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Thermal ratchets driven by Poissonian white shot noise

T. Czernik, J. Kula, and J. Łuczka
Department of Theoretical Physics, Silesian University, 40-007 Katowice, Poland

P. Hänggi
Institut für Physik, Universita¨t Augsburg, Memminger Strasse 6, D-86135 Augsburg, Germany

~Received 10 September 1996!

We investigate the overdamped transport of Brownian particles that are placed in spatially periodic poten-
tials ~without andwith reflection symmetry! that are subjected tobothPoissonian white shot noise and thermal,
i.e., Gaussian, white equilibrium fluctuations. The probability current of the output process, which is shown to
obey a second-order ordinary differential equation, is analyzed. The limit of strong Poissonian white shot noise
is studied analytically; the resulting current is given in closed form in terms of two quadratures. For general
forms of the periodic potential we present asymptotic expansions in terms of the ratio between the thermal and
the shot noise intensity. Analytic results are presented for the class of piecewise linear, sawtoothlike ratchet
potentials. Under specific conditions, the current exhibits a distinctivenonmonotonicdependence on such
parameters as temperature and/or asymmetry of the periodic potential.@S1063-651X~97!06104-7#

PACS number~s!: 05.40.1j, 02.50.2r
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I. INTRODUCTION

A variety of phenomena in nature are based on trans
of mass and energy. One can distinguish, at the macrosc
level, the convective and diffusive character of transport. T
former is identified with systematic or directed motion. T
latter is a result of random collisions. Recently, it has be
realized that directed motion can be induced by nonther
fluctuations acting in the absence of any gradient fields
bias forces@1#. Such systems are now termed Browni
ratchets. These are spatially periodic systems in which n
zero current is generated by noise forces of vanishing m
and/or zero-mean deterministic forces. Ratchet-type mo
have been used in molecular biology in order to expl
translocations of motor proteins such as kinesin, dyn
myosin, and their relatives@2#. These enzymes perform pra
tical tasks such as transport of organelles and vesicles, l
motion, and segregation of chromosomes during mito
Possible physics applications of ratchet systems, espec
for different devices in nano- and microtechnologies,
presently being actively investigated@1,3#. Several mecha-
nisms of noise-driven transport have been proposed@1#: In
@4# a spatially periodic potential is switched on and off bo
deterministically and randomly. This situation is referred
as a flashing ratchet, i.e., it corresponds to a situation wi
fluctuating periodic potential@1,5#. Another class of ratchet
uses a fluctuating force, which is either of stochastic~i.e., a
‘‘correlation’’ ratchet! or deterministic origin~i.e., a ‘‘rock-
ing’’ ratchet!. In correlation ratchets@6–8#, the driving noise
is a correlated stochastic force, e.g., the Ornstein-Uhlenb
process@6,7#, an exponentially correlated telegraph sign
@6,9#, or the kangaroo process@6,8#. Other models use non
equilibrium fluctuations that are modeled byd-correlated
random processes such as white shot noises@10,11# or ratch-
ets driven by pure deterministic noise sources@12,13#. In
rocked ratchets@3#, the system is subjected to the action
an external,time-periodicforce and thermal noise. The rol
of finite inertia and chaotic motion on the ratchet dynam
551063-651X/97/55~4!/4057~10!/$10.00
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has been investigated recently for a rocking ratchet in R
@12#. In diffusion ratchets@14#, the diffusion coefficient of a
Fokker-Planck equation is assumed to be astate-independen
time-periodic function.

In this paper we consider Brownian particles in a spatia
periodic potential that are driven by two stochastic proces
namely, Gaussian white noise and white shot noise co
posed of positively weightedd pulses that occur at the ar
rival times of a Poissonian counting process. Such shot n
is abundant in nature: For example, it describes the emis
of electrons in diodes, the counting process of emitted p
tons, and the rate of arriving telephone calls, to name on
few. The former characterizes equilibriumsymmetricfluc-
tuations in the system at temperatureT. The latter models
nonequilibrium asymmetric, white fluctuations of zero mea
Thestatistical asymmetry@11# of this shot noise is sufficien
to induce directed motion for the particles~finite current!;
this is so because noise-activated forward and backward t
sitions then no longer equal each other@10,11#. In Ref. @10#
an exact analytical result for the current was derived wh
the system is at zero temperatureT50. Herein we extend
this prior study tofinite temperatures T.0. In Sec. II we
formulate the model for the ratchet dynamics. A mas
equation for a probability distributionP(x,t) of the resulting
process is a partial integro-differential equation that can
transformed into an equation of continuity expressing
conservation law of probability. This reformulation of th
master equation is presented in Sec. III. From the contin
equation forP(x,t) one finds that the probability curren
J(x,t) is determined, in the stationary regime, by a seco
order differential equation. Only for temperatureT50 does
it reduce to a first-order differential equation, which can
solved analytically for an arbitrary form of the periodic p
tentialV(x) @10#. If T.0, the second-order ordinary differ
ential equation for the stationary distributionP(x) with
x-dependent coefficients cannot be solved in general. In S
IV we discuss the limiting situation with a very strong inte
sity for the Poissonian fluctuations. In Sec. V we present t
asymptotic expansions for the currentJ with respect to a
4057 © 1997 The American Physical Society
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small ratioe of thermal-noise strength~proportional to tem-
perature! to the shot-noise strength. An equation determin
J is a singularly perturbed differential equation becausee
enters the highest derivative. In Sec. VI we obtain the ex
results for a case of a piecewise linear potential. For
stylized situation, we are able to evaluate analytically b
the stationary periodic distribution as well as the correspo
ing currentJ. In Sec. VII we investigate the dependence
the current on various parameters of the model such as
temperature, the asymmetry of the potential, and the s
noise intensity. In Sec. VIII we also compare the tw
asymptotic expansions forJ versus the exact stationary cu
rent. Our findings are summarized in Sec. IX.

II. MODEL FOR RATCHET DYNAMICS

The ratchet-type system studied in the paper is modele
the presence of strong frictional forcesMg ẋ (M denotes the
mass of the particle andg is the friction coefficient! by an
overdamped stochastic dynamics, i.e.,

ẋ5 f ~x!1j~ t !1G~ t !, ~1!

where

f ~x!52
dV~x!

dx
~2!

andV(x)5V(x1L) is a rescaled~divided byMg) periodic
potential with a spatial periodL. The processj(t) is white
shot noise defined as@15,16#

j~ t !5(
i51

n~ t !

zid~ t2t i !2l^zi&. ~3!

The Poissonian pointst i are the arrival times of a Poissonia
counting processn(t) with parameterl, i.e., the probability
that k delta impulses occur in the interval (0,t) is given by
the Poissonian distribution Pr$n(t)5k%5(lt)k exp(2lt)
/k!. Then the distances between successive Poissonian
rival times s5t i2t i21 is exponentially distributed with the
probability densityl exp(2ls). The parameterl deter-
mines the mean number of the Diracd pulses per unit time;
it equals the reciprocal of the average sojourn time betw
two d kicks. The positive-valued amplitudes$zi% of the d
pulses are random variables independent of each other a
the counting processn(t). The weights$zi% areexponentially
distributed with the probability density

h~z!5A21Q~z!e2z/A, A.0, ~4!

whereQ(z) is the Heaviside step function. The moments
amplitudes$zi%, according to Eq.~4!, are given by the rela-
tions

^zi
k&5k!Ak, k51,2,3,. . . . ~5!

The quantity

a5lA5l^zi& ~6!
g
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describes, according to Eq.~3!, the ~negative-valued! bias of
the shot-noise process realization between consecutivd
pulses.

From Eqs.~3! and ~4! it follows that the average and th
correlation of noise~3! are given by

^j~ t !&50, ^j~ t !j~u!&52DSd~ t2u!, ~7!

where the total shot-noise intensityDS reads

DS[lA2. ~8!

The processG(t) represents thermal fluctuations, i.e., it
Gaussian white noise with

^G~ t !&50, ^G~ t !G~u!&52DTd~ t2u!, ~9!

where the thermal-noise strengthDT is

DT[MkBT/g, ~10!

with T being temperature of the system. As usual, we assu
thatG(t) is not correlated withj(t).

A master equation for the probability distributionP(x,t)
of the processx(t) defined by Eq.~1! has the form@15,17#

]P~x,t !

]t
52

]

]x
@ f ~x!2lA#P~x,t !

1lE
2`

`

h~z!@P~x2z,t !2P~x,t !#dz

1DT

]2

]x2
P~x,t !. ~11!

The right-hand side of this equation consists of three pa
The first term denotes the drift, including a Poissonian-noi
induced part proportional tolA5l^zi&; the second term is
related to the Poissonian process; and the third term co
sponds to the thermal diffusion process. With nonzero th
mal noise the stationary probability has a support over
whole x axis. Moreover, with the drift part being periodic
the stationary probability for the one-dimensional Mark
process depends on the choice of the boundary condit
~BC’s!. With two reflecting BC’s atxl5x andxr5x1L, the
probability current is zero; in contrast, a finite, stationa
probability current emerges if periodic BC’s are chosen.

III. CONTINUITY EQUATION FOR PROBABILITY
AND EQUATION FOR PARTICLE CURRENT

For studying transport characteristics of process~1!, it is
useful to transform Eq.~11! to the continuity equation

]P~x,t !

]t
52

]

]x
J~x,t !. ~12!

This conservation law defines the probability curre
J(x,t). To obtain this current, let us introduce the shift o
erator by the relation

exp~2z]/]x!P~x,t !5P~x2z,t !. ~13!
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55 4059THERMAL RATCHETS DRIVEN BY POISSONIAN WHITE . . .
Next we expand the shifted probability into a Taylor seri
After integration of the second line in Eq.~11! we can, upon
observation of the exponential form of the densityh(z) for
the weights in Eq.~4! and the moments in Eq.~5!, recast the
master equation in Eq.~11! into the form of a continuity
equation. In doing so, we use the identity

(
n50

`

~2A!n
]n

]xn
P~x,t !

5A21E
0

`

dye2y/Aexp@2y]/]x#P~x,t !

5E
0

`

dyA21e2y/AP~x2y,t !

5E
2`

`

h~x2z!P~z,t !dz. ~14!

With this identity and the relation A]h(x2z)/]x
52h(x2z) the probability currentJ(x,t) can be expresse
as

J~x,t !5 f ~x!P~x,t !2DS

]

]xE2`

`

h~x2z!P~z,t !dz

2DT

]

]x
P~x,t !. ~15!

Let us notice that Eq.~12! with Eq. ~15! can be interpreted a
a spatially nonlocal diffusionequation, i.e.,

]P~x,t !

]t
52

]

]x
f ~x!P~x,t !1

]2

]x2E2`

`

D~x,z!P~z,t !dz,

~16!

with an effective diffusion function

D~x,z!5DSh~x2z!1DTd~x2z!. ~17!

It consists of nonlocal~Poissonian! and local~thermal! parts.
In the limiting case

l→`, A→0, DS5lA25const ~18!

the nonlocal part tends to a local diffusion functio
DSd(x2z). In this limit, a→` and Poissonian white sho
noise tends to Gaussian white noise with the diffus
strengthDS .

The solutionP(x,t) of Eq. ~16! is a periodic function of
x, i.e., P(x1L,t)5P(x,t), if we choose an initial distribu-
tion P(x,0) that is periodic with respect tox. Combining
Eqs. ~1! and ~12! with Eq. ~16! thus yields the relation be
tween the average of the particle velocity^v(t)& and the
currentJ(x,t), namely,

^v~ t !&5^ẋ&5^ f ~x!&5E
c

c1L

J~x,t !dx, ~19!

which is valid for any real numberc.
The stationary currentJ follows from Eq. ~15! in the

long-time limit t→` with periodic boundary conditions im
.

n

posed on the corresponding stationary probabi
P(x)5P(x1L). With h(z) given in Eq.~4!, the currentJ is
determined by anordinary differential equation of secon
order, namely,

2DTAP9~x!2@DT1DS2Af~x!#P8~x!

1@ f ~x!1Af8~x!#P~x!5J. ~20!

Here and below the prime denotes a derivative with resp
to the argument of a function. This equation can be in
grated for temperatureT50, i.e., whenDT50. In this case
the currentJ is obtained in closed form in terms of tw
quadratures@10#. For T.0, arbitrary values for the noise
parameters, and a general form for the periodic poten
V(x), Eq. ~20! cannot be solved explicitly in closed form.

IV. ASYMPTOTIC REGIME
OF LARGE SHOT-NOISE INTENSITY

Let us consider the case with a finite thermal temperat
T. Then there is only one nontrivial limiting case of Poiss
nian white fluctuations for which the current can be eva
ated analytically. This is the situation when

l→0, A→`, lA[a ~fixed!, ~21!

wherea, by virtue of Eq.~6!, characterizes the negative ba
value of the white-shot-noise realizationj(t). The above
limit means that the strengthDS5lA2 of the Poissonian
white noise tends to infinity, while its value betweend kicks
is fixed at2a. In the regime of very large values ofDS , the
stationary distributionP(x) is determined by the differentia
equation@cf. Eq. ~20!#

DT

d2

dx2
P~x!1

d

dx
@a2 f ~x!#P~x!50, ~22!

with two imposed conditions: periodicity and normalizatio
of P(x) to unity within a spatial periodL of the potential
V(x). The resulting periodic solution is found to read

P~x!5
1

W
e2f~x!E

x

x1L

ef~z!dz, ~23!

whereW takes care of the normalization ofP(x),

W5E
0

L

e2f~x!E
x

x1L

ef~z!dz dx, ~24!

and the generalized potential reads

f~x!5@ax1V~x!#/DT . ~25!

Because f(x) is not periodic, the difference
f(x1L)2f(x)Þ0. Hence the generalized potential po
sesses a slope~an average bias! and thus supports a nonzer
stationary current. Its value follows from Eq.~15! as@cf. Eq.
~19!#,
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J5L21^ f ~x!&5L21E
c

c1L

f ~x!P~x!dx. ~26!

If the temperatureT of the system tends to zero, i.e
DT→0, we find from Eq.~22! in this asymptotic regime~we
recall here that the case with zero temperature can be so
analytically in terms of two quadratures; see@10#! for the
periodic probability

@a2 f ~x!#P~x!5C0 , ~27!

whereC0 is a constant. Integrating this equation over t
interval @c,c1L# yields

J5
a

L
2C0 . ~28!

The first terma/L is due to forward transitions generated
d kicks, i.e., the first term in Eq.~3!. The second termC0 is
due to backward transitions. Iff (x),a for all x, thenC0 is
different from zero, yielding

P~x!5
C0

a2 f ~x!
with C0

215E
c

c1L dx

a2 f ~x!
. ~29!

In this case, Eq.~26! reduces to Eq.~14! in Ref. @10#. On the
other hand, if there is a subinterval of@c,c1L# for which
f (x).a, shot-noise-activated backward transitions are
possible. Therefore, we haveC050. This result follows also
from Eq. ~27!: BecauseP(x)>0 for any x and a2 f (x)
changes sign whilex changes in@c,c1L#, Eq. ~27! can be
fulfilled only whenC0[0, yielding for the currentJ5a/L.

In the Gaussian white-noise limit~18! or in the limit
DS→0, the system is driven solely by Gaussian white noi
consequently, the currentJ vanishes identically. In the limit
a→` andDS→`, i.e., whenl→` andA is fixed, or when
l is fixed andA→`, Eq.~20! reduces toP8(x)50. Thus the
probability density isP(x)5L21, and as a consequenc
J→0; see Eq.~26!.

V. ASYMPTOTIC EXPANSIONS

The previously exactly solved case forT50 @10# suggests
that, instead of solving Eq.~20! directly, which, in general, is
not possible, one can attempt to determine an approxim
solution of Eq.~20! for small temperature by use of pertu
bation techniques. To this aim, it is desirable to transfo
Eq. ~20! into a dimensionless form, i.e.,

2ep9~y!2@e112 f̃ ~y!#p8~y!1@ f̃ ~y!1 f̃ 8~y!#p~y!5 j ,
~30!

where the rescaled quantities are defined by the relation

y5
x

A
, j5

J

l
, p~y!5AP~Ay!, f̃ ~y!5

f ~Ay!

lA
.

~31!

The non-negative parametere is a ratio of the thermal noise
intensity to the intensity of shot noise, namely,

e5
DT

DS
. ~32!
ed

-

;

te

Next we treat Eq.~30! as a perturbed differential equatio
with a small parametere. It is a singularly perturbed equa
tion becausee occurs at the highest~second-order! deriva-
tive. A great deal of work in singular perturbations has be
devoted to boundary problems, as well as to initial-va
problems@18,19#. Our problem~30! belongs neither to the
former nor to the latter. In a perturbation problem an a
proximation is sought by solving the reduced problem o
tained from the original one by settinge50. The solution of
the reduced problem in general is not an approximation
the exact solution of the full problem on the whole interva
of independent variables and parameters of the system.
is why it is rather difficult to obtain a perturbation expansi
of a solution to Eq.~30! that is uniformly convergent. Wha
can be done is to construct an asymptotic solution as a
mal series usingad hocarguments, but without proving th
validity of it and without error estimation of approximation
Unfortunately, there is no systematic and unique appro
for constructing asymptotic expansions. Here we present
such formal expansions.

A. Regular expansion

The first type of the expansion is an ansatz of the form

p~1!~y!5p0~y!1 (
n51

`

enpn~y!, j ~1!5 j 01 (
n51

`

enj n ,

~33!

where$p0(y), j 0% is a solution of the truncated system~when
e[0). For convenience, we call Eq.~33! a regular e expan-
sion. In this approach, two terms of Eq.~30!, namely,
ep9(y) andep8(y), are treated as a perturbation. Substit
ing Eq. ~33! into Eq. ~30! and equating coefficients of equa
power in e, we obtain equations determining successiv
pn(y) and j n . They have the form

2D0~y!p08~y!1F~y!p0~y!5 j 0 ,

2D0~y!pn8~y!1F~y!pn~y!5 j n1Gn21~y!,

n51,2,3, . . . . ~34!

The functionsD0(y), F(y), andGn(y) are given by

D0~y!512 f̃ ~y!, F~y!5 f̃ ~y!1 f̃ 8~y!,

Gn~y!5pn9~y!1pn8~y!, n50,1,2,. . . . ~35!

The set of equations~34! is supplemented with the periodic
ity conditions

pn~y1 l !5pn~y!, l5L/A, n50,1,2,. . . . ~36!

The normalization of the distributionp(y) over a rescaled
period l leads to the additional conditions

E
0

l

pn~y!dy5d0n , n50,1,2,. . . . ~37!

Now the problem~34!–~37! can be solved and the zeroth
order contribution emerges as
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p0~y!5
1

Q
e2C~y!E

y

y1 l

D0
21~z!eC~z!dz, ~38!

where

Q5E
0

l

e2C~y!dyE
y

y1 l

D0
21~z!eC~z!dz ~39!

takes into account normalization of the probability distrib
tion and

C~y!52E
0

y F~z!

D0~z!
dz ~40!

is a generalized potential of the unperturbed system.
zeroth-order approximationj 0 to the currentj reads@10#

j 05
1

Q
@12eC~ l !#. ~41!

It is a solution of the truncated system corresponding to
case whenG(t)[0 in Eq. ~1!. Then the system is driven b
white shot noise only. This case has been analyzed in d
analytically in Refs.@10,11#. It is assumed that theunper-
turbed diffusion functionobeysD0(y).0. Then the current
of the unperturbed system at temperatureT50 occurs non-
trivially @10,11#.

The higher-order contributions top(y) have the form

pn~y!5
e2C~y!

12eC~ l ! H j nE
y

y1 l

D0
21~z!eC~z!dz

1E
y

y1 l

Gn21~z!D0
21~z!eC~z!dzJ ,

n51,2,3,. . . , ~42!

where the higher-order termsj n of the total currentj are
determined by the relations

j n52
1

QE0
l

e2C~y!E
y

y1 l

Gn21~z!D0
21~z!eC~z!dz dy,

n51,2,3, . . . . ~43!

Both pn(y) and j n depend on lower-order contributions v
the functionsGn21(y) expressed bypn219 (y) andpn218 (y);
cf. ~35!.

B. Renormalized expansion

The second type of the expansion is postulated in the f

p~2!~y!5 (
n50

`

enpn~y,e!, j ~2!5 (
n50

`

enj n~e!, ~44!

where the unknown functions are solutions to the set of
ferential equations
-

e

e

ail

m

f-

2D~y,e!p08~y,e!1F~y!p0~y,e!5 j 0~e!,

2D~y,e!pn8~y,e!1F~y!pn~y,e!5 j n~e!1pn219 ~y,e!,

n51,2,3,. . . , ~45!

subject to the periodicity condition~36! and the normaliza-
tion condition in Eq.~37!.

The functionD(y,e) has the form

D~y,e!5e112 f̃ ~y! ~46!

and may be called arenormalized diffusion function: A cor-
rection related to thermal noise is included in the shot-no
diffusion function. In the second approach, only one term
Eq. ~30!, i.e., ep9(y), is treated as a small perturbation. O
the contrary, the termep8(y) is treated exactly and enters th
unperturbed diffusion functionD05D(y,e50), renormaliz-
ing it.

The solution of Eq.~44! has a similar form given to tha
in Eqs. ~38!–~43!, but with corresponding change
D0(y)→D(y,e) andGn(y)→pn9(y,e) in all formulas~38!–
~43!. A domain of validity of these two asymptotic expan
sions is strongly restricted by the requirement that the dif
sion functions are positive: In nonrescaled variabl
DS2Af(x).0 for the regular expansion andDT
1DS2Af(x).0 for the renormalized expansion. A com
parison with exact results is discussed in Sec. VIII for
particular form of the potentialV(x).

VI. EXACT SOLUTION
FOR THE SAWTOOTH POTENTIAL

The problem~20! can be solved analytically for specia
forms of the potentialV(x) only. As an example, we presen
analysis of the system~1! for a piecewise linear, sawtooth
like potential~see Fig. 1!

V~x!5H 2
2V0

L12k
~x2k!, xP@2L/2,k#modL

2V0

L22k
~x2k!, xP@k,L/2#modL,

~47!

whereV0.0 andkP(2L/2,L/2) determines the asymmetr
of the potential: Fork50 it is reflection symmetric; fork
Þ0 the reflection symmetry ofV(x) is broken.

Because the force~2! is periodic, the stationary distribu
tion P(x) being a solution of Eq.~20! is periodic and it is
sufficient to consider the problem~20! on the interval

FIG. 1. Spatially periodic sawtooth potentialV(x) of periodL,
barrier heightV0, and asymmetry parameterk.
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@x0 ,x01L# for a fixedx0P(2L/2,k). It ensures the smooth
ness of solutions at the boundaries of the interval. The c
responding forcef (x) has the form

f ~x!5
2V0

L12k
Q~x1L/2!Q~k2x!

2
2V0

L22k
Q~x2k!Q~L/22x!

1
2V0

L12k
Q~x2L/2!Q~L/21k2x! ~48!

for any xP@x0 ,x01L#. This form of the force suggests th
ansatz

P~x!5p1~x!Q~x1L/2!Q~k2x!1p2~x!Q~x2k!

3Q~L/22x!1p3~x!Q~x2L/2!Q~L/21k2x!

~49!

for the solution of Eq.~20!. In this equation, the relation

p3~x!5p1~x2L !

is fulfilled, due to the periodicity condition. Substituting E
~49! into Eq. ~20! leads to an equation of the structure

g~x!1a1d~x2k!1a2d~x2L/2!1b1d8~x2k!

1b2d8~x2L/2!50, ~50!

with a given functiong(x) and some constant coefficien
a i andb i ( i51,2). From the Lemma 3.1.2 in@20# it follows
that this equation holds when

g~x!50, a i50, b i50, i51,2. ~51!

From the first equation of Eqs.~51! one obtains equations fo
the functionspi(x) ( i51,2) in the form

2DTAp19~x!2FDS1DT2
2AV0
L12kGp18~x!1

2V0

L12k
p1~x!5J,

2DTAp29~x!2FDS1DT1
2AV0
L22kGp28~x!2

2V0

L22k
p2~x!5J.

~52!

Boundary conditions for these ordinary differential equatio
follow from the remaining equations of Eqs.~51! and read

p1~k!5p2~k!, ~53!

p1~2L/2!5p2~L/2!, ~54!

DT@p18~k!2p28~k!#5
4V0L

~L12k!~L22k!
p1~k!, ~55!

DT@p18~2L/2!2p28~L/2!#5
4V0L

~L12k!~L22k!
p1~2L/2!.

~56!
r-

s

Normalization ofP(x) leads to the following fifth condition,
namely,

2DTA~L/21k!@p18~2L/2!2p18~k!#1DTA~L/22k!

3@p28~L/2!2p28~k!#1
L

2
~DS1DT!@p2~L/2!2p2~k!

2p1~k!1p1~2L/2!#1J@~L/22k!22~L/21k!2#

52V0 . ~57!

A solution of Eq.~52! has the form~for a similar solution
technique with the white shot noise substituted by a dicho
mous two-state process see Ref.@5#!

p1~x!5B1e
w11x1B2e

w12x1J~L12k!/2V0 , ~58!

p2~x!5C1e
w21x1C2e

w22x2J~L22k!/2V0 , ~59!

where

w115
2V22AV2

2 18DTAV0 /~L12k!

2DTA
, ~60!

w125
2V21AV2

2 18DTAV0 /~L12k!

2DTA
, ~61!

w215
2V12AV1

2 28DTAV0 /~L22k!

2DTA
, ~62!

w225
2V11AV1

2 28DTAV0 /~L22k!

2DTA
, ~63!

V75DS1DT7
2AV0
L62k

. ~64!

The currentJ and the four constantsBi ,Ci ( i51,2) are de-
termined by five conditions~53!–~57!. This yields a nonho-
mogeneous system of five linear algebraic equations. He
the problem is solved and evaluation of the current is a m
ter of linear algebra. BecauseJ is a quotient of two determi-
nants of the fifth degree, the explicit form ofJ emerges as a
complex expression, which is not reproduced here. T
analysis of the current with its corresponding graphical r
resentation is the subject of the next section.

VII. DISCUSSION OF RESULTS

In this section we analyze transport properties in
piecewise linear potential~47!. There are six parameters i
our ratchet model, namely,DT , the thermal-noise strengt
proportional to temperature of the system; (DS ,a), which
characterize the Poissoniand-correlated fluctuations; and
(V0 ,k,L), which determine the potentialV(x). A general
note concerns the sign of the current:J is positive for any
~nonzero, finite! values of parameters. This is so because
the positive-valued weights of thed kicks. The current is a
monotonically increasing function of the shot-noise intens
DS . Starting from zero atDS50, it saturates to the maxima
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value given by Eq.~26!. Qualitatively, the same property ha
been observed for zero thermal temperatureT50 @10#.

A. Current versus shot-noise bias level

The dependence ofJ versus the shot-noise bias levela in
Eq. ~6! is visualized in Fig. 2. Our figures have been o
tained by solving the above-mentioned system of five
early coupled algebraic equations by straightforward, sim
numerical means. There is an optimal valueamax for which
the current is maximal. As the temperature of the syst
decreases to zero,amax approaches the value 2V0 /(L12k)
from below. If a.2V0 /(L12k) at T50, both backward
and forward transitions take place for the Brownian dyna
ics of the particles. Throughout our discussion here,
evaluate the analytic results forT50 by using, for conve-
nience, in our program a very small temperature
DT51026. On the contrary, ifa,2V0 /(L12k) at T50,
only forward transitions drive the particle@11#. If T.0, this
no longer holds true. For anya, there are now both backwar
and forward transitions being induced by nonzero Gaus
white noise.

B. Current versus potential asymmetry

The current depends strongly on the asymmetry param
k of the potential. We define the asymmetry as beingpositive
if k,0 and vice versa. The casek50 corresponds to a sym
metric periodic potential. Positive asymmetry means t
when starting from minima of the potential its slope in t
x-increasing ~right! direction is less than in the
x-decreasing~left! direction or, put differently, climbing the
barrier is easier towards the right than towards the left.
Figs. 3~a!–3~c! we depict the current dependence upon
asymmetry parameterk of the potential. In a ‘‘hot’’ system,
i.e., when the temperatureT is relatively high, the symmetric
thermal noise dominates so that the current is ruled incr
ingly by an equilibrium dynamics. Hence the current tends
zero independently of the specific form of the ratchet pot
tial, which implies that the current is almost symmetric w
respect to asymmetry; see Figs. 3~b! and 3~c!. Moreover, we
note that, at fixed temperatureT, the current increases wit
increasinguku.

At T50, as well as at low temperatures and for stro
intensityDS of Poissonian fluctuations, new effects arise; s

FIG. 2. CurrentJ vs parametera @which measures the negativ
base value of the white-shot-noise realizationj(t) between the
positive-valuedd kicks# for various thermal-noise intensitiesDT ,
fixed white-shot-noise intensityDS51, in the symmetric (k50),
periodic sawtooth potential with periodL52 and barrier height
V051.
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the casesDS51 andDS50.5 in Fig. 3~a!. As k changes
from a maximal positive asymmetry atk52L/2, the current
grows to a~local or global! value. NextJ diminishes, attain-
ing a ~global or local! minimal value. The minimum is no
for a symmetric potential atk50, but is shifted towards a
positive-k value, i.e., anegativeasymmetry for the ratche
potential. A further increase of asymmetry leads to an
crease of the current. This behavior is most pronounce
T50 and can be explained as follows: Ifk,V0 /a2L/2,
there is no net flux in the left direction. Strong shot-noi
intensityDS means thatd pulses are rare (l is small! and
amplitudeszi in Eq. ~3! are large~but lA5a5const!. Be-
tweend pulses and fork close to2L/2, particles are local-
ized near a minimum of the potentialV(x) since the deter-
ministic relaxation times from the left and from the rig
maxima to the minimum are shorter than 1/l. If k increases
then the distance between a minimum and the neighbo

FIG. 3. CurrentJ shown vs asymmetry parameterk of the saw-
tooth potential ~47! for fixed a52, L52, and V051, for ~a!
DT51026 and various values of shot-noise strengthDS , ~b!
DS51 and various values of thermal-noise strengthDT , and ~c!
DS50.2 and various values of thermal-noise strengthDT .
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right maximum becomes shorter. Smaller and more proba
amplitudes@cf. the distribution~4!# are able to displace par
ticles over the maximum into the right direction. This featu
holds with k,0 up to k5V0 /a2L/2 at T50. When
k.V0 /a2L/2, a flux arises also towards the left directio
and grows ask increases. As a consequence, the total cur
in the right direction decreases ask increases; cf. in Fig. 3~a!
for DS51 andk.20.5. Starting from a certain positive-k
value ~negative asymmetry! the growth ofk causes an in-
crease of the current up to the maximal value

J5
v r
L

5
2V0

~L12k!L
→

V0

L2
as k→L/2. ~65!

Herev r is the deterministic part of the particle velocity in th
right direction. This is so because the probability that, afte
d kick, the particle falls into the interval (k,L/2) is much less
compared to the case where it falls into the inter
(2L/2,k).

C. Current versus temperature

The stationary currentJ as a function of the thermal nois
intensity DT ~or rescaled temperatureT of the system! is
plotted in Figs. 4~a! and 4~b! for several values of the sho
noise strengthDS and fixed remaining parameters. One c

FIG. 4. Plot of the currentJ as a function of thermal-noise
intensityDT ~or rescaled temperatureT) for fixed a50.5, L52,
V051, k50, and selected values of white-shot-noise strengthDS .
~a! three distinctive~monotonic decrease, minimum-maximum, a
bell-shaped! behaviors ofJ(DT) are depicted.~b! depicts how a
global maximum forJ changes into a local maximum while in
creasing the white-shot-noise intensityDS .
le

nt

a

l

observe three radically different types of the current behav
as the control parameterDS is varied.

~i! The current is a monotonically decreasing function
temperature.~ii ! As temperature increases from zero, the c
rent starts from a nonzero value, decreasing to a local m
mum; next it grows, attaining a~local or global! maximum,
and thenJ approaches zero asT→`. ~iii ! Increasing the
temperature from zero results first in a rise of the current
then its fall. There is one unique temperature maximizing
current. Put differently, the currentJ exhibits a bell-shaped
behavior versus increasing temperature.

VIII. APPROXIMATE SOLUTIONS

For a comparison between the two asymptotic expans
presented in Sec. V with the exact results obtained for
case of the piecewise linear potential~47!, we truncate the
series~33! and ~44! and restrict ourselves to terms of fir
order with respect to the expansion parametere. Within the
original, i.e., nonrescaled variables, indicated byJ, and for
the potential barrierV0, the renormalized expansion, denot
by the superscript 2 yields

J~2!'J0~DT!1
DTDS

a
J1~DT!, ~66!

where

J0~DT!5
12e~L/22k!r2~L/21k!s

N
~67!

and

J1~DT!5
~L/22k!2r ~r1s!

sV0
2N2 @e~L/22k!r2e~L/22k!r2~L/21k!s#

3@2112r ~12e2~L/21k!s!2e2~L/21k!s

1e2~L/22k!r1e~L/22k!r2~L/21k!s#

1
~L/21k!2s~r1s!

rV0
2N2 @e~L/22k!r2~L/21k!s

2e2~L/21k!s#@2122s~12e~L/22k!r !2e~L/22k!r

1e~L/21k!s1e~L/22k!r2~L/21k!s#. ~68!

The normalization constant reads

N[N~DT!5
L2

V0
2 ~DT1DS!@e

~L/22k!r1e2~L/21k!s

2e~L/22k!r2~L/21k!s21#

12k
L

V0
@12e~L/22k!r2~L/21k!s#. ~69!

The quantitiesr ands are given by



s

on

re
of
am

t
th
r

dic
her-
the

ans
rbi-
an
tic

n-
as a
ite-
mly
not
ing

lin-

har-
the
-
ur-

lly

axi-

ally
too.
role
ple,
um

are

ers;
ply
or

la-
as-

o
a

55 4065THERMAL RATCHETS DRIVEN BY POISSONIAN WHITE . . .
r[r ~DT!5F S L22kD DT1DS

V0
1
DS

a G21

, ~70!

s[s~DT!5F S L21kD DT1DS

V0
2
DS

a G21

. ~71!

The regular expansion, denoted by the superscript 1, lead
the relation

J~1!'J0~0!1
DTDS

a
J1~0!. ~72!

As we mentioned before, the expansions can be used
when the unperturbed diffusion function in Eq.~35! and the
renormalized diffusion function in Eq.~46! are positive for
any x. For the sawtooth potential~47!, this implies the con-
ditions

a.a152/~k1L/2!, a.a252/@~k1L/2!~11DT /DS!#
~73!

for the unperturbed and renormalized diffusion functions,
spectively. As depicted in Fig. 5, the regime of validity
these two approximations is governed not only by the par
eter e defined in Eq.~32! but also by the base levela of
white shot noisej(t), which is restricted by Eq.~73!. If e is
rather small~top two lines in Fig. 5!, the two expansions
reproduce the exact result fora decreasing from infinity up
to a'a1. With increasinge, the deviations from the exac
result become more pronounced. Note, however, that
renormalized expansion~dotted lines! does provide bette
agreement.

FIG. 5. Exact results~thick solid line! are compared against tw
approximations obtained from the the first-order asymptotic exp
sions: regular~thin solid line! and renormalized~dotted line! expan-
sions. The parameters areDS51, L52, V051, andk50 for two
values of the expansion parametere5DT /DS5DT50.001 and
0.1.
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IX. SUMMARY

We have studied properties of the current in perio
structures generated by white shot noise and driven by t
mal fluctuations. The stationary current is determined by
ordinary differential equation of second order; see Eq.~20!.
Because this equation cannot be solved by analytical me
we have considered various specific situations. For an a
trary form of the spatially periodic potential, the current c
be analytically described in closed form in the asympto
regime of very strong intensity for Poissoniand-correlated
fluctuations~Sec. IV!. Two asymptotic expansions are co
structed in Sec. V. The expansion parameter is defined
quotient of the Gaussian white-noise intensity and the wh
shot-noise intensity. These expansions are not unifor
convergent and their domains of validity are determined
only by the expansion parameter, but also by the remain
parameters of the stochastic dynamics.

Exact analytical results are obtained for the piecewise
ear sawtoothlike potential~47!. The most interesting findings
are visualized in the figures. The current vs temperature c
acteristics are strongly influenced by other parameters of
model, such as the intensityDS of Poissonian white fluctua
tions. A notable feature of our ratchet model is the occ
rence, for specific choices of the parameter set, oftwo char-
acteristic temperatures at which the current is loca
minimal and/or~locally or globally! maximal. The fact that
there exists a single characteristic temperature that m
mizes the current has been emphasized in@3#. Nevertheless,
we believe that the existence of a temperature that loc
minimizesthe current can have practical consequences
Such a temperature-induced minimum can play a useful
in the design of devices that separate particles. For exam
the simultaneous presence of a minimum and a maxim
can be of use to separate, withminimal dispersionin veloc-
ity, two classes of particles. The corresponding regimes
controlled by the value of the thermal noise intensityDT ,
which is governed by mass and friction strength paramet
cf. Eq. ~10!. Suitable systems where these ideas may ap
are shot-noise-driven transport in periodic superlattices
biological motor proteins that move along periodic track fi
ments where shot noise mimics the nonequilibrium stoch
tic hydrolysis of adenosine triphosphate.

ACKNOWLEDGMENTS

The work has been supported by Komitet Badan´ Nauko-
wych ~T.Cz., J.K., and J.Ł.! through Grant No. 2 P03B 079
11 and by the Deutsche Forschungsgemeinschaft~P.H.!
through Grant No. Az. Ha 1517/13-1.

n-
@1# P. Hänggi and R. Bartussek, inNonlinear Physics of Comple
Systems — Current Status and Future Trends, edited by J.
Parisi, S. C. Mu¨ller, and W. Zimmermann, Lecture Notes i
Physics Vol. 476~Springer, Berlin, 1996!, pp. 294–308.

@2# N. J. Cordova, B. Ermentrout, and G. F. Oster, Proc. N
Acad. Sci. U.S.A.89, 339 ~1992!; S. M. Simon, C. S. Peskin
l.

and G. F. Oster,ibid. 89, 3770 ~1992!; K. Svoboda, Ch. F.
Schmidt, B. J. Schnapp, and S. M. Block, Nature365, 721
~1993!; J. Rousselet, L. Salome, A. Ajdari, and J. Prost,ibid.
370, 446 ~1994!; S. Leibler,ibid. 370, 412 ~1994!; J. Łuczka,
Cell. Mol. Biol. Lett. 1, 311 ~1996!.

@3# M. O. Magnasco, Phys. Rev. Lett.71, 1477 ~1993!; R. Bar-



s.
.

s,

ev

ys.

s

4066 55T. CZERNIK, J. KULA, J. ŁUCZKA, AND P. HÄNGGI
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