, eigenfunctions, and mean val-
ues in terms of the eigenvalues and eigenfunctions of the
unperturbed Fokker-Planck operator.

The starting point is the Floquet eigenvalue problem,
obtained in Sec. IV.A by inserting the Floquet ansatz
(4.9) into the Fokker-Planck equation (4.11) with w50

FL02A0 cos~Vt !
]

]x
2

]

]tGpm~x ,t ;0 !52mpm~x ,t ;0 !,

(A1)

with

L052
]

]x
f~x !1D

]2

]x2 , (A2)

and

f~x !5x2x3. (A3)

Expanding the Floquet eigenfunctions into a Fourier
series

pm~x ,t ;0 !5 (
n52`

`

cn~x !exp@ inVt# (A4)

yields the hierarchy of coupled ordinary differential
equations

~L02inV1m!cn~x !2
A0

2
@cn118 ~x !1cn218 ~x !#50,

(A5)

with cn8(x) 5 dcn(x)/dx .
For strictly real-valued Floquet eigenvalues m, the

Floquet eigenfunctions are real as well, i.e.,
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cn~x !5c2n* ~x !. (A6)

In order for the perturbation theory to be applicable
to more general situations such as tilted periodic poten-
tials, we do not make use of this assumption. The zeroth
order perturbation theory for A050

~L02inV1m~0 !!cn
~0 !~x !50 (A7)

is solved by

cn
~0 !~x !5c l~x !,

m ln
~0 !5l l1inV , (A8)

where the index l of $cn(x)% has been dropped through-
out for convenience. Here, c l(x), c l

†(x), and l l are the
eigenfunctions and eigenvalues of the unperturbed (ad-
joint) Fokker-Planck operator, i.e.,

L0c l~x !52l lc l~x !,

L0
†c l

†~x !52l lc l
†~x !,

^lum&[E
2`

`

c l~x !cm
† ~x !dx5d lm . (A9)

To order (A0)0, all equations with label n have the
same form. The eigenvalues differ by a multiple of iV .
Without loss of generality, we can start the perturbation
expansion at n50, i.e.,

m ln50
~0 ! [m l

~0 !5l l ,

cn
~0 !~x !5dn0c l~x !. (A10)

The first three equations of Eq. (A5) are written down
explicitly as

~L01m!c0~x !5
A0

2
@c18~x !1c218 ~x !# , (A11)

~L02iV1m!c1~x !5
A0

2
@c28~x !1c08~x !# ,

~L01iV1m!c21~x !5
A0

2
@c08~x !1c228 ~x !# . (A12)

We now seek a solution of the latter system of differ-
ential equations in terms of the perturbation expansions

cn~x !5dn0c l~x !1A0cn
~1 !~x !1A0

2cn
~2 !~x !1••• ,

m l5l l1A0m l
~1 !1A0

2m l
~2 !1••• . (A13)

It follows immediately from Eq. (A11) that m(1) van-
ishes. Comparing terms of order A0 and A0

2 in Eqs.
(A11) and (A12) yields

~L01l l!c0
~2 !~x !1m l

~2 !c l~x !5
1
2

@c18
~1 !~x !1c218~1 !~x !# ,

(A14)

~L02iV1l l!c1
~1 !~x !5

1
2

c l8~x !,

~L01iV1l l!c21
~1 ! ~x !5

1
2

c l8~x !. (A15)

Since l l6iV are not eigenvalues of the operator L0 ,
the operators L01l l6iV can be inverted and the func-
tions c61

(1)(x) are obtained formally as

c1
~1 !~x !5

1
2

~L02iV1l l!
21c l8~x !,

c21
~1 ! ~x !5

1
2

~L01iV1l l!
21c l8~x !. (A16)

Inserting Eq. (A16) into Eq. (A14), multiplying by the
eigenfunction c l

† and then integrating over x , we obtain

m l
~2 !5

1
4 E

2`

`

c l
†~x !

]

]x
L1

]

]x
c l~x !dx

5
1
4 K lU ]

]x
L1

]

]x Ul L , (A17)

where

L15
1

L01iV1l l
1

1
L02iV1l l

. (A18)

For the Floquet eigenfunctions one obtains in leading-
order perturbation theory

pm l
~x ,t !5c l~x !1

A0

2
$exp~2iVt !@L01iV1l l#

21

1exp~ iVt !@L02iV1l l#
21%c l8~x !. (A19)

In view of the identity

]

]x
c l~x !5 (

q50

`

cq~x !E
2`

`

cq
†~x !

]

]x
c l~x !dx

5 (
q50

` K qU ]

]x Ul L cq~x !, (A20)

the Floquet eigenvalues and eigenfunctions can be ex-
pressed in terms of the eigenfunctions of the undriven
Fokker-Planck operator, namely

m l5l l1
A0

2

2 (
q50

`
l l2lq

~l l2lq!21V2 K lU ]

]x Uq L
3 K qU ]

]x Ul L
pm l

~x ,t !5c l~x !1A0 (
q50

` 1

A~l l2lq!21V2

3 K qU ]

]x Ul L cos~Vt1aql!cq~x !, (A21)
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with

tan~aql!5V/~l l2lq!. (A22)

In particular, the asymptotic probability density
pas(x ,t), corresponding to the vanishing Floquet eigen-
value m05l050, reads

pas~x ,t !5p0~x !1A0 (
q51

` K qU ]

]x U0 L
3cq~x !

1

Alq
21V2

cos~Vt1aq0!

5p0~x !1As~x !sin~Vt !1Ac~x !cos~Vt !,

(A23)

with

Ac~x !5A0 (
q51

`
lq

lq
21V2 K qU ]

]x U0 L cq~x !,

As~x !5A0 (
q51

`
V

lq
21V2 K qU ]

]x U0 L cq~x !. (A24)

The spectral amplification [Eq. (4.21)] is obtained by
inserting Eq. (A23) into the definition
^x(t)&as5*xpas(x ,t)dx , that is,

h5 (
n ,m50

`
lnlm1V2

~ln
21V2!~lm

2 1V2! K nU ]

]x U0 L
3K mU ]

]x U0 L ^0uxun&^0uxum&. (A25)

The expression (A25) is exact up to order (A0)2.
The expression for ^x(t)&as to leading order in A0 co-

incides with the prediction of the thermal-equilibrium
linear-response theory of Sec. IV.B. This last statement
can be proved explicitly by inserting the completeness
relation into the expression

x~ t !5E xeL0tS 2
]

]x Dp0~x !dx (A26)

for the response function x(t) of the modulated system
of Eq. (A.1), whence

x~ t !52 (
q51

`

e2lqtK qU ]

]x U0 L ^0uxuq&. (A27)

Note that Eq. (A26) follows immediately from the
general definition (4.28) of x(t) by substituting
Gext5d8(y2z) for the perturbation kernel, and
P0(x ,tuy ,0)5eL0td(x2y) for the unperturbed condi-
tional probability density of the system under study. On
further substituting the spectral representation (A27) of
x(t) into Eq. (4.26), we eventually reproduce the per-
turbation theory prediction for ^x(t)&as :

^x~ t !&as5A0 (
q51

` K qU ]

]x U0 L ^0uxuq&
1

Alq
21V2

3cos~Vt1aq0!. (A28)

On approximating ^0uxu1& to 1 and ^1u]/]xu0& to
2l1 /D , one eventually recovers Eq. (2.7a) for x̄ (D)
(Hu et al., 1990).
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Löfstedt, R., and S. N. Coppersmith, 1994a, Phys. Rev. Lett.

72, 1947.
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