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Thermal ratchets driven by Poissonian white shot noise
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We investigate the overdamped transport of Brownian particles that are placed in spatially periodic poten-
tials (without andwith reflection symmetrythat are subjected tooth Poissonian white shot noise and thermal,
i.e., Gaussian, white equilibrium fluctuations. The probability current of the output process, which is shown to
obey a second-order ordinary differential equation, is analyzed. The limit of strong Poissonian white shot noise
is studied analytically; the resulting current is given in closed form in terms of two quadratures. For general
forms of the periodic potential we present asymptotic expansions in terms of the ratio between the thermal and
the shot noise intensity. Analytic results are presented for the class of piecewise linear, sawtoothlike ratchet
potentials. Under specific conditions, the current exhibits a distinctavemonotonicdependence on such
parameters as temperature and/or asymmetry of the periodic potgBiieb3-651X97)06104-7

PACS numbdis): 05.40:+j, 02.50~r

I. INTRODUCTION has been investigated recently for a rocking ratchet in Ref.
[12]. In diffusion ratchet§14], the diffusion coefficient of a
A variety of phenomena in nature are based on transpoftokker-Planck equation is assumed to tstae-independent
of mass and energy. One can distinguish, at the macroscopitne-periodic function. _ _ _ _
level, the convective and diffusive character of transport. The " this paper we consider Brownian particles in a spatially
former is identified with systematic or directed motion. The periodic potential that are driven by two stochastic processes,

latter is a result of random collisions. Recently, it has beerpamely, Gaussian white noise and white shot noise com-

. : . . osed of positively weighted pulses that occur at the ar-
reallzec_i that dlr_ecte_:d motion can be induced by non_therm ival times of a Poissonian counting process. Such shot noise
fluctuations acting in the absence of any gradient fields o

bias f 11 Such 4B S Ofs abundant in nature: For example, it describes the emission
ias forces[1]. Such systems are now termed Brownian ¢ ojecirons in diodes, the counting process of emitted pho-
ratchets. These are spatially periodic systems in which NONpNs, and the rate of arriving telephone calls, to name only a

zero current is generated by noise forces of vanishing meagay. The former characterizes equilibriusymmetricfluc-
and/or zero-mean deterministic forces. Ratchet-type modelgations in the system at temperatife The latter models
have been used in molecular biology in order to explainnonequilibrium asymmetric, white fluctuations of zero mean.
translocations of motor proteins such as kinesin, dyneinThe statistical asymmetrj11] of this shot noise is sufficient
myosin, and their relativ2]. These enzymes perform prac- to induce directed motion for the particlgnite curren};
tical tasks such as transport of organelles and vesicles, locthis is so because noise-activated forward and backward tran-
motion, and segregation of chromosomes during mitosissitions then no longer equal each oth&0,11]. In Ref.[10]
Possible physics applications of ratchet systems, especialgn exact analytical result for the current was derived when
for different devices in nano- and microtechnologies, areghe system is at zero temperature-0. Herein we extend
presently being actively investigatg¢d,3]. Several mecha- this prior study tofinite temperatures *0. In Sec. Il we
nisms of noise-driven transport have been propddgdin  formulate the model for the ratchet dynamics. A master
[4] a spatially periodic potential is switched on and off both equation for a probability distributioR(x,t) of the resulting
deterministically and randomly. This situation is referred toprocess is a partial integro-differential equation that can be
as a flashing ratchet, i.e., it corresponds to a situation with &ransformed into an equation of continuity expressing the
fluctuating periodic potentidll,5]. Another class of ratchets conservation law of probability. This reformulation of the
uses a fluctuating force, which is either of stochaétie.,, a  master equation is presented in Sec. Ill. From the continuity
“correlation” ratche) or deterministic origin(i.e., a “rock-  equation forP(x,t) one finds that the probability current
ing” ratched. In correlation ratchets6—8|, the driving noise  J(x,t) is determined, in the stationary regime, by a second-
is a correlated stochastic force, e.g., the Ornstein-Uhlenbeadbrder differential equation. Only for temperatufe=0 does
process[6,7], an exponentially correlated telegraph signalit reduce to a first-order differential equation, which can be
[6,9], or the kangaroo proce$6,8]. Other models use non- solved analytically for an arbitrary form of the periodic po-
equilibrium fluctuations that are modeled W¥correlated tential V(x) [10]. If T>0, the second-order ordinary differ-
random processes such as white shot ndis@dl 1 or ratch-  ential equation for the stationary distributidR(x) with

ets driven by pure deterministic noise sour¢#®,13. In  x-dependent coefficients cannot be solved in general. In Sec.
rocked ratchet$3], the system is subjected to the action of IV we discuss the limiting situation with a very strong inten-
an externaltime-periodicforce and thermal noise. The role sity for the Poissonian fluctuations. In Sec. V we present two
of finite inertia and chaotic motion on the ratchet dynamicsasymptotic expansions for the currehtwith respect to a
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small ratioe of thermal-noise strengttproportional to tem- describes, according to E(), the (negative-valuedbias of
perature to the shot-noise strength. An equation determiningthe shot-noise process realization between consecufive
J is a singularly perturbed differential equation becaese pulses.

enters the highest derivative. In Sec. VI we obtain the exact From Egs.(3) and(4) it follows that the average and the
results for a case of a piecewise linear potential. For thisorrelation of nois€3) are given by

stylized situation, we are able to evaluate analytically both

the stationary periodic distribution as well as the correspond- (6(1))=0, (&(1)&(u))=2Dgs(t—u), (7
ing currentd. In Sec. VIl we investigate the dependence of o

the current on various parameters of the model such as thghere the total shot-noise intensiys reads

temperature, the asymmetry of the potential, and the shot B

noise intensity. In Sec. VIII we also compare the two Ds=NA% ®)
asymptotic expansions far versus the exact stationary cur-

rent. Our findings are summarized in Sec. IX. The procesd’(t) represents thermal fluctuations, i.e., it is

Gaussian white noise with
Il. MODEL FOR RATCHET DYNAMICS (T(t))=0, (TC'(t)(u))=2D+8(t—u), (9)

The ratchet-type system studied in the paper is modeled in

o . Where the thermal-noise strendihy is
the presence of strong frictional forcksyx (M denotes the
mass of the particle angt is the friction coefficient by an D:=MKkgT/y, (10)
overdamped stochastic dynamics, i.e.,
with T being temperature of the system. As usual, we assume

x=f(x)+ &) +T(1), (1)  thatI'(t) is not correlated witlg(t).
A master equation for the probability distributidi(x,t)
where of the procesx(t) defined by Eq(1) has the forn{15,17
o dv(x) IP(x,t) 9 f 0 - NATP(x £
f0=-—5, el = O MAIPXY)
andV(x)=V(x+L) is a rescaleddivided byM y) periodic +)\fx h(z)[P(x—z,t)—P(x,t)]dz
potential with a spatial period. The procesg(t) is white —
shot noise defined 445,16 2
n(t) + DTW P(x,t). (11
E0)=2, 78(t-1)~\z). (3

The right-hand side of this equation consists of three parts:
) ) ] . ] ) _ The first term denotes the drift, including a Poissonian-noise-
The RO|sson|an points are the arrival times of a P0|ssp_n|an induced part proportional taA=\(z;); the second term is
counting process(t) with parameten, i.e., the probability  rejated to the Poissonian process; and the third term corre-
thatk delta impulses occur in the interval {Djs given by  sponds to the thermal diffusion process. With nonzero ther-
the Poissonian distribution f(t)=k}=(\t)“exp(~\t)  mal noise the stationary probability has a support over the
/k!. Then the distance between successive Poissonian ar-whole x axis. Moreover, with the drift part being periodic,
rival timess=t; —t;_, is exponentially distributed with the the stationary probability for the one-dimensional Markov
probability densityX exp(~\s). The parametel deter-  process depends on the choice of the boundary conditions
mines the mean number of the Diréqﬁ)ulses per unit time; (BC’S) With two reﬂecting BC’s aK, =x andxr:)(+ L, the

it equals the reciprocal of the average sojourn time betweeprobability current is zero; in contrast, a finite, stationary

two & kicks. The positive-valued amplitudgg;} of the &  probability current emerges if periodic BC's are chosen.
pulses are random variables independent of each other and of

the counting procesy(t). The weightgz} areexponentially

L : . . I1l. CONTINUITY EQUATION FOR PROBABILITY
distributed with the probability density Q

AND EQUATION FOR PARTICLE CURRENT

h(z)=A"'@(2e"74, A>0, (4 For studying transport characteristics of proc&s it is
useful to transform Eq(11) to the continuity equation
where0 (z) is the Heaviside step function. The moments of

amplitudes{z}, according to Eq(4), are given by the rela- IP(x,t) d
tions Fraa 5J(x,t). (12
(Z)=KIAY, k=1,23,.... (5 This conservation law defines the probability current
_ J(x,t). To obtain this current, let us introduce the shift op-
The quantity erator by the relation

a=MA=)\(z) (6) exp( —zal ax) P(x,t)=P(x—z,t). (13
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Next we expand the shifted probability into a Taylor series.posed

After integration of the second line in E€L1) we can, upon
observation of the exponential form of the dengiiz) for
the weights in Eq(4) and the moments in E@5), recast the
master equation in Eq11) into the form of a continuity
equation. In doing so, we use the identity

n

- d
_ n___
2 (ZA" TGP
=A*1J' dye YAexd —yal ax]P(x,t)
0
=f dyA e VAP(x—vy,t)
0

=fw h(x—2z)P(z,t)dz

(14)

With this identity and the relation Adh(x—2z)/dx
= —h(x—2) the probability currend(x,t) can be expressed
as

J(x,t)=f(X)P(x,t)— DS%fjxh(x— z)P(z,t)dz

1%

~Dr o P(x1). (15)

Let us notice that Eq12) with Eq. (15) can be interpreted as
a spatially nonlocal diffusiorequation, i.e.,

IP(X,t) af 5 9? F X2 P20
et (MHW . (x,2)P(z,t)dz,
(16)
with an effective diffusion function
D(x,z)=Dgh(x—2z)+D18(x—2z). (17)

It consists of nonlocalPoissoniapand local(therma) parts.
In the limiting case

A—o, A—0, Dg=NA%=const (18

the nonlocal part tends to a local diffusion function
Dgsé(x—2). In this limit, a—o and Poissonian white shot
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on the corresponding stationary probability
P(x)=P(x+L). With h(z) given in Eq.(4), the current] is
determined by arordinary differential equation of second
order, namely,

—D+{AP"(x)—[D1+Ds—Af(X)]P'(x)

+[f(x)+AT (X)]P(x)=1J. (20
Here and below the prime denotes a derivative with respect
to the argument of a function. This equation can be inte-
grated for temperatur€=0, i.e., whenD+=0. In this case
the currentd is obtained in closed form in terms of two
guadrature§10]. For T>0, arbitrary values for the noise
parameters, and a general form for the periodic potential
V(x), Eq. (20) cannot be solved explicitly in closed form.

IV. ASYMPTOTIC REGIME
OF LARGE SHOT-NOISE INTENSITY

Let us consider the case with a finite thermal temperature
T. Then there is only one nontrivial limiting case of Poisso-
nian white fluctuations for which the current can be evalu-
ated analytically. This is the situation when

A—0, A—c, MNA=a (fixed), (21

wherea, by virtue of Eq.(6), characterizes the negative base
value of the white-shot-noise realizatigf{t). The above
limit means that the strengtBs=\A? of the Poissonian
white noise tends to infinity, while its value betweéikicks
is fixed at—a. In the regime of very large values bfs, the
stationary distributior?(x) is determined by the differential
equation[cf. Eq. (20)]

2

d d
DTWP(x)nL &[a—f(x)]P(x)ZO, (22

with two imposed conditions: periodicity and normalization
of P(x) to unity within a spatial period. of the potential
V(x). The resulting periodic solution is found to read

noise tends to Gaussian white noise with the diffusionyhereW takes care of the normalization #{x),

strengthDs.

The solutionP(x,t) of Eq. (16) is a periodic function of
X, i.e., P(x+L,t)=P(x,t), if we choose an initial distribu-
tion P(x,0) that is periodic with respect toe. Combining
Egs. (1) and (12) with Eq. (16) thus yields the relation be-
tween the average of the particle velocity(t)) and the
currentJ(x,t), namely,

) c+L
wO)=Go=(100)= [ akax a9

which is valid for any real humbeg.
The stationary currenf follows from Eg. (15) in the
long-time limit t— oo with periodic boundary conditions im-

Lo [
P(x)=v—ve JX e??dz, (23
L x+L
W= f e ¢™ f e?@dz dx (24)
0 X
and the generalized potential reads
d(x)=[ax+V(x)]/Dy. (25
Because ¢(x) is not periodic, the difference

d(x+L)—¢p(x)#0. Hence the generalized potential pos-
sesses a slop@n average biasand thus supports a nonzero
stationary current. Its value follows from E@.5) as[cf. Eq.

191,
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c+L

J=L‘1<f(x)>=L‘1J f(X)P(x)dx. (26)

c

If the temperatureT of the system tends to zero, i.e.,
D+—0, we find from Eq(22) in this asymptotic regiméwe
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Next we treat Eq(30) as a perturbed differential equation
with a small parametee. It is a singularly perturbed equa-
tion becauses occurs at the highegsecond-ordgrderiva-
tive. A great deal of work in singular perturbations has been
devoted to boundary problems, as well as to initial-value

recall here that the case with zero temperature can be solvédoblems[18,19. Our problem(30) belongs neither to the

analytically in terms of two quadratures; sgH]) for the
periodic probability

[a—f(X)]P(x)=Co, (27

former nor to the latter. In a perturbation problem an ap-
proximation is sought by solving the reduced problem ob-
tained from the original one by settirg=0. The solution of

the reduced problem in general is not an approximation to
the exact solution of the full problem on the whole intervals

where C, is a constant. Integrating this equation over theof independent variables and parameters of the system. This

interval[c,c+L] yields

a

=L

Co. (28
The first terma/L is due to forward transitions generated by
é kicks, i.e., the first term in Eq3). The second terrg is
due to backward transitions. f{x)<a for all x, thenCy is
different from zero, yielding

J

In this case, Eq(26) reduces to Eq14) in Ref.[10]. On the
other hand, if there is a subinterval p§,c+L] for which

P(x)=

with Cy!

Co
a—f(x) - a2

f(x)>a, shot-noise-activated backward transitions are im-

possible. Therefore, we hag,= 0. This result follows also
from Eg. (27): BecauseP(x)=0 for any x and a—f(x)
changes sign while changes ifc,c+L], Eq. (27) can be
fulfilled only whenCy=0, yielding for the currenf=a/L.
In the Gaussian white-noise limitl8) or in the limit

is why it is rather difficult to obtain a perturbation expansion
of a solution to Eq(30) that is uniformly convergent. What
can be done is to construct an asymptotic solution as a for-
mal series usingd hocarguments, but without proving the
validity of it and without error estimation of approximations.
Unfortunately, there is no systematic and unique approach
for constructing asymptotic expansions. Here we present two
such formal expansions.

A. Regular expansion

The first type of the expansion is an ansatz of the form

|o<l><y>=|oo<y>+n§1 €"pn(y), j<1>=10+n§l €,
(33)

where{py(y),jo} is a solution of the truncated systémhen
€=0). For convenience, we call E3) aregular e expan-
sion In this approach, two terms of Eq30), namely,
ep”(y) andep’(y), are treated as a perturbation. Substitut-

Ds—0, the system is driven solely by Gaussian white noiseing Eq. (33) into Eq.(30) and equating coefficients of equal

consequently, the curredtvanishes identically. In the limit
a—o andDg—, i.e., when\ —oo andA is fixed, or when

\ is fixed andA— <, EQ.(20) reduces td®’(x)=0. Thus the
probability density isP(x)=L"%, and as a consequence
J—0; see Eq(26).

V. ASYMPTOTIC EXPANSIONS

The previously exactly solved case fb= 0 [10] suggests

that, instead of solving Eq20) directly, which, in general, is e functionsD(y), F(y), andG

power in €, we obtain equations determining successively
pn(y) andj,. They have the form

—Do(y)po(y) +F(Y)Po(Y) =10,

~Do(Y)Pn(Y) +F(Y)Pn(Y) =t Gn-1(y),

not possible, one can attempt to determine an approximate

solution of Eq.(20) for small temperature by use of pertur-

bation techniques. To this aim, it is desirable to transform

Eq. (20) into a dimensionless form, i.e.,

—ep"(y)—[e+1—F(y)Ip’ (V) +[Fy)+ T (y)Ip(y)=],
(30)

where the rescaled quantities are defined by the relations

f(Ay)

AA
31

y=x 1=y p(y)=AP(Ay), f(y)=

The non-negative parametelis a ratio of the thermal noise
intensity to the intensity of shot noise, namely,

Dy

= D_s (32

€

n=12.3, ... . (34)
.(y) are given by
Do(y)=1-T(y), F(y)=T(y)+T'(y),
Ga(Y)=Ph(Y)+PyY), n=012.... (39

The set of equation&4) is supplemented with the periodic-

ity conditions
pa(y+D=pny), I=L/A, n=0,12,.... (36

The normalization of the distributiop(y) over a rescaled

periodl leads to the additional conditions

[
fopn(y)dyz don, N=0,1,2,.... (37)

Now the problem(34)—(37) can be solved and the zeroth-
order contribution emerges as
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Vo

1 3 y+I _q
Po(y)=5e WW{[ D, Y(2)e"?dz, (39
y

where v (x)

| y+I
sz e*‘”y)dyf D, Y(z)e"?dz (39 -
0 y

: o S -L 0 Kk k£ T
takes into account normalization of the probability distribu- ! !
tion and
FIG. 1. Spatially periodic sawtooth potenti(x) of periodL,
y F(2) barrier heightv,, and asymmetry parametler
\If(y)=—f D7 92 (40) ) .
0Do(2) ~D(y,€)po(y,€) +F(y)Po(¥,€) =jole),

is a generalized potential of the unperturbed system. The —D(y,e)p,(Y,e)+F(y)pn(y,€)=]jn(€)+ph_i(Y,€),
zeroth-order approximatiojy to the currenf reads[10]

n=123,..., (45
jozi[l_e*ﬂl)]. (41)  subject to the periodicity conditiof86) and the normaliza-
Q tion condition in Eq.(37).

. ) ] The functionD(y, ) has the form
It is a solution of the truncated system corresponding to the

case whed'(t)=0 in Eq.(1). Then the system is driven by D(y,e)=¢€+ 1—?(y) (46)
white shot noise only. This case has been analyzed in detail ) o )

analytically in Refs[10,11. It is assumed that thanper- ~@nd may be called eenormalized diffusion functiom cor-
turbed diffusion functiorobeysD,(y)>0. Then the current '€ction related to thermal noise is included in the shot-noise

of the unperturbed system at temperat@ire0 occurs non- diffusion function. In the second approach, only one term of
trivially [10,11. Eq. (30), i.e., ep”(y), is treated as a small perturbation. On

The higher-order contributions fa(y) have the form the contrary, the termap’ (y) is treated exactly and enters the
unperturbed diffusion functio®y=D(y,e=0), renormaliz-

eV Yt ing it.
Pn(y)= _—w)[jnf D, *(2)e"?dz The solution of Eq(44) has a similar form given to that
1-e y in Egs. (38—(43), but with corresponding changes
Y+ Do(y)—D(y,e) andG,(y)—pr(y,e€) in all formulas(38)—
+f Gnl(z)Dol(z)e‘I'(z>dz], (43). A domain of validity of these two asymptotic expan-
y sions is strongly restricted by the requirement that the diffu-

sion functions are positive: In nonrescaled variables,
n=123,..., (42)  Dg—Af(x)>0 for the regular expansion andD
+Dg—Af(x)>0 for the renormalized expansion. A com-
where the higher-order termjs, of the total current are  parison with exact results is discussed in Sec. VIII for a

determined by the relations particular form of the potentia¥/(x).
N L 1w VI. EXACT SOLUTION
h="gJ,® , Gn-1(2)Dg "(z)e™“dz dy, FOR THE SAWTOOTH POTENTIAL

The problem(20) can be solved analytically for special
n=123,.... (43)  forms of the potentiaV/(x) only. As an example, we present
analysis of the syster(ll) for a piecewise linear, sawtooth-
Both p,(y) andj,, depend on lower-order contributions via like potential(see Fig. 1
the functionsG,_,(y) expressed by, _,(y) andp,_1(y);

2V
cf. (35). 270 -
L+2k(x k), xe[—L/2,k]lmod
V(x)= 4
B. Renormalized expansion (x) 2V, 4
(x—k), xe[k,L/2]mod,
The second type of the expansion is postulated in the form L—2k
o % whereVy>0 andk e (—L/2,L/2) determines the asymmetry
p@(y)=> €pu(y,e), jP@=2D €"j,(e), (44  of the potential: Fork=0 it is reflection symmetric; fok
n=0 n=0 # 0 the reflection symmetry of (x) is broken.

Because the forc€) is periodic, the stationary distribu-
where the unknown functions are solutions to the set of diftion P(x) being a solution of Eq(20) is periodic and it is
ferential equations sufficient to consider the probleni20) on the interval
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[Xg,Xg+ L] for a fixedxy e (—L/2,k). It ensures the smooth- Normalization ofP(x) leads to the following fifth condition,
ness of solutions at the boundaries of the interval. The comamely,
responding forcd (x) has the form

—D7A(L/2+K)[p1(—L/2)—p;i(k) ]+ DA(L/2—k)

2V,
f(X)= ——-0(x+L/2)O(k—Xx) , , L
L+2k X[pa(L/2) = pa(k) ]+ E(Ds+ D1)[p2(L/2) = pa(k)
2V
— I__;k(a(x—k)(a(L/Z—x) —p1(K)+py(—L/2)]+I[(L/2—Kk)>— (LI2+Kk)?]
oV =—Vo. (57)
+ 2 @(x—L/2)O(L/2+k—x) (48
L+ 2k A solution of Eq.(52) has the form(for a similar solution

technique with the white shot noise substituted by a dichoto-
for any xe[Xq,Xo+L]. This form of the force suggests the mous two-state process see H&f)
ansatz
pl(X)I Blewllx+ BzeW12X+ J(L+2k)/2VO, (58)
P(X)=p1(X)®(x+L/2)O(k—x)+ pa(X)O(x—K)

X @(LI2—X) + p3(x) O (x— L12)®(L/2+ k—X) P2(X)=Ce"2F+ Coe"2 = J(L = 2k)/2Vo,  (59)

(490  where
for the solution of Eq(20). In this equation, the relation —Q_— 0% +8D7AV,/(L+2k)
B ~ Wy = 2D-A 7 (60)
Pa(X)=py(x—L)
is fulfilled, due to the periodicity condition. Substituting Eq. O+ VO2 +8D7AV, /(L +2Kk) 61
(49 into Eq. (20) leads to an equation of the structure W12= 2D;A ' (61)
9(X)+ a1 6(Xx—K) + ay6(x—L/12)+ 16" (x—K) —Q, —JOZ —8D7AV,/(L—2K)
+ 8,8 (x—L/2)=0, (50) War= 2D,A (62
with a given functiong(x) and some constant coefficients —Q, +/0Z —8DAV,/(L—2K)
a; andB; (i=1,2). From the Lemma 3.1.2 {20] it follows Woo= i i 7o , (63
: : 22 2D-A
that this equation holds when T
x)=0, «@;=0, B;=0, i=1,2. 51 _2AV,
900=0. =0 4, ) Q:=Ds+DrF o0 (64)

From the first equation of Eqé51) one obtains equations for
the functionsp;(x) (i=1,2) in the form The current] and the four constants; ,C; (i=1,2) are de-
termined by five conditiong53)—(57). This yields a nonho-

" 2AVy| 0 mogeneous system of five linear algebraic equations. Hence
~DrApI(X) = DstDr— L+2k Pa(X)+ L+2kp1(x)=J, the problem is solved and evaluation of the current is a mat-
ter of linear algebra. Becauses a quotient of two determi-
2AV, o nants of the fifth degree, the explicit form dfemerges as a
—D1Apy(X)—|Dst D+ m} Pa(X)— [—2KP2(X)=J.  complex expression, which is not reproduced here. The

(52) analysis of the current with its corresponding graphical rep-
resentation is the subject of the next section.

Boundary conditions for these ordinary differential equations

follow from the remaining equations of Eq&1) and read VII. DISCUSSION OF RESULTS
p1(K)=po(k), (53) In this section we analyze transport properties in the
piecewise linear potentidh7). There are six parameters in
p1(—L/2)=p,(L/2) (54) our ratchet model, namel\p;, the thermal-noise strength

proportional to temperature of the systen,a), which
AV,L characterize the Poissoniaftcorrelated fluctuations; and
Dpi(K)—psyk)]=——=———=—p1(k), (55  (Vo.kL), which determine the potential(x). A general
(L+2k)(L—2k) note concerns the sign of the curredtis positive for any
(nonzero, finitg¢ values of parameters. This is so because of
the positive-valued weights of th& kicks. The current is a
monotonically increasing function of the shot-noise intensity
(56) Dg. Starting from zero aD =0, it saturates to the maximal

, , VAVAR
D[ py(—L/2)—p,y(L/2)]= )pl(—L/Z)-

(L+2K)(L—2k
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FIG. 2. Current] vs parametea [which measures the negative
base value of the white-shot-noise realizatiéft) between the
positive-valueds kicks] for various thermal-noise intensitié3 ,
fixed white-shot-noise intensitips=1, in the symmetric K=0),
periodic sawtooth potential with period=2 and barrier height
VO: 1.

value given by Eq(26). Qualitatively, the same property has
been observed for zero thermal temperaflire0 [10].

A. Current versus shot-noise bias level

The dependence df versus the shot-noise bias lexeln

Eq. (6) is visualized in Fig. 2. Our figures have been ob- T 0'9‘ ————— |
tained by solving the above-mentioned system of five lin- -1 06 02 02 06 p 1
early coupled algebraic equations by straightforward, simple

numerical means. There is an optimal vahyg,, for which (c)

the current is maximal. As the temperature of the system
decreases to zera,,,, approaches the valuevg/(L + 2k)
from below. If a>2V,/(L+2k) at T=0, both backward
and forward transitions take place for the Brownian dynam-
ics of the particles. Throughout our discussion here, we
evaluate the analytic results far=0 by using, for conve-
nience, in our program a very small temperature of
Dt=10"%. On the contrary, ifa<2V,/(L+2k) at T=0,
only forward transitions drive the particl@1]. If T>0, this

no longer holds true. For arg;, there are now both backward
and forward transitions being induced by nonzero Gaussian
white noise.

1 06 02 02 06 f 1

FIG. 3. Current) shown vs asymmetry parametepof the saw-

B. Current versus potential asymmetry tooth potential (47) for fixed a=2, L=2, and Vo=1, for (a)
D;=10"% and various values of shot-noise strendih, (b)
The current depends strongly on the asymmetry parametey_—1 and various values of thermal-noise strenBth, and (c)

k Of the pOtentiaL We deﬁne the asymmetry as b@0g|t|ve DS: 0.2 and various values of thermal-noise Strer@m
if k<O and vice versa. The cake=0 corresponds to a sym-

metric periodic potential. Positive asymmetry means thathe caseDgs=1 andDs=0.5 in Fig. 3a). As k changes
when starting from minima of the potential its slope in thefrom a maximal positive asymmetry kt= —L/2, the current
x-increasing (right) direction is less than in the grows to a(local or global value. Nextd diminishes, attain-
x-decreasingleft) direction or, put differently, climbing the ing a(global or loca] minimal value. The minimum is not
barrier is easier towards the right than towards the left. Irfor a symmetric potential a=0, but is shifted towards a
Figs. 3a)—3(c) we depict the current dependence upon thepositivek value, i.e., anegativeasymmetry for the ratchet
asymmetry parametésr of the potential. In a “hot” system, potential. A further increase of asymmetry leads to an in-
i.e., when the temperatufieis relatively high, the symmetric crease of the current. This behavior is most pronounced at
thermal noise dominates so that the current is ruled incread=0 and can be explained as follows: Kk<Vy/a—L/2,
ingly by an equilibrium dynamics. Hence the current tends tdhere is no net flux in the left direction. Strong shot-noise
zero independently of the specific form of the ratchet potenintensity Dg means thats pulses are rareN( is smal) and
tial, which implies that the current is almost symmetric with amplitudesz; in Eq. (3) are large(but \A=a=cons}. Be-
respect to asymmetry; see FiggbBand 3c). Moreover, we tweend pulses and fok close to—L/2, particles are local-
note that, at fixed temperatufig the current increases with ized near a minimum of the potenti®(x) since the deter-
increasing k|. ministic relaxation times from the left and from the right
At T=0, as well as at low temperatures and for strongmaxima to the minimum are shorter than 1If k increases
intensityD g of Poissonian fluctuations, new effects arise; sedghen the distance between a minimum and the neighboring
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FIG. 4. Plot of the current] as a function of thermal-noise
intensity D1 (or rescaled temperatufg) for fixed a=0.5, L=2,
V=1, k=0, and selected values of white-shot-noise strefh
(a) three distinctivelmonotonic decrease, minimum-maximum, and
bell-shape behaviors ofJ(Dt) are depicted(b) depicts how a
global maximum forJ changes into a local maximum while in-
creasing the white-shot-noise intensidy; .
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observe three radically different types of the current behavior
as the control paramet&g is varied.

(i) The current is a monotonically decreasing function of
temperature(ii) As temperature increases from zero, the cur-
rent starts from a nonzero value, decreasing to a local mini-
mum; next it grows, attaining docal or global] maximum,
and thenJ approaches zero @—«. (iii) Increasing the
temperature from zero results first in a rise of the current and
then its fall. There is one unique temperature maximizing the
current. Put differently, the curreidt exhibits a bell-shaped
behavior versus increasing temperature.

VIIl. APPROXIMATE SOLUTIONS

For a comparison between the two asymptotic expansions
presented in Sec. V with the exact results obtained for the
case of the piecewise linear potent{dl7), we truncate the
series(33) and (44) and restrict ourselves to terms of first
order with respect to the expansion parametewithin the
original, i.e., nonrescaled variables, indicated Jpyand for
the potential barrie¥, the renormalized expansion, denoted
by the superscript 2 yields

D.D
J2~3,(Dy)+ TTSJl(DT), (66)

where

_ e(LR=kr=(L2+Kk)s

Jo(D7)= S

(67)

and

right maximum becomes shorter. Smaller and more probable

amplitudedcf. the distribution(4)] are able to displace par-
ticles over the maximum into the right direction. This feature
holds with k<O up to k=Vy/a—L/2 at T=0. When
k>Vy/a—L/2, a flux arises also towards the left direction

(L/2—K)?r(r+s)

J,(Dp)= RV e(L/Z—k)r_e(L/2—k)r—(L/2+k)S]
0

r
L

X[— 1+ Zr(l_ef(L/2+k)S)_ef(L/2+k)S

and grows ag& increases. As a consequence, the total current

in the right direction decreases lkincreases; cf. in Fig.(3)
for Dg=1 andk>—0.5. Starting from a certain positive-
value (negative asymmetnthe growth ofk causes an in-
crease of the current up to the maximal value

v 2V Vv
J=— 0 —2 as k—L/2.

L (L+2kL L (65)

Herev, is the deterministic part of the particle velocity in the

e (L2=Kr 4 g(Ll2=kr—(L/2+ k)5]

(L/2+K)?s(r +s)
rvgN?

[e(L/2=kr = (Li2+ks

_ e—(L/2+k)5][ —1-25(1- eL/2=kry _ g(Li2=kr

right direction. This is so because the probability that, after a

S kick, the particle falls into the intervak(L/2) is much less
compared to the case where it falls into the interval
(—=L/2)k).

C. Current versus temperature

The stationary current as a function of the thermal noise
intensity D, (or rescaled temperaturé of the systemis
plotted in Figs. 4a) and 4b) for several values of the shot-

+elL/2rKs g g(LI2=Kr=(LI2+ k)5 (69)
The normalization constant reads
L2
N= N(DT) — V_Z(DT+ DS)[e(L/Z—k)r+ e—(L/2+k)S
0
— glLr2=k)r=(Li2+k)s_ 1]
L (LI2—K)r— (L/2+K)s
+2kv—0[1—e 1. (69

noise strengtiD 5 and fixed remaining parameters. One canThe quantities ands are given by
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IX. SUMMARY

We have studied properties of the current in periodic
structures generated by white shot noise and driven by ther-
mal fluctuations. The stationary current is determined by the
ordinary differential equation of second order; see 2§).
Because this equation cannot be solved by analytical means
we have considered various specific situations. For an arbi-
trary form of the spatially periodic potential, the current can
be analytically described in closed form in the asymptotic
regime of very strong intensity for Poissonia@correlated
fluctuations(Sec. IV). Two asymptotic expansions are con-

approximations obtained from the the first-order asymptotic expanstrycted in Sec. V. The expansion parameter is defined as a

sions: regulacthin solid line and renormalizeddotted ling expan-
sions. The parameters ab;=1, L=2, Vy=1, andk=0 for two
values of the expansion parameterD;/Ds=D{=0.001 and
0.1.

-1

L D;+D D
fEf(DT)=[<§—k TV—OS+—S . (70

L D;+Ds Dg|?
SES(DT)Z <§+k)v—o—? (71)

The regular expansion, denoted by the superscript 1, leads
the relation

D;Dsg
a

JW=~7J,(0)+ J1(0). (72

quotient of the Gaussian white-noise intensity and the white-
shot-noise intensity. These expansions are not uniformly
convergent and their domains of validity are determined not
only by the expansion parameter, but also by the remaining
parameters of the stochastic dynamics.

Exact analytical results are obtained for the piecewise lin-
ear sawtoothlike potenti&7). The most interesting findings
are visualized in the figures. The current vs temperature char-
acteristics are strongly influenced by other parameters of the
model, such as the intensifyg of Poissonian white fluctua-
tions. A notable feature of our ratchet model is the occur-
fgnce, for specific choices of the parameter setwafchar-
acteristic temperatures at which the current is locally
minimal and/or(locally or globallyy maximal. The fact that
there exists a single characteristic temperature that maxi-
mizes the current has been emphasizeBinNevertheless,
we believe that the existence of a temperature that locally
minimizesthe current can have practical consequences too.

As we mentioned before, the expansions can be used onky,cp, 5 temperature-induced minimum can play a useful role

when the unperturbed diffusion function in E85) and the
renormalized diffusion function in Eq46) are positive for
any x. For the sawtooth potenti@l7), this implies the con-
ditions

a>a;=2(k+L/2), a>a,=2[(k+L/2)(1+D7/Dg)]
(73

for the unperturbed and renormalized diffusion functions, re
spectively. As depicted in Fig. 5, the regime of validity of
these two approximations is governed not only by the para
eter € defined in Eq.(32) but also by the base level of

white shot noise(t), which is restricted by Eq.73). If € is

rather small(top two lines in Fig. 5, the two expansions
reproduce the exact result fardecreasing from infinity up
to a=~a;. With increasinge, the deviations from the exact

in the design of devices that separate particles. For example,
the simultaneous presence of a minimum and a maximum
can be of use to separate, withinimal dispersiorin veloc-

ity, two classes of particles. The corresponding regimes are
controlled by the value of the thermal noise intendity,

which is governed by mass and friction strength parameters;
cf. Eq. (10). Suitable systems where these ideas may apply
are shot-noise-driven transport in periodic superlattices or

biological motor proteins that move along periodic track fila-

ments where shot noise mimics the nonequilibrium stochas-

Mic hydrolysis of adenosine triphosphate.
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