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In this communication we comment on a recent work [12] on the evaluation of the 
memory-kernel of the generalized master equation. We derive in a transparent and 
straightforward way the basic expression for the memory kernel. We demonstrate that 
the evaluation of this expression in [12] is carried out by use of the exact Laplace 
transform of the Greens function solution of the master equation. 

I. Introduction 

In recent years the projection operator technique and 
the concept of generalized master equations proved 
to be a very useful tool for the description of a set of 
macrovariables a [1-5]. Starting from the basis of 
microscopic first principles the projector operator 
method enables to contract on the minimal infor- 
mation necessary to describe the macroscopic dy- 
namics. This information is collected in the relevant 
probability fi(t) whose time evolution is determined 
by the generalized master equation 

t 

= t) + I ( ( t -  dr  + I(t). (1.1) 
0 

The method of master equations has seen a rapid 
development over the last years and recently the 
emphasis has shifted from the basic theoretical work 
to applications [3, 4, 6-9]. In spite of the flexibility of 
the generalized master equation there are certainly 
limits of its practical usefulness: The main difficulty 
lies in the evaluation of the rather involved formal 
expressions for the integral kernel K(t) and the in- 
homogeneity I(t). Recent theoretical progress has 
elucidated that the problem connected with the in- 
homogeneity is not the most serious one. By taking 
the preparation of the initial distribution explicitly 
into account one can always obtain a homogeneous 
generalized master equation with uniquely defined 
stochastic operators [10, 11]. Consequently, the ma- 
jor difficulty is the evaluation of the memory kernel 
K(t). It involves the solution of a problem with the 

unusual propagator exp(1-P)Lt  where L means the 
microscopic stochastic operator (Liouvillian) and P 
the appropriately chosen projector operator. An 
exact integral equation for the stochastic operator 
K(t) which does not contain this unusual propagator 
has been derived in Ref. 10. However, it remains to 
be shown that a perturbation expansion based on 
that integral equation is more adequate than the 
usual procedures [3, 4]. 
In a very recent paper [12] on this subject, a method 
has been presented which allows an exact evaluation 
of the memory kernel K(t) without using a per- 
tubational expansion. The aim of this communication 
is to show that this method makes use of the exact 
Laplace transform of the solution of the master equa- 
tion (1.1). Hence, the method is of no use if we want 
to determine that solution. However, it exposes some 
general properties of memory kernels ! 

II. Evaluation of the Memory Kernel 

Starting from the equation of motion for the micro- 
scopic probability function p(t) 

~(t) =Lp(t) (2.1) 

we obtain by use of an appropriately chosen pro- 
jector operator P (i.e. this choice implies (1-P)p(0) 
=0) for the relevant part Pp(t) the generalized mas- 
ter equation [3, 4, 10] 
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d t 

~- P p = P L P  p + ~ K ( t -  z) P p(t - z )  d z (2.2) 
at o 

with K(t) given by 

K(t) = PL e (a - P) Lt(1 - P) LP. (2.3) 

The time-evolution of the relevant part  p( t )=Pp( t )  is 
described by the propagator  G(t) satisfying (2.2) with 
the initial condition G(0)= P; i.e. 

p(t) = G(t) p(O) (2.4) 

where 

G(t) = P LPG(t) + i K ( t -  z) G(z) dz, 
0 

G(0) =P. (2.5) 

Note  that from (2.1) the propagator  G(t) is simply 
given by 

G(t)=peLt p. (2.6) 

The method of the evaluation of the memory  kernel 
K(t) proposed by the authors of Ref. 12 has its bear- 
ing on the equation 

It(z) = z P - G(z)- 1 _ P L P  (2.7) 

with 

f ( z ) = ~ ( e x p - z t ) f ( t ) d t ,  G ( z ) = P z ~ P .  (2.8) 
0 

However, Eq. (2.7) is equivalent to (2.5) because is just 
represents the usual Laplace transform of the latter 
relation. By use of the Laplace inversion we obtain 

1 - 1  

2 n i c  I 
(2.9) 

where C denotes the usual path (not closed) in the 
complex plane [13] that passes the eigenvalues of L 
from the right side. Equation (2.9) is the main result 
of Ref. 12; it has been derived there under the implicit 
assumption of a bounded spectrum of L. The authors 
of Ref. 12 consider in this context a different path 
steming from the integral representation of the F- 
function. Under  some mild mathematical  restrictions 
this path can be deformed to a closed path such that 
the contributions of the analytic first and third term 
in (2.9) vanish and consequently can be droped for 
the evaluation of the memory  kernel K(t), t > 0. Using 
the usual Laplace path C in (2.9) we obviously obtain 
from those two terms the singular contributions 
5'(t)P and - 6 ( 0  PLP respectively. However, these 
singular terms are compensated by the singular con- 

tributions of the second term yielding for K(t), t >= 0 a 
regular expression [11]. 
Also, it can be seen that a further evaluation of K(t) 
from (2.7) or (2.9) is based on the knowledge of the 
propagator  G(z) (or up to a Laplace transformation 
on G(t )=peLtp)  which on the other hand represents 
the solution of the generalized master equation (2.5). 
This latter fact can be seen explicitly from the exam- 
ples given in [12, 14]. However, in cases where we 
know the propagator  G(t )=peLtp  either exactly or 
within an approximation there is in general no need 
to consider the master equation (2.2). Nethertheless, 
equations (2.7) and (2.9) may be used for a test of 
approximation schemes as presented in [3, 4] in cases 
where the exact solution is known. 
Finally, I would like to mention, that with a possible 
series expansion for the memory-kernel  given in (2.3), 
generated from a small dimensionless parameter,  the 
generalized master equation does not remain an emp- 
ty concept [3, 4, 6]. Its advantage lies in the fact that 
the calculation of K(t) is based on the projected 
relevant information and not on either an exact or 
perturbative solution of the microdynamics (i.e. so- 
lution for the propagator  er~). 
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