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Abstract 

We investigate the long-time dynamics in dissipative two-level-systems (TLS) when driven by - monochromatic or 
pulse-shaped - periodic fields. The environmental influence is investigated within the noninteracting-blip appoximation 
(NIBA), while no restrictions are assumed on the driving force. With the focus being on electron-transfer (ET) reactions in 
condensed media, we consider a continuous Ohmic spectrum for the bath modes. The asymptotic dynamics exhibits always 
the periodicity of the external force. The induced oscillations show a smooth periodic behavior which becomes richer, if, 
for example, mulfiphoton resonances occur. For monochromatic driving, the oscillatory multiresonance pattern becomes 
gradually smoothed out when the temperature, and/or the Ohmic strength are sufficiently high. It may persist, however, for 
pulse-shaped driving. Exact N1BA analytical and/or numerical solutions, for both the Ohmic transfer rate and for the driven 
dynamics, are used to determine the validity range of the short-time approximation for the bath correlation functions. The 
latter is frequently employed to investigate the ET dynamics. Our analysis shows that the short-time approximation may 
give qualitative incorrect results at low temperatures. @ 1997 Elsevier Science B.V. 

1. Introduction 

The model of  a two-level system coupled to a ther- 
mal bath has been successfully applied to describe di- 
verse phenomena occurring in physical and chemical 
systems. It can describe, for example, hydrogen tun- 
neling in condensed media [ 1 ], tunneling of  atoms 
between an atomic-force microscope tip and a sur- 
face [2] ,  or of  the magnetic flux in a superconduct- 
ing quantum interference device (SQUID) [ 3 ]. Since 
the seminal works by Marcus [4] and Levich [5] 
this same model has been applied to describe nona- 
diabatic chemical reactions in the condensed phase, 
i.e., electron transfer (ET) [6-10]  or proton transfer 
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reactions [ 11 ]. 
This two-level-system (TLS),  when isolated from 

the thermal bath, is the simplest system exhibiting 
quantum interference effects, as it can be prepared to 
oscillate clockwise between the eigenstates in the left 
and right well. Quite generally, the stochastic influence 
results in a reduction of  the coherent tunneling mo- 
tion by incoherent processes [ 12-14] ,  and may even 
lead to a transition to localization at zero tempera- 
ture [ 15]. An important question is to which degree 
the TLS dynamics is influenced by externally applied 
time-dependent fields [ 16-29].  In particular, in the 
absence of  interaction with a bath, a complete destruc- 
tion of  tunneling can be induced by a coherent driving 
field of  appropriate frequency and strength [ 16]. This 
effect can be stabilized in the presence of  dissipation 
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[ 17,20]. The possibility to control a-priori the proton 
transfer by an electric field has been first addressed 
in [ 18] in the classical limit. This same issue applied 
to the case of ET transfer rate in a polar solvent was 
subsequently discussed in [21]. Long-time coherent 
oscillations may arise due to driving induced corre- 
lations between tunneling transitions [ 19,22,23,27]. 
This oscillatory behavior has previously not been de- 
tected in [ 20], due to the fast field approximation used 
in the analytic treatment of the driven dynamics. Fi- 
nally, other interesting examples of control of the TLS 
dynamics are the enhancement of the TLS response to 
a weak coherent signal [26], i.e., quantum stochas- 
tic resonance, or of the periodic asymptotic tunneling 
amplitude [27], for optimal values of the stochastic 
forces. The possibility of inversion of the population 
between the donor and the acceptor in an ET pro- 
cess has been recently discussed in [21,28]. More- 
over, novel effects, such as an exponential enhance- 
ment of the transfer rate by an electric field modulat- 
ing the coupling between the localized states has been 
addressed recently in [29]. 

In this work we investigate the possibility of con- 
trolling the long-time oscillatory TLS dynamics by a 
generic periodic field. In particular, we shall address 
the case of experimental interest of monochromatic 
and pulse-shaped driving (see Eq. (2) and Fig. 1 ). 

The case of pulse-shaped monochromatic driving 
has been recently addressed in Ref. [24]. In the ap- 
proach of Ref. [24], though, the pulse function has 
not been considered as a continuous periodic function. 
Put differently, the signal therein has been treated as 
a sequence of "field-on" time-intervals where known 
results for fast monochromatic driving could be ap- 
plied, followed by "field-off" intervals, where, on the 
contrary, results for the static transfer rates were used. 

For monochromatic driving, it is found that the 
asymptotic periodic electronic population may exhibit 
multi-resonance peaks when the driving frequency is 
an integer submultiple of the asymmetry energy be- 
tween the localized states. This phenomenon may be 
interpreted as a multiphoton absorption or emission 
process at the proper frequencies of the TLS. It should 
be observable in ET reactions in nonpolar media at 
sufficiently low temperatures and small reorganization 
energies. On the other hand, for ET in polar media the 
reorganization energy is always too large for this fine 
structure to be visible. 

For pulse-shaped driving, the periodic dynamics ex- 
hibits again an oscillatory behavior on which a fine 
structure is usually superimposed. Further, as sug- 
gested in [24], a pulse-shaped signal might be more 
appropriate to observe the asymptotic oscillations in 
ET in polar media. In fact, it is unlikely that the effect 
of the applied electric field would result in a dielectric 
breakdown of the solvent due to the very short dura- 
tion of the pulses. 

The paper is organized as follows. In the first part 
of Section 2 we recall some general results on the 
dynamics of the periodically driven and dissipative 
TLS. In the second part of Section 2 some limiting 
solutions for the case of monochromatic and pulse- 
shaped driving are discussed. In Section 3 the general 
results of the previous section are applied to study the 
asymptotic periodic dynamics, with emphasis put on 
the ET dynamics in nonpolar media. For this purpose, 
the bath is assumed to have a continuous spectrum of 
the Ohmic form. Exact analytical and numerical re- 
sults for the Ohmic transfer rate and asymptotic dy- 
namics are used to determine the regime of validity 
of the short-time approximation imposed on the bath 
correlation functions, which frequently is used in the 
ET literature. At last, in Section 4, we summarize our 
findings and draw some conclusions. 

2. Tunneling dynamics under periodic driving 

The spin-boson Hamiltonian has often been used in 
the literature to study the dynamics of nonadiabatic 
ET, or proton-transfer, reactions [ 8-10,18,21,24,28 ]. 
The TLS is associated with electronic basis states that 
correspond to an electron localized on the donor or on 
the acceptor site of an ET complex, respectively. The 
bosonic modes describe the solvent effects, and are 
assumed to be coupled bilinearly to the TLS coordi- 
nates. Taking in addition into account the possibility 
of an external electric field which couples to the tran- 
sition dipole moment between the donor and acceptor 
states, we end up with the time-dependent spin-boson 
Hamiltonian 

h ( ~(t)o-z) H(t) = - ~  kA~rx + 

1 p2 i ( miw~x~ cixido- z) (1) - 

i 
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Fig. 1. Different periodic driving signals can be used to control 
the tunneling dynamics: (a) monochromatic driving; (b) and 
(c) pulse-shaped polychromatic driving of period Tp. The latter 
are obtained by modulating a monochromatic signal by a pulse 
function. 7~ denotes the duration of the pulse. 

Here, the o-'s are Pauli matrices, and the eigenstates 
of  o- z are the basis states in a localized representation 
where d is the tunneling distance between the donor 
and acceptor localized states. The electronic coupling 
parameter is given by hA, while the asymmetry energy 
between the two localized positions is he( t )  = he0 + 
f ( t ) .  The static part he0 represents the bias energy 
in the absence of  the driving field (the reaction heat). 
The time dependent contribution of the form 

f ( t )  = tzEo~7(t) cos~lt ,  r / ( t  + Tp) = r / ( t ) ,  (2) 

describes the coupling between the ET system and the 
external field, where /z is the difference dipole mo- 
ment between donor and acceptor, and E0 cos 12 t is the 
applied electric field modulated by a periodic function 
r / ( t )  of  period Tp = 2~ ' /~p  ~> T = 2~/1~. Depending 
on the particular shape of  the "pulse" function 7/(t), 
different experimental realizations may be mimicked 
as shown in Fig. 1. 

Suppose now that at times t < 0 the particle is 
held at the site o- z = 1 with the bath prepared at ther- 
mal equilibrium at temperature T. We then compute 
the population difference between the localized states 

(o" z (t)) -- P( t )  at times t ~> 0 for this factorizing ini- 
tial state. After tracing out the thermal bath, all envi- 
ronmental effects are captured by the twice-integrated 
bath correlation function Q(t) = Q~(t) + iQ ' ( t )  
[ 12,13], where 

o 0  

d 2 
Q ( t ) = ~  f d o ~ ] - ~ ( c o s h [ h w f l / 2 ]  

o 

- cosh [/-uo ( f l / 2  - it) ] ) / s inh  [ tkofl/2 ], 

(3) 

fl = 1/kBT, and J(w)  = ( ~ / 2 )  ~ i ( c 2 / m i o J i ) S ( ¢ o  -- 

wi) is the spectral density of  the heat bath. Upon sum- 
ming over the history of the system's visits of  the 
four states of  the reduced density matrix, we can find 
the exact formal solution for the evolution of  a driven 
damped system in the form of a series in the num- 
ber of  time-ordered tunneling transitions [ 19,22,23]. 
Equivalently, as prescribed in Ref. [ 23],  an exact mas- 
ter equation for the population P ( t)  can be derived. 
It reads 

t 

P(t)  = / d t '  [K( - ) ( t , t  ') - K(+)( t , t ' )P( t ' ) ] ,  (4) 
, 3  

o 

where the memory kernels K ~+) (t,  t r) are defined by 
a power series in A 2. An exact analytical solution of 
Eq. (4) is known for the special case a = 1/2 of  the 
Ohmic friction (see Eq. (22) ) .  For arbitrary Ohmic 
friction values, or other friction mechanisms, one gen- 
erally has to resort to approximations. In particular, 
within the noninteracting-blip approximation (NIBA)  
[12,13], the kernels in Eq. (4) reduce to the expres- 
sions 

K(+)(t, t  ') = h(+)(t - t') cos ( ( t ,  fl),  
(5) 

K ( - )  (t ,  t ' )  = h ~ - )  ( t  - t ' )  sin ( ( t ,  t '), 

where ( ( t ,  t ' )  = f/, d t ' e ( t ' ) / h  and 

h ~+) (t - t') = AZe -Q'(t-t') c o s [ Q " ( t  - t ' ) ] ,  
(6)  

h ( - ) ( t -  r )  = A2e -Q'(t-t') s i n [ Q ' ( t -  t ' ) ] .  

The NIBA assumes that the average time spent in 
an oft-diagonal state of  the reduced density matrix is 
much smaller than the average time spent in a diago- 
nal state. This assumption is always fulfilled for high 



170 M. Grifoni et al./Chemical Physics 217 (1997) 167-178 

. . . . . . . . . .  !)-- = 2.0 - -  

", \ \ ~o = 8 .0  T = 1.0 O = 4 f} - - -  

~" \ co -200  ~ - 8 0  static case 

', \ ~r = 0.2 
0.8 

-z- 
L- 

0.6 

I).4 

k y 

~ ' ~)n ~'~ ~,~i~ 
t 

Fig. 2. Large amplitude oscillations in the asymptotic population 
dynamics described by P(t) induced by a monochromatic field 
f ( t )  = h~-cosOt of intermediate frequency fL For comparison, 
the behavior in the absence of driving (static case) is also shown. 
The fine resonance structure can be interpreted as the result of a 
multiphoton absorption at the proper frequency of the TLS: The 
number N of resonances observed satisfies the relation N = e0/I~, 
where he0 is the static asymmetry energy of the TLS. Here and 
in the following figures, frequencies are in units of 6 = A/2, 
temperatures in units of hS/kB and times in units of 6 - L  More- 
over, ot is the dimensionless Ohmic coupling constant and Wc the 
cut-off frequency which characterize the Ohmic spectral density 
in Eq. (22). 

where /~'a~+)(t) = f ~  dff e-aFK(+)(t + if, t). In 

the absence of driving, the kernels Ka ~±) do not de- 
pend on time, and Eq. (7) reproduces well-known 
results [12,13]. In particular, the TLS dynamics 
approaches incoherently the stationary equilibrium 
value Pst= tanh(heo/2kBT) with relaxation rate 
Yo = lima,~o k~+)(t)  given by 

OC3 

=/drh(+)(r )  cos(reo).  (8) Yo 
, J  

o 

For periodic driving the kernels Ka ~±) (t)  have the pe- 
riodicity of the external field and can be expanded in 
Fourier series, i.e., 

k~a±)(t) = Z kn~(A)e-imOpt' (9) 
Fn= - -  O~ 

hence allowing a recursive solution of (7) [22]. In 
particular, the asymptotic dynamics is determined by 
the poles of the recursive solution at A = ±imf~p, 
where m is an integer number. Hence, the asymptotic 
dynamics is periodic in time with the periodicity Tp = 
2~-/f~p of the driving force, i.e., 

lim P(t) = p(as)(t) = p(as)(t + Tp), (10) 
t----+ OO 

enough friction or high enough temperatures, though 
the range of validity depends on the specific form cho- 
sen for the spectral density J(o~) of the medium (see 
also the discussion in Section 3). It is interesting to 
observe, however, that the polaron transformation ap- 
proach discussed in [20,21,28] leads, if applied to the 
Hamiltonian of Eq. ( 1 ), to a master equation analo- 
gous to Eq. (4) and with kernels identical to Eq. (5). 
The NIBA then amounts to the Born approximation 
with respect to the dressed intersite coupling [30]. 
Eq. (4) is conveniently solved by Laplace transfor- 
mation. Introducing the Laplace transform P(A) = 
f~'~ dte-atp(t) of P(t), one obtains 

satisfying the integro-differential equation 

2~'/f~ 

/Sas( t )  =St( t )  - ~ dt'P("S)(t') 
0 

× £ ( t ' , t -  t'), (11) 

which describes the time evolution within a period. 
Here 

.T'( t) = V TM e-innptk - ( - i n . p )  

n 

(12) 
£ ( t ,  t ') = ~ e- imsqpte- inf~pt 'k+(-- in .p) .  

L . ~  m 

m , n  

OG 

AP(A) = 1 + i dt e-a'[R~ -) (t) 
o 

- R~+)(t)P(t)], (7) 

This result, within NIBA, is still exact. It explic- 
itly shows that also the asymptotic driven dynamics 
is intrinsically non-Markovian and not invariant under 
continuous time-translations. As shown in Fig. 2 for 
the case of monochromatic driving f ( t )  = h~ cos l~t, 
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Fig. 3. The oscillatory asymptotic dynamics of the population P(t) induced by a monochromatic field f ( t )  = h~ cosf~t is smoothed out 
as the temperature T (left panel) or the Ohmic coupling strength ot (right panel) increases. 

(h~ - / z E 0  and r/(t)  = 1), driving-induced correla- 
tions may lead, for example, to large amplitude oscil- 
lations in the asymptotic dynamics. Moreover, a fine 
resonance structure may be superimposed to the oscil- 
latory behaviour. For large asymmetries e0 the number 
N of resonances is given by the ratio N = e0/fL This 
phenomenon may be interpreted as a multiphoton ab- 
sorption or emission process at the proper frequencies 
of the TLS. In Fig. 2, as in the other figures, the bath 
is assumed to have an Ohmic spectrum as given in 
Eq. (22). Moreover, in all of our figures frequencies 
are given in units of ~ = A/2, temperatures in units of 
h~/kB and times in units of S -1. Here, h6 represents 
half of the coupling energy between the localized elec- 
tronic states. If for example, as in Section 3, these gen- 
eral results are applied to describe the ET dynamics in 
condensed media, the half energy h6 can be taken to be 
1 cm - l  (so that hS/kB ~ 1.44 K and fi-] ~- 33 ps). 
The coherent oscillatory behaviour is depicted also in 
Fig. 3, where the effect of temperature and friction is 
investigated. It is shown that the driving-induced co- 
herent oscillations are smoothed out by bath-induced 
incoherent transitions as the temperature or the cou- 
pling strength are increased. 

As shown by Eq. (4) or Eqs. (7) and (11) the 
transient, as well as the long-time dynamics, depends 
on an intriguing interplay between the stochastic and 
driving forces. Though, as discussed below and as de- 
picted in Figs. 4 and 5 for the case of monochromatic 
and pulse-shaped driving, respectively, when a sepa- 

ration of time scales is possible, Markovian approxi- 
mations to the exact NIBA solutions can be invoked. 

2.1. Monochromatic driving 

Before considering the case of periodic pulse- 
shaped driving of the form f ( t )  = h~r/(t) cos~t ,  it 
is instructive to discuss some approximations to the 
dynamics in the presence of monochromatic driving 
(i.e., r/(t) = 1 in Eq. (2) and hence ~ equals f~p). 
For a more extensive discussion we refer to previously 
published works quoted below. In the following we 
shall restrict to the low and high frequency regimes 
l~p >> ~.~1 and ~p << ~-~.], respectively. Here, zx  
is the characteristic memory time of the kernels of 
Eq. (5) and depends on the specific characteristics of 
the medium (see Section 4). 

2.1.1. Low frequency driving 
As discussed above, an analysis of the poles of 

the exact NIBA equation (7) reveals that the long- 
time dynamics is dominated by the poles of P(A) 
in A = ±im~p  (with m an integer number), lead- 
ing to the integro-differential equation (11 ) for the 
asymptotic periodic dynamics. Hence, to leading or- 
der, in the low frequency regime l~p << ZX l, the A 
dependence of the kernels k(a+)(t) can be neglected, 
if only the long-time behavior is of interest. In other 
words, the driving field is slow enough that driving- 
induced non-Markovian correlations do not contribute 
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Fig. 5. Dynamics of the electronic population P(t) induced by 
periodic pulses as in Fig. l (b).  A low frequency periodic square 
pulse of  period T o = 2rr/flp and pulse duration 7b = Tp/2 is 
multiplied by a monochromatic signal of intermediate frequency 
1~. The oscillatory dynamics is depicted in the inset where P(t) 
is plotted for a longer time. The prediction of the low frequency 
approximation Eq. (13) and that of Eq. (20) (valid for slow 
pulses with internal high frequency oscillations) is also shown. 
The low l~p-high l~ approximation describes the TLS oscillations 
between the two bounds Pst and PH,ns indicated by the arrows, This 
approximation misses the fine structure due to the monochromatic 
component of the driving. See also Fig. 3. 

[ 19,22]. The long-time dynamics, within the NIBA, 
is intrinsically incoherent and the low frequency ap- 
proximation PL (t) to P (t) obeys the rate equation 

PL(t) = --yL(t) [eL(t)  -- PL.n.,(t) ], (13) 

with low frequency rate yL(t) --= lima--+0 ~'(+)(t) i x  A 

given by 

o o  

r L ( t )  =fdrh(+)(r)cos[((t+r,t)],  ( 1 4 )  

0 

and time-dependent, nonstationary equilibrium value 
PL,,s(t) = p L ( t ) / y L ( t ) ,  where 

o o  

pL(t) = / dr  h (-)  ( r )  sin[ sr (t + r, t) ]. (15) 

0 

Eq. (13) is easily solved in terms of quadratures 
[19,22]. In the limit O --+ 0, one obtains that 
¢ ( t , t  - r) ---+ re( t )  and Pns.L(t) --+ tanhh,8~(t)/2, 
so that e( t )  behaves like a time dependent asymmetry, 
and an adiabatic detailed balance condition is fulfilled 
in analogy with the static case. In general, however, 
the detailed balance condition does not hold true in 
the presence of driving. In the limit @ ---+ 0 the low 
frequency rate 7L(t) reduces to the static rate 3'0 in 
Eq. (8). In Fig. 4 the predictions of the low frequency 
approximation given by Eq. (13) are compared with 
those of the exact NIBA equation (4) for the case 
of moderately small Ohmic friction (see Eq. (22)) .  
The predictions of the high frequency approximation 
discussed in the next subsection are also reported. 

2.1.2. High frequency regime 
In the high frequency regime Op >> rx  l, the driv- 

ing field oscillates too fast to account for the details 
of the dynamics within one period. Hence, a good 
approximation to the true dynamics described by 
Eq. (4) amounts to approximate the kernels K + ( t, t ') 
in Eq. (4) with their average (K(+)(t , t ' ) )rp =__ 

K{o+)(t - t') over a period (or ka{+)(t) in Eq. (7) 
with their average ko~(A) given by the term with 
m = 0 in Eq. (9)) .  Hence, the essential dynamics of 
P ( t )  is described by (P(t))rp - PH(t) [21-23,28]. 
The evaluation of the time-averaged kernels is in turn 
readily accomplished by noticing that this average 
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has only to be carried out on the field dependent 
contributions cos ( ( t ,  t') and sin ( ( t ,  t '). One obtains 

(COS((t,t'))T o 

(2~pp l i p ( t - i f ) )  
= J0 sin ~- cos e0(t - if), 

(sin ( ( t, t') )ro (16) 

= ~ (25 sin ~-]p(t --  t') 0~,~pp 2- "~ j s i n e 0 ( t -  t t ) ,  

where Jo(z ) is the zero order Bessel function of first 
kind. Hence, time translation invariance has been re- 
covered by the averaging procedure, and the resulting 
equation for Pn(t) obtained from Eq. (4) is now of 
convolutive form. From Eq. (7) one obtains/SH (A) = 
[ 1 + k o (A)/A] / [ A + k~- (A) ]. Thus, a fast field sup- 
presses the periodic long-time oscillations, and [as 
follows approximating k0 ~ (A) ~ k0 ~ (0) ] the TLS sat- 
isfies at long times the rate equation 

PH(t) = --Yn [PH(t) -- PH,ns], (17) 

where PH.ns = ko (0)/k~-(0) is the averaged nonsta- 
tionary equilibrium value at high frequencies. The high 
frequency relaxation rate k~-(0) = YH is given by 

O O  

i d~" 8(+) ( --25 sin __~_).07- (18) yH = 09  cosO'e0)J0\~- 
0 

In the limit g --~ 0 the modified rate TH reduces to 
the static one Y0 of Eq. (8). 

Hence, from Eqs. (13) and (17) we may con- 
clude that, both for low and high frequency monochro- 
matic driving, the long-time behavior obeys within a 
good approximation a Markovian dynamics. The os- 
cillatory asymptotic tunneling dynamics under pulse- 
shaped driving is addressed in more detail in the next 
subsection. 

2.2. Pulse-shaped periodic driving 

Due to the results obtained in the previous section, 
we have all the necessary tools to discuss the case 
of pulse-shaped periodic driving of the form f ( t )  --- 
/~r/(t) cos f~t. 

Because Eqs. (13) and (17) are restricted only 
by the assumption of a separation of time scales, in 
the parameter regimes ~.Xl >> ~p or r~. l << ~p the 

same reasoning as for the case of low frequency or 
high frequency monochromatic driving, respectively, 
holds true. The dynamics will then be approximated 
by Eq. (13) or by Eq. (17) with the appropriate high 
frequency relaxation rate as it emerges from the av- 
eraging procedure. Though, because the resulting dy- 
namics is Markovian, an approximation to Eq. (13) 
can in addition be discussed in the parameter regime 
11 ) )  TK l )>  l~p. That is, we assume that the pulse- 
shape function r/(t) is a slowly varying function on 
the time scale set by the memory of the kernels in 
Eq. (5), while, on the contrary, the monochromatic 
part cosl l t  is lastly changing. Although the oscilla- 
tory long-time dynamics will assume the periodicity 
of the slow pulse shape function r/(t) (see Eq. (10) ), 
the dynamics within a pulse period Tp is also deter- 
mined by the fast monochromatic signal. Hence, due 
to the assumption gl >> rK 1, a good approximation to 
Eq. (13) can be obtained by performing the average 
(PL(t) )T of PL(t) over the fastly oscillating field. The 
average over the period T = 2¢r/11 yields 1 

(cos ~'(t , t ' ))r  

J o  sin a ( t  - t') = cos e0 ( t - t ' ) ,  
2 

(sin ( ( t ,  t') )r (19) 

= Jo( ~ sin fl( t - t') ) sin eo( t - p),  
2 

and the smooth, slowly oscillating function (PL (t))T 
satisfies the rate equation (13) with relaxation rate 

O O  

t) = / dr h (+) (r) "~L,r/( 
G 

o 

°') 
x Jo sin ~ cos(rEo), (20) 

and a nonstationary asymptotic value Prism(t) = 
PL,n ( t) /7L,n (t), where 

pLm(t) = f drh(- (r) 
o 

x J0 ( ~  sin 1 ~ )  sin(r~0). (21) 

I A similar approximation has recently been discussed in 
Ref. [25] for the case of bichromatic driving. 
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Fig. 6. Oscillatory dynamics for the ET population P(t) induced 
by the two different periodic polychromatic functions in Fig. I (b) 
and Fig. l(c). Tp = 21r/~p denotes the period of the periodic 
pulse, T0 = Tp/2 the pulse duration and II  the frequency of the 
monochromatic signal. The dot-dashed curve at the bottom of 
the figure shows for the reader's convenience the pulse signal 
of Fig. I (c) .  The sinus-like pulse gives rise to a different fine 
structure, as compared to the square pulse. The differences occur 
both at the beginning an at the end of the individual pulse. In 
the middle of the pulse, the two signals have almost the same 
amplitudes and the differences become only quantitative. 

Note that when r/(t)  = 1, the high frequency approx- 
imation (17) is recovered. This is in agreement with 
the physical intuition saying that a monochromatic sig- 
nal can be thought to be a pulse-shaped signal with an 
infinite pulse period Tp. The asymptotic oscillatory dy- 
namics for the case of Ohmic friction and pulse-shaped 
driving of the type (b) is shown in Fig. 5. For com- 
parison, the prediction of the rate equation Eq. (13) 
with Eqs. (14) and (15), is also depicted. In addition, 
is reported the prediction of Eq. (13) where the ap- 
proximated equations (20) and (21), obtained in the 
limit of low f~p and high f~, are used. This latter low 
Op-high l) approximation describes the TLS oscilla- 
tions between the two bounding values Pst = P,s,~--o 
and PH,ns =-- P, sm:l. These bounds are indicated by the 
arrows in Fig. 5. The low l~p-high ~ approximation 
scheme misses the fine structure due to the monochro- 
matic driving. 

The comparison between pulse-shaped driving of 
the type (b) and (c) in Fig. 1 is shown in Fig. 6. 
The two different pulse functions do not show a big 
qualitative difference. 

3. Asymptot ic  ET dynamics  

In order to make quantitative predictions on the ET 
dynamics, we next specify a form for the spectral den- 
sity J (w)  of the bath that is suitable to describe ET 
reactions. In the ET literature, different kinds of fre- 
quency dependence for the spectral density J (w)  have 
been used. For the case of long-range ET in molecular 
solids (e.g., in proteins) a suitable spectral function 
can be chosen to be of the Ohmic form [28], where 

27rh 
J ( w ) = - - - ~ a w e  -~'/~°c, (22) 

Here, o~c is an exponential cut-off frequency cor- 
responding to the autocorrelation relaxation time 
re = 1/we of the medium. The friction strength 
a = Er/2hwc is a dimensionless coupling constant 
formed by the ratio of the medium reorganization 
energy Er = ( d 2 / ' r r ) f ~ d w J ( w ) / w  to twice the 
cut-off frequency. For a typical electron or pro- 
ton transfer rc is in the range of l ps [18], while 
the medium reorganization energy typically exceeds 
10cm -1 -~ 1.25 x 10-3eV. 

On the other hand, for ET in polar solvents every 
electronic transition is accompanied by the rearrange- 
ment of a large number of molecules of the solvent 
leading to a spectral density of the form [6,9] 

2dZEr e " ( w )  
J ( w )  - 7r2hcp le(w)l 2, (23) 

where e(w) is the dielectric susceptibility of the 
medium, and cp = e ~  1 - e 7 1  with e ~  and es being the 
static and dielectric constants. It turns out that the re- 
organization energy in polar solvent is much higher as 
compared to rigid molecular structures. It assumes val- 
ues of the order Er = 2000cm -1 ~ 0.25 eV or higher. 
Hence, the evaluation of the spectral density in polar 
media requires the experimental or theoretical knowl- 
edge of the dielectric loss function e " ( w ) / [ e ( w ) [ 2 .  
In particular, for the case of a Debye dielectric relax- 
ation is e ( w )  = e ~  + (es - e ~ ) / ( 1  - iwrL),  where 
rE the longitudinal dielectric relaxation time. This 
form yields to the dielectric loss function [7,9] 

e " ( w )  cporL 
]e(W)] 2 -- 1 + (WrL) 2 (24) 

Hence, when w << r~ -1, J (w)  has the same Ohmic 
linear frequency dependence as the spectral density 
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Fig. 7. The static rate Yo, evaluated using the exact Eq. (25)  for 

Ohmic friction is plotted vs. temperature T. This rate is compared 
with those obtained by using the low- and high-temperatare ap- 

proximations in Eqs. (26)  and (27) ,  as well as the short-time 

approximation in Eq. (31 ). 

in Eq. (22) .  When ~o >> rL  1 it decays to zero alge- 
braically and not exponentially as in Eq. (22) .  In the 
following, we shall consider for our calculations an 
Ohmic spectral density of  the form given in Eq. (22) .  

3. I. Ohmic dissipation 

Inserting Eq. (22)  in the definition of  the bath cor- 
relation function Q'(t) and Q"(t) in Eq. (3) ,  one 
obtains the explicit  results [ 31 ] 

Q'(t) = olln( 1 + oj2t 2) 

4o:ln F (  F(1 + 1/hfltOc) , 
+ 1 + l lhflwc + il~/tfl) 

Q ' ( t )  = 2oe arctan (Wct), 

(25) 

where F ( z )  denotes the gamma function. We stress 
that the above result is exact. 

3. I. 1. Low and high temperature approximations 
In the low-temperature limit hflw¢ >> 1 the exact 

result (25)  reduces to the form for the Ohmic kernels 
usually used in the literature [ 12,13], with Q"(t) still 
given by Eq. (25)  and Q'(t) ~- Q'L(t), One finds 

~ e-2 

" + - 3  

' e['xa( t J 

l.c~ • low T 
high 7' 

short time ' // ' 

o.~ i \ i 

o , i 

I t: ? =  2o.o 

l i 3ff/2 

Fig. 8. The t ime-dependent rate yL( t )  for monochromatic  driv- 

ing in Eq. (14) is evaluated using the exact Eq. (25) for 
Ohmic dissipation. This rate is compared with those obtained us- 
ing the short-time approximation in Eq. (31 ) and the low- and 
high-temperature approximations discussed in Eqs. (26) and (27) 
versus time t. In the considered regime of low temperatures T and 
small friction a the exact rate and the low-temperature rate coin- 
cide within line thickness. The short-time approximation loses the 
details of the evolution of the exact rate within a period. Finally, 
the arrows indicate the average value of the different rates within 
a period. 

Q'L ( t) = oeln(1 + W2c t2) 

+ 2oeln[(hfl/rrt) sinh(rrt/hfl)], (26)  

Q " ( t )  = Q " ( t )  = 2 a  arctan (COct). L 

On the other hand, at high temperatures h/3o% << 1 the 
t t approximate expression Q'( t) ~_ Qn( ) holds, while 

Q"(t) still remains unchanged. We find 

Q'u(t) = (2a/h/~o~c) 

× [2O)ctarctan(~Oct) - l n ( 1  + o)2t2)],  (27)  

Q}~ ( t )  = Q " ( t )  = 2c~ arctan (O~ct). 

In Fig. 7 tbe static transfer rate Y0 of  Eq. (8 ) ,  eval- 
uated from the exact correlation functions Eq. (25) ,  
is compared with its low and high-temperature ap- 
proximations. In addition, the prediction of  the short- 
time approximation Eq. (28)  discussed below is 
also plotted. A typical value of  oe = 1 o f  the Ohmic 
strength suitable for ET reactions in condensed me- 
dia is chosen, leading to a reorganization energy 
Er = 40 c m - t  if the half coupling energy ha is as- 
sumed to be 1 cm -1 ~_ 1.25 × 10-4eV. In Figs. 8 
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Fig. 9. As in Fig. ( 8 ) ,  the exac t  t ime-dependent  rate 3/L(I) is 

c o m p a r e d  with different approximat ions  to it. Modera te  values o f  

the friction oz and  temperature  T are considered.  Qualitative differ- 

ences  are observed  between the exact  solution and its short- t ime 

approximat ion .  The difference between the exact  rate and the 

h igh- tempera ture  rate is only  quantitative.  

and 9 the time-dependent rate yL(t) (see Eq. (14))  
is plotted as a function of time by using the exact 
solution Eq. (25) and is compared with the low and 
high-temperature approximations. In the regime of 
low temperatures and small friction considered in 
Fig. 8, the low-temperature approximation coincides 
with the exact solution within line-thickness. The 
high-temperature approximation deviates quantita- 
tively, but not qualitatively, from the exact rate. In 
the regimes of moderate temperature and friction of 
Fig. 9, the low-temperature approximation is, as ex- 
pected, not so good. The quantitative deviations of 
the high-temperature approximation from the exact 
one, are already within 5 per cent. 

3.1.2. The short-time approximation 
As discussed at the beginning of this section, in or- 

der to make quantitative predictions on the ET dynam- 
ics a suitable form for the spectral density J (~o) of the 
bath has to be specified. This spectral density can be 
either calculated from some microscopic model as in 
Eq. (24), or extracted for example from spectroscopic 
data. The crucial point is that - independent on the 
specific form of the spectral density J(~o) - a short- 
time approximation OJct << 1 is commonly carried out 
in the ET literature [8,9,18,21,24,25,28] when per- 

forming the evaluation of the bath correlation function 
Q(t) in Eq. (3). This approximation leads to Q(t)  ~_ 
Qs(t) where 

Qs(t) Erk~Tefft2/h 2, n(t ' = Os ) = Ert/h, (28) 

with Teff being the effective temperature [8] 

Teff- 27rksE~r do) J(o)) coth(hoo/2kBT). (29) 

0 

This quantity depends on temperature and friction. At 
high temperatures keT >> fUOc one has Teff = T, while 
it becomes independent on the temperature in the low- 
temperature limit kBT << h~oc. In the approximation 
(28), and in the absence of driving, the well known 
Marcus formula for the static rate Y0 = Y(o f) + y(o b) of 
Eq. (8) is recovered, where the forward (backward) 
static rates y(o z/bt read [4,8] 

4 e-(e,±eo) /4E~k~rctl. (30) 

This approximation is usually thought to be appro- 
priate whenever the reorganization energy fulfills the 
inequality Er >> hwc, being the case of ET transfer 
both in polar and nonpolar media. Some care has to be 
taken, however, because of the integration involving 
Q(t) over all times, being implicit in the definition 
of the kernels Ka (±) (t) which enter the master equa- 
tion (7), or of the relaxation rates in Eqs. (8), (14), 
(18) and (20). In particular, for Ohmic damping one 
obtains from Eqs. (28) and (29) 

EroJct 2 l qs'(1 + l/h[7O~c) 

iErt 
+ - - ,  (31) 

h 

where qe '(z)  is the derivative of the digamma func- 
tion. In Fig. 7 the predictions of the short-time approx- 
imation Eq. (31 ) for the static rate of Eq. (8),  plotted 
versus temperature, are compared with those of the ex- 
act result Eq. (25). In Figs. 8 and 9 the time-dependent 
rate YL (t) of Eq. (14) is plotted as a function of time 
by using the exact solution Eq. (25) and the short- 
time approximation. Both in the regime of low tem- 
peratures and small friction considered in Fig. 8, and 
in that of moderate temperature and friction of Fig. 9, 
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the short-t ime rate misses the qualitative details of  the 
evolution of  the exact rate within a period. However, 
it improves in qualitative and quantitative agreement 
as the temperature is further increased (not  shown).  

4. Conclusions 

We studied, both analytically and numerically, 
the asymptotic  long-t ime dynamics of  a dissipative 
TLS driven by monochromatic  or pulse-shaped driv- 
ing fields. For our calculations, a continuous Ohmic 
spectrum for the bath modes was considered. The 
asymptotic  dynamics exhibits always the periodicity 
of  the external force. The induced oscillations show a 
smooth periodic  behavior, or a more complicate one, 
if, for example,  mult iphoton resonances at the proper 
frequency of  the TLS occur. This resonances can be 
seen for strict monochromatic  driving at moderately 
low temperatures and friction. For big static asymme- 
tries E0 the number N of  resonances observed satisfies 
the relation N = E0/~ ,  where f~ is the driving fre- 
quency. For monochromatic  driving, the oscillatory 
pattern becomes gradually smoothed out when the 
temperature, and /o r  the Ohmic strength are suffi- 
ciently high. It may persist, however, for pulse-shaped 
driving. 

As it was demonstrated in [23] ,  the dissipative 
and driven dynamics can always be described in 
terms of  an exact integro-differential equation, which 
is non-Markovian and not invariant under continu- 
ous time-translations. An approximation to this exact 
equation often discussed in the literature is obtained 
within the NIBA approximation for the stochastic 
forces [ 20,23,28 ]. We compared numerically the pre- 
dictions of  the "exact" NIBA equation for the driven 
tunneling dynamics,  with Markovian approximations 
to it often used in the literature [ 19-22,28].  It turns 
out that non-Markovian effects are usually of  minor 
importance when the asymptot ic  tunneling dynamics 
is considered. Because of  the complicated interplay 
between the stochastic and driving forces, an analysis 
of  the t ime scales involved is useful to decide which 
is the best approximation to be considered. For exam- 
ple, an high frequency approximation always looses 
the oscil latory behaviour of  the asymptotic dynamics 
around the averaged nonstationary population. 

Finally, the bath correlation functions necessary to 

evaluate the Ohmic kernels appearing in the NIBA 
integro-differential equations were calculated ex- 
actly . We compared the predictions for the Ohmic 
transfer rate calculated using this exact result with 
the low-temperature [ 12,13,19,22], high-temperature 
and short-time approximations [ 8,9,18,21,28 ] usually 
used in the literature. In particular, our analysis shows 
that the short-time approximation, frequently used 
to investigate the ET dynamics,  may give qualitative 
incorrect results at low temperatures. 
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